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I. INTRODUCTION

The Fermi operator, i.e., the Fermi-Dirac function of the
system Hamiltonian, is a fundamental quantity in the quan-
tum mechanics of many-electron systems and is ubiquitous
in condensed-matter physics. In the last decade the develop-
ment of accurate and numerically efficient representations of
the Fermi operator has attracted lot of attention in the quest
for linear scaling electronic structure methods based on ef-
fective one-electron Hamiltonians. These approaches have
numerical cost that scales linearly with N, the number of
electrons, and thus hold the promise of making quantum-
mechanical calculations of large systems feasible. Achieving
linear scaling in realistic calculations is very challenging.
Formulations based on the Fermi operator are appealing be-
cause this operator gives directly the single-particle density
matrix without the need for Hamiltonian diagonalization. At
finite temperature the density matrix can be expanded in
terms of finite powers of the Hamiltonian, requiring compu-
tations that scale linearly with N owing to the sparse charac-
ter of the Hamiltonian matrix.1 These properties of the Fermi
operator are valid not only for insulators but also for metals,
making formulations based on the Fermi operator particu-
larly attractive.

Electronic structure algorithms using a Fermi operator ex-
pansion �FOE� were introduced by Baroni and Giannozzi2

and Goedecker et al.3,4 �see also the review article5�. These
authors proposed polynomial and rational approximations of
the Fermi operator. Major improvements were made recently
in a series of publications by Parrinello and coauthors,6–11 in
which a new form of Fermi operator expansion was intro-
duced based on the grand canonical formalism.

From the viewpoint of efficiency, a major concern is the
cost of the representations of the Fermi operator as a function
of ���, where � is the inverse temperature and �� is the
spectral width of the Hamiltonian matrix. The cost of the
original FOE proposed by Goedecker et al. scales as ���.
The fast polynomial summation technique introduced by
Head-Gordon and co-workers12,13 reduces the cost to

�����1/2. The cost of the hybrid algorithm proposed by Par-
rinello and co-workers in a recent preprint11 scales as
�����1/3.

The main purpose of this paper is to present a strategy
that reduces the cost to logarithmic scaling
�ln �����ln ln ����, thus greatly improving the efficiency
and accuracy of numerical FOEs. Our approach is based on
the exact pole expansion of the Fermi-Dirac function which
underlies the Matsubara formalism of finite-temperature
Green’s functions in many-body physics.14 It is natural to
consider a multipole representation of this expansion to
achieve better efficiency, as was done in the fast multipole
method �FMM�.15 Unlike FMM, here the expansion is on the
operator level. As we will show below, the multipole expan-
sion that we propose does achieve logarithmic scaling. We
believe that this representation will be quite useful both as a
theoretical tool and as a starting point for computations. As
an application of the formalism, we present an algorithm for
electronic structure calculation that has the potential to be-
come an efficient linear scaling algorithm for metallic sys-
tems.

The remaining of the paper is organized as follows. In
Sec. II, we discuss the multipole representation of Fermi op-
erator. In Sec. III, we present the FOE algorithm based on
the multipole representation and analyze its computational
cost. Three examples illustrating the algorithm are discussed
in Sec. IV. We conclude the paper with some remarks on
future directions.

II. MULTIPOLE REPRESENTATION FOR THE FERMI
OPERATOR

Given the effective one-particle Hamiltonian H, the in-
verse temperature �=1 /kBT, and the chemical potential �,
the finite-temperature single-particle density matrix of the
system is given by the Fermi operator
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� =
2

1 + exp���H − ���
= 1 − tanh��

2
�H − ��� , �1�

where tanh is the hyperbolic tangent function. The
Matsubara representation of the Fermi-Dirac function is
given by

� = 1 − 4 Re�
l=1

�
1

��H − �� − �2l − 1��i
. �2�

This representation originates from the pole expansion �see,
for example, Refs. 16 and 17� of the meromorphic function
tanh,

tanh z = �
l=−�

�
1

z −
2l − 1

2
�i

. �3�

In particular, for x real �which is the case when H is self-
adjoint�, we have

tanh x = 4 Re�
l=1

�
1

2x − �2l − 1��i
. �4�

To make the paper self-contained, we provide in the Appen-
dix a simple derivation of this representation. It should be
emphasized that Eq. �2� is exact. We notice that expansion
�2� can also be understood as the P→� limit of an exact
Fermi operator expansion proposed by Parrinello and co-
authors in Refs. 6–11.

The summation in Eq. �2� can be seen as a summation of
residues contributed from the poles ��2l−1��i	, with l as a
positive integer, on the imaginary axis. This suggests the
need to look for a multipole expansion of the contributions
from the poles, as done in the FMM.15 To do so, we use a
dyadic decomposition of the poles, in which the nth group
contains terms from l=2n−1 to l=2n−1, for a total of 2n−1

terms �see Fig. 1 for illustration�. We decompose the sum-
mation in Eq. �2� accordingly, denoting x=��H−�� for sim-
plicity,

�
l=1

�
1

x − �2l − 1��i
= �

n=1

�

�
l=2n−1

2n−1
1

x − �2l − 1��i
= �

n=1

�

Sn. �5�

The basic idea is to combine the simple poles into a set of
multipoles at l= ln, where ln is taken as the midpoint of the
interval �2n−1 ,2n−1�,

ln =
3 · 2n−1 − 1

2
. �6�

Then, the Sn term in the above equation can be written as

Sn = �
l=2n−1

2n−1
1

x − �2ln − 1��i − 2�l − ln��i

= �
l=2n−1

2n−1
1

x − �2ln − 1��i
�
�=0

� 
 2�l − ln��i

x − �2ln − 1��i
��

= �
l=2n−1

2n−1
1

x − �2ln − 1��i
�
�=0

P−1 
 2�l − ln��i

x − �2ln − 1��i
��

+ �
l=2n−1

2n−1
1

x − �2l − 1��i

 2�l − ln��i

x − �2ln − 1��i
�P

. �7�

In deriving Eq. �7� we used the result for the sum of a geo-
metric series. Using the fact that x is real, the second term in
Eq. �7� can be bounded by

�
l=2n−1

2n−1 � 1

x − �2l − 1��i
�� 2�l − ln��i

x − �2ln − 1��i
�P

� �
l=2n−1

2n−1
1


�2l − 1��

�2�l − ln�

2ln − 1
�P

�
1

2�

1

3P . �8�

Therefore, we can approximate the sum Sn by the first P
terms and the error decays exponentially with P,

�Sn�x� − �
l=2n−1

2n−1
1

x − �2ln − 1��i
�
�=0

P−1 
 2�l − ln��i

x − �2ln − 1��i
���

�
1

2�

1

3P , �9�

and uniformly in x. The overall philosophy here is similar to
the fast multipole method:15 given a preset error tolerance,
one selects P, the number of terms to retain in Sn, according
to Eq. �9�.

Interestingly, the remainder of the sum in Eq. �2� from
l=m to � has an explicit expression

Re�
l=m

�
1

2x − �2l − 1�i�
=

1

2�
Im 	
m −

1

2
+

i

�
x� , �10�

where 	 is the digamma function 	�z�=
��z� /
�z�. It is well
known16 that the digamma function has the following
asymptotic expansion:

Re

Im

πi

3πi

5πi

(2n − 1)πi

(2n+1 − 3)πi

...

...

...

FIG. 1. �Color online� Illustration of the pole decomposition
�13�. From 2n to 2n+1−1 poles are grouped together as shown in the
figure. The spectrum is indicated by the bold line on the real axis.
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	�z� � ln�z� −
1

2z
−

1

12z2 + O
 1

z4�, 
arg z
 � �, 
z
 → � .

�11�

Therefore,

Im 	
m −
1

2
+

i

�
x�

� Im ln
m −
1

2
−

i

�
x� + O
 1

m2�
= arctan
 2x

�2m − 1��� + O
 1

m2�, m → � . �12�

Figure 2 shows that the asymptotic approximation �12� is
already rather accurate when m=10.

Equation �12� also shows the effectiveness of the multi-
pole representation from the viewpoint of traditional polyno-
mial approximations. At zero temperature, the Fermi-Dirac
function is a step function that cannot be accurately approxi-
mated by any finite-order polynomial. At finite but low tem-
perature, it is a continuous function with a very large deriva-
tive at x=0, i.e., when the energy equals the chemical
potential �. The magnitude of this derivative becomes
smaller and, correspondingly, the Fermi function becomes
smoother as the temperature is raised. One can use the value
of the derivative of the Fermi function at x=0 to measure the
difficulty of an FOE. After eliminating the first m terms in
the expansion, Eq. �12� shows that asymptotically the deriva-
tive is multiplied by the factor 2

�2m−1�� , which is equivalent to
a rescaling of the temperature by the same factor. In particu-
lar, if we explicitly include the first 2N terms in the multipole
representation of the Fermi operator, we are left with a re-
mainder which is well approximated by Eq. �12�, so that,
effectively, the difficulty is reduced by a factor 2N. As a
matter of fact standard polynomials approximations, such as
the Chebyshev expansion, can be used to efficiently repre-
sent the remainder in Eq. �10� even at very low temperature.

In summary, we arrive at the following multipole repre-
sentation for the Fermi operator:

� = 1 − 4 Re�
n=1

N

�
l=2n−1

2n−1
1

��H − �� − �2ln − 1��i
�
�=0

P−1

�
 2�l − ln��i

��H − �� − �2ln − 1��i
��

−
2

�
Im 	
2N −

1

2
+

i

2�
��H − ��� + O�N/3P� . �13�

The multipole part is evaluated directly as discussed below,
and the remainder is evaluated with the standard polynomial
method.

III. NUMERICAL CALCULATION AND ERROR
ANALYSIS

To show the power of the multipole expansion, we discuss
a possible algorithm to compute the Fermi operator in elec-
tronic structure calculations and present a detailed analysis of
its cost in terms of ���. Given the Hamiltonian matrix H, it
is straightforward to compute the density matrix � from the
multipole expansion if we can calculate the Green’s func-
tions Bln

= ���H−��− �2ln−1��i�−1 for different n.
A possible way to calculate the inverse matrices is by the

Newton-Schulz iteration. For any nondegenerate matrix A,
the Newton-Schulz iteration computes the inverse B=A−1 as

Bk+1 = 2Bk − BkABk. �14�

The iteration error is measured by the spectral radius, i.e., the
eigenvalue of largest magnitude, of the matrix I−ABk, where
I is the identity matrix. In the following we denote the
spectral radius of the matrix A by ��A�. Then the spectral
radius at the kth step of the Newton-Schulz iteration is
Rk=I−ABk and

��Rk+1� = ��Rk�2 = ��R0�2k+1
. �15�

Thus, the Newton-Schulz iteration has quadratic conver-
gence. With a proper choice of the initial guess �see Ref. 10�,
the number of iterations required to converge is bounded by
a constant, and this constant depends only on the target
accuracy.

The remainder, i.e., the term associated to the digamma
function in Eq. �13�, can be evaluated by standard polyno-
mial approximations such as the Chebyshev expansion. The
order of Chebyshev polynomials needed for a given target
accuracy is proportional to ��� /2N+1 �see Ref. 18
�Appendix��.

Except for the error coming from the truncated multipole
representation, the main source of error in applications
comes from the numerical approximation of the Green’s
functions Bln

. To understand the impact of this numerical
error on the representation of the Fermi operator, let us re-
write

−1000 −500 0 500 1000
−2

−1

0

1

2

x

y

FIG. 2. �Color online� The function Im 	�m− 1
2 + i

�x� �circle�,
i.e., the remainder of the pole expansion in Eq. �13� is compared
with the function arctan� 2x

�2m−1�� � �solid line� for m=10.
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Sn = �
l=2n−1

2n−1

Bln�
�=0

P−1

�− 2�l − ln��iBln
��

= �
�=0

P−1

Bln
�+1 �

l=2n−1

2n−1

�− 2�l − ln��i��.

The factor �l�−2�l− ln��i�� is large, but we can control the

total error in Sn in terms of the spectral radius ��Bln
− B̂ln

�.
Here B̂ln

is the numerical estimate of Bln
.

The error is bounded by

��Ŝn − Sn� � �
�=0

P−1

2n−1�2n−1�����B�+1 − B̂�+1�

� �
�=0

P−1

�2n−1���+1��B�+1 − B̂�+1� , �16�

where we have omitted the subscript ln in Bln
and in B̂ln

. In

what follows the quantity ��=0
P−1�2n−1���+1��B�+1− B̂�+1� will

be denoted by eP. Then we have

eP = �
�=0

P−1

�2n−1���+1�

���B� − B̂��B + �B̂� − B���B − B̂� + B��B − B̂��

� �
�=1

P−1

�2n−1���+1���B� + ��B − B̂����B� − B̂��

+ �
�=0

P−1

�2n−1���+1��B����B − B̂� . �17�

Here we took into account the fact that the �=0 term in the
first summation is equal to zero and used the properties
��A+B����A�+��B� and ��AB����A���B�, respec-
tively.

Noting that 2n−1���Bln
��1 /3 and changing � to �+1 in

the first summation, we can rewrite eP as

eP � �1

3
+ 2n−1���B − B̂���

�=0

P−2

�2n−1���+1��B�+1 − B̂�+1�

+ �
�=0

P−1
1

3�2n−1���B − B̂� � �1

3
+ 2n−1���B − B̂��eP−1

+
3

2
2n−1���B − B̂� = 
1

3
+ e1�eP−1 +

3

2
e1. �18�

In the last equality, we used the fact that e1=2n−1���B− B̂�.
Therefore, the error eP satisfies the following recursion for-
mula:

eP +
3e1/2

e1 − 2/3
� 
1

3
+ e1�
e1 +

3e1/2
eP−1 − 2/3�

� 
1

3
+ e1�P−1
e1 +

3e1/2
e1 − 2/3� . �19�

Taking e1�
2
3 , we have

eP � e1 = 2n−1���B − B̂� . �20�

Therefore, using Eq. �15� we find that the number k of
Newton-Schulz iterations must be bounded as dictated by the

following inequality in order for the error ��Ŝn−Sn� to be
�10−D /N:

2n−1��R0�2k
�

10−D

N
. �21�

Here we have used the fact that ��Bln
��1 /� for any n. Each

Newton-Schulz iteration requires two matrix by matrix mul-
tiplications, and the number of matrix by matrix multiplica-
tions needed in the Newton-Schulz iteration for Bln

with
n
N is bounded by

2 log2
D log2 10 + N + log2 N

− log2 ��R0� � . �22�

To obtain a target accuracy ���− �̂��10−D for a numeri-
cal estimate �̂ of the density matrix, taking into account the
operational cost of calculating the remainder and the direct
multipole summation in the FOE, the number of matrix by
matrix multiplications nMM is bounded by

nMM � 2N log2 N + C1N + C22−N−1��� . �23�

Here we used the property log2�x+y�� log2 x+log2 y when
x ,y�2 and defined the constant C1 as follows:

C1 =
2

N
�
n=1

N

log2�D log2 10 + log2 N

− log2 �„�R0�ln
…

� . �24�

The dependence on 2−N−1��� in the last term on the right-
hand side of Eq. �23� comes from Chebyshev expansion used
to calculate the remainder. From numerical calculations on
model systems, the constants C1 and C2 will be shown to be
rather small. Finally, choosing N� ln�����, we obtain

nMM � �ln �����ln ln ���� �25�

with a small prefactor.

IV. NUMERICAL EXAMPLES

We illustrate the algorithm in three simple cases. The first
is an off-lattice one-dimensional model defined in a supercell
with periodic boundary conditions. In this example, we dis-
cretize the Hamiltonian with the finite-difference method, re-
sulting in a very broad spectrum with a width of about 2000
eV, and we choose a temperature as low as 32 K. In the
second example we consider a nearest-neighbor tight-
binding Hamiltonian in a three-dimensional simple cubic lat-
tice and set the temperature to 100 K. In the third example
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we consider a three-dimensional Anderson model with ran-
dom on-site energy on a simple cubic lattice at 100 K.

A. One-dimensional model with large spectral width

In this example, a one-dimensional crystal is described by
a periodic supercell with ten atoms evenly spaced. We take
the distance between adjacent atoms to be a=5.29 Å. The
one-particle Hamiltonian is given by

H = −
1

2

�2

�x2 + V . �26�

The potential V is given by a sum of Gaussians centered at
the atoms with width �=1.32 Å and depth V0=13.6 eV.
The kinetic energy is discretized using a simple three-point
finite-difference formula, resulting in a Hamiltonian H with a
discrete eigenvalue spectrum with lower and upper eigenval-
ues equal to �−=6.76 eV and �+=1959 eV, respectively.
Various temperatures from 1024 to 32 K were tried. Figure 3
reports the linear-logarithmic graph of nMM, the number of
matrix by matrix multiplications needed to evaluate the den-
sity matrix using our FOE, versus ���, with ��� plotted in
a logarithmic scale. The logarithmic dependence can be
clearly seen. The prefactor of the logarithmic dependence is
rather small: when ��� is doubled, a number of additional
matrix multiplications equal to 17 is required to achieve two-
digit accuracy �D=2�, a number equal to 19 is needed for

D=4, and a number equal to 21 is needed for D=6, respec-
tively. The observed D dependence of the number of matrix
multiplications agrees well with the prediction in Eq. �23�.

In order to assess the validity of the criterion for the num-
ber of matrix multiplications given in Eq. �23�, we report in
Table I the calculated relative energy error and relative den-
sity error, respectively, at different temperatures, when the
number of matrix multiplications is bounded as in formula
�23� using different values for D. The relative energy error
��rel measures the accuracy in the calculation of the total
electronic energy corresponding to the supercell E=Tr��H�.
It is defined as

��rel =

Ê − E



E

. �27�

Similarly the relative L1 error in the density function in real
space is defined as

��rel =
Tr
�̂ − �


Tr �
. �28�

Because Tr �=Ne, where Ne is the total number of electrons
in the supercell, ��rel is the same as the L1 density error per
electron. Table I shows that for all the values of ���, our
algorithm gives a numerical accuracy that is even better than
the target accuracy D. This is not surprising because our

TABLE I. One-dimensional Hamiltonian model of Sec. IV A.
Relative energy error ��rel and relative L1 density error ��rel for a
large range of values of ��� and several values of D.

T
�K� ���

��rel ��rel

D=2
�10−3�

D=4
�10−6�

D=6
�10−8�

D=2
�10−4�

D=4
�10−6�

D=6
�10−8�

1024 2.22�104 1.64 5.98 3.31 4.21 2.23 1.50

512 4.44�104 1.73 6.49 3.70 4.63 2.52 1.74

256 8.89�104 1.78 6.83 3.96 4.77 2.62 1.81

128 1.78�105 1.74 6.55 3.75 5.04 2.80 1.95

64 3.56�105 1.75 6.62 3.80 4.92 2.70 1.86

32 7.12�105 1.76 6.66 3.82 4.84 2.64 1.80

TABLE II. Three-dimensional periodic tight-binding model of Sec. IV B. Number of matrix by matrix
multiplications nMM, relative energy error ��rel, and relative L1 density error ��rel. For �=0, the algorithm
achieves machine accuracy for the absolute error of the density function as a consequence of symmetry.

�
�eV�

D=4 D=8

nMM ��rel ��rel nMM ��rel ��rel

−10.88 320 4.09�10−9 2.31�10−10 376 2.27�10−13 2.37�10−14

−5.44 308 1.48�10−9 3.15�10−11 356 4.77�10−13 2.52�10−15

0.00 305 1.55�10−9 6.26�10−19 357 2.98�10−15 6.26�10−19

5.44 308 1.45�10−8 1.34�10−12 356 5.36�10−13 1.07�10−16

10.88 320 1.69�10−8 1.78�10−13 376 1.09�10−12 1.80�10−17

30000 200000 700000
350

425

500

β∆ε

n M
M

D=2
D=4
D=6

FIG. 3. �Color online� Linear-logarithmic plot of the number of
matrix by matrix multiplications nMM versus ���. nMM depends
logarithmically on ��� with a small constant prefactor.
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theoretical analysis was based on the most conservative error
estimates.

B. Periodic three-dimensional tight-binding model

In this example we consider a periodic three-dimensional
single-band tight-binding Hamiltonian in a simple cubic lat-
tice. The Hamiltonian, which can be viewed as the dis-
cretized form of a free-particle Hamiltonian, is given in sec-
ond quantized notation by

H = − t�
�i,j�

ci
+cj , �29�

where the sum includes the nearest neighbors only. Choosing
a value of 2.27 eV for the hopping parameter t the band
extrema occur at �+=13.606 eV and at �−=−13.606 eV, re-
spectively. In the numerical calculation we consider a peri-
odically repeated supercell with 1000 sites and chose a value
of 100 K for the temperature. Table II shows the dependence
of nMM, ��rel, and ��rel on the chemical potential � for dif-
ferent D choices. Compared to the previous one-dimensional
example in which ��� was as large as 7.12�105, here
���=1600 due to the much smaller spectral width of the
tight-binding Hamiltonian. When �=0 the chemical poten-
tial lies exactly in the middle of the spectrum. This symmetry
leads to a relative error as low as 10−19 for the density func-
tion.

C. Three-dimensional disordered Anderson model

In this example we consider an Anderson model with on-
site disorder on a simple cubic lattice. The Hamiltonian is
given by

H = − t�
�i,j�

ci
+cj + �

i

�ici
+ci. �30�

This Hamiltonian contains random on-site energies �i uni-
formly distributed in the interval �−1.13 eV, 1.13 eV�, and
we use the same hopping parameter t as in the previous
�ordered� example. In the numerical calculation we consider,
as before, a supercell with 1000 sites with periodic boundary
conditions and choose again a temperature of 100 K. In one
realization of disorder corresponding to a particular set of
random on-site energies, the spectrum has extrema at �+
=13.619 eV and at �−=−13.676 eV. The effect of disorder

on the density function is remarkable: while in the periodic
tight-binding case the density was uniform, having the same
constant value at all the lattice sites, now the density is a
random function in the lattice sites within the supercell.
Table III reports for the disordered model the same data that
were reported in Table II for the ordered model. We see that
the accuracy of our numerical FOE is the same in the two
cases, irrespective of disorder. The only difference is that the
superconvergence due to symmetry for �=0 no longer exists
in the disordered case.

V. CONCLUSION

We proposed a multipole representation for the Fermi op-
erator. Based on this expansion, a rather simple and efficient
algorithm was developed for electronic structure analysis.
We have shown that the number of matrix by matrix multi-
plication that is needed scales as �ln �����ln ln ���� with
very small overhead. Numerical examples show that the al-
gorithm is promising and has the potential to be applied to
metallic systems.

We have only considered the number of matrix by matrix
multiplications as a measure for the computational cost. The
real operational count should of course take into account the
cost of multiplying two matrices and hence depends on how
the matrices are represented. This is work in progress.
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APPENDIX: MITTAG-LEFFLER’S THEOREM AND POLE
EXPANSION FOR HYPERBOLIC TANGENT

FUNCTION

To obtain the pole expansion for hyperbolic tangent func-
tion tanh�z�, we need a special case of the general Mittag-
Leffler’s theorem on the expansions of meromorphic func-
tions �see, for example, Refs. 16 and 17�.

Theorem 1. �Mittag-Leffler�. If a function f�z� analytic at
the origin has no singularities other than poles for finite z,

TABLE III. Three-dimensional Anderson model with on-site disorder discussed in Sec. IV C. Number of
matrix by matrix multiplications nMM, relative energy error ��rel, and relative L1 density error ��rel.

�
�eV�

D=4 D=8

nMM ��rel ��rel nMM ��rel ��rel

−10.88 320 5.16�10−9 1.72�10−10 376 3.16�10−13 2.59�10−14

−5.44 308 4.75�10−9 2.43�10−11 356 3.71�10−13 1.48�10−15

0.00 305 8.08�10−10 9.50�10−13 357 1.76�10−14 2.39�10−17

5.44 308 1.01�10−8 1.22�10−12 356 3.57�10−13 8.05�10−17

10.88 320 1.30�10−8 1.56�10−13 376 9.56�10−13 1.83�10−17
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and if we can choose a sequence of contours Cm about z
=0 tending to infinity, such that 
f�z�
�M on Cm and
�Cm


dz /z
 is uniformly bounded, then we have

f�z� = f�0� + lim
m→�

�Pm�z� − Pm�0�	 , �A1�

where Pm�z� is the sum of the principal parts of f�z� at all
poles within Cm.

For tanh�z�= exp�z�−exp�−z�
exp�z�+exp�−z� , it is analytic at the origin

and tanh�0�=0. The function has simple poles at
zl= �l−1 /2��i , l�Z with principle parts �z−zl�−1. Let us
take the contours as

Cm = �x � im�

x
 � m�	 � ��m� + iy

y
 � m�	 ,

m � Z+.

It is then easy to verify that Cm satisfy the conditions in
Theorem 1. According to Theorem 1,

tanh�z� = tanh�0� + lim
m→�

�
l=−m+1

m 
 1

z − zl
+

1

zl
� . �A2�

By symmetry of zl, the second term within the parentheses
cancels, and we arrive at Eq. �3�.

1 When the effective Hamiltonian depends on the density, such as,
e.g., in density-functional theory, the number of iterations
needed to achieve self-consistency may be an additional source
of size dependence. This issue has received little attention so far
in the literature and will not be considered in this paper.
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