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Element orbitals for Kohn-Sham density functional theory
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We present a method to discretize the Kohn-Sham Hamiltonian matrix in the pseudopotential framework by a
small set of basis functions automatically contracted from a uniform basis set such as plane waves. Each basis
function is localized around an element, which is a small part of the global domain containing multiple atoms.
We demonstrate that the resulting basis set achieves meV accuracy for three-dimensional densely packed systems
with a small number of basis functions per atom. The procedure is applicable to both insulating and metallic
systems.
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I. INTRODUCTION

Kohn-Sham density functional theory (KSDFT)1 is the
most widely used electronic structure theory for condensed-
matter systems. When solving the Kohn-Sham equations,
the choice of basis functions usually poses a dilemma for
practitioners. The accurate and systematically improvable
basis functions that are uniform in space, such as plane
waves or finite elements, typically result in a large number of
degrees of freedom (500–10 000) per atom in the framework
of norm-conserving pseudopotential2 especially for transition-
metal elements. The number of basis functions per atom
can be reduced to the order of hundreds using ultrasoft
pseudopotential3 or augmentation techniques in the core
region such as the linearized augmented plane-wave (LAPW)
method4 and the projector augmented wave (PAW) method.5

The relatively large number of basis functions used leads to a
large prefactor in front of the already expensive cubic scaling
for solving KSDFT.

Contracted basis functions, such as Gaussian type orbitals,
atomic orbitals, or muffin-tin orbitals, can represent the Kohn-
Sham orbitals with a small number of degrees of freedom
per atom (4–100). These contracted basis functions contain
a number of parameters to be determined. The flexibility
for choosing different forms of parameters has generated a
vast amount of literature (see, e.g., Refs. 6–11) in the past
few decades, which has been reviewed recently in Ref. 12.
Compared to the uniform basis set in which the accuracy
is controlled by a few universal parameters such as the
plane-wave cutoff or the grid spacing, the parameters in
the contracted basis functions are typically constructed by a
fitting procedure for a range of reference systems. The fitting
procedure as well as the reference systems should be carefully
chosen in order to obtain accurate results with a small number
of degrees of freedom.

It is desirable to combine the advantage of uniform basis
functions in which the accuracy is controlled by no more than
a handful of universal parameters for almost all materials, and
the advantage of contracted basis functions with a very small
number of basis functions per atom. In other words, we would
like to generate a small number of contracted basis functions
by a unified procedure with high accuracy comparable to that
obtained from uniform basis functions. In a recent work,13

we have developed a unified method for constructing a set of

contracted basis functions from a uniform basis set such as
plane waves in the pseudopotential framework. The new basis
set, called the adaptive local basis (ALB) set, is constructed by
solving the Kohn-Sham problem restricted to a small part of
the domain called element. Each ALB is discontinuous from
the perspective of the global domain, and the continuous
Kohn-Sham orbitals are approximated by the discontinuous
ALBs under a discontinuous Galerkin framework.14 It was
demonstrated that the ALBs are able to achieve high accuracy
(in the order of 1 meV) using disordered Na and Si as examples.
However, the number of basis functions per atom increases
with respect to dimensionality. For example, 40 basis functions
per atom are needed to reach the accuracy of 1 meV/atom for
a three-dimensional (3D) bulk Na system.

In this paper, we propose a different basis set that is
constructed from linear combination of adaptive local basis
functions. Each new basis function, dubbed element orbital
(EO), has a localized nature around its associated element
of the domain. The number of EOs used is significantly
reduced compared to the number of ALBs for 3D bulk systems.
We demonstrate that four EOs per atom are sufficient to
achieve 1 meV per atom accuracy for 3D bulk Na system
with disorderedness. We also apply EOs to study Na, Si,
and graphene, with varying system sizes, lattice constants,
or types of defects. This method consistently achieves meV
accuracy for calculating the total energy when compared to
standard electronic structure software such as ABINIT.15 Since
the EOs are contracted from a uniform basis set such as
the plane-wave basis set, the shape of the EOs has more
flexibility to reflect the environmental effect than contracted
basis sets which are centered around atoms. Numerical results
indicate that the shape of EOs can resemble both atomic
orbitals of different angular momentum and chemical bonds
centered in the interstitial region, depending on their chemical
environment.

We remark that the construction of the EOs is closely related
to several existing techniques for reducing the number of
basis functions per atom, starting from a large primitive basis
set consisting of Gaussian orbitals or atomic orbitals.6,7,16,17

However, the EOs are contracted from a fine uniform basis
set such as plane waves, and a number of difficulties arise
that make it difficult for the previous techniques to be applied
directly. For instance, the filtration technique in Refs. 16 and 17
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constructs a near-minimal basis set from a large number of
Gaussian-type orbitals by applying a filtration matrix to a
set of trial orbitals, taken from one or a few Gaussian-type
orbitals. When the Gaussian-type orbitals are replaced by a
fine uniform basis set such as plane waves, finding a good
set of trial orbitals itself becomes a difficult task, and the
construction of trial orbitals can inevitably introduce a set of
undetermined parameters, which is not desirable in the current
framework.

This paper is organized as follows: Section II introduces the
adaptive local basis functions in the discontinuous Galerkin
framework for solving Kohn-Sham density functional theory
in the pseudopotential framework. The construction of the
element orbitals is introduced in Sec. III. Section IV discusses
briefly the implementation procedure of element orbitals. The
performance of element orbitals is reported in Sec. V, followed
by the discussion and conclusion in Sec. VI.

II. ADAPTIVE LOCAL BASIS FUNCTIONS

Consider a quantum system with N electrons under external
potential by Vext in a rectangular domain � with periodic
boundary condition. To simplify the equations, we ignore the
electron spin for now. In Kohn-Sham density functional theory
at a finite temperature T = 1/(kBβ),1,18 the Helmholtz free
energy is given by

Ftot = Ftot({ψi},{fi}) = 1

2

∑
i

fi

∫
|∇ψi(x)|2 dx

+
∫

Vext(x)ρ(x) dx+
∑

�

γ�

∑
i

fi

∣∣∣∣ ∫ b∗
� (x)ψi(x) dx

∣∣∣∣2

+ 1

2

∫ ∫
ρ(x)ρ(y)

|x − y| dx dy +
∫

εxc[ρ(x)] dx

+β−1
∑

i

[fi ln fi + (1 − fi) ln(1 − fi)]. (1)

Correspondingly {ψi(x)} and {fi} are the solutions to the
minimization problem

min
{ψi },{fi }

Ftot({ψi},{fi}),
(2)

s.t.
∫

ψ∗
i (x)ψj (x) dx = δij , i,j = 1, . . . ,Ñ .

{fi} ∈ [0,1] are the occupation numbers which add up to the to-

tal number of electrons N = ∑Ñ
i=1 fi . Here we use exchange-

correlation functional under local-density approximation
(LDA)19,20 and adopt norm-conserving pseudopotential,2 with
the projection vector of the nonlocal pseudopotential in the
Kleinman-Bylander form21 denoted by {b�(x)}, and γ� = ±1
is a sign. The number of eigenstates Ñ calculated in practice is
chosen to be slightly larger than the number of electrons N in
order to compensate for the finite-temperature effect, following
the criterion that the occupation number fÑ is sufficiently
small (less than 10−8). The electron density is given by

ρ(x) =
Ñ∑

i=1

fi |ψi(x)|2.

The Kohn-Sham equation, or the Euler-Lagrange equation
associated with (2), is1,18

H [ρ]ψi =
(

−1

2

 + Veff[ρ] +

∑
�

γ�|b�〉〈b�|
)

ψi = λiψi,

(3)

where the effective one-body potential Veff[ρ] is

Veff[ρ](x) = Vext(x) +
∫

ρ(y)

|x − y| dy + ε′
xc[ρ(x)]

and the occupation numbers {fi}i�1 follow the Fermi-Dirac
distribution

fi = 1

1 + exp[β(λi − μ)]
.

Here the chemical potential μ is chosen so that
∑Ñ

i=1 fi = N .
In each self-consistent field (SCF) iteration of (3), we freeze
ρ and solve for the Ñ lowest eigenfunctions {ψi(x)}1�i�Ñ .
This linear eigenvalue problem is the focus of the following
discussion.

The discontinuous Galerkin (DG) framework14 provides
flexibility in choosing appropriate basis functions to discretize
the Kohn-Sham Hamiltonian H [ρ]. In the DG framework,
a smooth function delocalized across the global domain can
be systematically approximated by a set of discontinuous
functions that are localized in the real space. Let T =
{E1,E2, . . . ,EM} be a collection of elements, i.e., disjoint
rectangular partitions of �, and S be the collection of
surfaces {∂Ek} that correspond to each element Ek in T . We
associate with each Ek a set of orthogonal basis functions
{uk,j (x)}1�j�Jk

supported in Ek , with the total number of basis
functions given by

Nb =
M∑

k=1

Jk.

Under such a basis set, the Hamiltonian is discretized into an
Nb × Nb matrix with entries given by

H(k′,j ′; k,j )

= 1

2
〈∇uk′,j ′ ,∇uk,j 〉T − 1

2
〈[[uk′,j ′ ]],{{∇uk,j }}〉S

−1

2
〈{{∇uk′,j ′ }},[[uk,j ]]〉S + α〈[[uk′,j ′ ]],[[uk,j ]]〉S

+〈uk′,j ′ ,Veffuk,j 〉T +
∑

�

γ�〈uk′,j ′ ,b�〉T 〈b�,uk,j 〉T , (4)

where 〈·,·〉T and 〈·,·〉S are inner products in the bulk and on
the surface, respectively, and α > 0 is a fixed parameter for
penalizing cross-element discontinuity. The notations {{·}} and
[[·]] stand for the average and jump operators across surfaces.14

Comparing (3) and (4), the new terms involving the average
and jump operators can be derived from integration by parts of
the Laplacian operator, and provide consistency and stability
of the DG method.22

In the work of an adaptive local basis set,13 the functions
{uk,j }1�j�Jk

in each element Ek are determined as follows.
Let d be the dimension of the system. For each Ek (one black
box in Fig. 1), we define an associated extended element Qk ,
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FIG. 1. (Color online) Sketch for the construction of adaptive
local basis functions and element orbitals. Each adaptive local basis
function is supported in an element. Each element orbital is supported
in an extended element.

which includes both Ek and its 3d − 1 neighboring elements.
Define HQk

[ρ] to be the restriction of H [ρ] to Qk with
periodic boundary condition and with potential given by the
restriction of Veff[ρ] to Qk . HQk

[ρ] is then discretized and
diagonalized with uniform basis functions such as plane waves.
We denote the corresponding eigenvalues and eigenfunctions
by {λk,j }j�1 and {ϕk,j (x)}j�1, respectively, starting from the
lowest eigenvalue. One then restricts the first Jk functions of
{ϕk,j (x)}j�1 to Ek , where Jk is set to be proportional to the
number of electrons inside the extended element Qk (see the
numerical examples for specific choice of Jk). In addition, we
define for each Ek

λc
k = λk,Jk

, (5)

i.e., the largest selected eigenvalue in Ek which shall
be used later. Applying the Gram-Schmidt procedure to
{ϕk,j (x)}1�j�Jk

then gives rise to a set of orthonormal functions

{uk,j (x)}1�j�Jk
(6)

for each Ek . The union of such functions over all elements
{uk,j (x)}1�k�M,1�j�Jk

gives the set of adaptive local basis
functions (ALBs).

For a given system, the partition of Ek is kept to be the
same even with changing atomic configurations as in the case
of structure optimization and molecular dynamics. Dangling
bonds may form when atoms are present on the surface of
the extended elements, but we emphasize that these dangling
bonds are not needed to be passivated by introducing auxiliary
atoms near the surface of the extended elements.23 This is
because the potential is not obtained self-consistently within
Qk , but instead from the restriction of the screened potential in
the global domain � to Qk in each SCF iteration, which mutes
the catastrophic damage of the dangling bonds. The oscillation
in the basis functions caused by the discontinuity of the
potential at the surface of the Qk (called Gibbs phenomenon)
still exists, but it damps exponentially away from the surface
of Qk and has controlled effect in Ek . Using disordered Na and
Si as examples, we demonstrated that ALB can achieve meV
accuracy per atom using 4–40 basis functions per atom.13

III. ELEMENT ORBITALS

The high accuracy of ALBs indicates that the span of
{uk,j }1�k�M,1�j�Jk

approximately contains the span of the
Kohn-Sham orbitals {ψi}1�i�Ñ . However, we found that the
number of basis functions per atom may vary significantly
with respect to the dimensionality d of the system, which has
not been seen reported in the literature using the traditional
contracted basis set to the extent of our knowledge.

The dimension dependence of ALBs can be intuitively
understood as follows, motivated from the success of the
contracted basis set such as atomic orbitals. Consider the
case where an atom is positioned at the center of element
Ek and assume for simplicity that each of its atomic orbitals
overlaps only with the neighboring elements (i.e., those inside
the extended element Qk). In order to include one atomic
orbital, denoted by η(x), in the span of {uk,j (x)}1�k�M,1�j�Jk

,
each neighboring element Ek′ in Qk should allocate one of its
ALBs to represent the restriction of η(x) in Ek′ . This implies
that Nb, the total number of ALBs, should roughly be equal to
3dÑ , which becomes increasingly redundant with respect to
the dimension d. In fact, this is close to what has been observed
in the numerical experiments.13

In order to avoid this redundancy and motivated by the
construction of atomic orbitals, we propose to build a new basis
set by piecing the ALBs in neighboring elements {Ek′ } in Qk

to construct functions that are qualitatively close to the atomic
orbitals. To distinguish them from the prefitted atomic orbitals,
we name these functions element orbitals (EOs). In order to
construct them, one is faced mainly with three issues. First, the
ALBs are always discontinuous across the element boundaries,
while qualitatively the EOs should be a continuous function
since the atomic orbitals are continuous. Second, when one
pieces back the ALBs to obtain the EOs, it is essential that
the resulting functions have low energy. Finally, one needs to
make sure that the EOs of element Ek should be localized at
Ek in order to avoid potential linear dependence among the
EOs of different elements.

A two-step procedure is proposed to address these three
issues. In the first step, we construct, for each element Ek , a
set of candidate functions that take care of the first two issues.
Then in the second step, the element orbitals are identified
by localizing the candidate functions. More specifically, the
method proceeds as follows.

Let us fix an element Ek . First, since each ALB is only
supported in its associated element and equal to zero outside,
we seek a set of candidate functions of element Ek that are
linear combinations of the ALBs of both Ek and its 3d − 1
neighbors (Fig. 1). Denoting by I the index of all the ALBs,
and by Ik ⊂ I the index set of ALBs supported in Qk , we
define a local Hamiltonian

Hk = H(Ik,Ik),

i.e., the restriction of H to the index set Ik . Following the
intuition that the atomic orbitals should only be affected by
the local environment of Ek , it is reasonable to assume that the
low eigenfunctions of Hk serve as good candidate functions.
Computationally, we diagonalize Hk by

HkMk = Mk
k, (7)
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where the diagonal of 
k contains all the eigenvalues bounded
from above by the cutoff energy λc

k given by (5) and the
columns of Mk contains the corresponding eigenfunctions.
The matrix Mk is called the merging matrix of element Ek . We
argue that this step addresses the continuity and low-energy
issues of the element orbitals, since the eigenfunctions in (7)
are qualitatively smooth due to the cross-element penalty term
of the DG formulation and choosing the eigenfunctions below
λc

k also ensures that the candidate functions have low energy.
Second, we localize these candidate functions to be centered

at Ek using a penalizing weight function wk(x) defined for
x ∈ Qk . wk(x) is only nonzero in the extended element Qk

outside a certain distance, called the localization radius, from
the boundary of Ek (light gray area in Fig. 1). For simplicity we
choose wk(x) = 1 in the penalty area and 0 otherwise. More
sophisticated weighting function and confining potentials
(as developed for linear scaling methods24 and for atomic
orbitals8) can be used and optimized for EOs in the future
work. A weighting matrix Wk for the adaptive basis functions
in the index set Ik is defined in the extended element Qk by

Wk(k′,j ′; k′′,j ′′) = 〈uk′,j ′ ,wk · uk′′,j ′′ 〉T .

In order to localize the candidate functions, we solve a second
eigenvalue problem,(

Mt
kWkMk

)
Lk = Mt

kMkLk�k = Lk�k, (8)

where Mt
kMk = I since Mk is orthonormal from (7). The

columns of Lk and the diagonal of �k consist of the first No
k

eigenfunctions and eigenvalues, respectively. Here No
k is the

number of element orbitals (EOs) of Ek . As will be shown
later in the numerical results, a small number of EOs per atom
already achieve high accuracy in the total-energy calculation.
We call the matrix Lk the localization matrix, and the product
MkLk gives the coefficients of the EOs in Ek in terms of the
ALBs indexed by Ik . In order to present these EOs in terms of
the whole adaptive basis set, we introduce for Ek an |I| × |Ik|
selection matrix Sk such that Sk(Ik,Ik) is equal to the identity
and all zero otherwise. By defining the Nb × No

k coefficient
matrix Ck = SkMkLk , we can construct the element orbitals
associated with Ek by

φk,l(x) =
∑
k′,j ′

uk′,j ′ (x)(Ck)k′j ′;l , l = 1, . . . ,No
k . (9)

Note that, since these functions are localized in the extended
element Qk by construction, the index k′ only runs through the
elements inside Qk . Finally, the coefficient matrix

C = (C1, . . . ,CM )

gives the whole set of coefficients of the No = ∑M
k=1 No

k EOs
in terms of the adaptive local basis functions (ALBs). Once
the EOs are identified, we solve an No × No generalized
eigenvalue problem,

(CtHC)V = (CtC)V�, (10)

where the diagonal of � gives the Kohn-Sham eigenvalues
{λi}1�i�Ñ and the columns of V provide the coefficients of
the Kohn-Sham orbitals in terms of the EOs. From {λi}1�i�Ñ ,
one can calculate the chemical potential μ and the occupation

number {fi}1�i�Ñ . Finally, by introducing the Gram matrix

G = CV · diag(fi) · (CV)t ,

we can write ρ(x) as

ρ(x) =
∑
j ′,j ′

uk(x),j ′ (x) · G(k(x),j ′; k(x),j ) · uk(x),j (x), (11)

where k(x) indexes the element that contains x. Solving
the generalized eigenvalue problem (10) is a cubic scaling
procedure. However, notice that one only needs the knowledge
of the diagonal blocks of the Gram matrix G to construct
the electron density. This allows us to use the recently
developed pole expansion and selected inversion-type fast
algorithms25–30 to reduce the asymptotic scaling for solving
the generalized eigenvalue problem (10) from cubic scaling to
at most quadratic scaling for 3D bulk systems. For simplicity
we employ a cubic scaling implementation within the current
work, as described in more detail in Sec. IV.

IV. PARALLEL IMPLEMENTATION

Our algorithm is implemented fully in parallel for message-
passing environment, based on the implementation details
presented in Ref. 13. Here we summarize the key components
of the parallel implementation.

The global domain is discretized with a uniform Cartesian
grid with a spacing fine enough to capture the local oscillations
of the Kohn-Sham orbitals and the electron density. Rather
than using the dual grid approach with one set of grid for
representing the Kohn-Sham wave functions, and another
set of denser grid for representing the electron density, we
only use one set of Cartesian grid for both the Kohn-Sham
wave functions and the electron density for simplicity of
the implementation. The grid inside an element Ek is a
three-dimensional Cartesian Legendre-Gauss-Lobatto (LGL)
grid in order to accurately carry out the operations of the basis
functions such as numerical integration. The ALBs are first
represented in a plane-wave basis set in each extended element
Qk solved by the LOBPCG algorithm31 with a preconditioner,32

and are interpolated to each element Ek and orthogonalized.
The eigenvalue problems involved in constructing the EOs are
performed by LAPACK subroutine dsyevd.

To simplify the discussion of the parallel implementation,
we assume that the number of processors is equal to the number
of elements. It is then convenient to index the processors
{Pk} with the same index k used for the elements. In the
more general setting where the number of elements is larger
than the number of processors, each processor takes a couple
of elements and the following discussion will apply with
only minor modification. Each processor Pk locally generates
and stores the ALBs {uk,j (x)} for j = 1,2, . . . ,Jk and the
coefficients for the EOs {(Ck)k′j ′;l} for k′ running through
the elements in Qk , j ′ = 1,2, . . . ,Jk′ and l = 1,2, . . . ,No

k .
The EOs {φk,l(x)} are not explicitly formed in the real space.
We further partition the nonlocal pseudopotentials {b�(x)} by
assigning b�(x) to the processor Pk if and only if the atom
associated to b�(x) is located in the element Ek .

Since the matrices C and H are sparse, the Hamiltonian
matrix CtHC and the mass matrix CtC in (10) are also
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sparse matrices. However, these matrices are treated as dense
matrices in our implementation for simplicity. The parallel
matrix-matrix multiplication for constructing CtHC and CtC
are performed using the PBLAS subroutine pdgemm, and the
generalized eigenvalue problem (10) is solved by converting
it to a standard eigenvalue problem using the SCALAPACK33

subroutines pdpotrf and pdsygst, and the standard eigenvalue
problem is solved by the SCALAPACK subroutine pdsyevd.

In our implementation, the matrices H and C are constructed
locally according to the element indices. However, the SCALA-
PACK routines that operate on H and C require them to be
stored in the two-dimensional block cyclic pattern. In order to
support these two types of data storage, we have implemented
a rather general communication framework that only requires
the programmer to specify the desired nonlocal data. This
framework then automatically fetches the data from the
processors that store them locally. The actual communication
is mostly done using asynchronous communication routines
MPI_Isend and MPI_Irecv.

V. NUMERICAL RESULTS

The method is implemented with the Hartwigsen-
Goedecker-Hutter (HGH) pseudopotential,34 with the local
and nonlocal pseudopotential implemented fully in the real
space.35 Finite-temperature formulation of the Kohn-Sham
density functional theory18 is used, and the temperature is set to
be 2000 K only for the purpose of accelerating the convergence
of SCF iteration. Since finite temperature is used, the accuracy
is quantified by the error of the total free energy36 per atom.
The HGH pseudopotential has analytic expression, which
allows us to minimize the effect of numerical interpolation
and to perform accurate comparison with existing electronic
structure code. We compare our result with ABINIT15 which
also supports the HGH pseudopotential. The ALBs and EOs
start from a random initial guess, and are refined iteratively in
the SCF iteration together with the electron density. In all the
calculations, Anderson mixing37 with Kerker preconditioner38

is used for the SCF iteration. Gamma point Brillouin sampling
is used for simplicity for all calculations. In Secs. II and
III, we count the number of basis functions in terms of
the number of ALBs per element and the number of EOs
per element. In this section, we count the number of ALBs
and EOs per atom instead, in order to be consistent with
literature. All computational experiments were performed on
the Hopper system at the National Energy Research Scientific
Computing (NERSC) center. Each Hopper node consists of
two 12-core AMD “MagnyCours” 2.1-GHz processors and
has 32 gigabytes (GB) DDR3 1333-MHz memory. Each core
processor has a 64-kilobytes (KB) L1 cache and 512KB L2
cache. It also has access to a 6-megabytes (MB) L3 cache
shared among six cores.

As mentioned earlier, the ALBs have been shown to achieve
effective dimension reduction for quasi-1D systems, but with
deteriorating performance as the dimensionality of the system
increases.13 Using Na as example, it has been shown that while
four ALBs per atom is enough to reach 1 meV accuracy for
quasi-1D systems, 40 ALBs per atom is necessary to reach the
same accuracy for 3D bulk systems. Now using a 3D bulk Na
system with 432 atoms as an example, we illustrate that the

number of basis functions per atom can be effectively reduced
using EO.

The supercell for Na is simple cubic and the length of
the supercell along each dimension is 45.6 a.u. A random
perturbation with standard deviation of 0.2 a.u. is applied
to each atom in the supercell to eliminate the translational
invariance of the system. The supercell is partitioned into
6 × 6 × 6 elements, with the length of each dimension of
each element being 7.6 a.u. The length of each dimension
of each extended element is 22.8 a.u. which is three times
larger than that of the element. The penalty parameter α in (4)
is set to be 100. The supercell is discretized with a uniform
mesh of dimension 120 × 120 × 120 in the real space. This
mesh is used for representing both the electron density and
the Kohn-Sham orbitals, which corresponds to a plane-wave
cutoff of 68 Ry in the Fourier space. ABINIT uses a dual grid for
representing the Kohn-Sham wave functions and the electron
density. The plane-wave cutoff for wave functions used in
ABINIT is 20 Ry. This corresponds to a plane-wave cutoff for the
electron density at 80 Ry, with a uniform mesh of dimension
135 × 144 × 144 in the real space. The different numbers of
grid points along each dimension come from the automatic grid
adjustment in ABINIT. We remark that the grid size is chosen
to be larger than the typical setup in electronic calculation for
Na to make sure that the error introduced by the grid size is
small compared to that introduced by using ALBs and EOs.
Inside each element a Legendre-Gauss-Lobatto (LGL) grid of
dimension 30 × 30 × 30 is used for numerical integration in
the assembly process of the discretized Hamiltonian matrix H.
The error of the total free energy per atom only using ALBs is
shown in Fig. 2(a). The error systematically decreases with the
increase of the number of ALBs. When the number of ALBs
exceeds 35, the error of the total free energy per atom is less
than 1 meV.

Element orbitals (EOs) provide further dimension reduction
compared to ALBs. Figure 2(b) shows the difference of the free
energy per atom calculated from EOs and that from ABINIT. We
construct EOs from as many as 42 ALBs per atom, following
the criterion (5) for the choice of the candidate functions and
using a localization radius of 6.0 a.u. Compared to a converged
ALB calculation, the error using only three EOs per atom is
already within 5 meV per atom. When six EOs are used, the
total free energy calculated is essentially the same as that
using 42 ALBs, and the error compared to ABINIT is less than
1 meV per atom. Figure 2(b) indicates that the EOs are indeed
effective for reducing the number of basis functions per atom
for 3D bulk systems.

Compared to ALB, the EO approach introduces an addi-
tional parameter which is the localization radius. Figure 2(c)
shows the error of the total free energy per atom using 42 ALBs
per atom, and six EOs per atom but with different localization
radius. When the localization radius is 4.0 a.u., which is 53%
the length of an element, the error of the total energy per atom is
7 meV. A moderate choice of the localization radius of 6.0 a.u.
(69% of the length of an element) yields accuracy around
1 meV per atom. Figure 2(c) shows that our method is stable
even for a large localization radius 7.0 a.u. (92% of the length
of an element), and the error is even smaller and is below 1 meV
per atom. We also remark that if the localization radius is
further increased, the EOs are no longer localized around the
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FIG. 2. (Color online) (a) Convergence of adaptive local basis functions (ALB) for a 3D bulk Na system with 432 atoms. (b) Convergence
of element orbitals (EOs) for the same Na system with fixed number of ALBs. (c) Convergence in terms of the localization radius for the same
Na system with fixed number of ALBs and fixed number of EOs.

element, but become fully extended in the extended element.
This can lead to an unstable scheme with large error. Numerical
experience indicates that setting the localization radius to be
690% of the length of the element provides a good compromise
between accuracy and stability in practice. Figure 2(c) shows
that the accuracy of the EO is not very sensitive to the choice
of localization radius.

EOs can resemble atomic orbitals but with local modifica-
tions reflecting the environmental effect, despite the fact that
they are constructed in the extended elements with rectangular
domain. Using the same Na system as example, we show in
Fig. 3 the isosurface of the first nine element orbitals (φ1 to
φ9) belonging to the same extended element, with the red and
blue color indicating the positive and negative part of the EOs,
respectively. 27 atoms nearest to these EOs within a sphere
of radius 6.0 a.u. are also plotted in Fig. 3 as gold balls. We
see that φ1 mimics the s orbital, φ2–φ4 mimic the p orbitals,
and φ5–φ9 mimic the d orbitals. Both the general shape and
the multiplicity of the element orbitals agree well with the
physical intuition. We also find that hybridization of the s,p,d

orbitals naturally appears in the EOs, reflecting the effect of
the environment. For example, the isosurface of φ1 exhibits
“holes” around atoms. These holes are not described in the
spherical symmetric s atomic orbital, but can only be reflected
in orbitals of higher angular momentum such as d orbitals.
Therefore EOs are a natural generalization of atom-centered
orbitals, with both the atomic and environmental effect taken
into account simultaneously.

EOs are localized in the extended elements. Since each
candidate function is not continuous across the boundary of
the extended element, EOs are still discontinuous across the
boundary of the extended element. Nonetheless, the EOs are
“qualitatively continuous” at the boundary of the extended
elements. Figure 4(a) shows the behavior of φ1,φ4,φ7 for the
Na system along one [100] direction, with the zoom-in near
the boundary of the extended element shown in Fig. 4(b). EOs
are very close to a continuous function especially for φ1 and
φ4 with lower angular momentum. The value of EOs of higher
angular momentum such as φ7 at the grid point closest to the
boundary of the extended element is within 10−3.

EOs can be used for calculating the relative energies of
different atomic configurations. Figure 5(a) shows the total

free energy per atom for a crystal of Na consisting of 6 ×
6 × 6 = 216 unit cells with 432 atoms. Each unit cell is body
centered cubic with 2 Na atoms. The lattice constant ranges
from 7.3 to 7.9 a.u. The size of each element is equal to that
of one unit cell. Four EOs per atom are constructed from
42 ALBs per atom and are used for calculating the total free
energy. The plane-wave cutoff for Kohn-Sham wave functions
in ABINIT is 20 Ry. The difference of the total energy per atom
is less than 2 meV across all the lattice constants. A similar

FIG. 3. (Color) The isosurface of the first nine element orbitals
belonging to the same extended element, for a 3D disordered bulk
Na system in a supercell with 432 atoms. The 27 Na atoms nearest to
the element orbitals within a sphere of radius 6.0 a.u. are plotted as
gold balls. The positive and negative part of the element orbitals are
represented by red and blue color, respectively.
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FIG. 4. (Color online) (a) The value of the element orbitals φ1

(blue solid line), φ4 (red dashed line), and φ7 (black dot dashed
line) along one [100] direction of a 3D disordered bulk Na system
with 432 atoms. The two red circles indicate the boundary of the
extended element. (b) Zoom-in of (a) to the region near the boundary
of the extended element. The same set of element orbitals φ1 (blue
solid line with circles), φ4 (red dashed line with triangles), and φ7

(black dot dashed line with diamonds) are shown, with the symbols
indicating the position of the numerical grids. The red circle indicates
the boundary of the extended element.

result can be obtained for Si. The supercell for Si contains
4 × 4 × 4 = 64 unit cells with 512 atoms in total. Each unit
cell is diamond cubic with eight Si atoms. Figure 5(b) reports
the total free energy per atom for lattice constants from 9.9 to
10.5 a.u. Each element only covers 2

3 × 2
3 × 2

3 unit cells. We
remark that elements occupying a fraction of the unit cell are
allowed, which is important especially when EOs are applied
to systems with defects and disorderedness. The plane-wave
cutoff for Kohn-Sham wave functions in ABINIT is set to be
120 Ry to achieve the high accuracy as a benchmark solution.
The localization radius is also 6.0 a.u. Starting from 50 ALBs
per atom, ten EOs per atom are computed. The difference of
the total free energy per atom is less than 1 meV for all lattice
constants.

EOs are also effective for calculating the total energy
of systems with defects. For a crystal Na system with 432
atoms and the length of each dimension of the supercell
being 45.6 a.u., the total free energy evaluated using ABINIT

is −103.279 47 a.u. Using the same setup as done in the
crystal system with four EOs per atom, the total free energy

FIG. 5. (Color online) The total free energy per atom for 3D bulk
Na system with 432 atoms (a) and 3D bulk Si system with 512 atoms
(b), with different lattice constants calculated from ABINIT (red line
with diamonds) and from element orbitals (blue dashed line with
circles).

evaluated using EO is −103.275 88 a.u. The difference is as
small as 0.22 meV per atom. Since our implementation takes
the spin-unpolarized form, we consider a system with two
vacancies by removing 2 Na atoms belonging to one unit cell
from the supercell. All the parameters are the same as those
for the calculation of the crystal system. The total free energy
evaluated using ABINIT is −102.769 57 a.u., and the total free
energy evaluated using four EOs per atom is −102.766 37 a.u.,
with the difference being 0.20 meV per atom. The error for
both the crystal and the defect system is less than 1 meV per
atom. We also estimate the formation energy of M neutral
vacancies by


E(M) = Ed
N−M − E0

N

N − M

M
, (12)

with E0
N being the free energy for the crystal system with N

atoms, and Ed
N−M being the free energy for the same system

but with M atoms removed. Atomic relaxation is not taken into
account at this stage. Using (12), the formation energy calcu-
lated from ABINIT is 0.864 eV, and that calculated from EO is
0.854 eV. The difference of the formation energy is 0.010 eV,
and the relative error of the formation energy is 1.2%.

The calculation of the defect formation energy for Si is
as follows. For a crystal Si system with 512 atoms and the
length of each dimension of the supercell being 40.4 a.u., the
total free energy evaluated using ABINIT is −2030.858 24 a.u.,
and the total free energy evaluated using 10 EOs per atom
is −2030.856 91 a.u. The difference is as small as 0.07 meV
per atom. A defect system is constructed by removing one
Si atom, and all the parameters are the same as those
for the crystal calculation. The total free energy evaluated
using ABINIT is −2026.764 78 a.u., and the total free energy
evaluated using ten EOs per atom is 2026.759 74 a.u., with
the difference being 0.27 meV per atom. The error for both
the crystal system and that for the defect system is less than
1 meV per atom. The formation energy calculated from ABINIT

is 3.454 eV, and that calculated from EO is 3.555 eV. The
difference of the formation energy is 0.101 eV, and the relative
error of the formation energy is 2.9%.

Next we study graphene sheet consisting of 32 C atoms
(cyan balls), with 1 C atom replaced by a Si atom (gold ball),
as shown in Fig. 6. The length of the supercell is 10.000,
16.108, and 18.600 a.u. for the x,y,z directions, respectively.
The C and Si atoms are in the y-z plane. The supercell
consists of 4 × 4 elements, with each element containing two
atoms, and represented by one black box. The length of each
element is therefore 10.00, 4.027, and 4.650 a.u. along the
x,y,z directions, respectively. The shape of the EOs is shown
in Fig. 6(a) for the first EOs φ1 belonging to two different
elements, and (b) for the second EOs φ2 belonging to the
same two elements, respectively. We find that φ1 in the upper
element reflects the C-C bond and φ1 in the lower element
reflects the C-Si bond, respectively. Similarly, φ2 reflects the
π bonds in both the upper and the lower elements. The shape
of the EOs agree well with the physical intuition. In particular,
the element orbitals are not centered around individual atoms
but correspond directly to chemical bonds, which are of
lower energy than individual atomic orbitals. Figure 6 shows
that the EOs constructed from a complete basis set such as
plane waves provides a more flexible treatment of chemical
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FIG. 6. (Color) Graphene sheet consisting of 32 C atoms (cyan
balls) with 1 C atom substituted by a Si atom (gold ball). Each black
box represents an element. (a) The first element orbital φ1 (green)
for the upper element with 2 C atoms, and the first element orbital
φ1 (red) for the lower element with 1 C atom and 1 Si atom. (b)
The second element orbital φ2 (green for the positive part and black
for the negative part) for the upper element with 2 C atoms, and
the second element orbital φ2 (red for the positive part and blue
for the negative part) for the lower element with 1 C atom and
1 Si atom.

environment than atom centered orbitals. The total free energy
calculated using ABINIT with a plane-wave cutoff at 200 Ry
is −180.563 24 a.u. Twelve EOs per atom contracted from
40 ALBs per atom have localization radius of 3.0 a.u. The
total free energy calculated using EO is −180.562 79 a.u. The
difference in the total free energy per atom is 0.38 meV.

A more complicated example is a graphene sheet with 512 C
atoms, and with 128 of the C atoms randomly selected and
replaced by Si atoms. The atomic configuration is shown in
Fig. 7(a), with the C atoms represented by cyan balls and Si
atoms represented by gold balls, respectively. The atoms are
all in the y-z plane, and the dimension of the supercell is
10.000, 64.432, and 74.400 a.u. along the x,y,z directions,
respectively. The electron density in the y-z plane is shown
in Fig. 7(b). The total free energy calculated from ABINIT is
−2639.024 87 a.u., and the total free energy calculated from
EO with 12 EOs per atom for all elements is −2639.115 04 a.u.
The error of the total free energy per atom is 4.79 meV per
atom.

The fact that a small number of EOs per atom already
achieve high accuracy allows us to perform calculations for
systems of large size. Here we study 3D bulk Na systems of

FIG. 7. (Color) (a) The atomic configuration of a graphene sheet
consisting of 512 C atoms (cyan balls), with 128 C atoms randomly
selected and substituted by Si atoms (gold balls). (b) The electron
density across y-z plane.
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FIG. 8. (Color online) The total computational time per SCF
iteration (red solid line with upward-pointing triangles) for 3D bulk
Na systems ranging from 128 to 4394 atoms. The breakdown of
the total computational time includes the time for using LOBPCG

to generate adaptive local basis functions (blue dashed line with
diamonds), the time for constructing the element orbitals from
adaptive local basis functions (black dot dashed line with circles), the
time for solving the generalized eigenvalue problem using the dense
SCALAPACK solver (green solid line with left-pointing triangles), the
overhead time for solving the DG problem (magenta dashed line with
right-pointing triangles), and the rest of the time in a SCF iteration
(cyan dot dashed line with stars).

various sizes, ranging from 128 to 4394 atoms. The length
of the supercell along each dimension is also proportional to
the system size, from 30.4 a.u. for 128 atoms to 98.8 a.u. for
4394 atoms. The number of processors (computational cores)
used is chosen to be proportional to the number of atoms, with
64 processors used for 128 atoms, and 2196 processors used
for 4392 atoms. Four EOs per atom are constructed from 42
ALBs per atom for all calculations. The total time per SCF
iteration is shown in Fig. 8. We find that even though the
number of atoms increase by a factor of 34, the wall clock
time only increases by less than four times from 114 sec for
128 atoms to 413 sec for 4394 atoms. The small increase of the
total wall clock time is because the time for solving the gen-
eralized eigenvalue problem (10), which is asymptotically the
computationally dominating part, only takes less than 100 sec
even for system as large as 4392 atoms, thanks to the small
number of basis functions per atom allowed to be used in the
calculation. The time for generating the ALBs using LOBPCG

and the time for constructing the EOs from the ALBs are
flat for all systems, since these steps are localized in each
extended element and the computational cost is independent
of the global system size. The overall time for solving the
generalized eigenvalue problem (10) has not dominated the
computational time for 4392 atoms with a Hamiltonian matrix
of size 17 568. However, the wall clock time for this part
already scales quadratically with respect to the number of
atoms. Since the number of processors scales linearly with
respect to the system size, the overall time for solving the
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FIG. 9. (Color online) The memory cost per processor (a) and the
communication percentage (b) for 3D bulk Na systems ranging from
128 to 4394 atoms.

generalized eigenvalue problem scales cubically with respect
to the system size, and will eventually dominate the overall
running time for systems of larger size. The overhead of the
DG calculation involves the assembly of the DG matrix H,
the construction of the Hamiltonian matrix CtHC and the
mass matrix CtC using parallel matrix-matrix multiplication,
as well as the communication time. As alluded to earlier,
the parallel matrix-matrix multiplication treats C and H as
dense matrices in the current implementation. Therefore the
asymptotic scaling of this part has the same asymptotic cubic
scaling as solving the generalized eigenvalue problem. All the
rest of the computational time (classified as “other time” in
Fig. 8) mainly includes constructing the electron density using
(11) in the global domain, solving the Kohn-Sham potential
from the electron density, charge mixing, as well as the extra
data communication.

We also remark that treating the Hamiltonian matrix as
dense matrices greatly increases the memory cost and the
communication volume. Figure 9(a) shows the amount of
memory used per processor. When the number of atoms
is 4394, the memory used per processor is 5.5 GB, which
becomes the bottleneck for further increasing the system size,
despite that the computational time per SCF is still within
affordable range. The communication volume, indicated by
the percentage of the communication time within the total
computational time, is shown in Fig. 9(b). The communication
time occupies more than 40% of the total time for systems
with 4394 atoms. Both the large memory cost and the large
communication volume is largely due to the treatment of C and
H as dense matrices, and shall be improved in the future work.

VI. CONCLUSION

In conclusion, we have introduced the element orbitals
for discretizing the Kohn-Sham Hamiltonian in the pseu-

dopotential framework, which are contracted automatically
from a uniform basis set. Comparing with the existing
contracted basis sets, element orbitals incorporate environment
information by including directly all atoms in the neighboring
elements on the fly. The implementation of element orbitals
is straightforward thanks to the rectangular partitioning of the
domain. The accuracy of element orbitals is systematically
improvable and the same procedure can be applied to systems
under various conditions. The element orbitals are constructed
by solving KSDFT locally in the real space, and localized
on each element via a localization procedure. We remark that
the localization procedure used for constructing the element
orbitals is not grounded on the nearsightedness property as in
the linear scaling methods for insulating systems.39,40 Instead
of finding the compact representations for the Kohn-Sham
invariant subspaces,41 the current work seeks for a set of
compact basis functions in the real space, while the coefficients
of the basis set for representing the Kohn-Sham orbitals can
still be delocalized. As is shown by the numerical examples, the
current procedure is applicable to both insulating and metallic
systems.

Our numerical examples also indicate that treating C
and H as dense matrices can greatly increase the memory
cost, the communication volume, and the computational time,
especially for systems of large size. The future improvement
includes treating C and H as sparse matrices so that the
construction of the Hamiltonian matrix CtHC and the mass
matrix CtC is of linear scaling. By treating C and H as sparse
matrices, we can also incorporate the recently developed pole
expansion and selected inversion-type fast algorithms25–30 to
reduce the asymptotic scaling for solving the generalized
eigenvalue problem (10) from cubic scaling to at most
quadratic scaling for 3D bulk systems. We also remark that the
current procedure for constructing the orbitals from adaptive
local basis functions is still a costly procedure inside each
element. The method for generating element orbitals directly
inside the extended element is also under our exploration.
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