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The proton momentum distribution, accessible by deep inelastic neutron scattering, is a very sensitive
probe of the potential of mean force experienced by the protons in hydrogen-bonded systems. In this work
we introduce a novel estimator for the end-to-end distribution of the Feynman paths, i.e., the Fourier
transform of the momentum distribution. In this formulation, free particle and environmental contribu-
tions factorize. Moreover, the environmental contribution has a natural analogy to a free energy surface in
statistical mechanics, facilitating the interpretation of experiments. The new formulation is not only
conceptually but also computationally advantageous. We illustrate the method with applications to an

empirical water model, ab initio ice, and one dimensional model systems.
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The behavior of protons and more generally of light
nuclei in condensed phases is significantly affected by
quantum effects even at ambient temperatures. The iso-
topic effect in water, the ferroelectric behavior of potas-
sium diphosphate, and the formation of high pressure ice
phases, are just a few of the relevant phenomena where the
quantum behavior of the nuclei plays a role. To address
these issues a powerful experimental tool, deep inelastic
neutron scattering (DINS) that measures the momentum
distribution [1-3] has recently been developed. Quantum
effects are revealed by strong deviations from the classical
Maxwell distribution. However, interpreting DINS experi-
ments is difficult and so far has been based on extensive
and challenging ab initio molecular dynamics simulations
[4,5]. While these calculations have shown that good
agreement between theory and experiments is possible, a
simpler way of calculating the momentum distribution
needs to be found and the link between the experimental
data and the underlying physics made transparent if DINS
is to become a standard tool.

In order to understand the source of this computational
challenge, let us contrast the expression for the momentum
distribution n(p) and that of the partition function Z in
terms of the density matrix p(r,r') = (rle #H|r'). The
former may be expressed as
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where 7i(x) =1 [drdr'8(r — ' — x)p(r,1'). The parti-
tion function is given by

n(p) [drdr’ei/"l"(r‘r')p(r, r')

7= jdrp(r, r). (2)
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It can be seen that n(p) involves the off-diagonal matrix
elements while Z is determined solely by diagonal terms.
In a condensed system the potential energy surface in
which the particles move is in a high dimensional space
and statistical sampling is the only viable computational
strategy. This is usually done using the Feynman path
representation. In this representation, 7i(x) is an end-to-
end distribution of a sum over open paths, while closed
ones determine Z [6,7]. Sampling is done on the closed
paths that specify Z and it is challenging from these
simulations to estimate the open path distribution that
determines n(p).

One approach is to artificially open a fraction of the
paths [8]. In so doing one has to balance two contradictory
requirements. On one hand the number of open paths has to
be large enough to obtain good statistics for 7i(x), while on
the other hand it cannot be too large as the sampling will
become incorrect. In this work we introduce a new ex-
pression for 7i(x) which does not require opening the paths
and compromises neither sampling accuracy nor statistics.
Following a derivation whose detail can be found in the
supplementary material [9] we find

ii(x) = 7ip(x)
" JDr(r)exp(—1 [ ar(mE@ 4 vIr(r) + y(r)x])
[ Dr(r)exp(— 5" ("2 + VIx(r)])

3)

where 7ig(x) = e~ ("**/2B") ig the free particle end-to-end
distribution. The function y(7) is arbitrary but for the
boundary condition y(8h) — y(0) = 1. In practice, the op-
timal choice is to take y = % - B—Th since it minimizes the
distance between r(7) and the displaced path r(7) + y(7)x.
Notice that, for simplicity, Eq. (3) refers to a single particle
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subject to the external potential V[r]. Generalization to
many-body systems is straightforward if exchange effects
between identical particles can be neglected. How to in-
clude such effects will be discussed in a future publication.
Equation (3) merits further comment. In the calculation of
the kinetic energy it has been found to be extremely useful
to use estimators in which the free particle contribution has
been explicitly accounted for [10]. We expect similar
computational advantages from the explicit separation of

fip(x). Furthermore it follows from Eq. (3) that, having put
akx) — Z(x)
ig(x)  Z(0)
partition functions. To calculate this ratio or its logarithm

Z(0) = Z, we can write as a ratio between two

U(x) = —ln% standard statistical mechanics methods

such as free energy perturbation [11] or thermodynamic
integration [12] may be utilized.
Using free energy perturbation one may compute

U(x) = — In(e /M [ a0V HGx-viemly ()

where the average is evaluated using the closed path dis-
tribution Z(0).

The free energy perturbation method can only be applied
to systems with weak quantum effects. For systems with
strong quantum effects the average is difficult to converge
and instead we use thermodynamic integration. In this
scheme U(x) is obtained as an integral U(x) = [§ dx’ -
F(x’) over the mean force,

re) = (3 [ @i £exhe) - ®
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evaluated at the intermediate distributions Z(x’). In this
case thermodynamic integration requires opening the
paths, but it does so in a fully controlled way. Besides
being rigorous our estimator offers several computational
advantages. In three dimensions the standard approach
suffers from poor statistics at short distances due to the
geometrical 7> factor, and this is not the case here. By
averaging over all the particles, statistics can be greatly
improved. The calculation over different particles is in-
trinsically parallel and the power of modern computers
optimally harnessed. Furthermore, in crystals where an-
isotropies are relevant, the dependence of n(p) on the
momentum direction can be easily evaluated.

We first test our algorithm on a flexible model for water
[13]. The simulation box contains 32 water molecules. The
temperature is set to be 296 K. Both protons and oxygens
are treated by quantum mechanics, and are represented by
64 classical beads. The end-to-end distribution is spheri-
cally averaged in water. The quantum effect for water at
room temperature is relatively small [4]. This allows us to
use free energy perturbation (4) and compare the results
with open path integral simulation [8]. In the latter case, in
principle one proton path should be opened and all other
paths should be closed. However, the resulting statistics
would be poor. In order to boost statistics one proton path

per water molecule was opened, as it was found that this
approximation leads to a negligible error in the momentum
distribution due to the relatively weak interaction between
protons belonging to different water molecules [8]. The
closed path formulation allows one to compute the end-to-
end distribution without opening any proton path, and
therefore all the protons can be included in the calculation
of the end-to-end distribution without any approximation.
We show the end-to-end distribution calculated both from a
268 ps open path simulation and from a 12 ps closed path
simulation that utilizes the estimator given by Eq. (4) in
Fig. 1(a), and the comparison of the potential of mean force
in Fig. 1(b). In both simulations, the time step is 0.24 fs.
Two consecutive steps contain highly correlated informa-
tion, and the free energy perturbation estimator may be
computed every 20 steps. Thus with only a small increase
in computational overhead in comparison to an open path
simulation of the same length, the displaced path formu-
lation has a large gain in terms of sampling this property
efficiently.

The thermodynamic integration approach given in
Eq. (5) is not only computationally advantageous but also
provides one with the potential of mean force U(x), and its
gradient F(x) which are key quantities for interpreting the
physics underlying n(p). We first note that the kinetic en-
ergy K is given by K = 2.V - F(x)|,—o + % =K, + %
Since 3/2p is the free particle contribution, the nonclas-
sical contribution is completely included in the excess
kinetic energy term Ky, and is determined by the zero
point curvature of U(x). Second, if the momentum distri-
bution of an individual particle is accessible (as is possible,
e.g., in simulations) and the underlying potential energy
surface is harmonic, the end-to-end distribution follows a
Gaussian distribution and the mean force is given by a
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FIG. 1 (color online). Comparison of (a) the end-to-end dis-
tribution and (b) the potential of mean force in SPC/F2 water. In
both (a) and (b), the red oscillatory line is computed by a 268 ps
open path integral simulation. The blue smooth line is calculated
using the displaced path estimator (4), with the thickness in-
dicating the 95% confidence interval. The noise near » = 0 in
both insets for open path simulation is due to the 7> weight in the
spherical integration, while the displaced path gives correct
small » behavior by definition.
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straight line. Any deviation of ¢ - F(x) from linearity
signals anharmonic behavior along the ¢ direction.

In experiments, the spherically averaged momentum
distribution is accessible in liquids, and amorphous and
polycrystalline solids, while the directional distribution is
also accessible in monocrystalline materials. The latter
distribution provides more information about the under-
lying potential energy surface. However, in single crystals
the total momentum distribution is the sum of the contri-
butions of individual particles participating in bonds with
different orientations. As a consequence the difference
between directional and spherical momentum distribution
is usually very small as shown in the top panel of Fig. 2.
This figure is based on an anisotropic harmonic model [14]
with three distinct principal frequencies that is fit to the
ab initio path integral data for ice 1A [4]. The bottom panel
of the same figure clearly shows that the distinction be-
tween the spherical and directional distributions is en-
hanced when comparing the mean forces. It is therefore
of great interest to link directly the mean force to the
experimental data, i.e., to the Compton profile J(q, y) =
[ n(p)8(y — p - @)dp where q indicates the direction of
the neutron detector [2]. One finds with a derivation pro-
vided in the supplemental material [9] that the mean force
is related to the Compton profile by

mx - [§ dyysin(xy/h)J (@, y)

q-F(xq) = - (6)

excess kinetic energy K, divided by the constant %
This is an exact result that originates from the symmetry
property of ice 1A. In general the spherical and directional
mean force can have different slopes at r = 0. The devia-
tion of the spherical and directional forces from linearity at
finite r results from the averaging process and is not a sign
of anharmonicity. Thus in the interpretation of the experi-
mental Compton profile, which results from the contribu-
tion of many particles, one must distinguish the case of an
anisotropic harmonic potential energy surface from that of
an anharmonic potential energy surface. To the best of our
knowledge the procedure that is currently adopted to fit the
experimental data [2,3,15] does not separate well aniso-
tropic and anharmonic effects. We propose here an alter-
native approach in which the mean force is associated to
the experimental Compton profile according to Eq. (6).
The projections of the mean force along different direc-
tions are then fitted to an anisotropic harmonic model
averaged as required by the crystal symmetry. Any system-
atic deviation from experiment of the mean force originat-
ing from the harmonic contribution, can then be associated
with anharmonicity and used to further refine the under-
lying model potential energy surface.

The framework introduced here may be also utilized to
provide insight to the investigation of anharmonic systems.
Consider, for example, a particle with the proton mass
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FIG. 2 (color online). Top panel: the momentum distribution
of the protons in ice 14 resulting from an anisotropic harmonic
model (see text). Both the spherical and the directional distribu-
tion along the ¢ axis are shown. Bottom panel: the corresponding
spherical and directional mean force projected along the ¢ axis.
The curves are plotted as a function of the end-to-end distance.
The mean force enhances the differences between spherical and
directional distributions.

FIG. 3 (color online). (a) The mean force corresponding to a
double well model at 7 = 30 K, for different barrier heights A =
1263 K (black solid line), A = 3789 K (red dashed line), and
A = 6315 K (blue dot-dashed line). (b) Potential energy surface
for A = 1263 K (blue solid line), and the first five energy levels
(red dashed line). (c),(d) the same as (b), but with A = 3789 K
and A = 6315 K, respectively.
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FIG. 4 (color online). The mean force corresponding to a
double well model at A = 3789 K for different temperatures
100 K (red solid line), 300 K (blue triangle), 500 K (black dot-
dashed line), 1000 K (magenta dashed line), and 2000 K (blue
Cross).

subject to a model double well 1D potential. V = ’”T“ﬂ 2+
Aexp(— ;—;) with @ = 1578 K, and & =0.094 A. A

characterizes the barrier height and is set to be 1263,
3789, and 6315 K, respectively. These parameters mimic
different tunneling regimes for protons along a hydro-
gen bond [5,16]. The temperature is set to be 30 K. At
this temperature the behavior of the systems is domi-
nated by the ground state, and the end-to-end distribution
can be approximated by the overlap integral 7i(x) =
Jdz(z)p(z + x) where ¢(z) is the ground-state wave
function and F(x) = — 4 Infi(x). In Fig. 3 we can see
how qualitatively different the mean force can be in the
three cases. One goes from a fully monotonic behavior for
A = 1263 K which is a model for a low energy barrier
hydrogen bond [17], to the strongly nonmonotonic mean
forces for A = 3789 K, A = 6315 K where the tunneling
states lie below the barrier height. Additionally, it is not
very difficult to relate features of the mean force to the
underlying effective potential.

It is also instructive to study F(x) as a function of
temperature when the higher states are mixed in the density
matrix. This is done in Fig. 4 for the double well potential
with A = 3789 K. For temperatures in the 100-500 K
range, the behavior is dominated by the two lowest eigen-
states. The slope of F(x) at small x, which is proportional
to the excess kinetic energy Ky, shows little dependence on
T. It can be shown with detailed analysis that this is a
generic feature of two level tunneling systems. Other char-
acters seen in Fig. 4 in the same range of temperatures,
such as the more pronounced kink at intermediate x and the

enhanced softening of the mean force at large x, derive
from the odd symmetry of the first excited state contribu-
tion. Eventually at higher T the kink in F(x) disappears as
the mean force progressively resumes linear behavior with
a slope that tends to zero as high temperature classical limit
is reached.

In this work, we develop a novel displaced path for-
malism for the calculation of momentum distribution of
quantum particles. The algorithm is rigorous and computa-
tionally advantageous. The new formulation introduces in
a natural way a potential of mean force which is a quantity
that very clearly illuminates the physics behind n(p) and
can be used to further understand and analyze experimental
and theoretical results.
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