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Abstract. Wannier functions provide a localized representation of spectral subspaces of periodic
Hamiltonians, and play an important role for interpreting and accelerating Hartree-Fock and Kohn-
Sham density functional theory calculations in quantum physics and chemistry. For systems with
isolated band structure, the existence of exponentially localized Wannier functions and numerical
algorithms for finding them are well studied. In contrast, for systems with entangled band structure,
Wannier functions must be generalized to span a subspace larger than the spectral subspace of
interest to achieve favorable spatial locality. In this setting, little is known about the theoretical
properties of these Wannier functions, and few algorithms can find them robustly. We develop a
variational formulation to compute these generalized maximally localized Wannier functions. When
paired with an initial guess based on the selected columns of the density matrix (SCDM) method,
our method can robustly find Wannier functions for systems with entangled band structure. We
formulate the problem as a constrained nonlinear optimization problem, and show how the widely
used disentanglement procedure can be interpreted as a splitting method to approximately solve
this problem. We demonstrate the performance of our method using real materials including silicon,
copper, and aluminum. To examine more precisely the localization properties of Wannier functions,
we study the free electron gas in one and two dimensions, where we show that the maximally-localized
Wannier functions only decay algebraically. We also explain using a one dimensional example how
to modify them to obtain super-algebraic decay.

Key words. Wannier function, Localization, Entangled band, Metallic system, Variational
method, Optimization, Free electron gas

1. Introduction. Localized representations of electronic wavefunctions have a
wide range of applications in quantum physics, chemistry, and materials science. In
an effective single particle theory such as Hartree-Fock theory and Kohn-Sham den-
sity functional theory (KSDFT) [19, 23], the electronic wavefunctions are character-
ized by eigenfunctions of single particle Hamiltonian operators. These eigenfunctions
generally have significant magnitude in large portions of the computational domain.
However, the physically meaningful quantity is not each individual eigenfunction, but
the subspace spanned by the collection of a set of eigenfunctions. This is often referred
to as the Kohn-Sham subspace, and it is often possible to reduce the computational
complexity of various methods by using an alternative, localized representation of the
subspace.

Wannier functions provide one such localized representation of the Kohn-Sham
subspace. They require significantly less memory to store, and are the foundation of
so-called “linear scaling methods” [22, 16, 4] for solving quantum problems. They can
also be used to analyze chemical bonding in complex materials, interpolate the band
structure of crystals, accelerate ground and excited state electronic structure calcula-
tions, and form reduced order models for strongly correlated many body systems [26].

Wannier functions are not uniquely determined, and depend on a choice of gauge
(a rotation among the occupied states), which strongly influences their localization.
For periodic systems with an isolated band structure, the localization properties of

∗Department of Computer Science, Cornell University, Ithaca, NY 14853. Email:
damle@cornell.edu
†Inria Paris, F-75589 Paris Cedex 12, Universite Paris-Est, CERMICS (ENPC), F-77455 Marne-

la-Vallée. Email: antoine.levitt@inria.fr
‡Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720 and Com-

putational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720. Email:
linlin@math.berkeley.edu

1

ar
X

iv
:1

80
1.

08
57

2v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
5 

Ja
n 

20
18



2

Wannier functions have been studied extensively [21, 3, 31, 5, 35]. Interestingly, the
existence of localized Wannier functions in this case is characterized by a topological
invariant. For physical systems without magnetic field (invariant under time-reversal
symmetry), this topological invariant is trivial, and it is known that there exists a
gauge leading to Wannier functions with exponential decay [5, 34]. In this setting,
efficient numerical algorithms have been developed to compute these exponentially
localized functions [27, 20, 17, 12, 33, 9, 30, 6, 10]. In particular, the widely used
maximally-localized Wannier function (MLWF) procedure minimizes the variance (or
“spread”) [14, 27] over all possible choices of gauge to obtain localized Wannier func-
tions. In the insulating case, it is known that minimizers of this spread are exponen-
tially localized [35].

The situation becomes significantly more challenging for systems with entangled
band structure. Entangled band structure arises in metallic systems, but also in insu-
lating systems when conduction bands or a selected range of bands are to be localized.
A straightforward definition of Wannier functions requires the set of all Wannier func-
tions to exactly span the selected spectral subspace. However, such Wannier functions
are known to decay slowly in real space. Therefore, the definition of Wannier func-
tions has been generalized to refer to functions spanning a subspace larger than, but
containing the given entangled spectral subspace, referred to as a “frozen window”
[36]. This is useful for instance in band interpolation, where the additional Wannier
functions give rise to extra bands that can simply be ignored. Finding such general-
ized Wannier functions numerically is considerably more complex, and few algorithms
in the literature accomplish this task in a robust fashion. Furthermore, little is known
theoretically about the localization properties of the constructed generalized Wannier
functions. In order to be consistent with the terminology in the physics literature, we
will refer to these generalized Wannier functions simply as Wannier functions, unless
otherwise noted.

In this paper, we develop a variational formulation for finding Wannier func-
tions in the entangled setting. We formulate the problem as a nonlinear constrained
optimization problem. Practical Wannier function calculations indicate that such
nonlinear optimization problems can have many local minima. Hence the solution
can strongly depend on the initial guess, and the difficulty of constructing a good
initial guess is often a significant impediment to finding Wannier functions in a ro-
bust fashion. In order to avoid being trapped at undesirable local minima, we use the
recently developed selected columns of the density matrix (SCDM) methodology to
construct the initial guess for our variational formulation. This strategy is applicable
to both the isolated case [9] and the entangled case [8].

Our variational formulation can be obtained in several theoretically equivalent
constructions. We find that one of these formulations yields the so-called partly oc-
cupied Wannier functions [37], and can be solved efficiently using standard numerical
algorithms for minimization under orthogonality constraints. Our formulation also
reveals that the widely used “disentanglement” procedure [36] can be viewed as a
splitting method for solving the constrained optimization problem, which only per-
forms a single alternation step between the two pieces of the objective function, and
therefore does not achieve a global minimum of the spread. We verify the perfor-
mance of the variational formulation with real materials such as silicon, copper, and
aluminum. In these examples, we find that the fully converged variational formulation
consistently provides orbitals with a smaller spread than that from the disentangle-
ment procedure, and is more robust to the choice of initial guess. We also find that
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the difference between the variational formulation and the disentanglement procedure
is often small when used for band structure interpolation.

The variational formulation allows us to study the decay properties of Wannier
functions for metallic systems. We present the localization properties of generalized
Wannier functions for the free electron gas in one and two dimensions. We find that
minimizers of the spread exhibit a weak algebraic decay, related to singularities that
we identify in k space. This slow decay is shown to be not a fundamental property of
disentangled Wannier functions, but rather a consequence of the fact that minimizing
the spread only imposes finite second moments (or square-integrable first derivatives
in k space). In particular we show in one dimension how to modify the maximally-
localized Wannier functions to obtain super-algebraic decay.

The rest of the paper is organized as follows. We first introduce several back-
ground topics such as Bloch-Floquet theory, Wannier functions, and the SCDM
methodology in section 2. We then present a variational formulation for Wannier
functions in section 3, and discuss the relation between our variational formulation
and existing methods. Numerical results for real materials and for the free electron gas
are given in sections 4 and 5, followed by conclusion and discussion in section 6. Some
of the technical details related to the implementation of the variational formulation
are given in the Appendix A.

2. Preliminaries.

2.1. Bloch-Floquet theory. We first briefly review Bloch-Floquet theory for
crystal structures. The Bravais lattice with lattice vectors a1,a2,a3 ∈ R3 is defined
as

L =

{
R =

3∑
i=1

niai, n1, n2, n3 ∈ Z

}
, (2.1)

and the lattice vectors define a unit cell in the Bravais lattice

Γ =

{
r =

3∑
i=1

ciai| − 1/2 ≤ c1, c2, c3 < 1/2

}
. (2.2)

The Bravais lattice induces a reciprocal lattice denoted L∗, which is the support of
the Fourier transform of L-periodic functions. The lattice vectors of L∗ are denoted
by b1,b2,b3, with bi · aj = 2πδij . A unit cell of the reciprocal lattice is selected and
called (with some abuse of language) the Brillouin zone, and is defined as

Γ∗ =

{
k =

3∑
i=1

cibi| − 1/2 ≤ c1, c2, c3 < 1/2

}
. (2.3)

For a potential V that is real-valued and L-periodic, i.e.

V (r + R) = V (r), ∀r ∈ R3,R ∈ L, (2.4)

we consider the Schrödinger operator in R3

H = −1

2
∆ + V.

The Bloch-Floquet theory allows us to relabel the spectrum ofH using two indices
(n,k), where n ∈ N is the band index, and k ∈ Γ∗ is the Brillouin zone index. The
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generalized (not square-integrable) eigenfunction ψn,k(r) is known as a Bloch orbital
and satisfies

Hψn,k(r) = εn,kψn,k(r).

Importantly, ψn,k can be decomposed as

ψn,k(r) = eık·run,k(r), (2.5)

where un,k(r) is a periodic function with respect to L. Eigenpairs (εn,k, un,k) can
therefore be obtained by solving the eigenvalue problem

H(k)un,k = εn,kun,k, n ∈ N, k ∈ Γ∗, (2.6)

where H(k) = 1
2 (−ı∇ + k)2 + V (r). For each k, the eigenvalues εn,k are ordered

non-decreasingly, and {εn,k} as a function of k for a fixed n is called a band. The
set of all eigenvalues is called the band structure of the crystal and characterizes the
spectrum of the operator H. If εN+1,k > εN,k for all k ∈ Γ∗, then the first N bands
are isolated. This is for instance the case in the occupied bands of an insulator. When
the gap condition εN+1,k > εN,k does not hold, the band structure becomes entangled.
Entangled band structure appears not only in metallic systems, but also insulating
systems when a Wannier representation of part of the conduction bands is required.

2.2. Wannier functions. For simplicity, we first consider systems with isolated
first N bands—an assumption we will drop towards the end of this section. Rotating
the set of functions {ψn,k} by an arbitrary unitary matrix U(k) ∈ CN×N , we can
define a new set of functions

ψ̃n,k(r) =

N∑
m=1

ψm,k(r)Um,n(k), k ∈ Γ∗. (2.7)

A given set of of such matrices {U(k)}k∈Γ∗ is called a gauge.
For each k, we consider the density matrix P (k), which is the projector on the

the eigenspace corresponding to the first N eigenvalues of H(k)

P (k) =

N∑
n=1

|ψn,k〉〈ψn,k| =
N∑
n=1

|ψ̃n,k〉〈ψ̃n,k|. (2.8)

Importantly, for each k, the density matrix P (k) is gauge-invariant. If C is a contour
in the complex plane enclosing the eigenvalues ε1,k, . . . , εN,k (and only those), then
the Cauchy integral formula yields an alternative representation of P (k)

P (k) =
1

2πı

∫
C

1

λ−H(k)
dλ. (2.9)

Since H(k) is analytic, it follows that so is P (k).
Given a choice of gauge, the Wannier functions are defined as [39]

wn,R(r) =
1

|Γ∗|

∫
Γ∗
ψ̃n,k(r)e−ık·R dk, r ∈ R3,R ∈ L, (2.10)

where |Γ∗| is the volume of the first Brillouin zone. This represents a unitary trans-
formation from the family (ψn,k)n=1,...,N,k∈Γ∗ to (wn,R)n=1,...,N,R∈L. In particular,
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the Wannier functions wn,R are orthogonal to each other and span the same space
as the range of the total density matrix 1

|Γ∗|
∫

Γ∗
P (k) dk. They are also translation

invariant: wn,R(r) = wn(r−R).

For insulating systems, in the absence of topological obstructions, there exists
a gauge such that ψ̃n,k is analytic and L∗-periodic in k, implying that the Fourier
transform of wn,R is analytic, and therefore that each Wannier function decays ex-
ponentially as |r| → ∞ [3, 5, 34]. The Wannier localization problem is reduced to
the problem of finding a gauge {U(k)} such that wn,0 is localized, or, equivalently,

that ψ̃n,k is smooth with respect to k. This can be done by minimizing the “spread
functional” [14, 27]

Ω[{U(k)}] =

N∑
n=1

∫
|wn,0(r)|2r2 dr−

∣∣∣∣∫ |wn,0(r)|2r dr

∣∣∣∣2 . (2.11)

Here wn,0 depends on U(k) through ψ̃n,k as in Eq. (2.10). This problem is usually
solved by a minimization algorithm such as steepest descent or conjugate gradient
with projections at each step to respect the constraints that U(k) must be unitary
[28, 29].

For systems with entangled band structure, the density matrix P (k) as defined in
Eq. (2.8) is no longer smooth with respect to k. As a result, there is no choice of gauge
U(k) that leads to a set of rotated Bloch orbitals that is smooth with respect to k, and
Wannier functions defined strictly according to Eq. (2.10) will then decay very slowly
in real space [16]. In order to enhance the localization properties of Wannier functions,
the definition of Wannier functions has been generalized so that the spectral subspace
interest is only a proper subspace of that spanned by Wannier functions [36]. In the
physics literature, the spectral subspace is described by a “frozen window” along the
energy spectrum, and the Wannier functions are linear combinations of orbitals from
a larger set described by an “outer window”.

More specifically, we first fix a number of bands No that determines the outer
window1 and then proceed to look for Wannier functions built out of ψ1,k, . . . , ψNo,k.
Next, for each k point we fix a set of frozen bands Nf (k) ⊂ [No] , and let Nf (k) =
|Nf (k)|. Nf (k) are often defined as the bands within a fixed energy window that we
will try to reproduce. Correspondingly, we define the frozen density matrix as

Pf (k) =
∑

n∈Nf (k)

|ψn,k〉〈ψn,k|, (2.12)

which is the projection onto the states within the frozen energy window. Again, the
frozen density matrix as defined in Eq. (2.12) is not smooth with respect to k.

We now seek to construct a set of Nw Wannier functions that span the subspace
defined by the range of 1

|Γ∗|
∫

Γ∗
Pf (k) dk. We introduce the gauge matrices U(k) ∈

CNo×Nw with orthonormal columns, with |Nf (k)| ≤ Nw ≤ No, such that

ψ̃n,k(r) =

No∑
m=1

ψm,k(r)Um,n(k), k ∈ Γ∗, n = 1, . . . , Nw. (2.13)

1To simplify the exposition we assume a constant number of bands in the outer window, but this
can be relaxed to a variable number of bands No(k).
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This may equivalently expressed in matrix form as Ψ̃(k) = Ψ(k)U(k). This choice of
gauge also induces a density matrix of rank Nw for each k defined as

Pw(k) =

Nw∑
n=1

|ψ̃n,k〉〈ψ̃n,k| = Ψ̃(k)Ψ̃∗(k) = Ψ(k)U(k)U∗(k)Ψ∗(k). (2.14)

Note that unlike the case with isolated band structure where No = Nw, here Nw 6= No
implies that U(k)U∗(k) 6= INo

. Furthermore, since the set of orbitals in the frozen
window is only a subset of all possible orbitals, in general the projectors Pw and Pf
do not span the same space. In order to ensure that our Wannier functions span the
same subspace as the subspace associated with the frozen window, we require that

Pw(k)Pf (k) = Pf (k), ∀k ∈ Γ∗. (2.15)

3. Variational formulation for Wannier functions with entangled band
structure. We now proceed to develop a variational formulation for Wannier func-
tions. First, we illustrate how to encode the desired constraints when paired with
the aforementioned spread functional. Subsequently, to facilitate numerical solution
of the optimization problem, we refine how the constraints are expressed. Lastly, we
discuss the relation the existing disentanglement procedure to our formulation and
discuss how we construct an initial guess using the SCDM methodology.

3.1. Formulating the optimization problem. Without loss of generality, for
the following discussion we assume that the frozen orbitals (Ψf ) are always ordered
before the rest of the orbitals (Ψr). In terms of the notation from the previous section,
this means that for each k the frozen orbitals are represented by the set Nf (k) =
{1, 2, . . . , Nf (k)} with Nf (k) simply representing the number of frozen orbitals per
k-point. Now, we may partition the orbitals and the gauge using the following block
form

Ψ(k) =
[
Ψf (k) Ψr(k)

]
, U(k) =

[
Uf (k)
Ur(k)

]
. (3.1)

The matrices Uf (k) and Ur(k) are of size Nf (k) × Nw and (No − Nf (k)) ×
Nw, encoding the weight assigned to the frozen subspace and its complement in the
Wannier functions, respectively. The condition that the Wannier functions represent
the frozen bands as in Eq. (2.15) can conveniently be expressed in terms of these
matrices as follows.

Proposition 3.1. The following statements are equivalent:

1. Pw(k)Pf (k) = Pf (k).
2. Uf (k)U∗f (k) = INf (k).
3. Uf (k)U∗r (k) = 0 and Uf (k) has full row rank.

4. U(k) =

[
INf (k) 0

0 Y (k)

]
X(k), where X(k) is a unitary matrix of size Nw ×

Nw, and Y (k) is a matrix with orthogonal columns of size (No − Nf (k)) ×
(Nw −Nf (k)).

Proof. Since each k point is treated independently, for simplicity we drop the k
dependence in the proof below.
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1⇔ 2 : From the definition of Pw, Pf we have

PwPf = Ψ

[
UfU

∗
f UfU

∗
r

UrU
∗
f UrU

∗
r

] [
I 0
0 0

]
Ψ∗ = Ψ

[
UfU

∗
f 0

UrU
∗
f 0

]
Ψ∗

Pf = Ψ

[
INf

0
0 0

]
Ψ∗

The result follows since Ψ has orthogonal columns.
2⇔ 3 : From the partition of U we have

UU∗ =

[
UfU

∗
f UfU

∗
r

UrU
∗
f UrU

∗
r

]
If UfU

∗
f = INf

, since UU∗ is a projector, it follows that UrU
∗
f = 0. On the other

hand, if UrU
∗
f = UfU

∗
r = 0, then the fact that UU∗ is a projector implies that UfU

∗
f

is a projector as well. Since it has full row rank, it must therefore be the identity
matrix.
3⇔ 4 : If 3 is true, then

PU = UU∗ =

[
INf

0
0 UrU

∗
r

]
.

Then UrU
∗
r is a projector with rank Nw −Nf , or equivalently

UrU
∗
r = Y Y ∗

for some (No −Nf )× (Nw −Nf ) matrix Y with orthogonal columns. Then

U = PUU =

[
INf

0
0 Y Y ∗

]
U =

[
INf

0
0 Y

]
X,

where

X =

[
INf

0
0 Y ∗

]
U,

and it can be readily verified that X is unitary. The reverse direction is obvious.
Proposition 3.1 gives us various concise ways to impose the desired condition on

the span of Wannier functions, and we may for instance consider using condition 2.
Since the smoothness requirement for ψ̃n,k with respect to the Brillouin zone index k
can be realized by minimizing the spread functional (2.11), finding the desired smooth
gauge U(k) can be recast as the following constrained optimization problem:

inf
{U(k)}

Ω[{U(k)}]

s.t. U∗(k)U(k) = INw , Uf (k)U∗f (k) = INf (k).
(3.2)

The difficulty at this stage is that numerical optimization of (3.2) with respect
to these constraints may not be easy. In particular, the set of matrices U satisfying
U∗U = INw

and UfU
∗
f = INf

does not necessarily possess a smooth manifold struc-
ture. This complicates the application of standard methods for the minimization of
functions over orthogonality constraints.



8

On the other hand, the condition 4 in Proposition 3.1 represents U in a factorized
form, hereinafter referred to as the (X,Y ) representation. This representation of
the matrix U(k) gives rise to Wannier functions composed of the Nf (k) functions
in the frozen window, and another set of Nw − Nf (k) functions, encoded by the
matrix Y (k). This Y encapsulates all the necessary information about the projector

Pw = Ψ̃Ψ̃∗. The unitary X(k) matrix mixes these Nw Wannier functions amongst
themselves to produce a smooth gauge. In the (X,Y ) representation, the variational
formulation (3.2) can be written as

inf
{X(k),Y (k)}

Ω[{U(k)}],

s.t. U(k) =

[
INf (k) 0

0 Y (k)

]
X(k),

X∗(k)X(k) = INw ,

Y ∗(k)Y (k) = INw−Nf (k).

(3.3)

This optimization problem is equivalent to the “partly occupied Wannier functions” [37].
This also directly generalizes the maximally localized Wannier functions procedure [27]
by Marzari and Vanderbilt for the isolated case.

The (X,Y ) representation is a redundant representation, and a given U can be
reproduced by many pairs (X,Y ). However, in contrast to the formulation (3.2),
the constraint in Eq. (3.3) defines a Riemannian manifold where X(k) and Y (k) are
independent matrices with orthogonality constraints. This allows us to use standard
algorithms for the minimization of differentiable functions on Riemannian manifolds
to solve the problem. We refer to Appendix A for the details of the computation of
the gradient of the objective function Ω.

3.2. Implementation. For our implementation, we modified the Julia [2] li-
brary Optim.jl for unconstrained optimization to accommodate constraints repre-
sented by Riemannian manifolds [13, 1]. Our modifications have been integrated into
that library and are available online 2. For the numerical tests that follow we used
the limited-memory BFGS algorithm [32] with Hager-Zhang line search [18], which
gave the best performance compared to other readily-available algorithms (steepest
descent, conjugate gradient, BFGS) and line searches (fixed step, backtracking).

In order to generate the initial guess for numerical optimization, we need to
convert a given matrix U to a pair (X,Y ) that parametrizes it. It will also be useful
to consider matrices U that do not satisfy the constraints U∗U = INw and UfU

∗
f = INf

exactly but only approximately. This will allow us to project U to the admissible set
that satisfy these constraints.

To find a pair (X,Y ) that represents a given U , we first choose Y to minimize
the error on the projector UU∗ measured by the Frobenius norm via

inf
Y ∗Y=I

∥∥∥∥UU∗ − [INf
0

0 Y Y ∗

]∥∥∥∥2

F

. (3.4)

A solution to this problem can be computed using the eigenvalue decomposition

UrU
∗
r = V SV ∗. (3.5)

2https://github.com/JuliaNLSolvers/Optim.jl

https://github.com/JuliaNLSolvers/Optim.jl
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When U satisfies the constraints, UrU
∗
r is a projector of rank Nw −Nf , and we can

choose Y to be the columns of V corresponding to the Nw −Nf non-zero eigenvalues
of S. When U does not satisfy the constraints, we pick Y as the columns of V
corresponding to the largest Nw −Nf eigenvalues of S.

Once Y is computed, we can find X that minimizes the error on U :

inf
X∗X=I

∥∥∥∥U − [INf
0

0 Y

]
X

∥∥∥∥2

F

. (3.6)

When U satisfies the constraints, the solution of this problem is simply

X =

[
INf

0
0 Y ∗

]
U.

Otherwise, the solution can again be obtained via the singular value decomposition[
INf

0
0 Y ∗

]
U = ṼlS̃Ṽr

∗
, (3.7)

and setting X = ṼlṼr

∗
. This step is also called the Löwdin orthogonalization proce-

dure [25].

3.3. Relation to disentanglement. Our variational formulation also gives us
a concise way to understand the “disentanglement” procedure of Souza, Marzari and
Vanderbilt [36], in which the spread functional is split into two parts

Ω[{U(k)}] = ΩI [{U(k)}] + Ω̃[{U(k)}]. (3.8)

Here ΩI is called the gauge-invariant part (depending on Pw, and hence only on

Y Y ∗), and Ω̃ is called the gauge dependent part (depending on X). Instead of opti-
mizing (3.3) directly, [36] proposes to use a two step procedure. First one optimizes
the gauge-invariant part only:

inf
{Y (k)}

ΩI [{U(k)}]. (3.9)

This is numerically expedient as ΩI only depends on Y Y ∗. In fact, it is analogous to
minimization problems in electronic structure (for instance the Hartree-Fock model),
where one minimizes the energy, which only depends on the spectral subspace, over
all possible orthogonal orbitals. The authors in [36] accordingly obtain a nonlinear
eigenvalue problem as the first-order optimality conditions, which they solve using a
damped self-consistent field (SCF) iteration.

Once {Y (k)} is obtained, it is fixed and so is the projector Pw. A second mini-
mization problem

inf
{X(k)}

Ω̃[{U(k)}] (3.10)

is then solved with respect to the gauge matrix X(k). This optimization problem is
of the same nature as the one for an isolated set of bands.

The total spread from the above two-step procedure is necessarily larger or equal
to the global minimum of (3.3). Interestingly, although the optimal spread can be
substantially lower than that found by the two-step disentanglement procedure, nu-
merical experiments show that the quality of Wannier interpolation, measured for
instance by the qualify of band structure interpolation, is often similar in both cases.
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3.4. Selected column of the density matrix. While the primary purpose of
this work is to introduce and analyze a variational formulation of Wannier functions,
both the objective function and the constraints are nonlinear, and hence there may
exist multiple local minima. It is practically important to seed such methods with a
good initial guess. Here, we summarize the recently developed unified methodology
for Wannier localization of entangled band structure [8] based on the selected columns
of the density matrix (SCDM) methodology [9]. Importantly, this method is direct
and robust—no initial guess is required and it will generate valid output—and thus
may be reliably used to generate an initial guess.

The SCDM method for entangled band structure first constructs a quasi-density
matrix

f(H(k)) =

No∑
n=1

f (εn,k) |ψn,k〉〈ψn,k|, (3.11)

For insulating systems f would be 1 on the occupied bands and 0 otherwise, yielding
the projector P as before. For entangled band structure however, the function f(·)
is chosen to be large on the bands of interest and decays rapidly, but smoothly, away
from them [8]. The SCDM algorithm constructs a gauge by selecting a common set of
columns of the k-dependent (quasi-)density matrix f(H(k)). In practice, it is often
sufficient to select these columns based on an “anchor” point denoted k0—generically
chosen to be the so-called Gamma-point (0, 0, 0)T .

We now briefly outline the SCDM method and refer the reader to [8] for more
details. Let Ψk ∈ CNg×No be the matrix with orthogonal columns that represents

{ψn,k(r)} on a discrete grid in the unit cell, and E(k) = diag
[
{εn,k}No

n=1

]
be a diago-

nal matrix encoding the corresponding eigenvalues. SCDM identifies Nw columns of
f(H(k)) based on the leading Nw columns of the permutation matrix Π, computed
via the QR factorization with column pivoting (QRCP) procedure

Ψ∗k0
Π = QR. (3.12)

This set of columns is denoted by C = {rn}Nw

n=1 ⊂ Γ. Now, for each k-point define
Ξ(k) ∈ CNo×Nw as

Ξn,n′(k) = f(εn,k)ψ∗n,k(rn′). (3.13)

It is expected that

ψ̃n,k(r) =
∑
m

ψm,k(r)Ξm,n(k) (3.14)

is smooth with respect to k. Therefore, if the singular values of Ξ(k) are uniformly
bounded away from 0 in the Brillouin zone, U(k) constructed via Löwdin orthogonal-

ization [25] of Ξ(k) has orthogonal columns, and yields
{
ψ̃n,k

}
that are smooth with

respect to k.
In this framework the frozen bands are not represented exactly, so prior to use

in our optimization procedure we must convert from U to a pair (X,Y ) via our
aforementioned scheme. Since the projector on the frozen set varies discontinuously
with k, this procedure does not produce a continuous gauge. However, if the function
f is chosen appropriately, it should be close to one. This is further corroborated by
the quality of band interpolation, despite the substantially larger spread, we achieve in
the numerical results section using the SCDM initial guess without explicitly freezing
any bands.
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4. Real materials. We first consider the performance of our variational formu-
lation for several real materials. This includes valence and conduction bands of silicon
(semiconductor), conduction bands of copper (metal), and valence bands of aluminum
(metal). We always start with the aforementioned SCDM based initial guess. We com-
pare the result obtained from the variational formulation to that obtained from the
disentanglement procedure in Wannier90, as well as the result obtained directly from
the SCDM initial guess without further refinement.

In these experiments, the choice of the parameters of the SCDM procedure are
chosen to yield good baseline band structure interpolation. However, they are not
“optimized” to minimize band structure interpolation error. These experiments often
show how the two optimization methods are comparable, though in some situations we
are able to find Wannier functions with smaller spreads using our variational method
even given the same initial guess. One interesting point that we will see play out
throughout our examples is that the value of the spread and band interpolation quality
may not be directly connected, i.e. Wannier functions with considerably different
values of spread can yield qualitatively similar interpolation error.

All of the k-point calculations and reference band structure calculations were
performed with Quantum ESPRESSO [15]. The SCDM initial guess was constructed
using the code available online3. Our new variational formulation was implemented
in the Julia language and is available online4.

4.1. Silicon. Here, we compute the lowest 16 bands of Silicon on an 8 × 8 × 8
k-point grid and then proceed to compute eight Wannier functions. This includes the
four valence bands and four additional low lying conduction bands. For the SCDM
procedure we use µ = 11.0 and σ = 2.0 with f corresponding to “entangled case 1”
in [8]—a complementary error function. For Wannier90 and our method, we freeze
bands below 12 eV and set the outer window maximum at infinity. For Wannier90

the prescribed convergence criteria of 1× 10−10 on the spread was reached after 225
disentanglement iterations and 95 spread reduction iterations, and for our method
after 149 iterations.

Figure 4.1 shows the band structure interpolation using the three methods. We
see that for the four valence bands all three methods perform very well. Furthermore,
while there are differences in the interpolation of the conduction bands, no one method
clearly outperforms the others. As expected, if we consider the total spread (see
Table 4.1) of the final localized orbitals, our variational formulation yields the most
compact orbitals.

In Table 4.2 we report the per orbital spread for each method, and observe that to
the number of significant digits reported all the orbitals found by our method have the
same spread (they do not vary until the fourth decimal place). In contrast, Wannier90
seems to converge to two distinct sets of orbitals with slightly different spreads. In
Figure 4.2, we illustrate the differences between the orbitals found with our variational
method and those found via Wannier90. We observe that the orbitals obtained from
our variational formulation resemble more closely to sp3 hybridized orbitals centering
around each Si atom, as indicated from chemical intuition. Interestingly, by using
the output of our variational method as input to Wannier90 we are able to force
Wannier90 to converge to the same point as our method. Unfortunately, it is difficult
to pinpoint a specific cause for the apparent convergence of Wannier90 to a worse

3https://github.com/asdamle/SCDM
4https://github.com/antoine-levitt/wannier

https://github.com/asdamle/SCDM
https://github.com/antoine-levitt/wannier
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Table 4.1: Silicon spread and valence band error comparison

Final spread
(

Å
2
)

max error (eV) RMSE (eV)

Variational 25.177 0.069 0.021
Wannier90 27.00 0.083 0.023
SCDM 45.206 0.112 0.029

Table 4.2: Spreads of the eight individual Wannier functions for silicon

Orbital spread
(

Å
2
)

Variational 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15
Wannier90 3.16 3.16 3.16 3.16 3.59 3.59 3.59 3.59
SCDM 4.93 4.93 4.93 4.93 6.37 6.37 6.37 6.37

local minimum in this setting.
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Fig. 4.1: Wannier interpolation of Silicon with 8 k-points using (blue Xs) SCDM,
(green circles) our variational formulation, and (red +s) Wannier90 compared with a
(black line) reference calculation. The frozen window is the region below the dotted
black line.

4.2. Aluminum. We now repeat the same experiments as before, but for the
valence bands of the aluminum system with an 8 × 8 × 8 k-point grid. Specifically,
we start with six bands and seek four Wannier functions. For the SCDM procedure
we use µ = 8.42 and σ = 4.0 with f corresponding to “entangled case 1” in [8]—a
complementary error function. Once again, Wannier90 was run until convergence
at 10−10 for both the disentanglement and spread minimization, and reached that
threshold after 2,437 and 91 iterations. Our method converged to a spread reduction
tolerance of 10−10 after 138 iterations. As we observe in Figure 4.3, all three methods
once again perform well—particularly below the Fermi energy. The final spreads for
each of the three methods are reported in Table 4.3 along with the spreads of each
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Fig. 4.2: Example orbitals from our variational method (left) and Wannier90 (right).
Here the red and gray isosurfaces are plotted at values ±0.5 for both normalized
orbitals. All of the orbitals we find with our variational method seem to clearly have
sp3 hybrid character, as seen in the left figure. In contrast, as illustrated on the right,
some of the orbitals found by Wannier90 with larger spread do not share this behavior
as clearly.

orbital. While both Wannier90 and our method improve upon the spread of the SCDM
initial guess, we do find slightly smaller spread with our optimization procedure. Here,
bands below 11.6 eV were frozen in both Wannier90 and our method, and the outer
window was set to ∞.
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Fig. 4.3: Wannier interpolation of Aluminum with 8 k-points per direction using
(blue Xs) SCDM, (green circles) our variational formulation, and (red +s) Wannier90
compared with a (black line) reference calculation. The frozen window is the region
below the dotted black line.

We also consider the convergence of the band interpolation error in this setting,
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Orbital spread
(

Å
2
)

Final spread
(

Å
2
)

Variational 2.01 2.02 2.02 2.03 8.07
Wannier90 2.09 2.1 2.11 2.11 8.41
SCDM 3.44 4.02 4.21 4.21 15.89

Table 4.3: Spreads of the four individual Wannier functions for Aluminum and the
final spread

looking at both maximum error and RMSE. As before, for both our method and
Wannier90 we freeze bands below 11.6 eV and set the outer window to infinity. For
all three methods we then measure the error of band interpolation at or below the
Fermi energy (8.42 eV). In all cases, we capped Wannier90 at 5,000 disentanglement
and spread reduction iterations and considered it converged at a tolerance of 10−10.
Similarly, we considered our method converged the objective function changed by less
than 10−10 between successive iterates, or we reached 5,000 iterations. Typically our
method took 100-250 iterations to converge, whereas the Wannier90 disentanglement
would hit the iteration cap and spread reduction took 90-400 iterations to converge.
Figure 4.4 shows broadly similar behavior for all three methods, though generally the
two optimization methods do noticeably improve on the SCDM initial guess as more
k-points are used. We expect that asymptotically the optimization based methods
should perform better. However, given the relatively small number of grid points
per direction and the complexity of the band structure, it seems we are still in the
pre-asymptotic regime.
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Fig. 4.4: Max and RMSE in band interpolation for aluminum as computed using (blue
Xs) SCDM, (green circles) our variational formulation, and (red +s) Wannier90.

4.3. Copper. Lastly, we illustrate the behavior of our method when used to
interpolate seven conduction bands of copper around the Fermi energy. Because
several bands that we do not wish to track cross through the energy window, it is
not easy to simply look at band interpolation error. Rather, we place emphasis on
the qualitative behavior of the interpolation and the orbital spread yielded by our
variational formulation. Interestingly, in this case we observed a high sensitivity of
Wannier90 to the SCDM initial guess based on the parameters (corresponding to
“entangled case 2” in [8]—a Gaussian) and a contrasting robustness of our variational
method. In all cases we used a frozen window of 13.5 to 17 eV and no outer window
for both Wannier90 and our variational method.
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When fixing the parameter µ = 15.5 and varying σ from 3.0 to 6.0, both SCDM
and our variational method robustly generated good band interpolation. However,
for a range of σ Wannier90 with disentanglement failed to reach convergence. To
sweep over several values of σ we limit Wannier90 to 5,000 iterations each for the
disentanglement and spread minimization, and we limit our variational method to
1,000 iterations.

Remark 1. For σ = 5.0 where we observed particularly bad performance of
Wannier90 (see below), we let it run for 100,000 iterations of each the disentangle-
ment and spread. While the disentanglement procedure converged after roughly 20,000
iterations, the spread minimization failed to converge even after 100,000 iterations.
While this does not guarantee that the local minimum Wannier90 may eventually find
is poor and could simply be the optimization algorithm behaving poorly, we feel this
is a reasonable comparison to make even without Wannier90 determining that it has
converged. Interestingly, passing the output of Wannier90 in this setting to our vari-
ational method we were able to converge to a good gauge.

Figures 4.5 and 4.6 show the band interpolation of the three methods in the case
where σ = 4.0 and σ = 5.0. We also report the individual spreads of the orbitals
in Tables 4.4 and 4.5. We observe that in both cases the SCDM initial guess and
our optimized solution yield good band interpolation within the frozen window. In
contrast, Wannier90 does not find a good local optima in the latter case and this
results in poor interpolation quality. We further investigate this behavior in Table 4.6,
where we report the total final spread of the methods as we vary σ. We see that for
two of the parameter values Wannier90 failed to find a local optimum that is close to
what our variational method finds.
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Fig. 4.5: Using an SCDM initial guess with µ = 15.5 and σ = 4.0, Wannier interpola-
tion of copper with 10 k-points using (blue Xs) SCDM, (green circles) our variational
formulation, and (red +s) Wannier90 compared with a (black line) reference calcula-
tion. The frozen window is the region between the dotted black line.

5. Free electron gas. We now investigate the decay property of the generalized
Wannier functions in real space. This is hard to investigate numerically for real
materials because of the very large number of k points needed to see the asymptotic
decay, as evidenced in the previous section. For instance, in [40] the authors report
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Orbital spread
(

Å
2
)

Variational 0.24 0.50 0.50 0.51 0.56 0.56 1.30
Wannier90 0.41 0.43 0.43 0.48 0.54 0.56 1.41
SCDM 1.49 2.34 2.46 3.06 3.13 3.68 7.50

Table 4.4: Spreads of the seven individual Wannier functions for copper with the
σ = 4.0 initial guess.

Orbital spread
(

Å
2
)

Variational 0.21 0.47 0.51 0.52 0.53 0.62 1.38
Wannier90 0.47 0.53 0.54 0.60 0.71 2.78 2.83
SCDM 1.21 1.47 1.56 1.78 1.97 2.53 8.87

Table 4.5: Spreads of the seven individual Wannier functions for copper with the
σ = 5.0 initial guess.
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Fig. 4.6: Using an SCDM initial guess with µ = 15.5 and σ = 5.0, Wannier interpola-
tion of Copper with 10 k-points using (blue Xs) SCDM, (green circles) our variational
formulation, and (red +s) Wannier90 compared with a (black line) reference calcula-
tion. The frozen window is the region between the dotted black line.

a fast (consistent with exponential) decay up to grid sizes of 15 × 15 × 15, although
the convergence appears to slow down after that. Another problem is that it is hard
to find realistic systems in one or two dimensions on which disentangled Wannier
systems make sense. The free electron gas, i.e. V = 0, is explicitly solvable and poses
a very interesting benchmark for disentanglement, even in one or two dimensions. In
this section, we therefore apply the methodology of Section 3 to d-dimensional free
electron gas. We simply define the lattice as L = 2πZd, so that L∗ = Zd, and we let
the Brillouin zone be the set [0, 1)d.
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σ 3.0 3.5 4.0 4.5 5.0 5.5 6.0
SCDM 34.22 26.9 23.65 20.83 19.39 18.7 17.3
Our method 4.23 4.17 4.18 4.23 4.23 4.18 4.18
Wannier90 4.27 4.26 4.26 8.48 8.46 4.26 4.26

Table 4.6: Comparison of the spreads
(

Å
2
)

for copper as the σ parameter of the

SCDM initial guess is varied.

In this case the eigenfunctions of the operator H(k) = (−ı∇+ k)2 are given by

vK(r) =
1√
|Γ|
eıK·r

for K in the reciprocal lattice Zd. The corresponding eigenvalues are εK,k = |K+k|2.
Notice that since εK,k is the squared distance from k to −K, the dispersion relation
is the set of squared distances of k to the points of the reciprocal lattice Zd.

We order the eigenfunctions by ordering the eigenvalues in a non-decreasing order.
We let un,k = eKn , where εKn,k is the n-th eigenvalue of H(k), this choice being
arbitrary in the presence of degeneracies. The matrix elements Mk,b

mn = 〈um,k, un,k+b〉
of overlap between neighboring k points used in the optimization process [27] then
assume a particularly simple expression: Mk,b

mn = 1 if umk and un,k+b are associated
with the same K, and Mk,b

mn = 0 otherwise. In particular, this matrix differs from the
identity (it is a permutation matrix) near eigenvalue crossings, where εK,k = εK′,k
with K′ 6= K.

The free electron gas also makes it particularly easy to compute the Wannier
functions through their Fourier transforms. For a Wannier function given in k-space
by

ψ̃nk(r) =
∑
n∈N

eık·rvKm
(r)Umn(k),

it holds that

wn,0(r) =

∫
[0,1]d

ψ̃nk(r) dk =
1

(2π)d

∫
[0,1]d

∑
m∈N

Umn(k)eı(k+Km)·r,

from which it follows that Umn(k) is simply the Fourier transform of wn,0 at frequency
ξ = Km + k.

Note that the free electron gas possesses a large number of symmetries. As a
consequence, it has a number of properties that are not expected from generic systems.
For instance, eigenvalue crossings are numerous (of co-dimension 1, i.e. points in 1D,
lines in 2D and planes in 3D), while they are expected from the von Neumann-Wigner
theorem [38] to be rare. This theorem predicts that, in the absence of particular
symmetries, the crossing of eigenvalues of a Hermitian matrix are a phenomenon
of codimension 3. This is believed to be true (although unproved in many cases)
for “generic” Schrödinger operators [24]: for a generic V , the band structure is only
expected to show crossings in codimension 3 (isolated points in 3D, and no crossings in
lower dimensions). The free electron gas, possessing all the symmetries a Schrödinger
operator can have, may thus be considered a worst case system for disentanglement.
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5.1. The 1D case.

5.1.1. One frozen band, two Wannier functions. The dispersion relation of
the 1D free electron gas results in a crossing between the first and second eigenvalues
at half-integers and between the second and third eigenvalues at integers (see Figure
5.1). Because of the crossing between the first and second band, any single Wannier
function representing the first band has a maximal decay of 1/r. We therefore consider
the problem of finding two Wannier functions representing the first band (Nw =
2, Nf = 1). We do not set an outer window but discretize the band structure using
2L+ 1 Fourier modes with L = 10 (as we will see, the Wannier functions we find are
compactly supported in Fourier space, and therefore do not depend on the choice of
L ≥ 2).

For this simple system, initializing the gauge randomly allows our optimization
algorithm to converge robustly to the same Wannier functions, up to a change of sign
and a shift by a lattice vector. It would therefore seem that the global minimizer of
the spread is unique (up to the invariant degrees of freedom described above) and real.
The SCDM algorithm with the settings µ = 0 and σ = 2 yields Wannier functions that
are visually indistinguishable from the optimized Wannier functions, and have a very
similar spread (2.51 for the SCDM algorithm as compared to 2.44 for the optimized
Wannier functions).
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(a) Exact band plot, samples on the k-
space grid, and Wannier interpolation us-
ing the optimized Wannier functions.
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(b) Wannier functions in real space.

Fig. 5.1: Optimized Wannier functions obtained on a k-space grid of size N = 8.

In Figure 5.1 we observe that the first band (which is frozen) is exactly reproduced.
Since the Wannier functions are localized, the Wannier interpolation is very good, and
in particular has no trouble reproducing the crossing. Furthermore, the optimized
Wannier functions are symmetric (they are real, and the second one is a translate of
the first by half a lattice vector).

However, closer inspection reveals that the optimized Wannier functions are not
exponentially localized, and in fact decay as 1/r2 for large r (Figure 5.2b). The origin
of this slow decay of the Wannier functions is the kink that appears at ξ = ±3/2 in
their Fourier transform as in Figure 5.2a, which also shows that the Wannier functions
are compactly supported on [−3/2, 3/2] in Fourier space. This is because only the
first three bands are occupied by the Wannier functions, as can be seen via inspection
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of the U matrix. Since band 3 crosses with band 4 at k = 1/2 (corresponding to basis

functions K = 1 and K = −2), the continuity of ψ̃nk with respect to k means that
U31(1/2) = U32(1/2) = 0. But the first derivative is not zero at 1/2, which in turns
creates the kink in Fourier space at K = 1, k = 1/2 and K = −2, k = 1/2, that is,
ξ = ±3/2.
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(a) w1 in Fourier space: a clear kink is
visible at ξ = ±3/2
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(b) w1 in real space, showing excellent
agreement with a decay rate r−2.

Fig. 5.2: Optimized Wannier functions obtained on a k-space grid of size N = 80.
The kink in Fourier space at ξ = ±3/2 translates to a r−2 decay (only w1 represented
for clarity). The maximum reconstruction error on the first band is 3× 10−5.

The fact that the optimized Wannier functions are only weakly localized is surpris-
ing at first glance, because it was proven in [35] that, for isolated bands, maximally-
localized Wannier functions are exponentially localized. What is different in this case?
The crucial point in the analysis of [35] is that the spread is similar to a Dirichlet

energy, or a H1 norm, in k space. Then the ψ̃nk are shown to satisfy an elliptic
equation in k space, which by a bootstrap argument implies their analyticity. Here,
this argument breaks down because the constraint Pw(k)Pf (k) = Pf (k) is discontin-
uous at crossings. This creates an effective “boundary condition” for the gauge U(k)
at crossings that destroys the regularity. A simple analogy is that eigenfunctions of
the Laplacian on [0, 1] (critical points of the Dirichlet energy) are smooth on R when
periodic boundary conditions are imposed, but generically produce kinks at 0 and 1
when Dirichlet boundary conditions are imposed. Here also, the effective boundary
condition U31(1/2) = U32(1/2) = 0 produces a kink.

To remedy this, we show on this particular example how to build Wannier func-
tions that are of class C∞ in Fourier space (and therefore decay faster than any inverse
polynomial in real space). In order to do so, we define the function α(x) = e−1/x for
x ≥ 0, α(x) = 0 for x < 0. This function is C∞, and identically zero for x ≤ 0. The

function f(x) = α(x)
α(x)+α(1−x) is therefore C∞ on R, equal to 0 for x ≤ 0, and equal to

1 for x ≥ 1.
Given U(0+), U(1/2±), U(1−) obtained from the optimized Wannier functions,

we construct a new gauge

Ũ(k) =

{
(1− f(2k))U(0+) + f(2k)U(1/2−) if 0 < k ≤ 1/2,

(1− f(2k − 1))U(1/2+) + f(2k − 1)U(1−) if 1/2 < k < 1.
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This produces a new set of ψ̃nk that are smooth with respect to k, but not orthogonal
and do not span the frozen bands. We now impose those conditions in the same way
we do for the SCDM procedure as described in Section 3.4. In this specific example,
this produces a smooth gauge, as illustrated in Figure 5.3.
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(a) Smoothed Wannier function in Fourier
space: although the variations are more
rugged than Figure 5.2, it is a C∞ func-
tion.
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(b) Smoothed Wannier function in real
space: the asymptotic decay is much
faster than in Figure 5.2.

Fig. 5.3: Smoothed Wannier functions obtained on a k-space grid of size N = 80 (see
main text for details, only the first Wannier function represented for clarity). The
maximum reconstruction error on the first band is 2× 10−9.

The Wannier functions obtained in this way display more rugged variation in
Fourier space (a consequence of the use of the function f above), and accordingly
the decay is slower for small values of x. However, because the gauge is smooth,
the Wannier functions decay much faster for large values. Since the gauge is of
class C∞ but not analytic, the Wannier functions decay faster than any polynomial,
but not exponentially. Since the error of Wannier interpolation on the first band is
determined by the interaction of the Wannier functions on the supercell with their
periodic images, the faster asymptotic decay leads to a better reconstruction of the
first band in this case. Numerical tests indicate that the cross-over point (above which
the reconstruction error on the first band with the smoothing procedure is smaller
than that with the optimized Wannier functions) is around N = 12.

5.1.2. General case in 1D. In the one-dimensional free electron gas crossings
only happen at half-integers, and between two bands at the same time. Accordingly,
whenever Nw ≥ Nf + 1 we can construct optimized Wannier functions similar to the
ones above—they are translates of each other, compactly supported in Fourier space,
and decay as 1/r2. When Nw = Nf (that is, we are treating a metal as if it was
an insulator), the gauge is discontinuous, and the corresponding Wannier functions
decay as 1/r.

5.2. The 2D case. In 2D, the first four bands of the free electron gas are
degenerate at k = (1/2, 1/2), corresponding to the wave vectors

K = (0, 0), (−1, 0), (0,−1), (−1,−1).
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This means that Pw(1/2, 1/2) must span the four-dimensional subspace correspond-
ing to those four wave vectors. Therefore, freezing the first band can only produce
localized Wannier functions when Nw ≥ 4. Accordingly, we consider the case Nf = 1
and Nw = 4.

Similarly to the 1D case, the optimized Wannier functions are real, and differ from
each other only by a change of origin. However, they are not compactly supported in
Fourier space, and instead have decaying components on arbitrarily large wave vectors
K (see Figure 5.4a). Their support in Fourier space displays a checkerboard pattern,
and in particular has corners. Furthermore, we observe numerically that the gradient
in Fourier space blows up near those corners when the size of the k-point grid N is
increased (see Figure 5.4b). The maximum value of the gradient is found to behave as
N1/3. This is consistent with the singularity of the first eigenfunction of the Laplace
operator with Dirichlet boundary conditions on a domain with corners, which behave
as r2/3 sin(2θ/3) near a corner described by θ ∈ [0, 3π/2] in polar coordinates [11]. In
particular, their gradient behaves as r−1/3 near the corner, explaining the divergence
as N1/3 when discretized on a grid. As in the 1D case, imposing frozen bands acts as
an effective boundary condition for the gauge and destroys the regularity.

The decay of the optimized Wannier functions in Fourier space is dictated by the
singularity in Fourier space. More precisely, the first derivative is discontinuous along
edges, which corresponds to a decay of the Wannier functions in the x and y directions
as 1/r2.

5.3. Discussion. These results show that the maximally-localized Wannier func-
tions only decay algebraically in general. Although numerical results are harder to
obtain for real materials, we expect our analysis to carry through: an eigenvalue cross-
ing at a particular k point acts as a constraint on the gauge, which must at that point
be able to span the crossing eigenspace for the gauge to be continuous. Minimizing the
second moments of the Wannier functions yields a gauge with a square-integrable but
discontinuous first derivative at the crossing points, resulting in a weak localization.

Our findings are to be contrasted with the recent theoretical result of [7], which
proves under generic hypotheses that there exists almost-exponentially localized Wan-
nier functions. This simply means that, unlike in the case of insulators, for entangled
band structures minimizing the second moments is not an asymptotically optimal
strategy.

To get a faster asymptotic decay, one could minimize higher moments. This cor-
responds to minimizing integrals of higher derivatives, which have to be approximated
by more complex stencils, and require the computation of additional overlaps between
the unk than simply the nearest neighbors. This becomes numerically expensive and
complex to implement. Another possibility is to perform local “smoothing surgeries”
similar to the one we demonstrated in one dimension. This is likely to be useful only
for very fine k-point grids however.

6. Conclusion and discussion. We have developed a variational formulation
that, paired with a specific initialization strategy, is able to robustly construct Wan-
nier functions for systems with entangled band structure. Importantly, the definition
of Wannier functions must be generalized, allowing them to lie in a subspace that
contains, but is larger than, the spectral subspace of interest. While this condition
adds extra constraints to our optimization problem, and they can be phrased in many
theoretically equivalent ways, we find one that is particularly convenient. This re-
sults in a formulation that matches that of partly occupied Wannier functions [37],
and allows us to view the widely used disentanglement procedure as an alternating
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Fig. 5.4: Second of four optimized Wannier functions for the free electron gas in 2D
with one frozen band, on a 40× 40 k-point grid. The other three Wannier functions
are similar to w2.

minimization algorithm—albeit one that only takes a single alternation step. As the
underlying problem is non-convex, our choice of initialization strategy via the SCDM
methodology is key. As demonstrated with several real materials, our method is robust
and effective at finding localized functions and enabling good quality band interpola-
tion. Our variational formulation is versatile, and can be modified relatively easily to
accommodate additional constraints, such as symmetry constraints, for certain type
of real materials. It would also be interesting to study the behavior of localization
properties of generalized Wannier functions for systems with non-trivial topological
characters.

We also study the free electron gas, providing interesting insights into the further
theoretical study of the localization properties of generalized Wannier functions. We
find that the minimization of the second moments of the Wannier functions only
imposes a relatively weak algebraic decay. Our analysis suggests that, for real 3D
materials, the disentangled Wannier functions decay asymptotically slowly as well.
Further localization is possible, but the method we present here is likely to only be
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useful for very fine k-point grids. The computation of Wannier functions that are
localized in both the pre-asymptotic and asymptotic regime remains an interesting
open question.
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Appendix A. Gradient of the objective function.
If F is a function from a complex Hilbert space to R, we recall that its gradient

(sometimes written ∂F/∂z∗) is defined as the (unique) vector g such that

F (z + h) = F (z) + Re 〈g, h〉+O(h2).

All the derivatives and gradient below are in this sense. Note that this is different
from the notion of derivative of a C → C function, which is not relevant here (non-
trivial complex-to-real functions are not complex differentiable). The advantage of
this definition is that it allows a straightforward translation of first-order (but not
second-order) optimization algorithms in complex variables.

We use the numerical setup of [27]. Recall that the k-point grid is discretized,
with a total of Nk points, and on each k in that grid, we are given a set of Ng ×No
matrices uk representing the No orbitals in the outer window discretized on a space
of dimension Ng. The vectors {b} are displacements from one k-point to a set of
neighbors, and wb are weights chosen to satisfy∑

b

wbbb
T = I3,

so that the gradient of a function f(k) can be approximated by

∇f(k) ≈
∑
b

wb(f(k + b)− f(k))b

We look for a set of No × Nw matrices {Uk} with orthogonal columns, which
define Wannier functions by (2.13). Let

Mk,b,m,n = 〈um,k, un,k+b〉

be the No×No overlap matrix between the bands, which is an input of the algorithm.
Then the Nw ×Nw overlap matrix between the Wannier functions defined by U(k) is

Nk,b = U∗kMk,bUk+b.

The Marzari-Vanderbilt spread functional is given by

Ω =
∑
n

〈
|r|2
〉
n
− | 〈r〉n |

2, where

〈
r2
〉
n

=
1

Nk

∑
k,b

wb

(
1− |Nkbnn|2 + (Im lnNkbnn)2

)
〈r〉n = − 1

Nk

∑
k,b

wbIm lnNkbnnb

http://arxiv.org/abs/de-sc/0017867
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(equations (11), (31) and (32) of [27]).
We need to compute Ω(U +∆U) to first order in ∆U , from which we will identify

∇Ω by Ω(U + ∆U)− Ω(U) = Re
∑

k Tr((∇Ω)∗k(∆U)k) +O(∆U2).
We begin with

∑
n〈|r|2〉n and consider the following quantity:

I =
∑
kbn

f(Nkbnn)

where f : C→ R. Then, using the fact that the set of vectors b is symmetric (contains
b as well as −b), and that w−b = wb,

∆I = Re
∑
kbn

f ′′(Nkbnn)∗∆Nkbnn

= Re
∑
kbn

wbf
′(Nkbnn)∗(∆A∗kMkbAk+b)nn + f ′(Nkbnn)(∆A∗k+bM

∗
kbAk)nn

= Re
∑
kbn

wbf
′(Nkbnn)∗(∆A∗kMkbAk+b)nn + f ′(Nk−b,b,nn)(∆A∗kM

∗
k−b,bAk−b)nn

= Re
∑
kbn

wbf
′(Nkbnn)∗(∆A∗kMkbAk+b)nn + f ′(N∗k,−b,nn)(∆A∗kM

∗
k,−bAk−b)nn

= Re
∑
kbn

wb(f ′(Nkbnn)∗ + f ′(N∗kbnn))(∆A∗kMkbAk+b)nn

and the gradient is therefore

(∇I)kmn =
∑
b

wb(f ′(Nkbnn)∗ + f ′(N∗kbnn))(MkbAk+b)mn

It can be checked using similar arguments that, when

I =
∑
kbn

bg(Nkbnn),

then

(∇I)kmn = −
∑
b

wb(g′(Nkbnn)∗ + g′(N∗kbnn))(MkbAk+b)mnb

Applying these formulas with

f(z) = 1− |z|2 + (Im ln z)2, f ′(z) = −2z + 2
iIm ln z

z∗

g(z) = −Im ln z, g′(z) = − i

z∗

we get

(∇Ω)kmn =
4

Nk

∑
b

(
−N∗kbnn − i

Im lnNkbnn + 〈r〉n · b
Nkbnn

)
(MkbAk+b)mn

Note that this is the unconstrained gradient of Ω with respect to U . Using the

chain rule one with U(k) =

[
INf

0
0 Y

]
X one can easily derive the gradient of Ω with

respect to (X,Y ). Then we simply have to minimize with respect to (X,Y ) subject
to the orthogonality constraints for X and Y using standard methods [13, 1].
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