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Abstract For a large Hermitian matrix A ∈ C
N×N , it is often the case that the

only affordable operation is matrix–vector multiplication. In such case, randomized
method is a powerful way to estimate the spectral density (or density of states) of A.
However, randomized methods developed so far for estimating spectral densities only
extract information from different random vectors independently, and the accuracy
is therefore inherently limited to O(1/

√
Nv) where Nv is the number of random

vectors. In this paper we demonstrate that the “O(1/
√
Nv) barrier” can be overcome

by taking advantage of the correlated information of random vectors when properly
filtered by polynomials of A. Our method uses the fact that the estimation of the
spectral density essentially requires the computation of the trace of a series of matrix
functions that are numerically low rank. By repeatedly applying A to the same set of
random vectors and taking different linear combination of the results, we can sweep
through the entire spectrum of A by building such low rank decomposition at different
parts of the spectrum. Under some assumptions, we demonstrate that a robust and
efficient implementation of such spectrum sweeping method can compute the spectral
density accuratelywithO(N 2) computational cost andO(N )memory cost. Numerical
results indicate that the newmethod can significantly outperform existing randomized
methods in terms of accuracy. As an application, we demonstrate a way to accurately
compute a trace of a smooth matrix function, by carefully balancing the smoothness
of the integrand and the regularized density of states using a deconvolution procedure.
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1 Introduction

Given an N × N Hermitian matrix A, the spectral density, also commonly referred to
as the density of states (DOS), is formally defined as

φ(t) = 1

N

N∑

i=1

δ(t − λi ). (1)

Here δ is the Dirac distribution commonly referred to as the Dirac δ-“function” (see
e.g. [1–3]), and the λi ’s are the eigenvalues of A, assumed here to be labeled non-
decreasingly.

The DOS is an important quantity in many physics problems, in particular in quan-
tum physics, and a large volume of numerical methods were developed by physicists
and chemists [4–15] for this purpose. Besides being used as a qualitative visualiza-
tion tool for understanding spectral characteristics of the matrix, the DOS can also be
used to quantitatively compute the trace of a matrix function, as given in the formal
formulation below

Tr[ f (A)] =
N∑

i=1

f (λi ) ≡ N
∫ ∞

−∞
f (t)φ(t) dt. (2)

Here f (t) is a smooth function, and the formal integral in Eq. (2) should be interpreted
in the sense of distribution.

If one had access to all the eigenvalues of A, the task of computing the DOS would
become a trivial one. However, in many applications, the dimension of A is large. The
computation of its entire spectrum is prohibitively expensive, and a procedure that
relies entirely on multiplications of A with vectors is the only viable approach. Fortu-
nately, in many applications A only has O(N ) nonzero entries, and therefore the cost
of matrix–vector multiplication, denoted by cmatvec, isO(N ). In some other cases the
matrix is a dense matrix but fast matrix–vector multiplication method still exists with
O(N logp N ) cost, where p is “an integer” that is not too large. This is the case when
the matrix–vector multiplication can be carried out effectively with fast algorithms,
such as the fast Fourier transform (FFT), the fast multipole method (FMM) [16], the
hierarchical matrix [17], and the fast butterfly algorithm [18], to name a few.

Rigorously speaking, the DOS is a distribution and cannot be directly approximated
by smooth functions. In order to assess the accuracy of a given numerical scheme for
estimating the DOS, the DOSmust be properly regularized. The basic idea for estimat-
ing theDOS is to first expand the regularizedDOSusing simple functions such as poly-
nomials. Then it can be shown that the estimation of the DOS can be obtained by com-
puting the trace of a polynomial of A, which can then be estimated by repeatedly apply-
ing A to a set of random vectors. This procedure has been discoveredmore or less inde-
pendently by statisticians [19] andbyphysicists and chemists [8,9], andwill be referred
to as Hutchinson’s method in the following. In physics such method is often referred
to as the kernel polynomial method (KPM) [10] with a few different variants. A recent
review on the choice of regularization and different numerical methods for estimating
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the DOS is given in [20]. There are also a variety of randomized estimators that can be
used inHutchinson’smethod, and the quality of different estimators is analyzed in [21].

Contribution To the extent of our knowledge, all randomized methods so far for
estimating the DOS are based on different variants of Hutchinson’s method. These
methods estimate the DOS by averaging the information obtained from Nv random
vectors directly. The numerical error, when properly defined, decays asymptotically
as O(1/

√
Nv). As a result, high accuracy is difficult to achieve: every extra digit of

accuracy requires increasing the number of random vectors by 100 fold.
In this work, we demonstrate that the accuracy for estimating the regularized DOS

can be significantly improved by making use of the correlated information obtained
among different random vectors. We use the fact that each point of the DOS can be
evaluated as the trace of a numerically low rankmatrix, and such trace can be evaluated
by repeatedly applying A to a small number of random vectors, and by taking certain
linear combination of the resulting vectors. If different set of random vectors were
needed for different points on the spectrum themethodwill be prohibitively expensive.
However, we demonstrate that it is possible to use the same set of random vectors to
“sweep through” in principle the entire spectrum. Therefore we call our method a
“spectrum sweeping method”.

Our numerical results indicate that the spectrum sweeping method can significantly
outperform Hutchinson type methods in terms of accuracy, as the number of random
vectors Nv becomes large. However, the computational cost and the storage cost can
still be large when the DOS needs to be evaluated at a large number of points. Fur-
thermore, the accuracy of the spectrum sweeping method may be compromised when
the right number of randomized vectors is not known a priori. We develop a robust
and efficient implementation of the spectrum sweeping method to overcome these two
problems. Under certain assumption on the distribution of eigenvalues of the matrix
A, and the cost of the matrix–vector multiplication is O(N ), we demonstrate that the
computational cost of the new method scales as O(N 2) and the storage cost scales as
O(N ) for increasingly large matrix dimension N . We also demonstrate that the new
method for evaluating theDOS can be useful for accurate trace estimation as in Eq. (2).

Other related works The spectrum sweepingmethod is not to be confusedwith another
set of methods under the name of “spectrum slicing” methods [22–27]. The idea of the
spectrum slicing methods is still to obtain a partial diagonalization of the matrix A.
The main advantage of spectrum slicing methods is enhanced parallelism compared to
conventional diagonalizationmethods.Due to the natural orthogonality of eigenvectors
corresponding to distinct eigenvalues of aHermitianmatrix, the computational cost for
each set of processors handlingdifferent parts of the spectrumcanbe reduced compared
to direct diagonalization methods. However, the overall scaling for spectrum slicing
methods is still O(N 3) when a large number of eigenvalues and eigenvectors are to
be computed.

Notation In linear algebra notation, a vector w ∈ C
m is always treated as a column

vector, and its conjugate transpose is denoted by w∗. For a randomized matrix B ∈
C
m×n , its entry-wise expectation value is denoted by E[B] and its entry-wise variance

is denoted by Var[B]. We call B ∈ C
m×n a (real) random Gaussian matrix, if each
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entry of B is real, and follows independently the normal distribution N (0, 1). In the
case when n = 1, B is called a (real) random Gaussian vector. The imaginary unit is
denoted by ı .

The paper is organized as follows. In Sect. 2 we introduce the DOS estimation
problem. We also demonstrate the Delta–Gauss–Chebyshev (DGC) method, which is
a variant of the kernel polynomial method, to estimate the DOS.We develop in Sect. 3
the spectrum sweeping method based on the randomized estimation of the trace of
numerically low rank matrices, and demonstrate a robust and efficient implementation
of the spectrum sweepingmethod in Sect. 4.We show how theDOS estimationmethod
can be used to effectively compute the trace of a matrix function in Sect. 5. Following
the numerical results in Sect. 6, we conclude and discuss the future work in Sect. 7.

2 Density of state estimation for large matrices

Without loss of generality, we shall assume that the spectrum of A is contained in the
interval (−1, 1). For a general matrix with spectrum contained in the interval (a, b),
we can apply a spectral transformation

Ã = 2A − (a + b)I

b − a
.

The spectrum of Ã is contained in (−1, 1), and all the discussion below can be applied
to Ã. The fact that the spectral density φ(t) is defined in terms of Dirac δ-functions
suggests that no smooth function can converge to the spectral density in the limit of
high resolution, in the usual L p norms (p ≥ 1) [20]. In order to compare different
numerical approximations to the spectral density in ameaningful way, the DOS should
be regularized. One simple method is to employ a Gaussian regularization

φσ (t) =
N∑

i=1

gσ (t − λi ) = Tr[gσ (t I − A)]. (3)

Here

gσ (s) = 1

N
√
2πσ 2

e− s2

2σ2 (4)

is a Gaussian function. In the following our goal is to compute the smeared DOS φσ .
The key of computing the DOS is the estimation of the trace of a matrix function

without diagonalizing the matrix. To the extent of our knowledge, randomized meth-
ods developed so far are based on Hutchinson’s method or its variants [19,21]. The
following simple and yet useful theorem is a simple variant of Hutchinson’s method
and explains how the method works.

Theorem 1 (Hutchinson’s method) Let A ∈ C
N×N be a Hermitian matrix, and w ∈

R
N be a random Gaussian vector, then

E[w∗Aw] = Tr[A], Var[w∗Aw] = 2
∑

i �= j

(ReAi j )
2. (5)
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Proof First

E[w∗Aw] = E

⎡

⎣
∑

i j

wiw j Ai j

⎤

⎦ =
∑

i

Aii = Tr[A].

Here we used that E[w] = 0, E[ww∗] = I and w is a real vector. This follows
directly from that each entry ofw is independently distributed and follows theGaussian
distribution N (0, 1).

Second,

Var[w∗Aw] = E

[
(w∗Aw)2 − (Tr[A])2

]
= E

⎡

⎣
∑

i jkl

wiw jwkwl Ai j Akl − (Tr[A])2
⎤

⎦

=
∑

ik

Aii Akk + 2
∑

i �= j

(ReAi j )
2 −

(
∑

i

Aii

)2

= 2
∑

i �= j

(ReAi j )
2.

	

Using Theorem 1, if we chooseW ∈ R

N×Nv to be a random Gaussian matrix, then

Tr[gσ (t I − A)] ≈ 1

Nv

Tr[W ∗gσ (t I − A)W ].

In practice in order to compute gσ (A − t I )W , we can expand gσ (A − t I ) into
polynomials of A for each t , and then evaluate the trace of polynomial of A. A stable
and efficient implementation can be obtained by using Chebyshev polynomials. Other
choices of polynomials such as Legendre polynomials can be constructed similarly.
Using the Chebyshev polynomial, gσ (t I − A) is approximated by a polynomial of
degree M as

gσ (t I − A) ≈ gMσ (t I − A) :=
M∑

l=0

μl(t)Tl(A). (6)

The coefficients {μl(t)} need to be evaluated for each t . Since the Dirac δ-function is
regularized using aGaussian function, following the notion in [20]we refer toEq. (6) as
the “Delta–Gauss–Chebyshev” (DGC) expansion. Since gσ (t−·) is a smooth function
on (−1, 1), the coefficient μl(t) in the DGC expansion can be computed as

μl(t) = 2 − δl0

π

∫ 1

−1

1√
1 − s2

gσ (t − s)Tl(s) ds. (7)

Here δl0 is the Kronecker δ symbol. With change of coordinate s = cos θ , and use the
fact that Tl(s) = cos(l arccos(s)), we have

μl(t) = 2 − δl0

2π

∫ 2π

0
gσ (t − cos θ) cos(lθ) dθ. (8)
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Eq. (8) can be evaluated by discretizing the interval [0, 2π ] using a uniform grid,
and the resulting quadrature can be efficiently computed by the Fast Fourier Trans-
form (FFT). This procedure is given in Algorithm 1, and this procedure is usually
inexpensive.

Algorithm 1 Computing the Delta-Gauss-Chebyshev (DGC) polynomial expansion
at a given point t .

Input: Chebyshev polynomial degree M ;
Number of integration points 2Nθ , with Nθ > M ;

Smooth function gσ (t − ·).
Output: Chebyshev expansion coefficients {μl (t)}Ml=0.

1: Let θ j = jπ
Nθ

, j = 0, . . . , 2Nθ − 1.
2: g j = gσ (t − cos θ j ).
3: Compute ĝ = F [g], where F is the discrete Fourier transform. Specifically

ĝl =
2Nθ −1∑

j=0

e
− ı2π jl

2Nθ g j .

4: μl (t) = 2−δl0
2Nθ

Reĝl , l = 0, . . . , M .

Using the DGC expansion and Hutchinson’s method, φσ (t) can be approximated
by

φ̃σ (t) := Tr[gMσ (t I − A)] ≈
M∑

l=0

μl(t)
1

Nv

Tr[W ∗Tl(A)W ] ≡
M∑

l=0

μl(t)ζl .

The resulting algorithm, referred to as the DGC algorithm in the following, is given
in Algorithm 2.

We remark that the DGC algorithm can be viewed as a variant of the kernel poly-
nomial method (KPM) [10]. The difference is that KPM formally expands the Dirac
δ-function, which is not a well defined function but only a distribution. Therefore the
accuracy of KPM cannot be properly measured until regularization is introduced [20].
On the other hand, DGC introduces a Gaussian regularization from the beginning, and
the DGC expansion (6) is not a formal expansion, and its accuracy can be relatively
easily analyzed.

Theorem 2 Let A ∈ C
N×N be a Hermitian matrix with spectrum in (−1, 1). For any

t ∈ R, the error of a M-term DGC expansion (6) is

∣∣∣Tr[gσ (t I − A)] − Tr[gMσ (t I − A)]
∣∣∣ ≤ C1

σ
(1 + C2σ)−M , (9)

where C1,C2 are constants independent of A as well as σ, M, t .
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Algorithm 2 The Delta-Gauss-Chebyshev (DGC) method for estimating the DOS.

Input: Hermitian matrix A with eigenvalues between (−1, 1);

A set of points {ti }Nt
i=1 at which the DOS is to be evaluated;

Polynomial degree M ; Smearing parameter σ ;
Number of random vectors Nv .

Output: Approximate DOS {φ̃σ (ti )}Nt
i=1.

1: for each ti do
2: Compute the coefficient {μl (ti )}Ml=0 for each ti , i = 1, . . . , Nt using Algorithm 1.
3: end for
4: Initialize ζk = 0 for k = 0, · · · , M .
5: Generate a random Gaussian matrix W ∈ R

N×Nv .
6: Initialize the three term recurrence matrices Vm , Vp ← 0 ∈ C

N×Nv , Vc ← W .
7: for l = 0, . . . , M do
8: Accumulate ζl ← ζl + 1

Nv
Tr[W∗Vc].

9: Vp ← (2 − δl0)AVc − Vm .
10: Vm ← Vc, Vc ← Vp .
11: end for
12: for i = 1, . . . , Nt do
13: Compute φ̃σ (ti ) ← ∑M

l=0 μl (ti )ζl .
14: end for

Proof Note that

∣∣∣Tr[gσ (t I − A)] − Tr[gMσ (t I − A)]
∣∣∣ ≤ N

∥∥∥gσ (t I − A) − gMσ (t I − A)

∥∥∥
2

≤ max−1≤s≤1

∣∣∣Ngσ (t − s) − NgMσ (t − s)
∣∣∣ .

The estimate then follows from standard approximation theory with Chebyshev poly-
nomials (see e.g. [28, Theorem 4.3]). 	


We remark that Theorem 2 only gives an upper bound of the decay rate. Since the
Gaussian function is analytic in the entire complex plane, the actual decay rate is super-
exponential.Using the error bound inTheorem2, the error of theDGCalgorithmcanbe
split into two parts: the error of theChebyshev expansion (approximation error) and the
error due to random sampling (sampling error). According to Theorem 2, it is sufficient
to choose M to beO(σ−1 |log σ |) to ensure that the error of the Chebyshev expansion
is negligible. Therefore the error of the DGC mainly comes from the sampling error,
which decays slowly as 1√

Nv
.

3 Spectrum sweeping method for estimating spectral densities

In this section we present an alternative randomized algorithm called the spectrum
sweeping method for estimating spectral densities. Our numerical results indicate that
the spectrum sweepingmethod can significantly outperformHutchinson typemethods
in terms of accuracy, as the number of randomvectors Nv becomes large. Themain tool
is randomized methods for low rank matrix decomposition which is briefly introduced
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in Sect. 3.1. The spectrum sweeping method is given in Sect. 3.2, and its complexity
is analyzed in Sect. 3.3.

3.1 Randomized method for low rank decomposition of a numerically low rank
matrix

Consider a square matrix P ∈ C
N×N , and denote by r the rank of P . If r � N ,

then P is called a low rank matrix. Many matrices from scientific and engineering
computations may not be exactly low rank but are close to be a low rank matrix. For
such matrices, the concept of numerical rank or approximate rank can be introduced,
defined by the closest matrix to P in the sense of the matrix 2-norm.More specifically,
the numerical ε-rank of a matrix P , denoted by rε with respect to the tolerance ε > 0
is (see e.g. [29, section 5.4])

rε = min{rank(Q) : Q ∈ C
N×N , ‖P − Q‖2 ≤ ε}.

In the following discussion, we simply refer to a matrix P with numerical ε-rank rε as
a matrix with numerical rank r . For instance, this applies to the function gσ (t I − A)

with small σ , since the value gσ (t − λ j ) decays fast to 0 when λ j is away from t ,
and the corresponding contribution to the rank of gσ (t I − A) can be neglected up to
ε level. As an example, for the ModES3D_4 matrix to be detailed in Sect. 6, if we set
σ = 0.01 and t = 1.0, then the values {gσ (t I − λ)} sorted in non-increasing order
is given in Fig. 1, where each λ is an eigenvalue of A. If we set ε = 10−8, then the
ε-rank of gσ (t I − A) is 59, much smaller than the dimension of the matrix A which
is 64000.

For a numerically low rank matrix, its approximate singular value decomposition
can be efficiently evaluated using randomized algorithms (see e.g. [30–32]). The idea
is briefly reviewed as below, though presented in a slightly non-standard way. Let
P ∈ C

N×N be a square matrix with numerical rank r � N , and W ∈ R
N×Nv be a

random Gaussian matrix. If Nv is larger than r by a small constant, then with high
probability, P projected to the column space of PW is very close to P in matrix

Fig. 1 For the ModES3D_4
matrix, the values gσ (t I − λ)

sorted in non-increasing order
plotted in log scale with
σ = 0.01, t = 1.0. Only the first
128 values larger than 10−16 are
shown
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2-norm. Similarly with high probability, P projected to the row space ofW ∗P is very
close to P in matrix 2-norm. In the case when P is a Hermitian matrix, only the
matrix–vector multiplication PW is needed.

In order to construct an approximate low rank decomposition of a Hermitian matrix
P , let us denote by Z = PW , then an approximate low rank decomposition of P is
given by

P ≈ Z BZ∗. (10)

The matrix B is to be determined and can be computed in several ways. One choice
of B can be obtained by requiring Eq. (10) to hold when applying W ∗ and W to the
both sides of the equation, i.e.

KW := W ∗PW = W ∗Z ≈ (W ∗Z)B(W ∗Z)∗ = (W ∗Z)B(W ∗Z).

In the last equality we used that (W ∗Z) is Hermitian. Hence one can choose

B = (W ∗Z)† ≡ K †
W . (11)

Here K †
W is theMoore–Penrose pseudo-inverse (see e.g. [29, section 5.5]) of thematrix

KW . In Algorithm 3 we summarize the algorithm for constructing such a low rank
decomposition.

Remark In the case when KW is singular, the pseudo-inverse should be handled with
care. Thiswill be discussed in Sect. 3.2. Besides the choice inEq. (11), another possible
choice of the matrix B is given by requiring that Eq. (10) holds when applying Z∗ and
Z to the both sides of the equation, i.e.

Z∗PZ ≈ (Z∗Z)B(Z∗Z),

and hence one can choose

B = (Z∗Z)†(Z∗PZ)(Z∗Z)†. (12)

Note that Eq. (12) can also be derived from a minimization problem

min
B

∥∥Z BZ∗ − P
∥∥2
F .

However, the evaluation of Z∗PZ is slightly more difficult to compute, since the
matrix–vector multiplication PZ needs to be further computed. In the discussion
below we will adopt the choice of Eq. (11).

3.2 Spectrum sweeping method

The approximate low rank decomposition method can be used to estimate the DOS.
Note that for each t , when the regularization parameter σ is small enough, the column
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Algorithm 3 Randomized low rank decomposition algorithm.

Input: Hermitian matrix P ∈ C
N×N with approximate rank r ;

Output: Approximate low rank decomposition P ≈ Z BZ∗.
1: Generate a random Gaussian matrix W ∈ R

N×Nv where Nv = r + c and c is a small constant.
2: Compute Z ← PW .
3: Form B = (W∗Z)†.

space of gσ (t I−A) is approximately only spanned by eigenvectors of A corresponding
to eigenvalues near t . Therefore for each t , gσ (t I − A) is approximately a low rank
matrix. Algorithm 3 can be used to construct a low rank decomposition. Motivated
from the DGC method, we can use the same random matrix W for all t .

gσ (t I − A) ≈ Z(t)(W ∗Z(t))†Z∗(t),

and its trace can be accurately estimated as

Tr[gσ (t I − A)] ≈ Tr[(W ∗Z(t))†(Z∗(t)Z(t))]. (13)

Here Z(t) = gMσ (t I − A)W . We can use a Chebyshev expansion in Eq. (6) and
compute gMσ (t I − A).

The Chebyshev expansion requires the calculation of Tl(A)W, l = 0, . . . , M .
Note that this does not mean that all Tl(A)W need to be stored for all l. Instead
we only need to accumulate Z(t) for each point t that the DOS is to be evaluated.
Tl(A) only need to be applied to one randomW matrix, and we can sweep through the
spectrum of A just via different linear combination of all Tl(A)W for each t . Therefore
we refer to the algorithm a “spectrum sweeping” method.

As remarked earlier, the pseudo-inverse should be handled with care. There are
two difficulties associated with the evaluation of K †

W . First, it is difficult to know a
priori the exact number of vectors Nv that should be used at each t , and Nv should be
chosen to be large enough to achieve an accurate estimation of the DOS. Hence the
columns of Z are likely to be nearly linearly dependent, and KW becomes singular.
Second, although gσ (t I − A) is by definition a positive semidefinite matrix, the finite
term Chebyshev approximation gMσ (t I − A) may not be positive semidefinite due to
the oscillating tail of the Chebyshev polynomial. Figure 2a gives an example of such
possible failure. The testmatrix is theModES3D_1matrix to be detailed in Sect. 6. The
parameters are σ = 0.05, Nv = 50. When computing the pseudo-inverse, all negative
eigenvalues and positive eigenvalues with magnitude less than 10−7 times the largest
eigenvalue of KW are discarded. Figure 2a demonstrates that when a relatively small
number of degrees of polynomials M = 400 is used, the treatment of the pseudo-
inverse may have large error near t = 0.9. This happens mainly when the degrees
of Chebyshev polynomials M is not large enough. Figure 2b shows that when M is
increased to 800, the accuracy of the pseudo-inverse treatment is much improved.

The possible difficulty of the direct evaluation of K †
W can be understood as follows.

First, Theorem 3 suggests that for a strictly low rankmatrix P , there is correspondence
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(a) (b)

Fig. 2 For the ModES3D_1 matrix, compute the DOS using the spectrum sweeping method by computing
the pseudo-inverse (“Pinv”) and by computing the generalized eigenvalue problem (“Eig”) using a a low
degree Chebyshev polynomial M = 400 b a high degree Chebyshev polynomial M = 800

between the trace of the form in Eq. (13) and the solution of a generalized eigenvalue
problem.

Theorem 3 Let P ∈ C
N×N be a Hermitian matrix with rank r � N and with eigen

decomposition

P = USU∗.

Here U ∈ C
N×r and U∗U = I . S ∈ R

r×r is a real diagonal matrix containing the
nonzero eigenvalues of P. For W ∈ C

N×p (p > r) and assume W ∗U is a matrix
with linearly independent columns, then S can be recovered through the generalized
eigenvalue problem

(W ∗P2W )C = (W ∗PW )C
. (14)

Here C ∈ C
p×r and 
 ∈ R

r×r is a diagonal matrix with diagonal entries equal to
those of S up to reordering. Furthermore,

Tr
[
(W ∗PW )†(W ∗P2W )

]
= Tr[S] = Tr[P]. (15)

Proof Using the eigen decomposition of P ,

(W ∗P2W )C = (W ∗U )S2(U∗WC), (W ∗PW )C
 = (W ∗U )S(U∗WC)
.

Since W ∗U ∈ C
p×r is a matrix with linearly independent columns, we have

S2(U∗WC) = S(U∗WC)
,
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or equivalently

S(U∗WC) = (U∗WC)
.

Since S is a diagonal matrix we have S = 
 up to reordering of diagonal entries.
To prove Eq. (15), note that

(W ∗PW )† = (U∗W )†S−1(W ∗U )†.

Therefore

Tr[(W ∗PW )†(W ∗P2W )] = Tr[(U∗W )†S−1(W ∗U )†(W ∗U )S2(U∗W )]
= Tr[S] = Tr[USU∗] = Tr[P].

	

Although Theorem 3 is stated for exactly low rank matrices, it provides an practical

criterion for removing some of the large, spurious contribution to the DOS such as in
Fig. 2a. For gσ (t I−A)which is numerically low rank, only the generalized eigenvalues
within the range of g, i.e. the interval [0, 1

N
√
2πσ 2

] should be selected. This motivated
the use of Algorithm 4 to solve the generalized eigenvalue problem

Z∗ZC̃ = (W ∗Z)C̃
̃. (16)

where 
̃ is a diagonalmatrix only containing the generalized eigenvalues in the interval
[0, 1

N
√
2πσ 2

]. Algorithm 4 only keeps the generalized eigenvalues within the possible
range of gσ . Our numerical experience indicates that this procedure is more stable than
the direct treatment of the pseudo-inverse. The algorithm of the spectrum sweeping
method is given in Algorithm 5.

Now consider the problematic point when using the pseudo-inverse in Fig. 2a. We
find that the generalized eigenvalues 
 at that problematic point has one general-
ized eigenvalue 0.033, exceeding the maximally allowed range 1

N
√
2πσ 2

= 0.008.
After removing this generalized eigenpair, the error of the DOS obtained by solv-
ing the generalized eigenvalue problem becomes smaller. Again when the degree of
the Chebyshev polynomial M increases sufficiently large to 800, the accuracy of the
generalized eigenvalue formulation also improves, and the result obtained by using
the pseudo-inverse and by using the generalized eigenvalue problem agrees with each
other, as illustrated in Fig. 2b. In such case, all generalized eigenvalues fall into the
range [0, 1

N
√
2πσ 2

].
The SS-DGC method can be significantly more accurate compared to the DGC

method. This is because the spectrum sweeping method takes advantage that different
columns of Z ≡ gσ (t I − A)W are correlated: The information in different columns
of Z saturates as Nv increases beyond the numerical rank of gσ (t I − A), and the
columns of Z become increasingly linearly dependent. Comparatively Hutchinson’s
method neglects such correlated information, and the asymptotic convergence rate is

only O(N
− 1

2
v ).
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Algorithm 4 Solve the generalized eigenvalue problem for the spectrum sweeping
method.
Input: Matrices Z ,W ∈ C

N×Nv ;
Smearing parameter σ ;
Truncation parameter τ .

Output: Generalized eigenvalues 
̃ and generalized eigenvectors C̃ .

1: Compute the eigenvalue decomposition of the matrix

W∗Z = USU∗.

S is a diagonal matrix with diagonal entries {si }.
2: Let S̃ be a diagonal matrix with all eigenvalues s j ≥ τ maxi si , and Ũ be the corresponding

eigenvectors.
3: Solve the standard eigenvalue problem

S̃− 1
2 Ũ∗Z∗ZŨ S̃− 1

2 X = X
.


 is a diagonal matrix with diagonal entries {ξi }.
4: Let 
̃ be a diagonal matrix containing the generalized eigenvalues ξi ∈ [0, 1

N
√
2πσ2

], and X̃ be

the corresponding eigenvectors.

5: Compute the generalized eigenvectors C̃ = Ũ S̃− 1
2 X̃ .

Algorithm5Spectrumsweepingmethodusing theDelta-Gauss-Chebyshev expansion
(SS-DGC) for estimating the DOS.

Input: Hermitian matrix A with eigenvalues between (−1, 1);

A set of points {ti }Nt
i=1 at which the DOS is to be evaluated;

Polynomial degree M ; Smearing parameter σ ;
Number of random vectors Nv .

Output: Approximate DOS {φ̃σ (ti )}.
1: Compute the coefficient {μl (ti )}Ml=0 for each ti , i = 1, . . . , Nt using Algorithm 1 with f (x) =

gσ (x − ti ).
2: Generate a random Gaussian matrix W ∈ R

N×Nv .
3: Initialize the three term recurrence matrices Vm , Vp ← 0 ∈ C

N×Nv , Vc ← W .
4: Initialize Z(ti ) ← 0 ∈ C

N×Nv , i = 1, . . . , Nt .
5: for l = 0, . . . , M do
6: for i = 1, . . . , Nt do
7: Z(ti ) ← Z(ti ) + μl (ti )Vc .
8: end for
9: Vp ← (2 − δl0)AVc − Vm .
10: Vm ← Vc, Vc ← Vp .
11: end for
12: for i = 1, . . . , Nt do
13: Compute φ̃σ (ti ) = Tr[
̃(ti )] where 
̃(ti ) is a diagonal matrix obtained by solving the generalized

eigenvalue problem

Z∗(ti )Z(ti )C̃(ti ) = W∗(ti )Z(ti )C̃(ti )
̃(ti )

using Algorithm 4.
14: end for
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3.3 Complexity

The complexity of theDOSestimation is certainly problemdependent. In order tomea-
sure the asymptotic complexity of Algorithm 5 for a series of matrices with increasing
value of N , we consider a series of matrices are spectrally uniformly distributed, i.e.
the spectral width of each matrix is bounded between (−1, 1), and the number of
eigenvalues in any interval (t1, t2) is proportional to N . In other words, we do not con-
sider the case when the eigenvalues can asymptotically be concentrated into one point.
In the complexity analysis below, we neglect any contribution on the order of log N .
In Sect. 4 we will give a detailed example for which the assumption is approximately
satisfied.

Algorithm 5 scales as O(N 3
v ) with respect to the number of random vectors Nv .

Therefore it can be less efficient to let Nv grow proportionally to the matrix size N .
Instead it is possible to choose Nv to be a constant, and to choose the regularization
parameter σ to beO(N−1) so that gσ (t I − A) is a matrix of bounded numerical rank
as N increases. Equation (9) then states that the Chebyshev polynomial degree M
should be O(N ). We denote by cmatvec the cost of each matrix–vector multiplication
(matvec). We assume cmatvec ∼ O(N ). We also assume that Nv is kept to be a constant
and is omitted in the asymptotic complexity count with respect to N and Nt .

Under the assumption of spectrally uniformly distributed matrices, the compu-
tational cost for applying the Chebyshev polynomial to the random matrix W is
cmatvecMNv ∼ O(N 2). The cost for updating all {Z(ti )} is NtMNNv ∼ O(N 2Nt ).
The cost for computing the DOS by trace estimation is O(Nt N N 2

v + Nt N 3
v ) ∼

O(Nt N ). So the total cost is O(N 2Nt ).
The memory cost is dominated by the storage of the matrices {Z(ti )}, which scales

as O(NNt Nv) ∼ O(NNt ).
If the DOS is evaluated at a few points with Nt being small, the spectrum sweeping

method is very efficient. However, in some cases such as the trace estimation as
discussed in Sect. 5, Nt should be chosen to be O(N ). Therefore the computational
cost of SS-DGC isO(N 3) and the memory cost isO(N 2). This is undesirable and can
be improved as in the next section with a more efficient implementation.

4 A robust and efficient implementation of the spectrum sweeping
method

The SS-DGC method can give very accurate estimation of the DOS. However, it also
has two notable disadvantages:

1. The SS-DGC method requires a rough estimate of the random vectors Nv . If the
number of random vectors Nv is less than the numerical rank of gσ (t I − A), then
the estimated DOS will has O(1) error.

2. The SS-DGC method requires the formation of the Z(t) matrix for each point t .
The computational cost scales asO(N 2Nt ) and the memory cost isO(NNt ). This
is expensive if the number of points Nt is large.
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In this section we provide a more robust and efficient implementation of the spec-
trum sweeping (RESS) method to overcome the two problems above. The main idea
of the RESS-DGC method is to have

1. a hybrid strategy for robust estimation of the DOS in the case when the number of
vectors Nv is insufficient at some points with at least O(1/

√
Nv) accuracy.

2. a consistent method for directly computing of thematrix Z∗(ti )Z(ti ) for each point
ti and avoiding the computation and storage of Z(ti ).

4.1 A robust and efficient implementation for estimating the trace of a
numerically low rank matrix

Given a numerically low rank matrix P , we may apply Algorithm 3 to compute its low
rank approximation using a random matrix of size N × Nv . Let us denote the residual
by

R := P − Z BZ∗. (17)

If Nv is large enough, then ‖R‖F should be very close to zero.Otherwise, Hutchinson’s
method can be used to estimate the trace of R as the correction for the trace of P .
According toTheorem1, if Z BZ∗ is relatively a good approximation to P , the variance
for estimating Tr[R] can be significantly reduced.

To do this, we use another set of random vectors W̃ ∈ C
N×Ñv , and

Tr[R] ≈ 1

Ñv

Tr[W̃ ∗RW̃ ] = 1

Ñv

(
Tr[W̃ ∗PW̃ ] − Tr[(W̃ ∗Z)B(Z∗W̃ )]) . (18)

Equation (18) still requires the storage of Z . As explained above, storing Z can
become expensive if we use the same set of random vectors W and W̃ but evaluate
the DOS at a large number of points {ti }. In order to reduce such cost, note that

Z∗Z = W ∗P∗PZ = W ∗(P2W ).

If we can compute both PW and P2W , then Z does not need to be explicitly stored.
Instead we only need to store

KW = W ∗(PW ), KZ = W ∗(P2W ).

This observation is used in Sect. 4.2, where PW and P2W are computed separately
with Chebyshev expansion.

Similarly, for the computation of the correction term (18), we can directly compute
the cross term due to W̃ as

KC = W̃ ∗Z = W̃ ∗(PW ), KW̃ = W̃ ∗(PW̃ ).

Algorithm 3 involves the computation of the pseudo-inverse of KW , which is in
practice computed by solving a generalized eigenvalue problem using Algorithm 4.
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The hybrid strategy in Eq. (18) is consistent with the generalized eigenvalue problem,
in the sense that

Ew̃[w̃∗ZC̃C̃∗Z∗w̃] = Tr[ZC̃C̃∗Z∗] = Tr[C̃∗(Z∗Z)C̃] = Tr[
̃]. (19)

The last equality of Eq. (19) follows from that 
̃, C̃ solve the generalized eigenvalue
problem as in Algorithm 4.

In summary, a robust and efficient randomized method for estimating the trace of
a low rank matrix is given in Algorithm 6.

Algorithm 6 Robust and efficient randomized method for estimating the trace of a
numerically low rank matrix.

Input: Hermitian matrix P ∈ C
N×N ; Number of randomized vectors Nv, Ñv

Output: Estimated Tr[P].
1: Generate random Gaussian matrices W ∈ R

N×Nv and W̃ ∈ C
N×Ñv .

2: Compute KW = W∗(PW ), KZ = W∗(P2W ).
3: Compute KC = W̃∗(PW ), KW̃ = W̃∗(PW̃ ).
4: Solve the generalized eigenvalue problem

KZ C̃ = KW C̃
̃,

using Algorithm 4.
5: Compute the trace

Tr[P] ≈ Tr[
̃] + 1

Ñv

(
Tr[KW̃ ] − Tr[KCC̃C̃

∗K ∗
C ]) .

4.2 Robust and efficient implementation of the spectrum sweeping method

In order to combine Algorithm 6 and Algorithm 5 to obtain a robust and efficient
implementation of the spectrum sweeping method, it is necessary to evaluate (gσ (t I −
A))2W , where

(gσ (t I − A))2 ≡ 1

N 22πσ 2 e
− (t I−A)2

σ2 .

In order to do this, one can directly compute (gσ (t I − A))2 using an auxiliary Cheby-
shev expansion as follows

(gσ (t I − A))2 ≈
M∑

l=0

νl(t)Tl(A). (20)

Proposition 4 states that if the expansion is chosen carefully, the Chebyshev expan-
sion (6) and (20) are fully consistent, i.e. if gσ is expanded by a Chebyshev polynomial
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expansion of degree M/2 denoted by gM/2
σ , we can expand (gσ )2 using a Chebyshev

polynomial expansion of degree M denoted by g̃Mσ . These two expansions are consis-

tent in the sense that (gM/2
σ )2 = g̃Mσ .

Proposition 4 Let M be an even integer, and P is a matrix polynomial function of A

P =
M/2∑

l=0

μl Tl(A).

Then

P2 =
M∑

l=0

νl Tl(A), (21)

where

νl = 2 − δl0

π

∫ 1

−1

1√
1 − x2

Tl(x)

⎛

⎝
M/2∑

k=0

μkTk(x)

⎞

⎠
2

dx, l = 0, . . . , M.

Proof Using the definition of P ,

P2 =
M/2∑

p,q=0

μpμqTp(A)Tq(A).

Since 0 ≤ p+ q ≤ M , P2 is a polynomial of A up to degree M , and can be expanded
using a Chebyshev polynomial of the form (21). 	


The expansion coefficient νl ’s can be obtained using Algorithm 1 with numerical
integration, and we have a consistent and efficient method for estimating the DOS.

Theorem 5 Let A ∈ C
N×N be a Hermitian matrix, and W ∈ R

N×Nv be a random
Gaussian matrix. For any t ∈ (−1, 1), let gM/2

σ (t I − A) be the M/2 degree Chebyshev
expansion

gM/2
σ (t I − A) =

M/2∑

l=0

μl(t)Tl(A), (22)

and the coefficients {νl}Ml=0 are defined according to Proposition 4. Define Z(t) =
gM/2
σ (t I − A)W, and

KW (t) = W ∗Z(t), KZ (t) = W ∗
(

M∑

l=0

νl(t)Tl(A)W

)
. (23)

Let w̃ be a random Gaussian vector, and

KC (t) = w̃∗Z(t), KW̃ (t) = w̃∗gM/2
σ (t I − A)w̃. (24)
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Then

Tr
[
gM/2
σ (t I − A)

]
= Ew̃

(
KW̃ (t) − KC (t)C̃(t)C̃∗(t)K ∗

C (t)
) + Tr[
̃(t)]. (25)

Here C̃(t), 
̃(t) solves the generalized eigenvalue problem

KZ (t)C̃(t) = KW (t)C̃(t)
̃(t), (26)

using Algorithm 4.

Proof By Proposition 4, (gM/2
σ (t I − A))2 can be exactly computed using a Chebyshev

of degree M with coefficients {νl}Ml=0. Therefore

KZ (t) = Z∗(t)Z(t) = W ∗
(

M∑

l=0

νl(t)Tl(A)W

)
.

The consistency between Hutchinson’s method and the estimation of Tr[
̃(t)] follows
from Eq. (19). 	


Following Theorem 5, the RESS-DGC algorithm is given in Algorithm 7. Com-
pared to DGC and SS-DGCmethod, the RESS-DGCmethod introduces an additional
parameter Ñv . In the numerical experiments, in order to carry out a fair in the sense
the total number of random vectors used are the same, i.e. for RESS-DGC, we always
choose Nv + Ñv to be the same number of random vectors NDGC

v = NSS−DGC
v used

in DGC and SS-DGC, respectively. For instance, when NDGC
v is relatively small, in

RESS-DGC we can choose Nv = Ñv = 1
2N

DGC
v , i.e. half of the random vectors are

used for low rank approximation, and half for hybrid correction. When we are certain
that Nv is large enough, we can eliminate the usage of the hybrid correction and take
Nv = NDGC

v and Ñv = 0.

4.3 Complexity

Following the same setup in Sect. 4.3, we assume that a series ofmatrices are spectrally
uniformly distributed. We assume the Chebyshev polynomial degree M ∼ O(N ), and
cmatvec ∼ O(N ). In the complexity analysis below, we neglect any contribution on
the order of log N . We also assume that Nv is kept as a constant and is omitted in the
asymptotic complexity count with respect to N and Nt .

In terms of the computational cost, the computational cost for applying the Cheby-
shev polynomial to the random matrix W is cmatvecMNv ∼ O(N 2). The cost for
updating KW (ti ) and KZ (ti ) is NtMN 2

v ∼ O(NNt ). The cost for computing the DOS
by trace estimation for each ti isO(Nt N 3

v ) ∼ O(Nt ). So the total cost isO(NNt+N 2).
In terms of thememory cost, the advantage of usingAlgorithm 7 also becomes clear

here. The matrices {Z(ti )} do not need to be computed or stored. Using the three-term
recurrence for Chebyshev polynomials, the matrices KW (t), KZ (t), KC (t), KW̃ (t)
can be updated gradually, and the cost for storing these matrices are O(N 2

v Nt ∼ Nt ).
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Algorithm 7 Robust and efficient spectrum sweeping with Delta-Gauss-Chebyshev
(RESS-DGC) method for estimating the DOS.

Input: Hermitian matrix A with eigenvalues between (−1, 1);

A set of points {ti }Nt
i=1 at which the DOS is to be evaluated;

Polynomial degree M ;
Smearing parameter σ ;
Number of random vectors Nv, Ñv .

Output: Approximate DOS {φ̃σ (ti )}.

1: Compute the coefficient {μl (ti )}
M
2
l=0 for each ti , i = 1, . . . , Nt using Algorithm 1 for Eq. (6), and let

μl (ti ) = 0, l = M
2 + 1, . . . , M .

2: Compute the coefficient {νl (ti )}Ml=0 for each ti , i = 1, . . . , Nt using Algorithm 1 for Eq. (20).

3: Generate random Gaussian matrices W ∈ R
N×Nv and W̃ ∈ R

N×Ñv .
4: Initialize the three term recurrence matrices Vm ,

Vp ← 0 ∈ C
N×Nv , Vc ← W ; Ṽm , Ṽp ← 0 ∈ C

N×Ñv , Ṽc ← W̃ .

5: Initialize matrices KW (ti ), KZ (ti ) ← 0 ∈ C
Nv×Nv , i = 1, . . . , Nt ; KC (ti ) ← 0 ∈ C

Ñv×Nv and

KW̃ ← 0 ∈ C
Ñv×Ñv , i = 1, . . . , Nt .

6: for l = 0, . . . , M do
7: Compute XW ← W∗Vc, XC ← W̃∗Vc, XW̃ ← W̃∗Ṽc .
8: for i = 1, . . . , Nt do
9: Accumulate KW (ti ) ← KW (ti ) + μl (ti )XW , KZ (ti ) ← KZ (ti ) + νl (ti )XW .
10: Accumulate KC (ti ) ← KC (ti ) + μl (ti )XC , KW̃ (ti ) ← KW̃ (ti ) + μl (ti )XW̃ .
11: end for
12: Vp ← (2 − δl0)AVc − Vm .
13: Vm ← Vc, Vc ← Vp .
14: Ṽp ← (2 − δl0)AṼc − Ṽm .
15: Ṽm ← Ṽc, Ṽc ← Ṽp .
16: end for
17: for i = 1, . . . , Nt do

18: Compute φ̃σ (ti ) ← Tr

[
g
M
2

σ (ti I − A)

]
≈ 1

Ñv
Tr

[
KW̃ (ti ) − KC (ti )C̃(ti )C̃

∗(ti )K
∗
C (ti )

] +
Tr[
̃(ti )], where 
̃(ti ),C̃(ti ) are computed from Algorithm 4.

19: end for

The cost for storing the matrix W is O(NNv) ∼ O(N ). So the total storage cost is
O(N + Nt ).

If we also assume Nt ∼ O(N ) due to the vanishing choice of σ , then the compu-
tational cost scales as O(N 2) and the storage cost scales as O(N ).

5 Application to trace estimation of general matrix functions

As an application for the accurate estimation of the DOS, we consider the problem of
estimating the trace of a smooth matrix function as in Eq. (2). In general f (t) is not a
localized function on the real axis, and Algorithm 6 based on low rank decomposition
cannot be directly used to estimate Tr[ f (A)].

However, if we assume that there exists σ > 0 so that the Fourier transform of f (t)
decays faster than the Fourier transform of gσ (t), where gσ is a Gaussian function,
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then we can find a smooth function f̃ (t) satisfying

( f̃ ∗ gσ )(t) =
∫ ∞

−∞
f̃ (s)gσ (t − s) ds = f (t). (27)

The function f̃ (t) can be obtained via a deconvolution procedure. Formally

1

N
Tr[ f (A)] =

∫ ∞

−∞
f (t)φ(t) dt =

∫ ∞

−∞

∫ ∞

−∞
f̃ (s)gσ (t − s)φ(t) dt ds

=
∫ ∞

−∞
f̃ (s)φσ (s) ds. (28)

Equation (28) states that the trace of the matrix function f (A) can be accurately
computed from the integral of f̃ (s)φσ (s), which is a now smooth function. Since
the spectrum of A is assumed to be in the interval (−1, 1), the integration range in
Eq. (28) can be replaced by a finite interval. The integral can be evaluated accurately
via a trapezoidal rule, and we only need the value of the DOS φσ evaluated on the
points requested by the quadrature. In such a way, we “transfer” the smoothness of
f (t) to the regularized DOS without losing accuracy.
The deconvolution procedure (27) can be performed via a Fourier transform.

Assume that the eigenvalues of A are further contained in the interval (−a, a) ⊂
(−1, 1) with 0 < a < 1. Then the Fourier transform requires that the function f (t) is
a periodic function on a interval containing (−a, a), which is in general not satisfied in
practice. However, note that the interval in Eq. (2) does not require the exact function
f (t). In fact

Tr[ f (A)] =
∫ a

−a
f (t)φ(t) dt =

∫ a

−a
h(t)φ(t) dt

for any smooth function h(t) satisfying

h(t) = f (t), t ∈ (−a, a). (29)

In particular, h(t) can be extended to be a periodic function on the interval [−1, 1]. In
this work, we construct h(t) as follows.

h(t) = f (t)π(t) + f (−1) + f (1)

2
(1 − π(t)) . (30)

We remark that the constant f (−1)+ f (1)
2 in Eq. (30) is not important and can be in

principle any real number. Here π(t) is a function with π(t) = 1 for t ∈ (−a, a),
and smoothly goes to 0 outside (−a, a). It is easy to verify that such choice of h(t)
satisfies Eq. (29) and is periodic on (−1, 1). There are many choice of π(t), and here
we use

π(t) = 1

2

[
erf

(
1 + a − 2t

σ̃

)
− erf

(−1 − a − 2t

σ̃

)]
. (31)
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Here erf is the error function. If σ̃ is chosen to be small enough, then π(t) as defined
in Eq. (31) satisfies the requirement.

Algorithm 8 describes the procedure for computing the trace of a matrix function.

Algorithm 8 Spectrum sweeping method for estimating the trace of a matrix function.

Input: Hermitian matrix A with eigenvalues between (−a, a) where 0 < a < 1;
Smooth function f (t);
Smearing parameter σ, σ̃ .

Output: Estimated value of Tr[ f (A)].
1: Compute auxiliary function h(t) according to Eq. (30).

2: Compute { f̃ (ti )}Nt
i=1 satisfying ( f̃ ∗ gσ )(t) = h(t) on (−1, 1) through the Fourier transform on a

uniform set of points {ti }Nt
i=1 with spacing �t = t2 − t1.

3: Use one of the algorithms to compute {φ̃σ (ti )}.
4: Compute Tr[ f (A)] ≈ N�t

∑Nt
i=1 f̃ (ti )φ̃σ (ti ).

6 Numerical examples

In this section we demonstrate the accuracy and efficiency of the SS-DGC and RESS-
DGCmethods for computing the spectral densities and for estimating the trace. For the
asymptotic scaling of the method, we need a series of matrices that are approximately
spectrally uniformly distributed. These are given by the ModES3D_X matrices to be
detailed below. In order to demonstrate that the methods are also applicable to general
matrices, we also give test results for two matrices obtained from the University of
Florida matrix collection [33]. All the computation is performed on a single compu-
tational thread of an Intel i7 CPU processor with 64 gigabytes (GB) of memory using
MATLAB.

As a model problem, we consider a second order partial differential operator Â
in a three-dimensional (3D) cubic domain with periodic boundary conditions. For a
smooth function u(x, y, z), Âu is given by

( Âu)(x, y, z) = −�u(x, y, z) + V (x, y, z)u(x, y, z).

The matrix A is obtained from a 7-point finite difference discretization of Â. In order
to create a series of matrices, first we consider one cubic domain � = [0, L]3 and
V (x, y, z) is taken to be a Gaussian function centered at (L/2, L/2, L/2)T . This
is called a “unit cell”. The unit cell is then extended by n times along the x, y, z
directions, respectively, and the resulting domain is [0, nL]3 and V (x, y, z) is the
linear combination of n3 Gaussian functions. Such matrix can be interpreted as a
model matrix for electronic structure calculation. Each dimension of the domain is
uniformly discretized with grid spacing h, and the resulting matrix A is denoted by
ModES3D_X where X is the total number of unit cells. Here we take L = 6 and
h = 0.6. Some characteristics of the matrices, including the dimension, the smallest
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Table 1 Characteristics of the
test matrices

Matrix N Min(ev) Max(ev)

ModES3D_1 1000 −2.22 32.23

ModES3D_8 8000 −2.71 31.31

ModES3D_27 27000 −2.75 31.30

ModES3D_64 64000 −2.76 32.30

pe3k 9000 8 × 10−6 127.60

shwater 81920 5.79 20.30

Fig. 3 Isosurface for V (x, y, z)

and the largest eigenvalue are given in Table 1. Figure 3a, b shows the isosurface of one
example of such potential for the matrixModES3D_1, andModES3D_8, respectively.
Figure 4 shows the DOS corresponding to low lying eigenvalues for the matrices with
X = 1, 8, 27, 64 for a fixed regularization parameter σ = 0.02, which indicate that
the spectral densities is roughly uniform.

6.1 Spectral densities

In order to comparewith the accuracy of theDOS, the exactDOS is obtained by solving
eigenvalues corresponding to the region of interest for computing the DOS. We use
the locally optimal block preconditioned conjugate gradient (LOBPCG) [34] method.
The LOBPCG method is advantageous for solving a large number of eigenvalues
and eigenvectors since it can effectively take advantage of the BLAS3 operations by
solving all eigenvectors simultaneously. The number of eigenvectors to be computed
is set to be 35X for the test matricesModES3D_Xwith X = 1, 8, 27, 64, respectively,
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Fig. 4 Shape of the DOS for a
series of matrices with σ = 0.02

and the highest eigenvalue obtainedwith such number of eigenvectors is slightly larger
than 1.0. The tolerance of LOBPCG is set to be 10−8 and the maximum number of
iterations is set to be 1000.

We measure the error of the approximate DOS using the relative L1 error defined
as follows. Denote by φ̃σ (ti ) the approximate DOS evaluated at a series of uniformly
distributed points ti , and by φσ (ti ) the exact DOS obtained from the eigenvalues. Then
the error is defined as

Error =
∑

i

∣∣φ̃σ (ti ) − φσ (ti )
∣∣

∑
i |φσ (ti )| . (32)

For the DGC and SS-DGC method, an M-th order Chebyshev polynomial is used
to evaluate Z(ti ). For the RESS-DGC method, an M-th order Chebyshev polynomial
should be used to expand Z∗(ti )Z(ti ). Following Theorem 5, only an M/2-th order
Chebyshev polynomial can be used to evaluate Z(ti ). Similarly when Nv random
vectors are used for DGC and SS-DGC, RESS-DGC is a hybrid method containing
two terms. As discussed in Sect. 4.2, the number of random vectors used in DGC and
SS-DGC are the same i.e. NDGC

v = NSS-DGC
v . For RESS-DGC, we use NRESS-DG

v =
1
2N

DGC
v for the low rank approximation, and ÑRESS-DGC

v = 1
2N

DGC
v for the hybrid

correction. This setup makes sure that all methods perform exactly the same number
of matrix–vector multiplications.

Figure 5a shows the error of the three methods for the ModES3D_8 matrix when
a very small number of random vectors Nv = 40 is used, with increasing polynomial
degrees M from 200 to 3200. Here we use σ = 0.05. Note the relatively large poly-
nomial degree is mainly due to the relatively large spectral radius compared to the
desired resolution as in Table 1. This can be typical in practical applications. DGC is
slightly more accurate for low degree of polynomials, but as M increases, RESS-DGC
becomes more accurate. Figure 5b shows the error when a relatively large number of
random vectors Nv = 160 is used.When M is large enough, both SS-DGC and RESS-
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(a) (b)
Fig. 5 For the ModES3D_8 matrix, the error of the DOS with respect to increasing polynomial degrees
for a a small number of random vectors Nv = 40, b a large number of random vectors Nv = 160

DGC can be significantly more accurate than DGC. SS-DGC is slightly more accurate
here, because it uses the Chebyshev polynomials and random vectors more optimally
than RESS-DGC, though the computational cost can be higher when spectral densities
at a large number of points Nt need to be evaluated.

Figure 6a shows the comparison of the accuracy of three methods for a relatively
low degree of polynomials M = 800 and with increasing number of random vectors
Nv . When Nv is small, SS-DGC has O(1) error, and this error is much suppressed
in RESS-DGC thanks to the hybrid correction scheme. It is interesting to see that
RESS-DGC outperforms DGC for all choices of Nv , but its accuracy is eventually
limited by the insufficient number of Chebyshev polynomials to expand the Gaussian
function. SS-DGC is more accurate than RESS-DGC when Nv is large enough. This
is because in such case the low rank decomposition captures the correlation between
the results obtained among different random vectors more efficiently. On the contrary,
Hutchinson’s method for which DGC relies on only reduces the error only through
direct Monte Carlo sampling. Figure 6b shows the case when a relatively large number
of polynomials M = 2400 is used. Again for small Nv , RESS-DGC reduces the large
error compared to the SS-DGC method, while for large enough Nv both SS-DGC and
RESS-DGC can be very accurate.

In both SS-DGC and RESS-DGC methods, the parameter σ is important since it
determines both the degrees of Chebyshev polynomial to accurately expand gσ , and
the number of random vectors needed for accurate low rank approximation. Figure 7
shows the error of DGC, SS-DGC and RESS-DGC with σ varying from 0.02 to 0.1.
Here we choose M = 120/σ and Nv = 3200σ . This corresponds to the case when
a relatively high degrees of Chebyshev polynomial and a relatively large number
of random vectors are used in the previous discussion. We observe that the scaling
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(a) (b)
Fig. 6 For the ModES3D_8 matrix, the error of the DOS with respect to increasing random vectors for a
a low polynomial degree M = 800, b a high polynomial degree M = 2400

Fig. 7 For the ModES3D_8
matrix, the error of the DOS with
respect to different choices of σ

M ∼ O(σ−1) and Nv ∼ O(σ ) is important for spectrum sweeping type methods to
be accurate, and SS-DGC and RESS-DGC can significantly outperform DGC type
methods in terms of accuracy.

In order to study the weak scalability of the methods using the ModES3D_Xmatri-
ces, as given in the complexity analysis, the polynomial degrees M should be chosen
to be proportional to X . Here M = 300X for X = 1, 8, 27, 64, respectively. Cor-
respondingly σ = 0.4/X and Nt = 5X . This allows us to use the same number of
random vectors Nv = 150 for all matrices. Figure 8 shows the wall clock time of the
three methods. Both SS-DGC and LOBPCG are asymptoticallyO(N 3) methods with
respect to the increase of the matrix size, and the cubic scaling becomes apparent from
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(a) (b)
Fig. 8 a Wall clock time of the DGC, SS-DGC and RESS-DGC methods compared with diagonalization
method using LOBPCG. b The error of the DOS computed at RESS-DGC and the DGC method

X = 27 to X = 64. RESS-DGC is only slightly more expensive than DGC and scales
as O(N 2). For ModES3D_64, the wall clock time for DGC, RESS-DGC, SS-DGC
and LOBPCG is 2535, 3293, 11979, 49389 seconds, respectively. Here RESS-DGC
is 15 times faster than LOBPCG and is the most effective method. Figure 8b shows
the accuracy in terms of the relative L1 error. Both SS-DGC and RESS-DGC can be
significantly more accurate than DGC. We remark that since Nv is large enough in
all cases here, the efficiency of RESS-DGC can be further improved by noting that
it only effectively uses half of the random vectors here, due to the small contribution
from the other half of random vectors used for the hybrid correction.

6.2 Trace estimation

As discussed in Sect. 5, the accurate calculation of the regularized DOS can be used
for trace estimation. To demonstrate this, we use the sameModES3D_Xmatrices, and
let f (A) be the Fermi–Dirac function, i.e.

Tr[ f (A)] = Tr

[
1

1 + exp(β(A − μI )

]

is to be computed. In electronic structure calculation, μ has the physical meaning of
chemical potential, and β is the inverse temperature. The trace of the Fermi–Dirac
distribution has the physical meaning of the number of electrons at chemical potential
μ. Here β = 10.0, μ = −1.0. The value of σ that can be used for the deconvolution
procedure in Eq. (28) should be chosen such that after deconvolution f̃ (s) is still
a smooth function. Here we use σ = 0.05 for X = 1, and σ = 0.4/X for X =
8, 27, 64, respectively. The value of σ̃ for the smearing function in Eq. (31) is 0.016.
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Fig. 9 Relative error for
estimating the trace of
Fermi–Dirac functions applied
to ModES3D_X matrices

Correspondingly the polynomial degree M = 300X . The number of random vectors
Nv is kept to be 100 for all calculations.

Figure 9 shows the relative error of the trace forDGC,SS-DGCandRESS-DGC.We
observe that SS-DGC and RESS-DGC can be significantly more accurate compared
to DGC, due to the better use of the correlated information obtained among different
random vectors. Again when Nv is sufficiently large, SS-DGC is more accurate since
the hybrid strategy in RESS-DGC is no longer needed here.

6.3 Other matrices

In Sect. 6.1, we verified that both SS-DGC and RESS-DGC can obtain very accurate
estimation of the DOS when the degrees of Chebyshev polynomial and the number of
random vectors are large enough, and RESS-DGC can lead to more efficient imple-
mentation. In this section we further verify that RESS-DGC can achieve high accuracy
for other test matrices, when the degrees of polynomial and number of vectors Nv is
large enough. The test matrices pe3k and shwater are obtained from the University of
Florida matrix collection [33], and are used as test matrices in [20]. The character of
the matrices is given in Table 1.

Figure 10 shows theDOS obtained fromRESS-DGC for the pe3kmatrix, compared
to the DOS obtained by diagonalizing the matrix directly (“Exact”). The parameters
are σ = 0.25, M = 4084, Nv = 300, Nt = 100. Since the goal is to demonstrate
high accuracy, we turn off the hybrid mode in the RESS-DGC method by setting
Ñv = 0. Figure 10 shows that the error of RESS-DGC is less than 10−7 everywhere.
The relatively large error occurs at the two peaks of the DOS, which agrees with the
theoretical estimate that RESS-DGC needs more random vectors when the spectral
density is large. Similarly Fig. 11 shows the same comparison for the shwater matrix,
with σ = 0.005, M = 16240, Nv = 640, Ñv = 0, and Nt = 100. More detailed
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(a) (b)
Fig. 10 For the pe3k matrix, a numerically computed DOS by RESS-DGC, compared to the exact DOS,
and b the error of the DOS computed by RESS-DGC

(a) (b)
Fig. 11 For the shwater matrix, a numerically computed DOS by RESS-DGC, compared to the exact DOS,
and b the error of the DOS computed by RESS-DGC

comparison of the error and running time for the two matrices with increasing number
of random vectors Nv is given in Tables 2 and 3, respectively.We observe that the error
of RESS-DGC rapidly decreases with respect to the increase of the number of random
vectors, while the error of DGC only decreases marginally. We find that RESS-DGC
only introduces marginally extra cost compared to the cost of the DGC method.
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Table 2 Error of the DOS
estimation for RESS-DGC and
DGC with different numbers of
random vectors Nv

Matrix Nv Error RESS-DGC Error DGC

pe3k 100 4.2 × 10−2 1.7 × 10−2

pe3k 200 4.0 × 10−4 1.3 × 10−2

pe3k 300 4.8 × 10−7 1.1 × 10−2

shwater 320 9.6 × 10−3 5.7 × 10−3

shwater 480 1.2 × 10−4 4.8 × 10−3

shwater 640 9.8 × 10−7 3.7 × 10−3

Table 3 Running time of the
DOS estimation for RESS-DGC
and DGC with different numbers
of random vectors Nv

Matrix Nv Time RESS-DGC (s) Time DGC (s)

pe3k 100 780 764

pe3k 200 1691 1576

pe3k 300 2825 2720

shwater 320 7371 5513

shwater 480 12310 9487

shwater 640 23479 18495

7 Conclusion and future work

For large Hermitian matrices that the only affordable operation is matrix–vector mul-
tiplication, randomized algorithms can be an effective way for obtaining a rough
estimate the DOS. However, so far randomized algorithms are based on Hutchinson’s
method, which does not use the correlated information among different random vec-
tors. The accuracy is inherently limited to O(1/

√
Nv) where Nv is the number of

random vectors.
We demonstrate that randomized low rank decomposition can be used as a different

mechanism to estimate the DOS. By properly taking into account the correlated infor-
mation among the random vectors, we develop a spectrum sweeping (SS) method that
can sweep through the spectrum with a reasonably small number of random vectors
and the accuracy can be substantially improved compared toO(1/

√
Nv). However, For

spectrally uniformly distributed matrices with a large number of points to evaluate the
DOS, the direct implementation of the spectrum sweeping method can have O(N 3)

complexity. We also present a robust and efficient implementation of the spectrum
sweeping method (RESS). For spectrally uniformly distributed matrices, the com-
plexity for obtaining the DOS can be improved to O(N 2), and the extra robustness
comes from a hybridization with Hutchinson’s method for estimating the residual.

We demonstrate how the regularized DOS can be used for estimating the trace of a
smooth matrix function. This is based on a careful balance between the smoothness of
the function and that of theDOS.Suchbalance is implemented through adeconvolution
procedure. Numerical results indicate that this allows the accurate estimate of the trace
with again O(N 2) scaling.
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The current implementation of the spectrum sweeping method is based on Cheby-
shev polynomials. Motivated from the discussion in [20], Lanczos method would be
more efficient than Chebyshev polynomials for estimating the DOS, and it would
be interesting to extend the idea of spectrum sweeping to Lanczos method and com-
parewith Chebyshev polynomials.We also remark that the spectrum sweepingmethod
effectively builds a low rank decomposition near each point on the spectrum for which
the DOS is to be evaluated. Combining the deconvolution procedure as in the trace
estimation and the low rank decomposition could be potentially useful in some other
applications to directly estimate the whole or part of a matrix function. For instance,
in electronic structure calculation, the diagonal entries of the Fermi–Dirac function is
needed to evaluate the electron density. These directions will be explored in the future.
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