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1.  Introduction

Kohn–Sham density functional theory (KSDFT) is the most 
widely used framework for electronic-structure calculations, 
and plays an important role in the analysis of electronic, 
structural and optical properties of molecules, solids and 
nano-structures. The efficiency of KSDFT depends largely 
on the computational cost associated with the evaluation of 
the electron charge density for a given potential within a self-
consistent field (SCF) iteration. The most straightforward 

way to perform such an evaluation is to partially diagonalize 
the Kohn–Sham Hamiltonian by computing a set of eigen-
vectors corresponding to the algebraically smallest eigen-
values of the Hamiltonian. The complexity of this approach 
is O N( )e

3 , where Ne is the number of electrons in the atom-
istic system of interest. As the number of atoms or electrons 
in the system increases, the cost of diagonalization becomes 
prohibitively expensive.

Although linear scaling algorithms [1–8] are attractive 
alternatives for improving the efficiency of KSDFT, they rely 
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on using the nearsightedness principle [9, 10], which asserts 
that the density perturbation induced by a local change in the 
external potential decays away from where the perturbation is 
applied. One can then truncate elements of the density matrix 
away from the diagonal. Such truncation can be in practice 
applied only to insulating systems whose density matrix ele-
ments decay exponentially away from the diagonal, but not 
to metallic systems at low temperature, for which the den-
sity matrix elements decay only algebraically away from the 
diagonal.

The recently developed pole expansion and selected 
inversion (PEXSI) method [11–15] provides an alternative 
way for solving the Kohn–Sham problem without using a 
diagonalization procedure, and without invoking the near-
sightedness principle to truncate density matrix elements. 
Compared to existing techniques, the PEXSI method has 
a few salient features: (1) PEXSI expresses physical quan-
tities such as electron density, free energy, atomic forces, 
density of states and local density of states in terms of a 
spectral projector which is evaluated without computing 
any eigenvalues or eigenvectors. (2) The computational cost 
of the PEXSI technique scales at most as O N( )e

2 . The actual 
computational cost depends on the dimensionality of the 
system: the cost for quasi-1D systems such as nanotubes 
is O N( )e  i.e. linear scaling; for quasi-2D systems such as 
graphene and surfaces (slabs) is O N( )e

1.5  ; for general 3D 
bulk systems is O N( )e

2 . This favorable scaling hinges on the 
sparse character of the Hamiltonian and overlap matrices, 
but not on any fundamental assumption about the locali-
zation properties of the single particle density matrix. (3) 
The PEXSI technique can be accurately applied to gen-
eral materials systems including small gapped systems and 
metallic systems, and remains accurate at low temperatures. 
(4) The PEXSI method has a two-level parallelism struc-
ture and is by design highly scalable. The recently devel-
oped massively parallel PEXSI technique can make efficient 
usage of 10 000 ∼ 100 000 processors on high performance 
machines. (5) PEXSI can be controlled with a few input 
parameters, and can act nearly as a black-box substitution of 
the diagonalization procedure commonly used in electronic 
structure calculations.

In order to benefit from the PEXSI method, the Hamiltonian 
and overlap matrices must be sparse. This requirement is sat-
isfied if localized discretization is used for representing the 
Kohn–Sham Hamiltonian by a finite sized matrix. Examples 
of localized discretization include numerical atomic orbitals 
[16–20], Gaussian type orbitals [21, 22], the finite difference 
[23] and finite element [24] methods, adaptive curvilinear 
coordinates [25], optimized nonorthogonal orbitals [1–3] and 
adaptive local basis functions [26]. In contrast, the plane-
wave basis set is not localized and therefore cannot directly 
benefit from the PEXSI method. Even though they are for-
mally localized, the number of degrees of freedom per atom 
associated with methods such as the finite difference and the 
finite element is usually much larger than that associated with 
other methods such as numerical atomic orbitals, leading to 
an increase of the preconstant factor in the computational 
cost. Therefore the finite difference and the finite element 

methods may not benefit as much from the PEXSI technique 
as those based on numerical atomic orbitals. We note also 
that the use of hybrid functionals with an orbital-based exact 
exchange term [27, 28] may significantly impact the sparsity 
pattern of the Hamiltonian matrix and increase the computa-
tional cost.

In previous work [14], the applicability of the PEXSI 
method was demonstrated for accelerating atomic orbital 
based electronic structure calculations. With the sequen-
tial implementation of the PEXSI method, it was possible 
to perform electronic structure calculations accurately for a 
nanotube containing 10 000 atoms discretized by a single-ζ 
(SZ, minimal) basis, and to perform geometry optimiza-
tion for a nanotube that contains more than 1000 atoms 
with a double-ζ plus polarization (DZP) basis. However, 
the sequential implementation does not benefit from the 
inherent parallelism in the PEXSI method, and therefore 
leads to limited or no improvement for general electronic 
structure calculations.

The contribution of this paper is twofold: (1) We present 
the SIESTA-PEXSI method, which combines the SIESTA 
method [29, 30] based on numerical atomic orbitals and the 
recently developed massively parallel PEXSI method [15]. 
The SIESTA-PEXSI method can be efficiently scalable to 
more than 10 000 processors. We provide performance data 
for a range of systems, including strong and weak scaling 
characteristics, and illustrate the crossover points beyond 
which the new approach is more efficient than diagonaliza-
tion. The accuracy of the result obtained from the SIESTA-
PEXSI method is nearly indistinguishable from the result 
obtained from the diagonalization method. (2) We develop a 
hybrid scheme of density of states estimation and Newton’s 
method to obtain the chemical potential. We demonstrate that 
the scheme is highly efficient and robust with respect to the 
initial guess, with or without the presence of gap states. The 
SIESTA-PEXSI approach has been implemented as a new 
solver in SIESTA, with built-in heuristics that balance effi-
ciency and accuracy, but at the same time offering full control 
by the user.

This paper is organized as follows. In section  2, we 
describe the massively parallel PEXSI technique, and how 
to integrate it with the SIESTA method. We also present a 
new method to update the chemical potential. In section 3, 
we report the performance of the SIESTA-PEXSI method on 
several problems.

Throughout the paper, we use Im(A) to denote the imagi-
nary part of a complex matrix A. We use H, S to denote 
the discretized Hamiltonian matrix and the corresponding 
overlap matrix obtained from a basis set Φ such as numerical 
atomic orbitals. Similarly ̂γ ′x x( , ) denotes the single particle 
density matrix operator, and the corresponding electron den-
sity is denoted by ρ(x). The matrix Γ denotes the single par-
ticle density matrix represented in the Φ basis. In PEXSI, Γ 
and related matrices are approximated by a finite P-term pole 
expansion, denoted by FΓ Γ Γ, ,P P P

E respectively. However, to 
simplify notation, we will drop the subscript P and simply 
use FΓ Γ Γ, , E to denote the approximated matrices unless 
otherwise noted.
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2. Theory and practical implementation

2.1.  Basic formulation

The ground-state electron charge density ρ(x) of an atomistic 
system can be obtained from the self-consistent solution to the 
Kohn–Sham equations

̂ ρ ψ ψ ε=H x x x[ ( ) ] ( ) ( ) ,i i i� (1)

where ̂H  is the Kohn–Sham Hamiltonian that depends on ρ(x), 
{ψi(x)} are the Kohn–Sham orbitals which in turn determine 
the charge density by

∑ρ ψ= ∣ ∣
∞

x x f( ) ( )
i

i i
2� (2)

with occupation numbers fi that can be chosen according to 
the Fermi-Dirac distribution function

ε μ= − =
+β β ε μ−f f ( )

2

1 e
,i i ( )i

� (3)

where μ is the chemical potential chosen to ensure that

∫ρ =x x N( ) d ,e� (4)

and β is the inverse of the temperature, i.e., β = 1/(kBT) with kB 
being the Boltzmann constant.

The most straightforward method to solve the Kohn–Sham 
problem is to expand the orbitals ψi as a linear combination 
of a finite number of basis functions {φj}, and thus recast (1) 
as a (generalized) eigenvalue problem within an iterative pro-
cedure to achieve self-consistency in the charge density. The 
computational complexity of this approach is O N( )3 , where N 
is the number of basis functions and is generally proportional 
to the number of electrons Ne or atoms in the system to be 
studied. This approach becomes prohibitively expensive when 
the size of the system increases.

Formally, the electronic-structure problem can be recast in 
terms of the one-particle density matrix defined by

̂ ̂f f H( ) ( ),
i

i i i
1

∑γ ψ ε μ ψ μ= ∣ ⟩ − ⟨ ∣ = −β β
=

∞

� (5)

with μ chosen so that ̂γ = NTr[ ] e. ̂γ  can thus be evaluated 
without the need for diagonalization, if the Fermi function 
is approximated by a linear combination of a number of sim-
pler functions. This is the Fermi operator expansion (FOE) 
method [31].

While most of the FOE schemes require as many as O βΔE( ) 
or O βΔ( )E  terms of simple functions (with ΔE being the 
spectrum width), the recently developed pole expansion [11] 
is particularly promising since it requires only O βΔE( log ) 
terms of simple rational functions. The pole expansion has the 
analytic expression

f
z

( ) Im
( )

,
l

P
l

l1

∑ε μ
ω

ε μ
− ≈

− +β

ρ

=
� (6)

We refer readers to [11, 14] for more details. The complex 
shifts {zl} and weights ω ρ{ }l  are determined only by β, ΔE and 

the number of poles P. All quantities in the pole expansion are 
known explicitly and their calculation takes negligible amount 
of time.

Following the derivation in [14], we can use (6) to approxi-
mate the single particle density matrix ̂γ  by its P-term pole 
expansion, denoted by ̂γP as

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟̂ ∑γ Φ

ω
μ

Φ

Φ ΓΦ

′ =
− +

′

≡ ′

ρ

=
x x x

H z S
x

x x

( , ) ( ) Im
( )

( )

( ) ( ) .

P
l

P
l

l

T

T

1� (7)

where Φ=[φ1, ···, φN] is a collective vector of basis functions, 
Sij = 〈φi∣φj〉, ̂φ φ= 〈 ∣ ∣ 〉H Hij i j , and Γ is an N × N matrix repre-
sented in terms of the Φ basis. To simplify our notation, we 
will drop the subscript P originating from the P-term pole 
expansion approximation unless otherwise noted.

It would seem that the need to carry out P matrix inversions 
in (8) would mean that the computational complexity of this 
approach is still close to the O N( )3  scaling of diagonalization. 
However, what is really needed in practice is just the electron 
density in real space, that is

x x x x x( ) ( ) ( ) ( ) ( ) .T

ij

ij j i∑ρ Φ ΓΦ Γ φ φ= =� (8)

When the basis functions φi (x) are compactly supported in 
real space, the product of two functions φi (x) and φj (x) will be 
zero when they do not overlap. These i, j pairs can be excluded 
from the summation in equation (8). Consequently, we only 
need Γij such that φj (x) φi (x)  ≠  0 in equation  (8). This set 
of Γij’s is a subset of {Γij| Hij ≠ 0}. To obtain these selected 
elements, we need to compute the corresponding elements of 
(H −  (zl + μ)S)−1 for all zl. We emphasize that we compute 
the selected elements of the density matrix because only these 
elements are needed to compute physical quantities such as 
charge density, energy and forces, due to the localized char-
acter of the basis set. The computed selected elements of the 
density matrix are accurate, and should be regarded as if we 
performed a conventional O N( )3  calculation first, and then 
only kept the corresponding selected elements of the density 
matrix. In principle we could retrieve any matrix element of 
the density matrix, simply by enlarging the set of ‘selected 
elements’. This process is fundamentally different from the 
usage of the ‘near-sightedness’ approximation, which throws 
away the information of the density matrix beyond the trunca-
tion region.

The recently developed selected inversion method [12, 13] 
provides an efficient way of computing the selected elements 
of an inverse matrix. For a (complex) symmetric matrix of the 
form A = H − zS, the selected inversion algorithm first con-
structs an LDLT factorization of A, where L is a block lower 
triangular matrix called the Cholesky factor, and D is a block 
diagonal matrix. The computational scaling of the selected 
inversion algorithm is only proportional to the number of 
nonzero elements in the Cholesky factor L, which is O N( ) for 
quasi-1D systems, O N( )1.5  for quasi-2D systems, and O N( )2  
for 3D bulk systems, thus achieving universal asymptotic 
improvement over the diagonalization method for systems 
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of all dimensions. It should be noted that the selected inver-
sion algorithm is an exact method for computing selected ele-
ments of A−1 if exact arithmetic is employed, and in practice 
the only source of error originates from the roundoff error. In 
particular, the selected inversion algorithm does not rely on 
any localization property of A−1.

In addition to computing the charge density at a reduced 
computational complexity in each SCF iteration, we can 
also use this pole-expansion and selected-inversion (PEXSI) 
technique to compute the free energy Ftot and the atomic 
forces FI efficiently without diagonalizing the Kohn–Sham 
Hamiltonian. It follows from the derivation in [14] that

F F ∫∫
∫

Γ μ ρ ρ ρ

ρ ρ

= + −
∣ − ∣

+

−

S N
x y

x y
x y E

V x x

Tr[ ]
1

2

( ) ( )
d d [ ]

[ ] ( ) d ,

etot xc

xc

� (9)

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

F
F

R

H

R

S

R
Tr Tr .I

I I

E

I

tot Γ Γ= − ∂
∂

= − ∂
∂

+ ∂
∂

� (10)

where the energy and free-energy density matrices ΓE and FΓ  
are given by pole expansions with the same poles as those 
used for computing the charge density:

F
F

∑Γ
ω

μ
=

− += H z S
Im

( )
.E

l

P
l
E

l

,

1

,

� (11)

Since the trace terms in (9) and (10) require only the (i, j)th 
entries of FΓE,  for (i, j) satisfying Sij≠ 0 or Hij≠ 0, the needed 
elements of the energy-density matrices can be computed 
without additional complexity.

2.2.  Massively parallel PEXSI method

In addition to its favorable asymptotic complexity, the PEXSI 
method is also inherently more scalable than the standard 
approach based on matrix diagonalization when it is imple-
mented on a parallel computer. The parallelism in PEXSI 
exists at two levels. First, the selected inversions associated 
with different poles (usually on the order of 40 ∼ 60) are com-
pletely independent. Second, each selected inversion itself can 
be parallelized by using the parallel selected inversion method 
called PSelInv [15].

A parallel selected inversion consists of the following 
steps:

	 (a)	The rows and columns of the matrices H and S are reor-
dered to reduce the number of nonzeros in the triangular 
factor of the LDLT decomposition of H − z S.

	 (b)	A parallel symbolic factorization of H − z S is performed to 
identify the location of the nonzero matrix elements in L.

	 (c)	The numerical LDLT decomposition (or equivalent LU 
decomposition) of H − zS is performed.

	(d)	The desired selected elements of (H − z S)−1 are computed 
from L and D.

Step 1 can be performed in parallel by using the 
ParMETIS [32] or the PT-Scotch [33] software pack-
ages. Its cost is much smaller compared to the numerical 

factorization, and only needs to be done once. Although 
for symmetric matrices only LDLT factorization is needed, 
the PEXSI package currently use the SuperLU_DIST soft-
ware package [34] to perform steps 2 and 3 in parallel with 
LU factorization. The LU factorization contains equivalent 
information as in LDLT factorization but can be twice as 
expensive in the worst case due to the lack of usage of the 
symmetry property of the matrix.

PEXSI and PSelInv has an independent data structure, and 
can be interfaced with other sparse direct solvers.

The cost of symbolic factorization in Step 2 is usually 
much lower than the numerical factorization. The numerical 
factorization procedure can be described in terms of the tra-
versal of a tree called the elimination tree. Each node of the 
tree corresponds to a block of continuous columns of H − zS. 
A node R is the parent of a node J  if and only if

R I J I J{ }Lmin     is a nonzero block .,= > ∣� (12)

In SuperLU_DIST, each node is distributed among a subset of 
processors block cyclically. The traversal of the elimination 
tree proceeds from the leaves towards the root. The update of 
I  is performed in parallel on a subset of processors assigned 
to I  and its children nodes, and the main operations involved 
in the update are a number of dense matrix-matrix multiplica-
tions. In addition to parallelism within the update of a super-
node, additional concurrency can be exploited in the traversal 
of different branches of the elimination tree for updating dif-
ferent supernodes.

All of these techniques can be used in Step 4 to compute 
selected elements of (H − zS)−1. In this step, the elimination 
tree is traversed from the root down towards the leaves. As 
each node is traversed, selected elements of (H − zS)−1 within 
the columns that are mapped to that node are computed 
through a number of dense matrix-matrix multiplications. 
Communication is needed among processors that are mapped 
to the node and its ancestors. Multiple nodes belonging to 
different branches of the elimination tree can be traversed 
simultaneously if the update of these nodes do not involve 
communications with the same ancestor.

For sufficiently large problems, SuperLU_DIST can 
achieve substantial speedup in the numerical factorization 
when hundreds to thousands of processors are used. Similar 
or better speedup factors can be observed when selected ele-
ments of (H − zS)−1 are computed from the distributed L and 
D factors. It has been shown that for large matrices a single 
selected inversion can scale to 4096 cores, and if 40 poles 
are used in the pole expansion of the Fermi-Dirac function, 
the total number of computational cores that can be efficiently 
utilized by the parallel PEXSI method is 40 × 4096 ≈ 160 000. 
We will give some more concrete examples in section  3 to 
demonstrate the performance of our implementation of the 
parallel PEXSI algorithm.

Compared to PEXSI, it is generally difficult to efficiently 
use that many computational cores in a dense matrix calcu-
lation algorithm such as those implemented in ScaLAPACK. 
The main bottleneck of the computation using ScaLAPACK 
is the reduction of a dense matrix to a tridiagonal matrix and 
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the back transformation of the eigenvectors of a tridiagonal 
matrix, which are inherently sequential. Moreover, the cost 
of the diagonalization method scales cubically with respect to 
the matrix dimension. This limits the size of the matrix that 
can be handled by ScaLAPACK, as well as the parallel scala-
bility on massively parallel computers. Although some recent 
progress has been made to make these transformations more 
efficient [35], making diagonalization scalable on more than 
tens of thousands of cores remains a challenging task.

2.3.  Determination of the chemical potential

The chemical potential μ required in the pole expansion (8) is 
not known a priori. Its value must in general be determined so 
that the total number of electrons is appropriate:

̂μ γ ΓΦ Φ Γ= = = =βN N S( ) Tr[ ] Tr[ ] Tr[ ] .e
T� (13)

As the right-hand-side is a non-decreasing function of μ, the 
chemical potential can be efficiently obtained by Newton’s 
method, maybe combined with extra safeguards such as bisec-
tion. The required derivative N′β(μ) can be computed with very 
little extra cost using the pole expansion of the derivative of 
the Fermi-Dirac distribution f′β (ε  −  μ), which can be con-
structed, for the reasons illustrated in [14], by using the same 
shifts zl as those in (6):

μ Γ′ =βN S( ) Tr[ ] ,d� (14)

∑Γ
ω

μ
=  

− += H z S
Im

( )
.d

l

P
l
d

l1

� (15)

When Newton’s method is used, the convergence of μ 
is rapid near the correct chemical potential. However, the 
standard Newton’s method may not be robust enough when 
the initial guess is far away from the correct chemical poten-
tial. It may give, for example, too large a correction when 
N′β (μ) is close to zero, as when μ is near the edge or in the 
middle of a band gap.

One way to overcome the above difficulty is to use an 
approximation to the function Nβ (ε) to narrow down the 
region in which the correct μ must lie. This function can 
be seen effectively as a (temperature smeared) cumulative 
density of states, counting the number of eigenvalues in the 
interval (−∞, ε).

We can evaluate N∞(ε), its zero-temperature limit, without 
computing any eigenvalues of (H, S). Instead, we perform a 
matrix decomposition of the shifted matrix H − εS = LDLT, 
where L is unit lower triangular and D is diagonal. It fol-
lows from Sylvester’s law of inertia [36], which states that 
the inertia (the number of negative, zero and positive eigen-
values) of a real symmetric matrix does not change under a 
congruent transform, that D has the same inertia as that of 
H − εS. Hence, we can obtain N∞(ε) by simply counting the 
number of negative entries in D. Note that the matrix decom-
position H − εS = LDLT can be computed efficiently by using a 
sparse LDLT or LU factorization in real arithmetic. It requires 
fewer floating point operations than the complex arithmetic 
direct sparse factorization used in PEXSI.

To estimate Nβ (μ) for a finite β, we use the identity

∫μ ε μ ε= −β β
−∞

∞
∞N f N( ) ( ) d ( ) ,� (16)

and perform an integration by parts to obtain

∫μ ε μ ε ε= − ′ −β β
−∞

∞
∞N f N( ) ( ) ( ) d .� (17)

The integral in (17) can be evaluated numerically by sam-
pling f′β (ε − μ) and N∞(ε) at a number of quadrature points 
ε ={ }m m

Q
1 and performing a weighted sum of f′β (εm − μ)N∞(εm) 

for m = 1, ..., Q. The Q evaluations of ε∞ =N{ ( ) }m m
Q

1 can be 
performed simultaneously using the LDLT factorization-
based inertia counting procedure described above, with Q 
groups of processors. Since the derivative of the Fermi-Dirac 
function is sharply peaked, we can approximate Nβ (μ) in a 
given interval by sampling N∞(ε) in a slightly wider interval. 
Figure 1 shows the number of electrons at zero temperature 
N∞(ε) obtained from inertia counting procedure, and the 
interpolated finite temperature profile Nβ (ε) at 300 K for a 
DNA system (with finite gap) and a SiH system (with zero 
gap) near the Fermi energy.

While the finite temperature smearing effect is negligible 
for insulators at 300 K, it is more pronounced for metals and 
leads to a more smooth Nβ (ε) which is suitable for applying 
Newton’s method to find the chemical potential. On the other 
hand, the inertia counting procedure obtains the global profile 
of the cumulative density of states, and does not suffer from 
the problem of being trapped in intermediate band gaps.

This approximation to the function Nβ (ε) is then available 
for use in determining the approximate placement of the true 
μ by simple root finding: Nβ (μ) = Ne. In practice, we need to 
start from an interval which is large enough to contain the 
chemical potential. For systems with a gap, the interval should 
also contain the gap edges. In this case, two roots are sought: 
Nβ (εl) = Ne − δN and Nβ (εh) = Ne + δN, where δN is small, say 
0.1, and so εl and εh will be estimates of the band edges from 
which μ can be determined as μ = 1/2(εl+εh).

The fidelity of Nβ (ε), and thus the quality of the estimation 
of μ, depends on the density with which the interval can be 
sampled, which, with a fixed number Q of sampling points for 
N∞(ε), will increase as the interval is narrowed. In practice, 
the above procedure is repeated with progressively smaller 

Figure 1.  Number of electrons at zero temperature N∞(ε) (blue 
solid line), at 300 K Nβ (ε) (black line with circles), and exact 
number of electrons Ne (red dashed line) for (a) DNA-1 (b) SiH. 
(unit of ε: Hartree).
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intervals until either the μ estimate stabilizes or the size of 
the interval is small enough. Unless the original interval is 
very large, 2 or 3 inertia counts are enough to provide an 
adequate μ from which to start the PEXSI process, and the 
number of inertia counts can be one or even zero (i.e. the 
inertia counting procedure is turned off) in subsequent SCF 
iterations. Newton’s method in the solver then takes over for 
the final refining of μ.

The hybrid procedure of inertia counting and Newton’s 
method is efficient and robust for both insulating and metallic 
systems. This will be further demonstrated in section 3.

2.4.  Calculation of density of states and localized density 
of states

The density of states g(ε) is defined as

∑ε δ ε ε= −g( ) 2 ( ) .
i

i� (18)

The factor of two comes from spin degeneracy. As advanced in 
the previous section, the cumulative density of states (CDOS)

∫ε ε ε= ′ ′
ε

−∞
C g( ) ( ) d .� (19)

is exactly the function N∞(ε) discussed there. To evaluate g(ε), 
we sample N∞(ε) at a set of {εl} using the inertia counting 
procedure, and use an appropriate interpolation scheme to 
approximate N∞(ε) for other values of ε. The approximation 
to the DOS is then obtained by numerical differentiation. We 
remark that inertia counting is not the only diagonalization-
free method for computing the DOS. Other methods that make 
use of matrix vector multiplications only are also possible (see 
e.g. a recent review [37]).

Another physical quantity that can be easily approxi-
mated via selected inversion is the localized density of states 
(LDOS), defined as

∑ε δ ε ε ψ= − ∣ ∣g x x( , ) 2 ( ) ( ) .
i

i i
2

� (20)

and representing in fact the contribution to the charge density 
of the states with eigenvalues in the vicinity of ε, as filtered 
by the δ function.

When a finite basis set Φ is used, the LDOS can be repre-
sented as

ε Φ δ ε Ξ Φ= −g x x C C x( , ) 2 ( ) ( ) ( ) .T T� (21)

where C is a matrix of the coefficients of the expansion in Φ 
of the orbitals ψi(x), and Ξ is a diagonal matrix of the eigen-
values. It follows from the Sokhotski–Plemelj formula [38]

ε η
ε πδ ε

+
= −

η→ +
lim

1

i
PV(1 / ) i ( ) ,

0
� (22)

that

δ ε ε
π ε η ε

− = −  
+ −η→ +

( ) lim
1

Im
1

i
,i

i0
� (23)

where symbol PV in (22) stands for the Cauchy principal 
value.

Combining equations  (21) and (23), we obtain the fol-
lowing alternative expression for the LDOS:

g x x C C x

x H S x

( , )
2

lim ( ) ( i ) ( )

2
lim ( ) [ ( i ) ] ( ) .

T T

T

0

1

0

1

ε
π

Φ ε η Ξ Φ

π
Φ ε η Φ

= − + −

= − +

η

η

→ +
−

→ +
−

� (24)

Note that equation  (24) allows us to compute the LDOS 
without using any eigenvalue or eigenvector. In practice, we 
take η to be a small positive number, and the local DOS can 
be approximated by

∑ε
π

φ φ ε η≈ − + −g x x x H S( , )
2

( ) ( ) [ ( i ) ] ,
ij

i j ij
1

� (25)

which is similar to the computation of the electron density. 
Again only the selected elements of the matrix [H − (ε+iη) S]−1 
are needed for the computation of the LDOS for each ε, 
and the selected elements can be obtained efficiently by the 
PSelInv procedure.

2.5.  Interface to SIESTA and heuristics for enhancing  
the efficiency

SIESTA is a density functional theory code which uses finite-
range atomic orbitals to discretize the Kohn–Sham problem 
[29], and thus handles internally sparse H, S, and single-
particle density matrices. SIESTA is therefore well suited to 
implement the PEXSI method along the lines explained above.

The PEXSI method can be directly integrated into SIESTA 
as a new kind of electronic-structure solver. Conceptually, the 
interface between SIESTA and PEXSI is straightforward. The 
existing SIESTA framework takes care of setting up the basis 
set and of constructing the sparse H and S matrices at each 
iteration of the self-consistent-field (SCF) cycle. H and S are 
passed to the PEXSI module, which returns the density matrix 
Γ and, optionally, the energy-density matrix ΓE (needed for 
the calculation of forces) and the FΓ  matrix that can be used 
to estimate the electronic entropy. SIESTA then computes the 
charge density to generate a new Hamiltonian to continue the 
cycle, until convergence is achieved. Energies and forces are 
computed as needed.

The details of the interface are controlled by a number of 
parameters which provide flexibility to the user, especially in 
regard to the bracketing and tolerances involved in the determi-
nation of the chemical potential, and in the context of parallel 
computation. We list some of the more relevant parameters in 
table 1, but we should note that even finer control is possible 
by other, more specialized parameters.

The initial interval [μlb, μub] should be large enough to 
contain the true chemical potential. If it does not, the code 
will automatically expand it until μ is properly bracketed, 
but it is obviously more efficient to start the process with 
an appropriate interval, even if it is relatively large, and use 
the program’s refining features without the need for back-
tracking. Note that, due to the implicit reference energy used 
by SIESTA, μ is typically negative and within a Rydberg of 
zero, so the specification of [μlb, μub] should not be a problem 
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in practice even when nothing is known about the electronic 
structure of the system. In fact the program can choose an 
appropriately wide starting interval if the user does not indi-
cate one.

The bracketing interval can be refined by the use of the 
inertia counting procedure detailed in section  2.3. This is 
particularly important in the first few SCF steps in which 
the approximate electron density (and consequently the 
Hamiltonian) is far from converged. The parameter nIC con-
trols directly the number of SCF steps for which this proce-
dure is followed. Beyond those, the PEXSI solver is directly 
invoked without further refinement. There is also the possi-
bility of linking the use of inertia counting refinement to the 
convergence level of the calculation.

Because the chemical potential tends to oscillate in the first 
few SCF steps, a completely robust method should, in prin-
ciple, search for a bracket afresh at every step, starting from 
a sufficiently wide interval. However, it is wasteful to com-
pletely ignore the previous bracketing when the SCF cycle 
reaches a more stable region, so we developed a heuristic to 
allow SIESTA-PEXSI to reuse the bracket determined in the 
previous SCF step, under various conditions related to the 
convergence level and to whether or not inertia counting is 
still used as a safeguard. We set the μ search interval for a 
new SCF step to be slightly larger (by a value that can also be 
controlled) than the final μ interval used in the previous SCF 
step. For some systems, an estimation of the change in the 
band-structure energy caused by the change in H can be used 
to shift the bracket across iterations. If μ ever falls out of the 
bracketing interval, the algorithm recovers automatically by 
expanding the interval appropriately.

When the search interval is deemed appropriate, we invoke 
the PEXSI solver with a starting μ equal to the mid-point of 
the interval, and use the solver’s built-in Newton’s method 
to refine μ until the error in the total number of electrons is 
below tolNE.

The tolerance in the computed number of electrons tolNE 
is a key parameter of the PEXSI module, and it should be 
set to an appropriately small value to guarantee the necessary 
accuracy in the results. But there is no advantage in setting the 
tolerance too low in the early stages of the SCF cycle. Hence, 
the favored mode of operation of SIESTA-PEXSI is to use an 
on-the-fly tolerance level which ranges from a coarse value at 
the start and progressively (in tandem with the reduction of a 
typical convergence-level metric, which can also control the 

coarseness of the bracketing) decreases towards the desired 
fine level tolNE. Typically, no more than 3–5 PEXSI solver 
iterations are needed to achieve a high accuracy in Ne, and 
in practice the use of an adaptive tolerance level with proper 
bracketing means that just one or at most two solver iterations 
are enough for most of the steps in a complete SCF cycle. 
For gapped systems, with the starting μ well into the gap, the 
solver iteration can be turned off without affecting the accu-
racy of the results, leading to significant savings.

The total cost of a SCF cycle includes the LDLT factori-
zations required in the inertia counting bracket refinements, 
in addition to the cost of the PEXSI solver. As the cost of 
an inertia counting invocation is typically much lower than 
a solver iteration, it is clear that a strategy that uses at least 
a few inertia counting steps to properly bracket μ before 
invoking the solver will be in fact cheaper than one which 
incurs the extra costs associated with a bad guess of μ. The 
overall cost of the algorithm would depend on the uniformity 
of the convergence to self-consistency and on the electronic 
structure of the system (i.e, whether or not it has a gap). We 
will report the actual cost of μ search for a variety of systems 
in the next section.

The design of SIESTA-PEXSI provides some flexibility 
to users in terms of the usage of computational resources. If 
the user’s goal is a low time-to-solution on a large machine, 
the number of processors per pole ppp should be increased as 
much as possible. The overall number of processors Np should 
be set to P  ×  ppp, where P is the number of poles, to achieve 
complete parallelization over poles. If the goal is to minimize 
the number of processors involved in the computation, then 
ppp should be set to the minimum number that allows the 
problem to fit in memory. It should be noted that the memory 
requirements of the PEXSI approach are significantly lower 
than those of the diagonalization-based algorithm, as the rel-
evant matrices are handled in their original sparse form, and 
not converted to dense form as in ScaLAPACK. As the par-
allel efficiency over the number of poles is nearly perfect, the 
total cost (time  ×  Np) does not depend on the total number 
of processors used, so the minimum-cost strategy can be used 
with a useful range of machine sizes: from total parallelization 
over poles in medium-to-large machines, to serial calculation 
of poles in small machines.

The number of processors that can be profitably used by 
the PEXSI module is typically larger than the number of pro-
cessors that the non-solver part of SIESTA needs (as it is itself 
very efficient, having been coded for essentially O(N) opera-
tion). Hence the non-solver operations in the SIESTA side 
use a subset of the processors available, specified by the np0 
parameter in table 1. Appropriate logic is in place to orches-
trate the data movement and control flow.

3.  Numerical results

In this section  we report the performance and accuracy 
achieved by the massively parallel SIESTA-PEXSI method 
for computing the ground state energy and atomic forces of 
several systems. We also show some other capabilities of 

Table 1.  Main SIESTA-PEXSI parameters

Parameter Purpose

[μlb, μub] Initial guess of the lower and upper bounds of the 
chemical potential μ

nIC The number of SCF steps in which inertial counting 
is used to narrow down the interval in which μ lies.

tolNE Tolerance on number of electrons
T Electronic temperature
P Number of poles
ppp Number of processors used per pole
np0 The number of processors used for non-PEXSI 

operations
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SIESTA-PEXSI that may be useful for characterizing the 
electronic properties of materials.

To demonstrate that SIESTA-PEXSI can handle different 
types of systems, we choose five different test problems for 
our numerical experiments, including insulating, semi-metallic, 
and metallic systems, and covering all the relevant dimensions. 
Table 2 gives a brief description of each system. The atomic con-
figurations of DNA-4, C-BN2.3 and H2O-8 are given in figure 2.

Our calculations were performed on the Edison system at 
the National Energy Research Scientific Computing (NERSC) 
center. Each node consists of two twelve-core Intel ‘Ivy 
Bridge’ 2.4  GHz processors and has 64 gigabytes (GB) of 
DDR3 1866 MHz memory.

The number of atoms in the various instances of the prob-
lems listed on table  2, the sizes of unit cells, as well as the 
matrix sizes and the sparsity (i.e., the percentage of nonzero 
elements) of the corresponding H matrices and their L and U 
factors are given in table 3. Note that the number of nonzero 
elements in L+U is the same as the number of nonzero elements 
in L+D+LT if an equivalent LDLT factorization is to be used.

We use DNA-a to denote a DNA strand with a unit cells, 
C-BNα to denote C-BN layers in which the Boron-Nitride 
layer is rotated by α degrees relative to the graphene sheet 
(for this set of systems a lower α implies a larger system size), 
and H2O-n to denote a box of liquid water with n unit cells. 
The various instances of DNA, C-BN, and H2O are used to 
test the performance (including parallel scaling) and accuracy 
of SIESTA-PEXSI, while the smaller Al and SiH systems are 
used mainly to showcase the accuracy of SIESTA-PEXSI and 
the effectiveness of the hybrid inertia counting plus Newton’s 
method for finding the correct chemical potential for metallic 
systems.

In all cases we use a DZP basis set, which results in 13 
orbitals per atom for C, N, B, O, and P, and 5 orbitals per 
H atom.

3.1.  Accuracy of the SIESTA-PEXSI approach

We now report the accuracy of SIESTA-PEXSI in terms of the 
computed energies and atomic forces. We measure the accu-
racy of the energy by examining the difference errE between 
the free energy computed by SIESTA-PEXSI and that com-
puted by the standard SIESTA approach in which free ener-
gies are obtained from density matrices constructed from the 
eigenvectors of (H, S). A similar metric is used for assessing 
the accuracy of atomic forces. We denote by errF the max-
imum force difference among all atoms.

In table 4 we list the differences of energy per atom and 
force for fully converged calculations for a number of test 
problems with indication of the number of poles used in the 

Table 2.  Test problems used in numerical experiments.

Name Type Description

DNA 1D insulating DNA. The basic unit (715 atoms) contains two base pairs of an A-DNA double helix. Replicating this 
unit along the axis of rotation results in several instances of this problem of different sizes, with quasi-
one-dimensional character. The largest instance considered contains 25 units and is 76 nanometers long.

C-BN 2D semi-metallic A layer of boron nitride (BN) on top of a graphene sheet. Several instances of this problem are 
generated by varying the orientation of the BN sheet relative to the graphene layer within an 
appropriate periodic cell. The largest example considered of this quasi-two-dimensional system has 
12 700 atoms.

H2O 3D insulating Liquid water. The basic repeating unit contains 64 molecules, and is generated by taking a snapshot of 
a molecular-dynamics run with the TIP4P force field. Appropriate supercells can be generated, with the 
largest having 8000 molecules, or 24 000 atoms.

Al 3D metallic A bulk Al system generated from a 8 × 8 × 8 supercell of the primitive FCC unit cell. The positions 
of the atoms are perturbed by small random displacements to break the symmetry. This is a typical 
metallic system.

SiH 3D, special A bulk Si system with 64 atoms, with an H interstitial impurity. The Fermi level in this system is 
pinned by the position of an H-derived level within the gap.

Table 3.  Characteristics of the test examples in terms of the number 
of atoms, physical dimension of each system, the corresponding 
size of the Hamiltonian H, and the percentage of nonzero elements 
in H and in the L and U factors. Also given is the length scale l, 
which is, in the case of DNA, the length of the cell in the direction 
of rotation axis of the strand, for C-BN the length of a side of the 
unit cell, and for H2O the side length of the cube.

Example Atoms N sH (%) sLU (%) l (nm)

DNA-1 715 7183 6.8 23 3.1
DNA-4 2860 28732 1.7 6.2 12
DNA-9 6435 64647 0.75 2.9 28
DNA-16 11440 114928 0.42 1.7 49
DNA-25 17875 179575 0.27 1.1 76
C-BN2.3 1988 25844 5.9 36 5.5
C-BN1.43 3874 50362 3.0 24 7.7
C-BN0.57 7988 103844 1.5 15 11
C-BN0.00 12770 166010 0.91 11 14
H2O-8 1536 11776 2.3 28 2.5
H2O-27 5184 39744 0.69 18 3.7
H2O-64 12288 94208 0.29 12 5.0
H2O-125 24000 184000 0.15 8.4 6.2
Al 512 6656 36 94 1.6
SiH 65 833 74 97 1.1

Table 4.  Deviations of the energy and forces obtained from 
SIESTA-PEXSI with respect to those from a diagonalization-based 
calculation.

System P tolNE errE(eV/atom) errF(eV Å−1)

DNA-1 50 10−4 2 × 10−8 2 × 10−6

C-BN2.3 40 10−3 3 × 10−6 2 × 10−5

H2O-8 40 10−4 3 × 10−6 6 × 10−5

Al 40 10−3 6 × 10−6 2 × 10−6

SiH 40 10−3 10−4 7 × 10−5

SiH 60 10−4 6 × 10−6 7 × 10−5
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pole expansion and of the target tolerance for electron count 
used in the chemical potential search.

In all our tests we set the electronic temperature to 300 K.
As we can see from this table, the errors in the energy 

computed by SIESTA-PEXSI are typically of the order of 
10−6 eV per atom. The maximum error in atomic forces is of 
the order of 10−5 eV Å−1. Both are sufficiently small for most 
applications, and can be achieved with a modest number of 
poles and reasonable accuracy tolerance on μ. For SiH, P=60 
and tolne = 10−4 bring the error in the energy per atom to the 
μ eV level. In this more delicate case, one needs the extra 
accuracy to locate precisely the Fermi level, which is pinned 
in a gap state.

3.2.  Efficiency of the SIESTA-PEXSI approach

We now report the performance of SIESTA-PEXSI in com-
parison to that of the standard SIESTA approach in which 
density matrices are obtained from the eigenvectors of (H, 
S) computed by the ScaLAPACK diagonalization proce-
dure based on the suite of subroutines pdpotrf, pdsyngst, 
pdsyevd/pdsyevx, and pdtrsm for transformation to a stan-
dard eigenvalue problem, solution, and back transformation, 
respectively.

We use instances of the DNA, C-BN and H2O problems to 
test both the strong scaling of the solver, which is measured 
by the change in wallclock time as a function of the number 
of processors used to solve a problem of fixed size, and the 
weak scaling, which is measured by the change of wall clock 
time as we increase in tandem both the problem size and the 
number of processors used in the computation.

Our timing measurements refer to a single SCF step. For 
completeness they include also the time used to setup the 
Hamiltonian and the overlap matrices, but this is in any case a 
very small fraction of the total (<5%) for these systems. The 
symbolic factorization is inexpensive compared to numerical 
factorization and selected inversion, and can be computed 
once for the entire SCF iteration using only the sparsity struc-
ture of H and S, and the time for symbolic factorization is 
excluded in the timings. It should be noted that the data for 
the diagonalization-based method include the time involved 
in constructing the density and energy-density matrices from 
the eigenvectors, needed at each SCF step.

The cost of the diagonalization method is determined 
directly by H and S and the internal, basically hardwired 
operating parameters in ScaLAPACK. The chemical poten-
tial is computed from the list of eigenvalues. In contrast, 
SIESTA-PEXSI determines the chemical potential itera-
tively in each SCF step, and thus the computational load 
depends on the actual sequence of bracketing and refining 
of μ followed. In order to provide an appropriate reference 
with which to compare the diagonalization-based results, 
our SIESTA-PEXSI timings include one (H2O) or two 
(DNA and C-BN) inertia counting cycles to narrow down 
the search interval for the chemical potential and one call of 
the PEXSI solver.

As mentioned above, one or two calls of the PEXSI solver 
are typically needed for an appropriately precise computation 

of μ as the SCF cycle unfolds. Given a good strategy for 
keeping a tight bracketing of μ, the final steps in the cycle 
close to convergence are likely to need just one call, and the 
same behavior is expected for most of the cycle when a good 
guess of the starting electronic structure can be provided, as in 
molecular-dynamics or geometry-optimization simulation. It 
should also be noted that later steps in the SCF cycle will not 
need the inertia counting procedure. Our timings for SIESTA-
PEXSI are thus representative on average of the computa-
tional effort expected for a given system. In some cases, the 
actual effort will be higher by a small factor, and in others (as 
in systems with a gap) might even be smaller.

In figure 3, we plot the wallclock time required to complete 
the first SCF step as a function of the total number of proces-
sors used, for both SIESTA-PEXSI and the standard diago-
nalization method in SIESTA, when they are used to solve 
the DNA-25, C-BN0.00, and H2O-125 problems. In our experi-
ments we used P = 40 poles in the pole expansion approxi-
mation of the Fermi-Dirac function and varying degrees of 
concurrency over poles: np = k  ×  ppp, where k ∈ {1, 2, 5, 10, 
20, 40}. When k = 1, we simply loop serially over poles and 
perform parallel selected inversion on ppp processors at each 
pole. When k = P = 40, full concurrency is achieved. For each 
test problem we connect all measurements that correspond to 
the same ppp with a line. The nearly perfect scaling exhibited 
by these lines reflects the embarrassingly parallel nature of 
pole expansion. The further reduction in the wallclock time 

Figure 2.  The atomic configuration of (a) the DNA-4 system 
(b) the C-BN2.3 system and (c) the H2O-8 system.

(a)

(b)

(c)
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upon increasing ppp depends for a given system on its size 
and the degree of sparsity of the Cholesky factor L (or in L and 
U factors in the LU factorization).

We observe that increasing ppp from 64 to 100 leads to 
additional reduction in wallclock time by a factor of 1.2 for 
the DNA-25 problem. The L matrix of DNA is very sparse. 
The L matrices of C-BN and H2O are less sparse, and more 

processors can be effectively used to reduce the wallclock 
time of selected inversion. We observe that increasing ppp 
from 144 to 400 leads to an additional speedup of 1.8 for 
C-BN0.00, and of 2 for H2O-125.

In figure  3, we also plot the wallclock time used by the 
standard diagonalization-based procedure. The computational 
complexity of diagonalization does not depend on the spar-
sity of the H and S matrices but only on their size, which is 
similar for all three systems, and therefore the performance 
of the method on these problems is comparable. The diago-
nalization curves in figure 3 start at around 1000 processors 
because this is the minimum number that would allow these 
problems to fit in memory, as the dense form of H and S is 
needed by the algorithm. A reasonably good parallel scaling 
can be observed up to 4000 processors, but the performance 
degrades after that.

We can also see that when around 1000 processors are 
used in the computation, SIESTA-PEXSI is approximately 
one order of magnitude faster than the diagonalization 
method for the C-BN0.0 and H2O-125 problems, and approx-
imately two orders of magnitude faster for the DNA-25 
problem. The performance gap between SIESTA-PEXSI and 
diagonalization widens as the number of processors used in 
the computation increases. This is due to the relatively lim-
ited scalability of ScaLAPACK, and to the fact that PEXSI 
can more efficiently utilize a large number of cores thanks to 
the two-level parallelism.

Even though there is a clear advantage of SIESTA-PEXSI 
in being able to use large numbers of processors, we should 
point out that its smaller memory footprint means that it can 
operate also with relatively small numbers of processors. Thus 
on Edison we can solve the DNA-25 and C-BN0.00 problems 
by SIESTA-PEXSI with as few as 144 processors for C-BN0.00 
and 64 processors for DNA-25. For the DNA-25 problem, 
running SIESTA-PEXSI on 64 processors is still more than 
four times faster than running the standard diagonalization 
procedure on 5120 processors.

To measure the weak scaling of SIESTA-PEXSI, and com-
pare it with that of the diagonalization-based procedure, we 
ran both solvers on multiple instances of the DNA, C-BN 
and H2O systems with different sizes. We adjust the number 
of processors so that it is approximately proportional to the 
dimension of the H and S matrices, i.e., as the problem size 
increases, we use more processors to solve the larger problem. 
For diagonalization, the number of processes for each system 
size are chosen so that there are approximately 40–50 orbitals 
per processor.

For PEXSI, in all weak scaling tests, we use P = 40 poles 
and fully exploit the concurrency at the pole expansion level, 
i.e., the selected inversions associated with different poles are 
carried out simultaneously on different groups of ppp proces-
sors, for all sizes. This means that the increase in processor 
count with problem size is achieved with progressively higher 
ppp values.

In table 5 we report the wallclock time titer used to complete 
the first SCF step, and use the titer for the smallest size in each 
DNA, C-BN and H2O series as the basis for measuring weak 
scaling. If we increase the number of processors by a factor of 

Figure 3.  Parallel strong scaling of SIESTA-PEXSI and the 
diagonalization approach when they are applied to DNA-25, 
C-BN0.00 and H2O-125 problems.

(a) DNA-25

(b) C-BN0.00

(c) H2O-125
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α when the problem size is increased by a factor of β, the ideal 
weak scaling factor (in terms of the wall clock time) is

β
α=s ,w

for DNA problems due to the quasi-1D nature. The ideal weak 

scaling factors are 
β
α
3/2

 and 
β
α

2
 for C-BN and H2O systems, 

due to the quasi-2D and 3D nature of the systems, respec-
tively. Table 5 shows the ideal time for the PEXSI runs com-
puted using those ideal weak scaling factors for each instance 
tideal = t0 × sw, where t0 is the wallclock time for the smallest 
instance in each series. The weak-scaling for diagonalization 

is close to the expected cubic scaling sw

3β
α= , and the corre-

sponding ideal time is not shown for simplicity.
Another way to study the weak scaling of the SIESTA-

PEXSI approach is to examine how the total computational 
cost, which is the product of the wallclock time and the number 
of processors (i.e., the first two columns for each method in 
table 5), changes with respect to the problem size. For perfect 
weak scaling, the change in cost should match that predicted 
by the computational complexity of the sequential algorithm. 
We plot the cost involved in solving each instance of the DNA, 
C-BN and H2O problems in Figure 5, which shows that the 
data for each series falls approximately on a line. The (fitted) 
slope of the cost for DNA, which includes both factorization 
and selected inversion, is observed to be approximately 1.3, 
higher than the O(N) ideal scaling for quasi-1D systems.

For C-BN the slope of the fitting line is approximately 1.7, 
which is a bit larger than the O(N1.5) ideal scaling for quasi-
2D systems. The slope of the line for the H2O series is approx-
imately 2.18, again slightly larger than the expected O(N2) 
scaling for 3D systems. The observed degradation in parallel 
scaling (relatively larger for DNA) comes about because nei-
ther selected inversion nor factorization (which has the same 
asymptotic complexity) can scale perfectly due to the com-
plicated data communication and task dependency involved.

It should be noted also that the ideal weak-scaling data in 
table 5 depends on the size and processor count chosen for the 
smallest instance of each series. We have already mentioned 
that all systems considered in our timings have been run with 

complete parallelization over poles. This limits the gains from 
increasing processor counts to the actual efficiency of selected-
inversion and factorization within a pole, as a function of ppp. 
Roughly, the computational load for a given instance will 
depend on the number of non-zeros in the Cholesky factor 
L, which is plotted as a function of matrix size in figure 4. It 
can be seen that C-BN has the highest such non-zero density, 
closely followed by H2O. This is because C-BN has a more 
densely packed structure than H2O, and thus a larger prefactor, 
but there is a clear trend for a faster increase in the number 
of non-zeros in the Cholesky factor for H2O, in agreement 
with the asymptotic complexity of 3D and quasi-2D systems, 
respectively. The DNA system has significantly fewer non-zero 
values in L for a given size of H, and so it can use a relatively 
smaller number of processors per pole efficiently.

We can also see from figure 5 that the crossover point at 
which SIESTA-PEXSI becomes more efficient (in terms of 
cost) than the standard diagonalization procedure in SIESTA 
is around matrix dimension Nx  =  7000 (∼ 700 atoms) for 

Table 5.  Configurations and times for the first SCF iteration, as 
presented in figure 5.

Diagonalization Siesta-PEXSI

Example Proc. titer (s) Proc. titer (s) tideal (s)

DNA-1 128 7.1 360 3.8 3.8
DNA-4 512 123 1000 6.8 5.5
DNA-9 1280 606 1960 10.9 6.3
DNA-16 2560 2005 2560 16.6 8.6
DNA-25 4096 4118 4000 24.4 8.6
C-BN2.3 720 96.5 1440 69.2 69.2
C-BN1.43 1280 393 2560 136 105
C-BN0.57 2560 1422 5680 188 140
C-BN0.00 4096 3529 10 240 248 157
H2O-8 256 16.8 640 12.3 12.3
H2O-27 720 272 2560 47.3 35.0
H2O-64 2048 1375 5760 126 87.5
H2O-125 4096 5641 10 240 314 188

Figure 4.  Number of non-zeros in the Cholesky factor of H for the 
systems shown on figure 5, as a function of the dimension of H.
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Figure 5.  Weak scaling based on computational cost (time  ×  
number of processors) for the first SCF step for the H2O, C-BN, 
and DNA examples. The points correspond to the various problem 
sizes as listed in table 3. The times for diagonalization show some 
variations due to differences in the construction of H and the 
building of the Γ matrix, and are represented by the gray stripe. The 
configurations and results can be found in more detail in table 5.
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the DNA problem, N = 50 000 (∼ 4000 atoms) for the C-BN 
problem and N = 40 000 (∼ 5000 atoms) for the H2O problem.

The actual orderings of the crossover points depend on the 
dimensionality (through the power of N in the scaling), and 
also on a prefactor which is system dependent.

Since more processors can be used efficiently, the advan-
tage of SIESTA-PEXSI in time-to-solution performance is 
even more pronounced than the benefit from the reduction of 
total work load, and is already evident for smaller systems, as 
can be seen in table 5.

The conclusions regarding the performance comparison 
between PEXSI and diagonalization, being based on the 
asymptotic scaling of the algorithm, remain largely valid 
even taking into account the efficiency improvements that 
can been obtained by refactoring some of the internals of 
ScaLAPACK [35].

3.3. The search for chemical potential

As we discussed in section  2.3, the current implementation 
of SIESTA-PEXSI uses a combination of an inertia counting 
bracketing technique and Newton’s method to determine 
the chemical potential μ that satisfies the nonlinear equa-
tion Nβ (μ) = Ne, where Nβ (μ) is defined in (13). In this sec-
tion, we demonstrate the effectiveness of this approach for 
both metallic and insulating systems.

The metallic example is the SiH system with 257 elec-
trons. Since our calculation is spin-restricted, the odd 
number of electrons is solely controlled through the frac-
tional occupation of the H-derived state in the gap. Any small 

perturbation of the chemical potential can change the number 
of electrons, and the perturbation is temperature dependent 
(we use 300 K). Despite the relatively small system size, this 
can be considered as the most difficult case for finding the 
chemical potential without having access to the eigenvalues. 
Figure  6 illustrates the number of inertia counting cycles 
and PEXSI solver steps needed to obtain a chemical poten-
tial that satisfies |Nβ (μ) −Ne | < 10−4 for the converged SiH 
system when using 60 poles. The calculation starts from a 
wide initial μ search interval of (−27.0, 0.0) eV, and uses an 
adaptive electron tolerance which starts at a coarse tolNe = 0.1 
and progressively tightens towards the target value of 10−4 as 
the deviation from self-consistency in the H matrix elements 
moves towards its tolerance target of 10−5 Ry. The number of 
inertia counting steps needed to narrow down the interval that 
contains the true chemical potential is roughly 2 ∼ 3 in the 
first few SCF steps.

After the 5th iteration, the inertia counting procedure is 
turned off. The number of PEXSI solver steps needed is at 
most 3 in the first few SCF steps, and it becomes 2 after the 6th 
SCF step. Figure 6 also shows the absolute error |Nβ (μ)−Ne| at 
each SCF step, which is always below the set tolerance.

Our test for insulating systems is the DNA-1 system with 
2442 electrons, at 300 K and using 50 poles. Figure 7 illus-
trates the number of inertia counting and PEXSI solver steps 
needed to reduce |Nβ (μ) −Ne| to a level below a final toler-
ance of 10−4, starting at a coarser tolerance of 1. The calcula-
tion also starts from a wide initial interval of (−27.0, 0.0) eV. 
Usually two inertia counting steps are needed in the first few 
SCF iterations. The second iteration requires one more due to 

Figure 6.  Convergence history in the SCF cycle for the SiH system. The top graph shows the time per SCF step and a breakdown into the 
number of inertia counting and PEXSI solver iteration (Newton iteration) steps. The bottom diagram draws the (adaptive) target tolerance 
and the actual error in the number of electrons at the end of each SCF step.
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a large jump in H. After the 5th iteration, the inertia counting 
procedure is completely turned off. Throughout the SCF 
cycle, which ends when the deviation from self-consistency 
in H is below 10−5 Ry, just one PEXSI solver call is needed to 
provide a solution with a number of electrons within the toler-
ance. This is because μ is kept within the gap by the brack-
eting procedure.

3.4.  DOS and LDOS

In section  2.4, we described how to use SIESTA-PEXSI to 
obtain spectral information of the atomistic system such as 

DOS and LDOS without computing eigenvalues and eigen-
vectors of (H, S). In figure 8(a) we plot the DOS obtained from 
the standard diagonalization method and the inertia counting 
procedure implemented in SIESTA-PEXSI for the C-BN1.43 
system near the Fermi level (‘Ef’). We observe nearly per-
fect agreement between the DOS curves obtained from these 
two approaches.

Figure 8(b) shows the DOS near the Fermi level for the 
DNA-25 system using both the inertia counting method and 
diagonalization. The usage of PEXSI for evaluating DOS 
without obtaining eigenvalues is also significant for systems 
at large size. For the DNA-25 system, using 64 ppp and 3200 

Figure 7.  Convergence history in the SCF cycle for the DNA-1 system. The top graph shows the time per SCF step and a breakdown 
into the number of inertia counting and PEXSI solver iteration (Newton iteration) steps. The bottom diagram draws the (adaptive) target 
tolerance and the actual error in the number of electrons at the end of each SCF step.

Figure 8.  DOS around the Fermi level for the 1.43 degree C-BN and DNA-25 systems. Figure 9 presents the LDOS for the SiH system for 
an energy interval of width 0.4 eV around the Fermi level, showing the state due to the added H atom in the bulk Si system.
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processors to evaluate 200 points in the DOS near the Fermi 
energy (each group of 64 processors evaluate 4 points of cumu-
lative DOS with inertia counting) only takes 34 s, while diago-
nalization using the same number of processors takes 4865 
seconds.  It should be noted that the performance of PEXSI 
can be further improved by simply using more cores: after the 
SCF converges, one can restart the calculation to compute the 
DOS using the converged density matrix, and use 12 800 pro-
cessors to compute 200 points in the DOS in parallel. In such 
case, the wall clock can be reduced to 9 seconds.

4.  Conclusion

We have combined the pole expansion and selected inver-
sion (PEXSI) technique with the SIESTA method for 
Kohn–Sham density functional theory (KDSFT) calcula-
tion. The resulting SIESTA-PEXSI method can efficiently 
use more than 10 000 processors, and is particularly suitable 
for performing large scale ab initio materials simulation on 
high performance parallel computers. The SIESTA-PEXSI 
method does not compute eigenvalues or eigenvectors of 
the Kohn–Sham Hamiltonian, and its accuracy is fully com-
parable to that obtained from the standard matrix diago-
nalization based SIESTA calculation for general systems, 
including insulating, semi-metallic, and metallic systems at 
low temperature.

The current implementation of SIESTA-PEXSI does not 
yet support spin-polarized systems, but this can be achieved 
with minor changes to the code. Furthermore, the code does 
not support k-point sampling, as in principle it is not needed 
for large-enough systems. However, in some cases, as in gra-
phene and similar semi-metallic systems, an appropriate com-
putation of the spectral properties such as the DOS does need 
k-point sampling even when very large supercells are used. 
We will address this problem in future work, which requires 
modifying PEXSI to handle complex Hermitian H matrices. 
In such case the shifted matrix H − zS is no longer symmetric 

but is only structurally symmetric. This further development 
will also be useful for ab initio study of non-collinear mag-
netism and spin-orbit coupling effects.
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