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Abstract

The Wannier localization problem in quantum physics is mathematically analogous
to finding a localized representation of a subspace corresponding to a nonlinear eigen-
value problem. While Wannier localization is well understood for insulating materials
with isolated eigenvalues, less is known for metallic systems with entangled eigenvalues.
Currently, the most widely used method for treating systems with entangled eigenvalues
is to first obtain a reduced subspace (often referred to as disentanglement) and then to
solve the Wannier localization problem by treating the reduced subspace as an isolated
system. This is a multi-objective nonconvex optimization procedure and its solution
can depend sensitively on the initial guess. We propose a new method to solve the
Wannier localization problem, avoiding the explicit use of an an optimization proce-
dure. Our method is robust, efficient, relies on few tunable parameters, and provides a
unified framework for addressing problems with isolated and entangled eigenvalues.

Localized representations of electronic wavefunctions have a wide range of applications
in quantum physics, chemistry, and materials science. They require significantly less mem-
ory to store, and are the foundation of so-called “linear scaling methods” [17, 10, 3] for
solving quantum problems. They can also be used to analyze the chemical bonding in
complex materials, interpolate the band structure of crystals, accelerate ground and ex-
cited state electronic structure calculations, and form reduced order models for strongly
correlated many body systems [21].

In an effective single particle theory such as Kohn-Sham density functional theory (KS-
DFT) [13, 18], the electronic wavefunctions are given by the (possibly generalized) eigen-
functions, denoted {ψi(r)}, of a self-adjoint Hamiltonian operator H:

Hψi(r) = εiψi(r), εi ∈ I. (1)

Here I is an interval that can be interpreted as an energy window that indicates the
eigenfunctions of physical interest. These eigenfunctions are generally delocalized, i.e. have
significant magnitude in large portions of the computational domain. The Wannier localiza-
tion problem is as follows: find an approximately minimal set of orthonormal and localized
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functions {wj}, which have significant magnitude on only a small portion of the compu-
tational domain, such that span{ψj}εi∈I ⊆ Vw := span{wj}. Following the convention in
quantum physics, {wj} are called Wannier functions [30, 16, 2].

When the eigenvalues in I are isolated, i.e.

inf
εi∈I,εi′ /∈I

|εi − εi′ | > 0, (2)

the Wannier localization problem has been studied extensively in mathematics and physics [16,
2, 25, 22, 15, 4, 12, 8, 26, 27, 6, 24, 5, 7]. Loosely speaking, for a class of Hamiltonions H,
one can construct exponentially localized Wannier functions such that Vw = span{ψi}εi∈I .
The isolation condition is satisfied when treating valence bands of insulating systems.

When the isolation condition (2) is violated, the eigenvalues in I become entangled.
Entangled eigenvalues appear ubiquitously in metallic systems, but also insulating systems
when conduction bands or a selected range of valence bands are considered. The problem
now becomes significantly more difficult: both identify a subspace Vw that admits a localized
basis, and construct such a basis.

The most widely used method to construct localized functions in this scenario is a dis-
entanglement procedure [29]. It first identifies Vw by minimizing a nonlinear “smoothness
functional”. Then it computes {wi} by minimizing a nonlinear “spread functional” [22]. In
both problems the feasible set is nonconvex. While this two step method has been success-
fully applied to a number of applications [21], there is little mathematical understanding
of the disentanglement procedure. Sensitive dependence on the initial guess along with
a number of tunable parameters in the optimization formulation gives rise to a number
of practical difficulties in using this method. Often, detailed knowledge of the underlying
physical system is required to obtain physically meaningful results.

In this article, we propose a unified method to address the Wannier localization problem
for both isolated and entangled cases. Instead of an initial “disentanglement” step, our
method explicitly constructs a quasi-density matrix that “entangles” the eigenfunctions of
interest with the rest of the eigenfunctions in a controlled manner. This has the effect of
simultaneously identifying the subspace Vw and constructing the localized basis. For the
isolated case our new method reduces to the prior selected columns of the density matrix
(SCDM) method [6], and hence we still refer to our new, unified approach as SCDM.

The SCDM method has several significant advantages. First is its simplicity. There are
no tunable parameters for the isolated case and only two parameters in the entangled case.
Second, SCDM is constructed using standard linear algebra operations, which makes it easy
to implement and parallelize. Third, SCDM is a deterministic, one-step procedure and does
not require an initial guess. Hence, it will not get stuck at local minima as other nonconvex,
nonlinear optimization methods may. Finally, SCDM unifies the treatment of molecules
and crystals, while standard methods often require significantly more complex treatment
for crystals. We provide an interface to the widely used Wannier90 software package [23]
and demonstrate the effectiveness of SCDM via several examples of real materials with
isolated and entangled eigenvalues.

The SCDM method

We consider the effective one-body Schrödinger operator H = −1
2∆ + V (r) in R3, and all

eigenfunctions of interest ψi(r) ∈ L2(R3). This corresponds to problems involving molecules
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and nanoclusters, which require a simpler setup than our forthcoming discussion of crystals.
For the isolated case, without loss of generality we assume only the algebraically smallest

N eigenvalues {εi}Ni=1 are in the interval I, and the corresponding eigenfunctions {ψi}Ni=1

are orthonormal. Using the Dirac notation, the density matrix P =
∑N

i=1|ψi〉〈ψi| is a rank
N matrix that is the spectral projector associated with H onto the interval I. Notably, its
kernel P (r, r′) decays rapidly as |r− r′| → ∞ [17, 1]. Intuitively, if we can select a set of N
points C = {ri}Ni=1 so that the corresponding column vectors of the kernel {P (r, ri)}Ni=1 are
the “most representative” and well conditioned column vectors of P , these vectors almost
form the desired Wannier functions up to the orthonormality condition.

In order to select the set C, we let Ψ ∈ CNg×N denote the unitary matrix corresponding
to a discrete representation of {ψi,k(r)}Ni=1 using their nodal values on Ng grid points. The
corresponding discretized density matrix, still denoted by P , is given by P = ΨΨ∗. Con-
ceptually, the most representative column vectors can be identified via a QR factorization
with column-pivoting (QRCP) [11] applied to P . However, this is often impractical since P
is prohibitively expensive even to construct and store in memory. The SCDM method [6]
proposes that the set C can be equivalently computed via the QRCP of the matrix Ψ∗ as

Ψ∗Π = QR ≡ Q
[
R1 R2

]
. (3)

Here Π is a permutation matrix, Q is a unitary matrix, R1 ∈ CN×N is an upper triangular
matrix, and R2 ∈ CN×(Ng−N). The points C = {ri}Ni=1 can be directly identified from the
first N columns of the permutation matrix Π.

Having chosen C, we must now orthonormalize the localized column vectors {P (r, ri)}Ni=1

without destroying their locality. Note that P (r, ri) =
∑N

i′=1 ψi′(r)Ξi′,i where Ξ ∈ CN×N

has matrix elements Ξi,i′ = ψ∗i (ri′). One way to enforce the orthogonality is

wi(r) =
N∑

i′=1

ψi′(r)Ui′,i, U = Ξ(Ξ∗Ξ)−
1
2 . (4)

Here U ∈ CN×N is a unitary matrix and is referred to as a gauge in physics literature. The
matrix square root transformation in Eq. (4) is called the Löwdin transformation [20] and
may be equivalently computed using the orthogonal factors from the reduced SVD of Ξ.

Considering

(Ξ∗Ξ)i,i′ =
N∑

i′′=1

ψi′′(ri)ψ
∗
i′′(ri′) = P (ri, ri′), (5)

the decay properties of P imply that [P (ri, ri′)] may be viewed as a localized N × N

matrix. If the eigenvalues (Ξ∗Ξ)−
1
2 are bounded away from 0, then (Ξ∗Ξ)−

1
2 will itself be

localized [1], and consequently {wi}Ni=1 will be localized, orthonormal Wannier functions.
For the entangled case, we extend the SCDM method by “entangling” the eigenfunctions

of interest with additional eigenfunctions through the use of a quasi-density matrix

P =
∑
i

|ψi〉f(εi)〈ψi| = f(H), (6)

where f(·) is a smooth function, I is a subset of the support set of f , and the summation
is formally over all eigenfunctions of H. From this perspective, the case of isolated band is
associated with the choice f(ε) = 1I(ε), the indicator function on the interval I.
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We now assume there is a number µc such that infi|εi − µc| is very small or even zero.
The following two scenarios of entangled eigenvalues appear most frequently in quantum
physics, corresponding to the Wannier localization problem below and around a certain
energy level (usually the Fermi energy) respectively [31]. In both cases f(ε) is large on
the region of interest and smoothly decays to zero outside I in a manner controlled by a
parameter σ (see Fig. 1).

Isolated Entangled	case	1 Entangled	case	2

𝜖"

𝜖"#$
𝜇& 𝜇&

ϵ ϵ ϵ

Figure 1: f(ε) for the isolated and two entangled cases.

Entangled case 1: I = (−∞, µc). In this case we can choose a value σ > 0 and let

f(ε) =
1

2
erfc

(
ε− µc
σ

)
=

1√
πσ2

∫ ∞
ε

exp

(
−(t− µc)2

σ2

)
dt. (7)

The function f(ε) satisfies limε→−∞ f(ε) = 1, limε→∞ f(ε) = 0 and the transition occurs
smoothly around µc.
Entangled case 2: I = (µc−σ, µc+σ). In this case we choose f to be a Gaussian function

f(ε) = exp

(
−(ε− µc)2

σ2

)
. (8)

For a smooth function f , the kernel of the quasi-density matrix P (r, r′) also decays
rapidly [1, 19], and we would once again like to select Nw “most representative” and well
conditioned column vectors of P to construct the Wannier functions. Let E = diag [{εi}] ∈
RN×N be a diagonal matrix containing all eigenvalues such that f(ε) is above some thresh-
old, and Ψ ∈ CNg×N be the matrix containing the corresponding discretized eigenvectors.
We can now compute a QRCP for the weighted eigenvectors

(f(E)Ψ∗) Π = QR (9)

and select the Nw columns corresponding to the left most Nw columns of the permutation
Π. As before, we let C = {ri}Nw

i=1 denote the real space points corresponding to the selected
columns and define the auxiliary matrix Ξ ∈ CN×Nw with Ξi,i′ = f(εi)ψ

∗
i (ri′). If the eigen-

values of Ξ∗Ξ are bounded away from 0, the choice of gauge U = Ξ(Ξ∗Ξ)−
1
2 once again gives

rise to the Wannier functions. Now, U ∈ CN×Nw is a rectangular matrix with orthonormal
columns. Fig. 2 compares the delocalized eigenfunctions and the localized Wannier func-
tions corresponding to isolated and entangled cases using a simple one-dimensional model
problem, details of which are available in the supporting information.
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(a)

(b) (c) (d)

Figure 2: Eigenfunctions and computed Wannier functions for a simple one-dimensional
model problem. (a) An example eigenfunction plotted on the whole domain, (b) the isolated
case, (c) entangled case 1, and (d) entangled case 2. For the three examples of functions
computed by the SCDM method we have zoomed in on the region where the bulk of the
function is supported.

Bloch-Floquet theory

To facilitate further discussion we briefly review Bloch-Floquet theory for crystal structures.
Without loss of generality we consider a three-dimensional crystal. The Bravis lattice with
lattice vectors a1,a2,a3 ∈ R3 is defined as

L = {R|R = n1a1 + n2a2 + n3a3, n1, n2, n3 ∈ Z} . (10)

The the potential V is real-valued and L-periodic, i.e. V (r+niai) = V (r), ∀r ∈ R3, ni ∈
Z. The unit cell is defined as

Γ = {r = c1a1 + c2a2 + c3a3| − 1/2 ≤ c1, c2, c3 < 1/2} . (11)

The Bravis lattice induces a reciprocal lattice L∗, and the unit cell of the reciprocal lattice
is called the (first) Brillouin zone and denoted by Γ∗. The problem formulation in the
previous section can be formally identified as a special case of this setup with an infinitely
large unit cell.

According to the Bloch-Floquet theory, the spectrum of H can be relabeled using two
indices (b,k), where b ∈ N is the called the band index and k ∈ Γ∗ is the Brillouin zone
index. Each generalized eigenfunction ψb,k(r) is known as a Bloch orbital and satisfies
Hψb,k(r) = εb,kψb,k(r). Furthermore, ψb,k can be decomposed as ψb,k(r) = eık·rub,k(r),
where ub,k(r) is a periodic function with respect to L. An eigenpair (εb,k, ub,k) can be
obtained by solving the eigenvalue problem

H(k)ub,k = εb,kub,k(r), r ∈ Γ, k ∈ Γ∗, (12)

where H(k) = −1
2(∇ + ık)2 + V (r). For each k, the eigenvalues εb,k are ordered non-

decreasingly. For a fixed b, {εb,k} as a function of k is called a band. The collection of all
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eigenvalues are called the band structure of the crystal, which characterizes the spectrum
of the operator H. In this framework, the isolation condition (2) becomes

inf|εb,k − εb′,k′ | > 0, k,k′ ∈ Γ∗, εb,k ∈ I, εb′,k′ /∈ I. (13)

Wannier functions for crystals and disentanglement

Mirroring our prior discussion, we first we consider the isolated case. Without loss of
generality we assume the eigenvalues in I are labeled as {εb,k}Nb

b=1. If we rotate {ψb,k} by
an arbitrary unitary matrix, now indexed by k, U(k) ∈ CNb×Nb , we can define a new set of
functions

ψ̃b,k(r) =

Nb∑
b′=1

ψb′,k(r)Ub′,b(k), k ∈ Γ∗. (14)

A given set of of matrices {U(k)} is called a gauge. For any choice of gauge, the Wannier
functions for crystals are [30]

wb,R(r) =
1

|Γ∗|

∫
Γ∗
ψ̃b,k(r)e−ık·R dk, r ∈ R3,R ∈ L, (15)

where |Γ∗| is the volume of the Brillouin zone. For a class of H there exists a gauge such
that ψ̃b,k is analytic in k, implying that each Wannier function decays exponentially as
|r| → ∞ [2, 27]. Furthermore, the set of Wannier functions {wb,R(r)} forms an orthonormal
basis of the subspace in L2(R3) spanned by the Bloch orbitals associated with eigenvalues in
I. For crystals, the Wannier localization problem is thus partly reduced to the problem of
finding a gauge such that ψ̃b,k is smooth with respect to k. This can be done by minimizing
the “spread functional” [22]

Ω[{wb,0}Nb
b=1] =

N∑
b=1

∫
|wb,0(r)2|r2 dr−

(∫
|wb,0(r)2|r dr

)2

. (16)

Only R = 0 is considered because Wannier functions associated with different R’s only
differ by translation.

In the entangled case, the disentanglement method constructs the gauge via a two-step
procedure. It first finds a gauge Udis(k) ∈ CNb×Nw , in order to disentangle the given set of
Nb functions into Nw functions for each k. This is obtained by maximizing a “smoothness
functional” [29] with respect to k for the following auxiliary functions

ψdis
b,k(r) =

Nb∑
b′=1

ψb′,k(r)Udis
b′,b(k), b = 1, . . . , Nw,k ∈ Γ∗. (17)

After obtaining Udis(k) a second gauge U loc(k) ∈ CNw×Nw for each k is computed by
minimizing the spread functional (16). Finally, the overall gauge in the disentanglement
method is the composition U(k) = Udis(k)U loc(k).

This two-step procedure can be viewed as a heuristic means to solve a nonlinear, noncon-
vex multi-objective optimization problem aiming to simultaneously maximize the smooth-
ness functional with respect to k, and minimize the spread functional. Our numerical
results indicate that, at least in some cases, this two step procedure may not be an effective
surrogate for the desired optimization problem.
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SCDM for crystals

We now proceed to discuss the relatively minor modifications needed to generalize the
SCDM method to crystals.

In the isolated case, for each k-point in the Brillouin zone the k-dependent density
matrix is gauge invariant

P (k) =
∑

εb,k∈I
|ψb,k〉〈ψb,k| =

∑
εb,k∈I

|ψ̃b,k〉〈ψ̃b,k|, (18)

and is already an analytic function of k [25, 27]. The SCDM method uses the density matrix
to construct a gauge so that ψ̃b,k is smooth with respect to k. However, for crystals, we
need to select a common set of columns for all the k-dependent density matrices. Previous
work [7] suggests that it is often sufficient to select the columns using an “anchor” point k0,
such as the so-called Gamma-point (0, 0, 0)T to identify these columns. A generalization of
this procedure is also outlined in [7], though in our numerical experiments we have found
use of the Gamma-point as the anchor point suffices.

Let Ψk ∈ CNg×Nb be the unitary matrix representing {ψb,k(r)} on a discrete grid in
the unit cell. At the anchor point k0, we compute the QRCP Ψ∗k0

Π = QR. As before,

let C = {rb}Nb
b=1 denote the grid points corresponding to the Nb selected columns where

rb ∈ Γ. For each k point, define the auxiliary matrix Ξ ∈ CNb×Nb with matrix elements
Ξb,b′(k) = ψ∗b,k(rb′). Then the smoothness of the density matrix P (k) implies that each

function Pb,k(r) =
∑Nb

b′=1 ψb′,k(r)Ξb′,b(k) is smooth with respect to k. As before the SCDM
gauge can be constructed via the Löwdin transformation as

U(k) = Ξ(k) [Ξ∗(k)Ξ(k)]−
1
2 . (19)

Similar to Eq. (5),

(Ξ∗(k)Ξ(k))b,b′ =

Nb∑
b′′=1

ψb′′,k(rb)ψ
∗
b′′,k(rb′) = P (rb, rb′ ;k). (20)

Since the kernel P (rb, rb′ ;k) is smooth with respect to k, the matrix (Ξ∗(k)Ξ(k))−
1
2 is

smooth with respect to k as long as the eigenvalues of [Ξ∗(k)Ξ(k)] are uniformly bounded
away from 0 for k in the Brillouin zone. As a result,

ψ̃b,k(r) =

Nb∑
b′=1

ψb′,k(r)Ub′,b(k) =

Nb∑
b′=1

Pb′,k(r) [Ξ∗(k)Ξ(k)]
− 1

2
b′,b (21)

is smooth with respect to k. Therefore, the Fourier transform of ψ̃b,k with respect to k
as in Eq. (15) gives rise to the Wannier functions for crystals constructed by the SCDM
method.

In the entangled case (when (13) is not satisfied), the SCDM method makes use of a
k-dependent quasi-density matrix for each k point:

P (k) =
∑
εb,k

|ψb,k〉f(εb,k)〈ψb,k|. (22)
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Here, the choice of f(ε) matches what we previously discussed, and depends on the desired
I. In particular, the reduction to the isolated case is again the choice f(ε) = 1I(ε), which
reduces the k-dependent quasi-density matrix to a k-dependent density matrix. Numerical
results indicate that these quasi-density matrices for the two entangled cases are smooth
with respect to k.

Let E(k) = diag
[
{εb,k}Nb

b=1

]
be a diagonal matrix for each k containing eigenvalues such

that f(ε) is larger than some threshold. Computing a QRCP at the anchor point in the
Brillouin zone k0, we obtain

f(E(k0))Ψ∗k0
Π = QR. (23)

Analogously to before, the set of real space points C = {rb}Nw
b=1 are given by the left most

Nw columns of the permutation matrix Π. If we define the auxiliary matrix Ξ(k) ∈ CNb×Nw

with matrix elements Ξb,b′(k) = f(εb,k)ψ∗b,k(rb′), Pb,k(r) =
∑

b′ ψb′,k(r)Ξb′,b(k) is smooth
with respect to k. If the eigenvalues of [Ξ∗(k)Ξ(k)] are uniformly bounded away from 0
in the Brillouin zone, the gauge U(k) ∈ CNb×Nw given by Eq. (19) is unitary and via (21)
defines {ψ̃b,k} that are smooth with respect to k. Eq. (15) once again yields the desired
Wannier functions.

Numerical results

We now demonstrate the effectiveness of the SCDM method qualitatively and quantita-
tively using real materials. The electronic structure calculations are performed using the
Quantum ESPRESSO [9] software package with the PBE exchange-correlation function-
als [28].

Qualitatively, we examine the shape of the Wannier functions obtained from SCDM,
and compare against minimizer of the spread functional (16) in Wannier90. Quantitatively,
we measure the value of the spread functional for Wannier functions obtained from SCDM,
as well as the accuracy of band structure interpolation from the Wannier functions for
isolated and entangled cases. Practically, the Brillouin zone needs to be discretized using
a finite number of points. However, εb,k as a function of k often needs to be computed
on finely discretized paths through the Brillouin zone that do not coincide with the dis-
cretization grid—this is band structure (or Wannier) interpolation. We built an interface
for our method to the widely used Wannier90 software package [23] allowing us to use its
interpolation routines. Details of this procedure and our interface with Wannier90 may be
found in the supporting information and our code is available online1.

Our first example is a Cr2O3 crystal with collinear spin polarization. Each unit cell
has 92 occupied bands and we are interested in the top 6 valence bands, corresponding to
3 spin-up and 3 spin-down d orbitals for the Cr atoms. This is a challenging system for
Wannier90 due to the existence of multiple local minima in the spread functional and the
convergence of existing methods can depend sensitively on the choice of the initial guess.
For example, in Fig. 3a, when the initial guess is given by projections corresponding to dxy,

dyz and dxz orbitals respectively, the spread functional decreases from 70.56Å
2

to 16.99Å
2

within 30 steps. In contrast, when the initial guess is given by sp2 hybridized orbitals the

spread functional starts at 193.94Å
2

and stops decreasing around 47.13Å
2
, indicating that

the optimization procedure is trapped at a stationary point. On the other hand, starting

1https://github.com/asdamle/SCDM
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from the SCDM initial guess, the spread starts at 17.22Å
2

and quickly converges to 16.98Å
2
.

Fig. 3b plots the atomic configuration and isosurface of a localized spin-up orbital obtained
from the SCDM gauge without further Wannier optimization. The SCDM localized orbitals
clearly demonstrate d orbital character without relying on a user specified initial guess.

10 20 30 40 50
Iteration

0

50

100

150

200

S
p
re

ad
(8 A

2
)

SCDM
dxy,dyz,dxz
sp2

(a) (b)

Figure 3: (color online) (a) Convergence of the spread for Cr2O3 starting from the initial
guess of the gauge matrix from SCDM (blue solid line), initial guess from d orbitals (black
dashed line) and initial guess from sp2 orbitals (red dotted line). (b) One unit cell of Cr2O3,
and the shape of a localized function obtained from SCDM (plot generated using Visual
Molecular Dynamics [14]). The localized function has been plotted with and without the
molecular structure to better illustrate its character and physical location.

Next, we consider two examples with entangled eigenvalues. Fig. 4a shows band struc-
ture interpolation for a Si crystal with 8 localized functions computed from SCDM. This
corresponds to entangled case 1 ,covering both valence bands and low-lying conduction
bands. We set µ = 10.0 eV, σ = 2.0 eV, and use a 10×10×10 k-point grid for constructing
the Wannier functions. Fig. 4b shows the accuracy of band structure interpolation for a
Cu crystal with 7 localized functions. This corresponds to the entangled case 2, cover-
ing valence bands near the Fermi energy contributed mainly from the d-orbitals. We use
µ = 15.5 eV, σ = 4.0 eV, and a 10×10×10 k-point grid. In both cases, the SCDM method
accurately reproduces the band structure within the energy window of interest.

We now turn to graphene, a metallic system that is particularly challenging for band
structure interpolation due to the linear band structure near the Dirac point. Fig. 5 demon-
strates that SCDM can accurately interpolate the band structure of graphene even when
zooming in on the region near the Dirac point. We set µ = −2.5 eV σ = 4.0 eV, and use a
12× 12× 1 k-grid for constructing the Wannier functions.

Finally, we measure the convergence rate of the band structure interpolation with re-
spect to an increasing number of k-points using Wannier functions obtained from SCDM and
those from a (local) minimum corresponding to the optimization objective in Wannier90.
Fig. 6a reports the absolute value of the error of the eigenvalues for the occupied bands
of Si. The chosen path through the Brillouin zone is discretized with 408 points. A cubic
k× k× k grid is used and k ranges from 4 to 14. Both the average and the maximum value
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Figure 4: (color online) Wannier interpolation with SCDM for the band structure for (a)
valance and conduction bands for Si (b) bands near the Fermi energy for Cu. Direct
calculation (red line) and SCDM based Wannier interpolation (blue circles).

of the error converge exponentially with respect to k. For the isolated case, the error with
the optimized gauge matrix is slightly smaller than that with the SCDM gauge matrix.
However, we find that visually the Wannier functions from SCDM with a 6× 6× 6 k-grid
already result in excellent band structure.

Fig. 6b reports the absolute value of the error of the eigenvalues below the Fermi energy
for Al, which is a metallic system with entangled band structure. The chosen path in the
Brillouin zone is discretized into 510 points. A cubic k×k×k grid is used and k ranges from
6 to 16. We use the erfc smearing with µ being the chemical potential at 8.4 eV, and σ = 4.0
eV. We compute six bands for each k point and SCDM picks the leading four bands. Even
for metallic system, numerical results show exponential convergence of the band structure
interpolation. Fig. 7a shows that Wannier interpolation using the SCDM gauge matrix
with a 10× 10× 10 k-grid already yields excellent band structure. In particular, using the
SCDM gauge correctly reproduces band crossings even though a relatively coarse k grid is
used.

For this metallic system, the error of the eigenvalues interpolated using the SCDM gauge
matrix is systematically smaller than that of the optimized gauge matrix from Wannier90.
Therefore optimization of the spread functional alone does not necessarily improve the inter-
polation quality. This assessment is further justified by performing Wannier interpolation
with a gauge matrix obtained by minimizing the Wannier spread functional directly using
six bands and using four orbitals that have sp3 character for the initial guess. In this case

the optimized spread is 12.42Å
2
, while the SCDM gauge gives a larger spread of 18.38Å

2
.

However, Fig. 7b shows that the band structure obtained using the optimized gauge with
the sp3 initial guess is significantly less accurate when compared to that in Fig. 7a even
though the same k grid is used. In particular, the spread functional alone is not necessarily
a proxy for interpolation quality. On the other hand, the SCDM method obtains a smooth
density matrix for the range of the required band energies by construction.
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Figure 5: (color online) Wannier interpolation with SCDM for the band structure for
graphene (a) below the Fermi energy (b) near the Dirac point. Direct calculation (red
lines) and SCDM based Wannier interpolation (blue circles).

Discussion and conclusion

We developed a unified method to compute Wannier functions for systems with both iso-
lated and entangled bands. Its simplicity—in both implementation and reliance on few
parameters—makes it easy to use. Of particular importance, our method removes the po-
tentially sensitive dependence of the construction of Wannier functions on an initial guess
to a nonconvex optimization (two-stage in the entangled case) procedure. This potentially
makes it easier to treat complicated materials where the choice of a good guess may be
difficult, and convergence to local minima may hamper the construction of localized Wan-
nier functions. Interestingly, even though we do not seed our method with a physically
informed initial guess, we are able to recover physically interpretable Wannier functions.
Furthermore, as we have shown, the objective function of the existing optimization proce-
dure is not necessarily a proxy for good band interpolation. Collectively, these qualities and
observations make our new SCDM methodology attractive for the construction of Wannier
functions.
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Figure 6: (color online) Convergence of the average and maximum error of Wannier inter-
polation below the Fermi energy using the SCDM gauge matrix, and converged Wannier
gauge matrix starting from the SCDM initial guess for (a) silicon (b) aluminum.
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