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Background: Quantum Singular Value Transformation (QSVT) [9] is one of the most important de-
velopments in quantum algorithms in the past decade. It has a wide range of applications in quantum
computation, such as Hamiltonian simulation [15, 11], linear system of equations [11, 14, 16], eigenvalue
problems [13, 6], Gibbs states preparation [11], Petz recovery channel [10], benchmarking quantum sys-
tems [3, 8], to name a few. At the heart of QSVT is an innovative polynomial representation called
Quantum Signal Processing (QSP) [15], which can encode a target polynomial of definite parity as the
(1, 1)-entry of the product of a sequence of parameterized SU(2) matrices. Given a target polynomial f
of degree d, the corresponding parameters, denoted by Ψ, are called phase factors. Despite the significant
progress in this field, algorithms for finding phase factors are either numerically unstable (i.e., requires high
precision arithmetic operations) [11, 12], can only be proved to converge within some limited parameter
regimes [7, 18, 4], or do not have provable performance guarantees [2, 19, 17, 5].

There is further evidence suggesting that our current understanding of QSP is incomplete. Specifically,
for a given polynomial f , the choice of the phase factors Ψ is highly non-unique. This non-uniqueness
poses a challenge when f : [−1, 1] → R is a smooth function rather than a polynomial, as there is no clear
approach for defining an infinite sequence of phase factors to represent f . Although the work on infinite
quantum signal processing (iQSP) by some of the authors [5] provides a partial positive solution in certain
parameter regimes, it does not fully address this issue.

In this work, we argue that nonlinear Fourier analysis provides a natural framework for understanding
both QSP and iQSP. This allows us to solve the two aforementioned problems simultaneously:

(1) Among the combinatorially many possible phase factors, we identify a unique choice that sat-
isfies a nonlinear generalization of the Plancherel equality from classical Fourier analysis. This
generalization remains well-defined for smooth functions beyond polynomials.

(2) We develop a Riemann–Hilbert–Weiss (RHW) algorithm to evaluate phase factors. To the best of
our knowledge, this is the first provably numerically stable algorithm for almost all functions that
admit a QSP representation. In addition, the RHW algorithm exhibits a surprising property: each
component of the phase factor can be computed independently of the others, a feature not found
in any other algorithm for determining phase factors to date.

Problem Setup: Standard QSP only represents polynomials of definite parity2. Without loss of generality,
we restrict discussion to even functions f , and the case of odd functions can be treated similarly. Let P
denote the space of infinite sequences Ψ = (ψk)k∈N with ψk ∈ [−π/2, π/2] and X, Z be Pauli matrices. For

x ∈ [0, 1], define W (x) = ei arccos(x)X =

(
x i

√
1− x2

i
√
1− x2 x

)
. Given any Ψ ∈ P and x ∈ [0, 1], we can

recursively define a sequence of unitary matrices

U0(x,Ψ) = eiψ0Z

Ud(x,Ψ) = eiψdZW (x)Ud−1(x,Ψ)W (x)eiψdZ .
(1)

The central question of this work is as follows:
Let f : [0, 1] → [−1, 1] be an even function in a suitable function class. Let ud(x,Ψ) denote the upper

left entry of Ud(x,Ψ).
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2Though this is partially relaxed by the recent development of generalized QSP [17].
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(1) Is there a Ψ ∈ ℓ2(N) such that Im[ud(x,Ψ)] converges to f(x)? Is this Ψ unique in some sense?
(2) When f is a polynomial of degree d, is there a provably numerically stable algorithm to compute Ψ,

i.e., an algorithm which uses polylog(d/ε) bits of precision and has a cost of poly(d log(1/ε))?

Connection between QSP and the nonlinear Fourier transform: Similar to QSP, nonlinear Fourier
analysis operates on a product of countably many unitary matrices. Given a compactly supported sequence
F = (Fn)n∈Z of complex numbers, for each n ∈ Z, define a pair of Laurent polynomials (an(z), bn(z)) via
the recurrence relation

(2)

(
an(z) bn(z)
−b∗n(z) a∗n(z)

)
=

(
an−1(z) bn−1(z)
−b∗n−1(z) a∗n−1(z)

)
1√

1 + |Fn|2

(
1 Fnz

n

−Fnz−n 1

)
with the initial condition

(3)

(
a−∞(z) b−∞(z)
−b∗−∞(z) a∗−∞(z)

)
=

(
1 0
0 1

)
.

Here, a∗(z) := a(z−1) for any function a and w refers to the complex conjugate of w for any w. The
nonlinear Fourier transform (NLFT) of the sequence F is defined as the pair of Laurent series (a(z), b(z)) :=
(a∞(z), b∞(z)).

The NLFT and quantum signal processing are closely related. Specifically, we can convert the original
problem of finding for given f some phase factors with Im[ud(x,Ψ)] = f(x) into that of determining the
infinite sequence (Fn)n∈Z for some data (a, b) with if(x) = b(z) (see Lemma 3 in the manuscript).

In classical Fourier analysis, when f(x) is a periodic function on [−π, π], and f̂n represents its Fourier
series coefficients, the renowned Plancherel equality is an identity connecting the L2 norm of the function

in the Fourier and real space:2π
∑∞
n=−∞ |f̂n|2 =

∫ π
−π |f(x)|

2 dx.

In nonlinear Fourier analysis, the Plancherel equality is generalized into an inequality as below.

Lemma 1 (Nonlinear Plancherel inequality, Lemma 15 in the manuscript). If (a, b) is the NLFT of some
F ∈ ℓ2(Z), then

(4)
∑
n

log(1 + |Fn|2) ≥ −
∫
T

log(1− |b(z)|2) .

Furthermore, the equality holds if and only if a∗ is an outer function (see Section 2 of the manuscript
for backgrounds in Hardy functions and the precise definition of outer functions).

It is this condition, when the equality is reached, that provides the mathematical foundation allowing
us to uniquely specify the phase factors.

Main Results: In this work, we provide positive answers to both questions above, which constitute a
complete solution of the iQSP problem. Let S denote the set of all Szegő functions, which are functions
satisfying

(5) ∥f∥S :=

 2

π

1∫
0

|f(x)|2 dx√
1− x2


1
2

<∞.

This is a natural class of functions admitting a NLFT representation. For each η ∈ (0, 1), we define

(6) Sη = { f ∈ S | ∥f∥∞ ≤ 1− η } .

Theorem 2 (Short version of Theorem 1 in the manuscript). For each f ∈ S, there exists a unique sequence
Ψ ∈ P such that both the L2 convergence criterion in

(7) lim
d→∞

∥Im[ud(x,Ψ)]− f(x)∥S = 0,

and the nonlinear Plancherel equality in Eq. (4) hold.
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A fundamental result in Fourier analysis is that the mapping from the function to its Fourier / Cheby-
shev coefficients is a linear functional, and hence each Fourier / Chebyshev coefficient can be evaluated
independently from the others using a single inner product. Can the phase factors ψk be evaluated indepen-
dently as well? The proof of Theorem 2 provides several useful tools for characterizing the phase sequence
Ψ. From Lemma 6 in the manuscript, we can compute an individual phase factor via the formula

(8) ψk = arctan
(Bkz

−k)(0)

iAk(∞)
,

where Ak is a Laurent series on C, and Bkz−k is a Taylor series on C, both depending on f , and the pair
(Ak, Bk) is the unique solution to a linear system . By solving this linear system, we obtain an algorithm,
dubbed the Riemann-Hilbert-Weiss algorithm, that is able to compute each individual phase factor ψk
independently. This is in sharp contrast to all algorithms in the literature, where phase factors need to be
computed in an interdependent fashion.

Theorem 3 (Short version of Theorem 2 in the manuscript). Let 0 < ε < 1, 0 < η < 1
2
and let k and d

be integers satisfying d ≥ 1 and 0 ≤ k ≤ d. The Riemann-Hilbert-Weiss algorithm computes the k-th phase
factor ψk for any even input polynomial f ∈ Sη with degree 2d to precision ε with a computational cost

of O
(
d3 + d log(d/(ηε))

η

)
and using O(log(d/(ηε))) bits. To determine all O(d) phase factors, the algorithm

results in a cumulative cost of O
(
d4 + d log(d/(ηε))

η

)
, and the bit requirement remains O(log(d/(ηε))).

It is worth noting that the main purpose of Theorem 3 is to provide a numerically stable, polynomial
scaling that works for arbitrarily small η.

Technical overview: Based on the interpretation of QSP in terms of NLFT, our Riemann–Hilbert–Weiss
(RHW) consists of two main steps.

(1) The Weiss algorithm to compute the “maximal” complementary function a∗. In QSP
and iQSP, most methods of computing phase factors for the polynomial f require the construction
of a complementary polynomial, which after the change of variables, corresponds to the function
a in the NLFT. Constructing a complementary polynomial was often costly. If f is Szegő, then
as in [1], we take a∗ to be an outer function on D, which corresponds to the unique maximal
complementary polynomial for f . Given b, we compute a∗ using the Fast Fourier transform, an
algorithm which we call the Weiss algorithm.

(2) Solving the Riemann-Hilbert problem to obtain a phase factor. We must show that (a, b)
is a NLFT, and compute its kth nonlinear Fourier coefficient Fk. Following Ref. [1], we show there
exists a unique solution (Ak, Bk) ∈ H2(D∗)× zkH2(D) to

(9) (Id+Mk)

(
Ak
Bk

)
=

(
1
0

)
, where Mk =

(
0 PD∗ b

∗

a∗

−zkPDz
−k b

a
0

)
,

and then we can solve for the phase factor via the formula

Fk =
(Bkz

−k)(0)

A∗
k(0)

.

Ref. [1] showed that when ∥f∥∞ = ∥b∥∞ < 1√
2
, then Mk has small operator norm and one

can invert Id+Mk by the von Neumann series, yielding (Ak, Bk) exists and is unique. Using some
spectral theory, we go past the 1√

2
restriction and show that so long f is Szegő then Id+Mk is

invertible, meaning the linear system (9) has a unique solution (Ak, Bk). Furthermore, our proof
shows that if |f | is bounded away from 1, then we have stability of the phase factors with respect
to f .

In practice, we invert Id+Mk using the fact that on the off-diagonal, Id+Mk looks like a Toeplitz
matrix for the function b

a
. The computational cost of O(d3) in Theorem 3 arises from solving the

linear system Eq. (9), which is of size O(d) when f is a polynomial of degree 2d.
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