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Introduction: Fault-tolerant quantum computers are expected to efficiently perform various unitary transfor-
mations of practical interest, notably including Hamiltonian dynamics. However, many tasks in scientific and
engineering computation naturally involve non-unitary transformations. One of the most widely applicable
tasks is solving a system of linear ordinary differential equations (ODEs) in the form

du(t)

dt
= −A(t)u(t), u(0) = u0. (1)

When A(t) ≡ A is time-independent and non-normal, implementing Eq. (1) means performing the operation
e−AT , which can be viewed as an example of an eigenvalue transform. More generally, eigenvalue transformation
aims to perform the matrix function h(A) = Vh(D)V−1 for a matrix diagonalized as A = VDV−1. This task
appears ubiquitously across various computational scientific domains. One example is the simulation of linear
ODEs with a non-diagonal mass matrix in the form of

A
du(t)

dt
= −u(t), 0 ≤ t ≤ T, (2)

which corresponds to performing the matrix function e−TA−1
. Solving Eq. (2) is very different from solv-

ing Eq. (1) since the coefficient matrix A appearing on the left leads to an extra matrix inversion step. Besides
solving linear ODEs in the form of Eq. (1) or Eq. (2), examples of eigenvalue transformation include non-
Hermitian quantum dynamics, ODEs with inhomogeneous source terms, and powers of matrix inverses A−p

for p > 0, among others. Therefore, efficient quantum algorithms for ODEs1 and eigenvalue transformations
are desired to leverage the power of quantum computers for further computational speedup.

Contribution: We propose efficient, high-precision quantum algorithms for linear ODEs and performing a
class of eigenvalue transformations that can be expressed as a certain type of matrix Laplace transformation.
Our algorithms are a significant enhancement of the recent linear combination of Hamiltonian simulation
(LCHS) method for ODEs [3] in two aspects.

1. We exponentially enhance the accuracy of the original LCHS method, enabling quantum algorithms for
linear ODEs with near-optimal complexity for all parameters for the first time. [1]

2. By combining the Laplace transform and LCHS, we propose a new method (Lap-LCHS) that signifi-
cantly extends the scope of LCHS for tasks beyond simulating ODEs for a wide class of eigenvalue
transformations. [2]

Improved LCHS for ODEs: Our first main result is a relationship between the time-evolution operator
of Eq. (1) and Hamiltonian simulation.

Theorem 1 (Improved LCHS for ODEs). Let A(t) = L(t) + iH(t), where L(t) = A(t)+A†(t)
2 and H(t) =

A(t)−A†(t)
2i are both Hermitian matrices. When L(t) ⪰ 0, we have

T e−
∫ t
0 A(s) ds =

∫
R

f(k)

1− ik
T e−i

∫ t
0 (kL(s)+H(s)) ds dk. (3)

Here f(k) = 1

2πe−2β e(1+iz)β
, β ∈ (0, 1).
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b Beijing International Center for Mathematical Research, Peking University
c Joint Center for Quantum Information and Computer Science, Department of Computer Science, and Institute for Advanced
Computer Studies, University of Maryland

d Department of Mathematics, University of California, Berkeley; Lawrence Berkeley National Laboratory
e Department of Mathematics and Institute for Computational and Mathematical Engineering, Stanford University
1 In this work, quantum ODE algorithms only refer to those for Eq. (1). Algorithms for Eq. (2) will be regarded as an application
of general quantum eigenvalue transformation algorithms.



2

Equation (3) represents the non-unitary time-evolution operator T e−
∫ t
0 A(s) ds of the ODE Eq. (1) as a

continuous weighted linear combination of unitary operators T e−i
∫ t
0 (H(s)+kL(s)) ds of Hamiltonian simulation

problems with k-dependent Hamiltonians kL(s) + H(s). The weight function f(k) in Eq. (3) is called the
kernel function. In the first technical paper [1], we show that there exists a large family of kernel functions
that satisfy Eq. (3). The one we specify in Theorem 1 is near-optimal in the sense that it achieves almost the

fastest possible asymptotic decay e−c|k|β along the real axis. This leads to an algorithm whose complexity is
nearly optimal as a function of the error ϵ, with an additional O((log(1/ϵ))1/β) factor (see Table I) that cannot
be improved by modifying the kernel function within the current LCHS framework.

Eigenvalue transformation: Our second main result is the following Lap-LCHS representation for general
eigenvalue transformations beyond ODEs.

Theorem 2 (Lap-LCHS). Let A = L + iH, where L = A+A†

2 and H = A−A†

2i are both Hermitian matrices.
For a function h(z), when L ⪰ 0, we have

h(A) =

∫ ∞

0

∫
R

f(k)g(t)

1− ik
e−it(kL+H) dk dt. (4)

Here f(k) = 1

2πe−2β e(1+iz)β
, β ∈ (0, 1), and g(t) is the inverse Laplace transform of h(z) such that h(z) =∫∞

0 g(t)e−zt dt, Re z ≥ 0.

Similarly to Theorem 1, Theorem 2 represents the matrix function h(A) as a double integral of continuously
parameterized Hamiltonian simulation problems e−it(kL+H). It can be derived by taking the matrix version of
the Laplace transform h(A) =

∫∞
0 g(t)e−At dt and then further expanding e−At using Theorem 1. Notice that

to implement a given function h(z), we must find its inverse Laplace transform g(t), which is not always well
defined, and ensure that g(t) is integrable. This restricts the functions of interest to a subspace of so-called
Hardy functions on the right half of the complex plane.

Algorithms: Here, we discuss how to construct quantum algorithms for eigenvalue transformation based on
Lap-LCHS (Theorem 2). Quantum algorithms for ODEs based on the improved LCHS (Theorem 1) can be
constructed in the same way.

To implement Eq. (4), we first discretize its integrals and approximate the desired transformation as h(A) ≈∑
j,l cj,lUkj (tl), where the cj,l are weights and Ukj (tl) = e−itl(kjL+H). Then a quantum algorithm for eigenvalue

transformation can be directly constructed in two steps. Step 1: We implement each unitary operator Ukj (tl)
by the state-of-the-art time-dependent Hamiltonian simulation algorithm based on quantum singular value
transformation [4]2. Step 2: We perform the linear combination

∑
j,l cj,lUkj (tl) either coherently by the linear

combination of unitaries (LCU) technique [7, 8] or stochastically by Monte Carlo sampling [9, 10].

Comparison of quantum ODE algorithms: During the past decade, several quantum linear ODE al-
gorithms have been proposed. They can be roughly divided into two categories: linear-system-based ap-
proaches [11–15] (which discretize the ODE in time, converts the discretized ODE into a linear system
of equations, and solve the resulting linear system with quantum linear system algorithms [8, 16–21]) and
evolution-based approaches [3, 22? , 23] (which directly encode the time evolution operator using a unitary
matrix that can be efficiently implemented on a quantum computer). In Table I, we compare our improved
LCHS algorithm with the truncated Dyson series method [15] (the best linear-system-based approach) and the
original LCHS method [3] (the best evolution-based approach prior to our work). We perform this comparison
in terms of two primary factors: the number of queries to the matrix A(t) and the number of queries to the
initial state u(0). Compared with the truncated Dyson series method, our improved LCHS achieves the lower
state preparation cost of the original LCHS method while at least matching the complexity in queries to the
matrix. This is because the improved LCHS approach avoids using quantum linear system algorithms, which
typically require many queries to the state preparation oracle.

2 To obtain a quantum ODE algorithm with time-dependent A(t), we implement the Hamiltonian simulation Ukj (t) by the
truncated Dyson series method [5, 6].
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Method Queries to A(t) Queries to |u0⟩

Truncated Dyson [15] Õ
(

∥u0∥
∥u(T )∥αAT

(
log

(
1
ϵ

))2) O
(

∥u0∥
∥u(T )∥αAT log

(
1
ϵ

))
Original LCHS [3] Õ

((
∥u0∥

∥u(T )∥

)2

αAT/ϵ

)
O
(

∥u0∥
∥u(T )∥

)
Improved LCHS (our work) Õ

(
∥u0∥

∥u(T )∥αAT
(
log

(
1
ϵ

))1+1/β
)

O
(

∥u0∥
∥u(T )∥

)
TABLE I. Comparison among improved LCHS and previous methods for ODEs. Here αA ≥ ∥A(t)∥, T is the evolution
time, ϵ is the error and β ∈ (0, 1) is the parameter in the kernel function of the improved LCHS.

The original LCHS was proposed in [3] and represents the time evolution operator as

T e−
∫ t
0 A(s) ds =

∫
R

1

π(1 + k2)
T e−i

∫ t
0 (kL(s)+H(s)) ds dk. (5)

Notice that Eq. (5) can be viewed as another version of Eq. (3) in Theorem 1 with a different kernel f(k) = 1
1+ik .

The drawback of this approach is the slow decay of its kernel function, resulting in non-optimal scaling
with precision. Specifically, since 1

π(1+k2)
decays quadratically, we need to choose max |kj | = O(1/ϵ) when

numerically discretizating the integral to bound the error by O(ϵ). This directly introduces a computational
overhead of O(1/ϵ) in the algorithm. Our improved LCHS in Theorem 1 uses a kernel function that decays

as e−c|k|β , exponentially faster than in the original LCHS. Consequently, we can instead use the much smaller
choice max |kj | = O((log(1/ϵ))1/β), leading to an exponential improvement in the computational cost with
respect to ϵ.

Comparison of quantum transformation algorithms: The well-known quantum singular value transfor-
mation (QSVT) algorithm [4] implements matrix functions defined in terms of singular value transformations
(SVTs), while most scientific and engineering computation tasks naturally require eigenvalue transformations.
Certain eigenvalue transformation problems, such as the matrix inverse and functions of normal matrices,
can be formulated as SVT problems. However, as eigenvalues and singular values can be very different for
general non-normal matrices, most eigenvalue transformation problems cannot be reformulated as SVTs, and
our Lap-LCHS approach can perform eigenvalue transformations that are beyond the scope of QSVT.

To our knowledge, there were two strategies for implementing general quantum eigenvalue transformations
prior to our work. The first strategy is the contour integral-based formulation [24, 25], which represents a
matrix function as an integral over matrix inverses and implements the integral by LCU. The second strategy is
the recently developed quantum eigenvalue transformation (QEVT) with history state polynomial (HSP) [26],
which implements eigenvalue transformations through the Chebyshev and Faber approximations.

The contour integral method, QEVT with HSP, and Lap-LCHS differ in their ranges of applicability, making
it difficult to provide a succinct general comparison of these methods. As a rule of thumb, the contour integral
method requires the entire contour to be within the stable region of the matrix function in the complex plane,
imposing further restrictions on the range of matrix eigenvalues. QEVT with HSP requires solving a quantum
linear system problem, which can yield near-optimal complexity with respect to the number of queries to A
but is generally suboptimal in terms of the number of queries to the initial state preparation oracle. Our Lap-
LCHS algorithm does not impose unnatural limitations on the range of matrix eigenvalues and can achieve
a better state preparation cost compared to QEVT with HSP by avoiding the use of quantum linear system
algorithms.

Further applications: In our second technical paper [2], we further discuss and analyze the complexity
of our Lap-LCHS algorithm to various applications, including ODEs in the form of Eq. (2), inhomogeneous
ODEs, powers of matrix inverses, and the decaying branch of a second-order differential equation. Remarkably,
our Lap-LCHS can solve Eq. (2) (i.e., implement the transformation e−TA−1

) without explicitly inverting the
matrix A, and achieves the best known complexity both in terms of the number of queries to A and the initial
state preparation oracle.
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