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Introduction: Fault-tolerant quantum computers are expected to perform certain unitary operations much
faster than classical computers, such as simulating dynamics of a quantum state under a Hamiltonian (also
known as the Hamiltonian simulation problem). However, most applications in scientific and engineering
computations involve non-unitary dynamics and processes, which can often be expressed as linear differential
equations of the following form

d
dt

u(t) = −A(t)u(t) + b(t), u(0) = u0. (1)

Here A(t) ∈ CN×N is the coefficient matrix, and b(t) ∈ CN is the inhomogeneous term [1]. Unless A(t) is

anti-Hermitian and b(t) = 0, the evolution operator of Eq. (1) denoted by T e−
∫ t
0 A(s) ds is in general non-

unitary. Efficient quantum algorithms for non-unitary dynamics are the key for unlocking the full potential
of quantum computers to achieve comparable speedup in these general tasks.

Contribution: In this work, we establish a surprising identity which can express any non-unitary dynamics
as a linear combination of Hamiltonian simulation (LCHS) problems. This enables us to develop a simple
quantum algorithm for simulating general non-unitary dynamics. We prove that LCHS can achieve optimal
state preparation cost, which is useful when the initial state is difficult to prepare. Furthermore, we showcase
an application in open quantum dynamics simulation using the complex absorbing potential method, which
achieves near-optimal dependency on all parameters.

Main result: Our work establishes the following relation between non-unitary and unitary dynamics.

Theorem 1 (LCHS). Let A(t) be decomposed into a Hermitian and an anti-Hermitian part as A(t) = L(t)+

iH(t), where L(t) = A(t)+A†(t)
2 and H(t) = A(t)−A†(t)

2i are both Hermitian matrices. When L(t) � 0, we have

T e−
∫ t
0 A(s) ds =

∫

R

1
π(1 + k2)

T e−i
∫ t
0 (H(s)+kL(s)) ds dk. (2)

Notice that T e−i
∫ t
0 (H(s)+kL(s)) ds is the unitary operator of the Hamiltonian simulation problem with a

k-dependent Hamiltonian H(s) + kL(s). Theorem 1 can be viewed as a generalization of the Fourier repre-
sentation of the exponential function: the Fourier transform of e−|x| is exactly 1

π(1+k2)
, so if H(t) = 0 and

L(t) = L is time-independent, Theorem 1 can be readily proved from the Fourier transform and the spectral
mapping theorem. This special-case formula has been applied to simulating imaginary time evolution dynam-
ics [2, 3]. However, our Theorem 1 works in a more general setting where the matrix can be time-dependent
and non-Hermitian. Our general proof hinges on a special instance of the matrix version of the Cauchy integral
theorem, which is a key for avoiding the spectral mapping argument.

Algorithms: By discretizing the integral with respect to k using numerical quadrature, Eq. (2) becomes

T e−
∫ t
0 A(s) ds ≈

∑
j cjUkj

(t). Here cj ’s are the weights, and Ukj
(t)’s are unitary operators T e−i

∫ t
0 (H(s)+kjL(s)) ds.

The discretized formula can be implemented either coherently on quantum computers, or in a hybrid quantum-
classical fashion, as summarized in Fig. 1.

For the coherent quantum algorithm, each Hamiltonian simulation operator Ukj
(t) can be implemented

by any Hamiltonian simulation algorithm, such as high-order Trotter formula [4] and truncated Dyson series
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FIG. 1. Coherent implementation and hybrid quantum-classical implementation of the LCHS method.

method [5]. Then the summation formula
∑

j cjUkj
(t) can be efficiently implemented by the linear combination

of unitaries (LCU) technique [6, 7].
If we are interested in obtaining observables of the form u(t)†Ou(t), it can be represented as u(t)†Ou(t) ≈

∑
j,j′ cjcj′ 〈u0|U

†
kj

(t)OUk′
j
(t)|u0〉 and can be evaluated by Monte Carlo sampling [8–10]. In particular, we first

sample the index (j, j′) with probability proportional to cjcj′ , then use the quantum computer to evaluate a
series of correlation functions 〈u0|U

†
kj

(t)OUk′
j
(t)|u0〉 via the Hadamard test for non-unitary matrices [11] and

amplitude estimation [12], and finally compute the average of all the sampling observables.

Comparison and complexity analysis: Recent years have witnessed significant progress in the devel-
opment of efficient quantum algorithms for simulating time-independent Hamiltonians [5, 13–26] as well as
time-dependent ones [4, 5, 16, 27–29]. Parallel to these advancements, substantial efforts have been made in
addressing general linear differential equations [30–36]. It is noteworthy that the mechanism of LCHS stands
distinct from the methodologies of these existing approaches.

We first compare LCHS with transformation-based algorithms that take advantage of the spectral mapping
theorem to implement or block encode the operator T e−

∫ t
0 A(s) ds. Among all the existing methods, the most

general formulation is given by the quantum singular value transformation (QSVT) technique [36], which can
implement a matrix function f(A) where the transformation is defined over the singular values of A. When
A(t) ≡ A, the evolution operator of ODE Eq. (1) should be implemented as an eigenvalue transformation
of A. In the special case when A is Hermitian or anti-Hermitian, the eigenvalue transformation e−At can be
implemented using the singular value transformation. However, once A contains both Hermitian and anti-
Hermitian parts or A(t) becomes time-dependent, this relation no longer holds. Meanwhile, our LCHS method
does not rely on the spectral mapping theorem, and is applicable to general time-dependent coefficient matrix
A(t) (See Fig. 2, left).

Next, we compare LCHS with other generic quantum differential equation algorithms [30–34], which convert
the ODE Eq. (1) into a quantum linear system problem (QLSP). The efficiency of these quantum algorithms
relies on the efficiency of the quantum linear system algorithms (QLSAs), which typically take a large number
of queries to the state preparation oracle even for the state-of-the-art QLSA, as it requires multiple time evo-
lution operators for the projector associated with the right-hand-side state of QLSP. However, our algorithm
directly implements the time evolution operator by LCHS without using QLSA, and the number of the state
preparation oracle is significantly reduced, as only one copy of the input state is needed in a single run of
Hamiltonian simulation algorithm.
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FIG. 2. Comparison between LCHS and existing methods. Left: applicable ranges of LCHS and QSVT. Right: com-
plexities in querying matrix A(t) and u0 of LCHS and truncated Dyson series method, here α = maxt ‖A(t)‖, T is the
evolution time, ε is the error, q = ‖u0‖/‖u(T )‖, and q̃ = maxt ‖u(t)‖/‖u(T )‖ (we always have q ≤ q̃).

In Fig. 2 (right), we compare the query complexity of our LCHS method with the best existing quantum
differential equation algorithm, which combines the truncated Dyson series with QLSA [34]. The LCHS
method only needs O(‖u0‖/‖u(T )‖) queries to the state preparation oracle of |u0〉, which is much better than
that of the truncated Dyson series method because the truncated Dyson series method uses QLSA as its
subroutine. In fact, the O(‖u0‖/‖u(T )‖) scaling is optimal and matches the lower bound [37]. The drawback
of the LCHS method is the O(1/ε) dependence in the number of queries to A(t). This is because we need to
simulate the Hamiltonian H(s)+kL(s) for very large k ∼ 1/ε due to the slow decay of the kernel 1

π(1+k2)
. We

remark that such a scaling can be significantly improved for certain applications, including simulating certain
open quantum dynamics problems (see below).

Application: We apply our LCHS method to simulating open quantum system dynamics with complex
absorbing potentials [38–40], which has many applications such as molecular scattering and photodissociation:

i
d
dt

u(t) =

(

−
1
2
Δr + VR(t) − iVI

)

u(t). (3)

Here VR(t) is the time-dependent external potential, and VI is the absorbing potential, which is a local potential
in the real space that satisfies VI(r) ≥ 0. Therefore, we may directly let L = VI and H(t) = −1

2Δ + VR(t)
and apply the LCHS method.

Notice that in this application, the Hermitian part L = VI is time-independent and fast-forwardable, in the
sense that e−ikLt can be performed with cost independent of k, t and ‖L‖ [41]. We may take advantage of this
feature to further speed up the implementation of LCHS. Instead of directly simulating H(t) + kL which has
large spectral norm for large k, we may simulate the dynamics in the interaction picture [5] by propagating
the quantum state rotated by eikLt. The resulting Hamiltonian becomes HI(s; k) = eiLksH(s)e−iLks, which is
bounded and can be efficiently simulated using truncated Dyson series method [5]. The overall complexity is
almost independent of k (depends at most poly-logarithmically on k). Therefore, by combining LCHS with
Hamiltonian simulation in the interaction picture, we avoid the computational overhead brought by the large
truncation order of k and further reduce the number of queries to the matrix oracles.

We summarize the complexity of LCHS in simulating open quantum dynamics with complex absorbing
potentials as follows. Remarkably, it achieves near-optimal scaling in all parameters. We also note that
the following result also holds in a more general case where H(t) is an arbitrary time-dependent Hamiltonian
and L is a time-independent fast-forwardable Hamiltonian.

Theorem 2. Consider simulating open quantum dynamics with complex absorbing potentials in Eq. (3). Then
the LCHS method with interaction picture Hamiltonian simulation can prepare an ε-approximation of the state
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|u(T )〉 with Ω(1) success probability and a flag indicating success, using

Õ

(
‖u0‖

‖u(T )‖
T (max

t
‖H(t)‖) polylog

(
1
ε

))

(4)

queries to the matrix input oracles, and O(‖u0‖/‖u(T )‖) queries to the state preparation oracle of |u0〉.
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[26] B. Şahinoğlu and R. D. Somma, npj Quantum Information 7, 119 (2021).
[27] D. Poulin, A. Qarry, R. Somma, and F. Verstraete, Phys. Rev. Lett. 106, 170501 (2011).
[28] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, in Proceedings of the forty-sixth annual ACM

symposium on Theory of computing (2014) pp. 283–292.
[29] D. W. Berry, A. M. Childs, Y. Su, X. Wang, and N. Wiebe, Quantum 4, 254 (2020).
[30] D. W. Berry, Journal of Physics A: Mathematical and Theoretical 47, 105301 (2014).
[31] D. W. Berry, A. M. Childs, A. Ostrander, and G. Wang, Communications in Mathematical Physics 356, 1057

(2017).
[32] A. M. Childs and J.-P. Liu, Communications in Mathematical Physics 375, 1427 (2020).
[33] H. Krovi, Quantum 7, 913 (2023).
[34] D. W. Berry and P. Costa, “Quantum algorithm for time-dependent differential equations using dyson series,”

(2022), arXiv:2212.03544.
[35] D. Fang, L. Lin, and Y. Tong, “Time-marching based quantum solvers for time-dependent linear differential

equations,” (2022).
[36] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, in Proceedings of the 51st Annual ACM SIGACT Symposium on

Theory of Computing (2019) pp. 193–204.
[37] D. An, J.-P. Liu, D. Wang, and Q. Zhao, “A theory of quantum differential equation solvers: limitations and

fast-forwarding,” (2022), arXiv:2211.05246.
[38] M. Child, Mol. Phys. 72, 89 (1991).
[39] A. Vibok and G. Balint-Kurti, J. Phys. Chem. 96, 8712 (1992).
[40] J. Muga, J. Palao, B. Navarro, and I. Egusquiza, Phys. Rep. 395, 357 (2004).
[41] G. R. Ahokas, Improved algorithms for approximate quantum Fourier transforms and sparse Hamiltonian simula-

tions (University of Calgary, 2004).

http://dx.doi.org/10.11575/PRISM/22839
http://dx.doi.org/10.11575/PRISM/22839
http://dx.doi.org/10.1016/j.physrep.2004.03.002
http://dx.doi.org/10.1021/j100201a012
http://dx.doi.org/10.1080/00268979100100041
http://arxiv.org/abs/2211.05246
http://dx.doi.org/10.1145/3313276.3316366
http://dx.doi.org/10.1145/3313276.3316366
http://arxiv.org/abs/2212.03544
http://dx.doi.org/10.22331/q-2023-02-02-913
http://dx.doi.org/10.1007/s00220-020-03699-z
http://dx.doi.org/ 10.1007/s00220-017-3002-y
http://dx.doi.org/ 10.1007/s00220-017-3002-y
http://dx.doi.org/10.1088/1751-8113/47/10/105301
http://dx.doi.org/ 10.22331/q-2020-04-20-254
http://dx.doi.org/ 10.1145/2591796.2591854
http://dx.doi.org/ 10.1145/2591796.2591854
http://dx.doi.org/ 10.1103/PhysRevLett.106.170501
http://dx.doi.org/10.1038/s41534-021-00451-w
http://dx.doi.org/ 10.1103/PhysRevX.11.011020
http://dx.doi.org/10.1103/PhysRevLett.123.050503
http://dx.doi.org/10.1145/3313276.3316386
http://dx.doi.org/10.1103/PhysRevLett.123.070503
http://dx.doi.org/10.22331/q-2019-09-02-182
http://dx.doi.org/ 10.1073/pnas.1801723115
http://dx.doi.org/10.1103/PhysRevLett.118.010501
http://dx.doi.org/10.1109/FOCS.2015.54
http://dx.doi.org/10.1109/FOCS.2015.54
http://dx.doi.org/ 10.1103/PhysRevLett.114.090502
http://dx.doi.org/10.26421/QIC14.1-2-1
http://dx.doi.org/10.26421/QIC12.1-2
http://dx.doi.org/ 10.1007/s00220-006-0150-x
http://dx.doi.org/ 10.1090/conm/305/05215
http://dx.doi.org/ 10.1103/physreva.104.032422
http://arxiv.org/abs/2302.01873
http://dx.doi.org/10.1103/PhysRevLett.129.030503
http://dx.doi.org/10.1103/PRXQuantum.3.010318
http://dx.doi.org/10.1137/16M1087072
http://arxiv.org/abs/1202.5822
http://dx.doi.org/10.1088/1751-8113/43/6/065203
http://dx.doi.org/10.1088/1751-8113/43/6/065203
http://dx.doi.org/10.22331/q-2023-02-09-916
http://arxiv.org/abs/2109.15304

