
Parallel Computing 74 (2018) 84–98

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

PSelInv – A distributed memory parallel algorithm for selected

inversion: The non-symmetric case

Mathias Jacquelin

a , ∗, Lin Lin

b , a , Chao Yang

a

a Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
b Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720, USA

a r t i c l e i n f o

Article history:

Received 28 December 2016

Revised 14 October 2017

Accepted 29 November 2017

Available online 2 December 2017

Keywords:

Selected inversion

Parallel algorithm

Non-symmetric

High performance computation

a b s t r a c t

This paper generalizes the parallel selected inversion algorithm called PSelInv to sparse

non-symmetric matrices. We assume a general sparse matrix A has been decomposed as

PAQ = LU on a distributed memory parallel machine, where L, U are lower and upper tri-

angular matrices, and P, Q are permutation matrices, respectively. The PSelInv method

computes selected elements of A −1 . The selection is confined by the sparsity pattern of the

matrix A T . Our algorithm does not assume any symmetry properties of A , and our parallel

implementation is memory efficient, in the sense that the computed elements of A −T over-

writes the sparse matrix L + U in situ . PSelInv involves a large number of collective data

communication activities within different processor groups of various sizes. In order to

minimize idle time and improve load balancing, tree-based asynchronous communication

is used to coordinate all such collective communication. Numerical results demonstrate

that PSelInv can scale efficiently to 6,400 cores for a variety of matrices.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let A ∈ C

N×N be a sparse matrix. If A is symmetric, the selected inversion algorithm [1–4] and its variants [5–13] are effi-

cient ways for computing certain selected elements of A

−1 , defined as (A

−1) S := { (A

−1) i, j | for 1 ≤ i, j ≤ N, such that A i, j � =
0 } . The algorithm actually computes more elements of A

−1 than (A

−1) S . The set of computed elements is a superset of

(A

−1) S , defined as { (A

−1) i, j | (L + U) i, j � = 0 } . Here, for simplicity, we have omitted the range of indices for i, j . The LU factor-

ization of A is given by A = LU, and the sparsity pattern of U is the same as that of L T . Selected inversion algorithms have

already been used in a number of applications such as density functional theory [12,14,15] , quantum transport theory [6–

8,13] , dynamical mean field theory (DMFT) [16] , Poisson–Boltzmann equation [17] , to name a few.

In [2] , Erisman and Tinney demonstrated that a selected inversion procedure can be applied to non-symmetric matrices.

In such a case, the selected inversion algorithm computes { (A

−1) i, j | (L + U) j,i � = 0 } , and therefore the definition of selected

elements should be modified to

(A

−1) S := { (A

−1) i, j | A j,i � = 0 } . (1)

Let us consider two extreme cases. 1) When A is symmetric, the general definition of selected elements agree with the

previous definition. The same argument holds for structurally symmetric matrices (i.e. A i, j � = 0 ⇔ A j, i � = 0). 2) When A is an
∗ Corresponding author.

E-mail addresses: mjacquelin@lbl.gov (M. Jacquelin), linlin@math.berkeley.edu (L. Lin), cyang@lbl.gov (C. Yang).

https://doi.org/10.1016/j.parco.2017.11.009

0167-8191/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2017.11.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2017.11.009&domain=pdf
mailto:mjacquelin@lbl.gov
mailto:linlin@math.berkeley.edu
mailto:cyang@lbl.gov
https://doi.org/10.1016/j.parco.2017.11.009

M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98 85

upper triangular or a lower triangular matrix, the selected inversion algorithm only computes the diagonal elements of A

−1 .

Indeed, these entries are easy to compute since (A

−1) i,i = (A i,i)
−1 , while { (A

−1) i, j | A i, j � = 0 } would include all the nonzero

entries of A

−1 .

At first glance, it may seem restrictive that the selected inversion algorithm for general matrices cannot even compute

the entries of A

−1 corresponding to the sparsity pattern of A . Fortunately, this modified definition of selected elements is

already sufficient in a number of applications. One case is the computation of the diagonal elements of A

−1 . Another case

is the computation of traces of the form Tr [BA

−1] =

∑

i j B i, j (A

−1) j,i , where the sparsity pattern of B ∈ C

N×N is contained in

the sparsity pattern of A , i.e. {(i, j)| B i, j � = 0} ⊂ {(i, j)| A i, j � = 0}. This type of trace calculation appears in a number of contexts,

such as the computation of electron energy in density functional theory calculations. It is also a useful way to numerically

validate the identity Tr [AA

−1] = N, which serves as a quick and useful indicator of the accuracy of the computed selected

elements of A

−1 , especially for large matrices of which the full inverse is too expensive to compute.

Although the non-symmetric version of the selected inversion algorithm was proposed more than four decades ago, to

our knowledge, there is no efficient implementation of the selected inversion algorithm for general non-symmetric matrices,

either sequential or parallel. This paper fills this gap by extending the PSelInv implementation reported in [4] to non-

symmetric matrices and on distributed memory parallel architecture. We remark that such a general treatment may be of

interest even for symmetric matrices, when additional static pivoting is performed to improve numerical stability [18,19] .

In such cases, the selected inversion algorithm needs to be applied to the non-symmetric matrix ˜ A = PAQ, where P, Q are

permutation matrices.

There are some notable differences between the implementation of PSelInv for symmetric and non-symmetric matrices.

First, a non-symmetric matrix only permits a LU factorization, while the LU , Cholesky (LL T), and the LDL T factorization can all

be used for symmetric matrices. Second, for non-symmetric matrices, one can in principle perform a structural symmetriza-

tion procedure by treating certain zero elements as nonzeros and use the selected inversion algorithm for structurally sym-

metric matrices. However, such treatment is generally inefficient in terms of both the storage cost and the computational

cost. As an extreme case, structurally symmetrizing a dense upper triangular matrix would mean that the matrix A is treated

as a full dense square matrix, while the selected inversion algorithm for the upper triangular matrix according to the defini-

tion of Eq. (1) means that only the diagonal entries need to be inverted. From this perspective, our parallel implementation

is memory efficient, in the sense that no symmetrization process is involved, and the selected elements of A

−T overwrites

the sparse matrix L + U in situ . Here the transpose corresponds to the definition of the selected elements (1) and will be

explained in detail later. Third, more complicated data communication pattern is required to implement the parallel selected

inversion algorithm for non-symmetric matrices, and the selected elements of the inverse in the upper and lower triangular

parts need to be treated separately. In [4] we explicitly take advantage of the symmetry of the matrix to simplify some

of the data communication. This is no longer an option for non-symmetric matrices. We develop a general point-to-point

data communication strategy to efficiently handle collective data communication operations. This general point-to-point data

communication strategy allows us to use a recently developed tree based asynchronous collective communication method

to improve load balancing when a large number of cores are used, as recently demonstrated for the symmetric case of the

PSelInv algorithm [20] . Our numerical results indicate that the non-symmetric version of PSelInv can be scalable to up

to 6400 cores depending on the size and sparsity of the matrix. Our implementation of PSelInv is publicly available. 1

The rest of the paper is organized as follows. We review the basic idea of the selected inversion method for non-

symmetric matrices in Section 2 , and discuss various implementation issues for the distributed memory parallel selected

inversion algorithm for non-symmetric matrices in Section 3 . The numerical results with applications to various matrices

from including Harwell–Boeing Test Collection [21] , the SuiteSparse Matrix Collection [22] , and from density functional the-

ory in Section 4 , followed by the conclusion and the future work discussion in Section 5 .

Standard linear algebra notation is used for vectors and matrices throughout the paper. We use A i, j to denote the (i, j)th

entry of the matrix A , and f i to denote the i th entry of the vector f . With slight abuse of notation, both a supernodal index

and the set of column indices associated with a supernode are denoted by uppercase script letters such as I, J , K etc .. A

−1
I, J

denotes the (I, J) th block of the matrix A

−1 , i.e. A

−1
I, J ≡ (A

−1) I, J . When the block A I, J itself is invertible, its inverse is

denoted by (A I, J) −1 to distinguish from A

−1
I, J . We also use (A

−T) I, J to denote the (I, J) th matrix block of the transpose of

the matrix A

−1 .

2. Selected inversion algorithm for non-symmetric matrices

The standard approach for computing A

−1 is to first decompose A using the LU factorization

A = LU (2)

where L is a unit lower triangular matrix and U is an upper triangular matrix. In order to stabilize the computation, matrix

reordering and row pivoting (or partial pivoting) [18] are usually applied to the matrix of A, and the general form of the LU

factorization can be given as

PAQ = ̃

 A = LU, (3)
1 http://www.pexsi.org/ , distributed under the BSD license

http://www.pexsi.org/

86 M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98

where P and Q are two permutation matrices. Care must be taken when non-symmetric row and column permutations are

used, i.e. P � = Q

T . To simplify the discussion for now, we use Eq. (2) and assume A has already been permuted.

The selected inversion algorithm can be heuristically understood as follows. We first partition the matrix A into 2 × 2

blocks of the form

A =

(
A 1 , 1 A 1 , 2

A 2 , 1 A 2 , 2

)
, (4)

where A 1, 1 is a scalar of size 1 × 1. We can write A 1, 1 as a product of two scalars L 1, 1 and U 1, 1 . In particular, we can pick

L 1 , 1 = 1 and U 1 , 1 = A 1 , 1 . Then

A =

(
L 1 , 1 0

L 2 , 1 I

)(
U 1 , 1 U 1 , 2

0 S 2 , 2

)
(5)

where

L 2 , 1 = A 2 , 1 (U 1 , 1)
−1 , U 1 , 2 = (L 1 , 1)

−1 A 1 , 2 , (6)

and

S 2 , 2 = A 2 , 2 − L 2 , 1 U 1 , 2 (7)

is the Schur complement.

Using the decomposition given by Eq. (5) , we can express A

−1 as

A

−1 =

(
(U 1 , 1)

−1 (L 1 , 1)
−1 + (U 1 , 1)

−1 U 1 , 2 S
−1
2 , 2

L 2 , 1 (L 1 , 1)
−1 −(U 1 , 1)

−1 U 1 , 2 S
−1
2 , 2

−S −1
2 , 2

L 2 , 1 (L 1 , 1)
−1 S −1

2 , 2

)
. (8)

With slight abuse of notation, define C L := { i | L i, 1 � = 0 } and C U := { j| U 1 , j � = 0 } . Here L i , 1 is the i th component of the column

vector (L 1, 1 , L 2, 1)
T as in Eq. (5) , and U 1, j is the j th component of the row vector (U 1, 1 , U 1, 2). The sets C L and C U are defined

purely in terms of the nonzero structures of L and U , i.e., L i , 1 and U 1, j treated as nonzeros even if their numerical values

are coincidentally 0. For non-symmetric matrices, C L and C U may not be the same.

We assume S −1
2 , 2

has already been computed. From Eq. (8) it can be readily observed that, if L and U are sparse, the (1, 1)

entry of A

−1 can be computed from the nonzero elements of L 2, 1 and U 1, 2 together with the corresponding selected entries

of S −1
2 , 2

. Because A

−1
2 , 2

= S −1
2 , 2

, the selected entries of S −1
2 , 2

belong to a subset of {
A

−1
i, j

| i ∈ C U , j ∈ C L
}
. (9)

which also include { A

−1
1 , j

| j ∈ C L } and { A

−1
i, 1

| i ∈ C U } . The latter can be computed from the same selected elements of S −1
2 , 2

, L 2, 1

and U 1, 2 . Repeating the procedure above recursively for S 2, 2 , we can see how the selected elements of A

−1
i,k

and A

−1
k, j

that

are required to compute the selected elements of A

−1 in the rows and columns preceding k can be computed from selected

elements of the trailing (n − k) × (n − k) block of A

−1 . This argument can be stated more precisely in Theorem 1 .

Theorem 1 (Erisman and Tinney [2]) . For a matrix A ∈ C

N×N , let A = LU be its LU factorization, and L, U are invertible matrices.

For any 1 ≤ k < N, define

C L = { i | L i,k � = 0 } , C U = { j| U k, j � = 0 } . (10)

Then all entries { A

−1
i,k

| i ∈ C U } , { A

−1
k, j

| j ∈ C L } , and A

−1
k,k

can be computed using only { L j,k | j ∈ C L } , { U k,i | i ∈ C U } and { A

−1
i, j

| (L + U) j,i � =
0 , i, j ≥ k } .
Proof. First consider { A

−1
i,k

| i ∈ C U } . Similar to Eq. (8) we can derive

A

−1
i,k

= −
N ∑

j= k +1

A

−1
i, j

L j,k (L k,k)
−1 , i ∈ C U . (11)

If L j, k � = 0, then A

−1
i, j

is needed in the sum. Since we are only interested in computing A

−1
i,k

for i ∈ C U , the i and j indices are

constrained to satisfy the conditions L j, k � = 0 and U k, i � = 0. This constraint implies (L + U) j,i � = 0 because the nonzero fill-in

pattern of the trailing blocks of L and U are determined by the nonzero patterns of the k th column of L and the k th row of

U respectively. A similar argument can be made for { A

−1
k, j

| j ∈ C L } . Finally for the diagonal entry, we have

A

−1
k,k

= (U k,k)
−1 (L k,k)

−1 −
N ∑

i = k +1

(U k,k)
−1 U k,i A

−1
i,k

, (12)

which can be readily computed given { A

−1
i,k

| i ∈ C U } is available. �

M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98 87

Fig. 1. (a) { L i,k | i ∈ C L } and { U k, j | j ∈ C U } are marked by . The nonzero fills introduced by the k th column of L and k th row of U are represented by .

(b) A −T in the selected inversion algorithm can directly overwrite the L, U factors.

Fig. 1 (a) illustrates one step of the selected inversion procedure for a general matrix. For example, according to

Eqs. (11) and (12) , computing the (k, k)th element of A

−1 shown at the upper left corner of the figure requires previ-

ously computed element of A

−1 marked by red circles. To compute A

−1
k,k

we effectively have to compute the selected element

of A

−1 marked by the blue squares. By pretending that we are computing the selected elements of A

−T instead, we can

overwrite the corresponding elements of U and L as shown in Fig. 1 (b). Theorem 1 directly indicates that any element of

A

−1 corresponding to the sparsity pattern of (L + U) T can be evaluated using L, U and other elements of A in this subset of

entries. In particular, the selected elements { A

−1
i, j

| A j,i � = 0 } can be evaluated efficiently.

So far we have not explicitly taken into account row and column permutation. Theorem 2 demonstrates that the same

result holds when permutation is involved.

Theorem 2. For A ∈ C

N×N , let PAQ = ̃

 A = LU be its LU factorization. Here L, U are invertible matrices, and P, Q are permutation

matrices. Then { A

−1
i, j

| A j,i � = 0 } can be evaluated using L, U and { ̃ A

−1
i, j

| (L + U) j,i � = 0 } .
Proof. Since P, Q are permutation matrices, P P T = Q Q

T = I, and we have the identity

A

T = Q ̃

 A

T P, A

−1 = Q ̃

 A

−1 P. (13)

Since the entries { ̃ A

−1
i, j

| ̃ A j,i � = 0 } ⊂ { ̃ A

−1
i, j

| (L + U) j,i � = 0 } have been computed, undo the permutation of ˜ A

−1 and we obtain

{ A

−1
i, j

| A j,i � = 0 } , which are the required selected elements of A

−1 . �

In practice, a column-based sparse factorization and selected inversion algorithm may not be efficient due to the lack

of level 3 BLAS operations. For a sparse matrix A , the columns of A and the L factor can be partitioned into supernodes.

A supernode is a maximal set of contiguous columns J = { j, j + 1 , . . . , j + s } of the L factor that have the same nonzero

structure below the (j + s) th row, and the lower triangular part of L J , J is dense. However, this strict definition can produce

supernodes that are either too large or too small, leading to memory usage, load balancing and efficiency issues. Therefore,

in our work, we relax this definition to limit the maximal number of columns in a supernode (i.e. sets are not necessarily

maximal). The relaxation also allows a supernode to include columns for which nonzero patterns are nearly identical to

enhance the efficiency [23] , and this approach is also used in SuperLU_DIST [19] . We assume the same supernode par-

titioning is usually applied to the row partition as well, even though the nonzero pattern of the L and U can be different

from each other. The total number of supernodes is denoted by N . Using the notation of supernodes (e.g. 1 means the first

supernode instead of the first column index), L 1, 1 is no longer a scalar 1 or an identity matrix, but a lower triangular matrix.

To simplify the notation of the selected inversion algorithm, in Eq. (8) we can define the normalized LU factors as

ˆ L 1 , 1 = L 1 , 1 , ˆ U 1 , 1 = U 1 , 1 , ˆ L 2 , 1 = L 2 , 1 (L 1 , 1)
−1 , ˆ U 1 , 2 = (U 1 , 1)

−1 U 1 , 2 . (14)

This definition can be directly generalized for other columns and for the case when supernodes are used. Furthermore,

from an implementation perspective, the definition of selected elements indicates that it is most natural to formulate the

selected inversion algorithm to compute A

−T , so that A

−T can directly overwrite the L, U factors (see Fig. 1 (b)). A pseudo-

code for the selected inversion algorithm for non-symmetric matrices is given in Algorithm 1 , which can readily be used as

a sequential implementation of the selected inversion algorithm. Note that in step 3, the diagonal entry can be equivalently

88 M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98

Algorithm 1. Selected inversion algorithm for a general sparse matrix A .

Input:

(1) Permutation matrices P,Q.

(2) The supernodal partition {1, 2, ...,N}.
(3) A supernodal sparse LU factorization PAQ = ˜A = LU .

Output: {A−1
I,J |AJ ,I is a nonzero block, I,J = 1, . . . ,N}.

for K = N ,N − 1, ..., 1 do

Find the collection of indices

CL = {I|I > K, LI,K is a nonzero block}
CU = {J |J > K, UK,J is a nonzero block}

1 L̂CL,K ← LCL,K(LK,K)−1, ÛK,CU
← (UK,K)−1UK,CU

end

for K = N ,N − 1, ..., 1 do

Find the collection of indices

CL = {I|I > K, LI,K is a nonzero block}
CU = {J |J > K, UK,J is a nonzero block}

2 Calculate (˜A−T)K,CU
← −(L̂CL,K)T (˜A−T)CL,CU

3 Calculate (˜A−T)K,K ← (LK,K)−T (UK,K)−T − (˜A−T)K,CU
(ÛK,CU

)T

4 Calculate (˜A−T)CL,K ← −(˜A−T)CL,CU
(ÛK,CU

)T

end

5 Extract the matrix blocks {(˜A−T)J ,I | ˜AJ ,I is a nonzero block}, undo the permutation and

apply matrix transpose to obtain {A−1
I,J |AJ ,I is a nonzero block, I,J = 1, . . . ,N}

computed using the formula (̃ A

−T) K, K ← (L K, K) −T (U K, K) −T − (̂ L C L , K)
T (̃ A

−T) C L , K . We also note that the normalized factors

ˆ L , ˆ U can overwrite the L, U factors, and the intermediate matrix ˜ A

−T can overwrite the normalized factors whenever the

computation for a given supernode K is finished. However, we keep these matrices with distinct notations in Algorithm 1 for

clarity.

3. Distributed memory parallel selected inversion algorithm for non-symmetric matrices

In this section, we present the PSelInv method for general non-symmetric matrices on distributed memory paral-

lel architecture. The selected inversion algorithm described in Algorithm 1 requires a sparse LU factorization of the per-

muted matrix ˜ A = PAQ to be computed first. We compute the LU decomposition using the SuperLU_DIST software pack-

age [19] , which has been shown to be scalable to a large number of processors on distributed memory parallel machines.

SuperLU_DIST allows the sparse L and U factors to be accessed through relatively simple data structures. However,

it should be noted that the ideas developed in this section can be combined with other sparse matrix solvers such as

MUMPS [24] or PARDISO [25] too, provided that the factors are available.

As discussed at the end of Section 2 , in order to achieve a memory efficient implementation, we work with the trans-

posed matrix inverse ̃ A

−T , which can directly overwrite the LU factors. To simplify the notation, in this section we do not dis-

tinguish A and the permuted matrix ˜ A . We use the same 2D block cyclic distribution scheme employed in SuperLU_DIST
to partition and distribute both the L, U factors and the selected elements of A

−T to be computed. We will review the main

features of this type of distribution in Section 3.1 . In the 2D block cyclic distribution scheme, each supernode K is assigned

to and partitioned among a subset of processors. However, computing the selected elements of A

−T associated with the

supernode K requires retrieving some previously computed selected elements of A

−T that belong to ancestors of K in the

elimination tree. These selected elements may reside on other processors. As a result, communication is required to trans-

fer data among different processors to complete steps 2 to 4 of Algorithm 1 in each iteration. We will discuss how this is

done in Section 3.2 . Furthermore, in order to achieve scalable performance on thousands of cores, it is important to overlap

communication with computation using asynchronous point-to-point MPI functions. In the PSelInv method, most of these

communication operations are collective in nature (e.g., broadcast and reduce) within communication subgroups. The sizes

of the communication groups can vary widely for operations associated with different supernodes. We will describe how

such collective communication operations can be efficiently performed asynchronously in Section 3.3 .

M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98 89

Fig. 2. Data layout of the non-symmetric PMatrixdata structure used by PSelInv .

3.1. Distributed data layout and structure

As discussed in Section 2 , the columns of A, L and U are partitioned into supernodes. Different supernodes may have

different sizes. The same partition is applied to the rows of these matrices to create a 2D block partition of these matrices.

The submatrix blocks are mapped to processors that are arranged in a virtual 2D grid of dimension Pr × Pc in a cyclic fashion

as follows: The (I, J) th matrix block is held by the processor labeled by

P mod (I−1 , Pr) ×Pc + mod (J −1 , Pc)+1 . (15)

This is called a 2D block cyclic data-to-processor mapping. The mapping itself does not take the sparsity of the matrix into

account. If the (I, J) th block contains only zero elements, then that block is not stored. It is possible that some nonzero

blocks may contain several rows of zeros. These rows are not stored either. As an example, a 4-by-3 grid of processors

is depicted in Fig. 2 (a). The mapping between the 2D supernode partition of a sparse matrix and the 2D processor grid

in Fig. 2 (a) is depicted in Fig. 2 (b). Each supernodal block column of L is distributed among processors that belong to a

column of the processor grid. Each processor may own multiple matrix blocks. For instance, the nonzero rows in the second

supernode are owned by processors P 2 and P 5 . More precisely, P 2 owns two nonzero blocks, while P 5 is responsible for one

block. Note that these nonzero blocks are not necessarily contiguous in the global matrix. Though the nonzero structure of

A is not taken into account during the distribution, it has been shown in practice that 2D layouts leads to higher scalability

for both dense [26] and sparse Cholesky factorization [27] .

In the current implementation, PSelInv contains an interface that is compatible with the SuperLU_DIST software

package. In order to allow PSelInv to be easily integrated with other LU factorization codes, we create some intermediate

sparse matrix objects to hold the distributed L and U factors. Such intermediate sparse matrix objects will be overwritten

by matrix blocks of A

−T in the selected inversion process. Each nonzero block L (I, J) is stored as follows. Diagonal blocks

are always stored as dense matrices which includes both L (I , I) and U(I , I) . Nonzero entries of L (I , J) (I > J) are stored

contiguously as a dense matrix in a column-major order even though row indices associated with the stored matrix ele-

ments are not required to be contiguous. Nonzero entries of within U(I, J) (I < J) are also stored as a dense matrix in a

contiguous array in a column major order. The nonzero column indices associated with the nonzeros entries in U(I, J) are

not required to be continuous either. We remark that for matrices with highly non-symmetric sparsity patterns, it is more

efficient to store the upper triangular blocks using the skyline structure shown in [19] . However, we choose to use a simpler

data layout because it allows level-3 BLAS (GEMM) to be used in the selected inversion process.

3.2. Computing selected elements of A

−T within each supernode in parallel

In this section, we detail how steps 2 to 4 in Algorithm 1 can be completed in parallel. We perform step 1 of

Algorithm 1 in a separate pass, since the data communication required in this step is relatively simple. The processor that

owns the block L K, K broadcasts L K, K to all other processors within the same column processor group owning nonzero blocks

in the supernode K. Each processor in that group performs the triangular solve ˆ L I, K = L I, K (L K, K)
−1 for each nonzero block

contained in the set C defined in step 1 of the algorithm. Because L I, K is not used in the subsequent steps of selected inver-

90 M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98

Fig. 3. Communication and computational events for computing selected elements of A −1 within . The a ©- 1 ©- c © sequence of events yields { A −1
i, 6

| i ∈ C U }
and overwrites the corresponding elements in ˆ U 6 ,i . The b ©- 2 ©- d © sequence yields { A −1

6 , j
| j ∈ C L } . Before overwriting the corresponding elements in ˆ L j, 6 , the

3 ©- e ©- 4 © sequence yields A −1
6 , 6

. Note that the shaded area of (A −T) 10 , 10 does not contribute to supernode .

sion once ˆ L I, K has been computed, it is overwritten by ˆ L I, K . Similarly, U K, K is broadcast to all other processors within the

same row processor group owning nonzero blocks in the supernode K. Each processor in that group performs the triangular

solve ˆ U K, I = (U K, K)
−1 U K, I for each nonzero block contained in the set C defined in step 1 of the algorithm.

A more complicated communication pattern is required to complete steps 2 to 4 in parallel. Because (A

−T) C L , C U and

ˆ L C L , K
(resp. ˆ U K, C U) are generally owned by different processor groups, using the approach discussed in [4] , we need to send blocks

of ˆ L C L , K to processors that own matching blocks of (A

−T) C L , C U , so that matrix-matrix multiplication can be performed on the

group of processors owning (A

−T) C L , C U . More specifically, the processor owning the ˆ L I, K block sends to all processors within

the same row group of processors among which (A

−T) I, C U is distributed in step 2.

However, the set of processors owning ˆ L I, K and the owners of (A

−T) I, C U generally form a small subset of all processors,

and this set can largely vary across different supernodes. In order to perform such collective communication operations

efficiently within the MPI framework, one would have to create a communicator per distinct communication pattern. We

have shown in [20] that in the context of PSelInv , this can result in more communicators than what was handled by most

MPI implementations for matrices of large sizes. Therefore, one way to complete this step of data communication is to use

a number of point-to-point asynchronous MPI sends from the processor that owns ˆ L I, K to the group of processors that own

the nonzero blocks of (A

−T) I, C U . Similarly, in step 4 the processor that owns ˆ U K, J has to send it to the group of processors

that own the nonzero blocks of (A

−T) C L , J . Then

ˆ L T I, K (A

−T) I, J and (A

−T) I, J ˆ U

T
K, J are performed locally on each processor

owning (A

−T) I, J using the GEMM subroutine in BLAS3, and the local matrix contributions ˆ L T I, K (A

−T) I, J are reduced within

each column communication groups owning ˆ U K, J to produce the (A

−T) K, J block in step 2 of Algorithm 1 . Respectively,

local matrix contributions (A

−T) I, J ˆ U

T
K, J are reduced within each row communication groups owning ˆ L I, K to produce the

(A

−T) I, K block in step 4 of Algorithm 1 . We will discuss in more detail how these asynchronous point-to-point exchanges

can be organized to form efficient broadcast and reduction operations in Section 3.3 .

Fig. 3 illustrates how this step is completed for a specific supernode K = , for the matrix depicted in Fig. 2 (b). We use

circled letters a ©, b ©, c ©, d ©, e © to label communication events, and circled numbers 1 ©, 2 ©, 3 ©, 4 © to label computational

events. We can see from this figure that ˆ L 8 , 6 is sent by P 12 to all processors within the same row processor group to which

P 12 belongs (a ©). This group includes P 10 , P 11 , and P 12 . Similarly ˆ L 10 , 6 is broadcast from P 6 to all other processors within

the same row group to which P 6 belongs (a ©). For the upper triangular part, ˆ U 6 , 8 is sent by P 5 along the column processor

group to which it belongs (b ©). P 4 does a similar communication operation for ˆ U 6 , 10 .

Local matrix-matrix multiplications are then performed on P 11 , P 10 , P 4 and P 5 simultaneously, corresponding to events 1 ©
and 2 ©. Contributions to (A

−T) C L , K are then reduced onto P 12 and P 6 within the row processor groups they belong to respec-

tively (communication step d ©). Similarly, communication step c © corresponds to reductions of contributions to (A

−T) K, C U
onto P 5 and P 4 . After this step, (A

−T) 8 , 6 and (A

−T) 10 , 6 become available on P 12 and P 6 respectively. The matrix product
ˆ L T C L , K (A

−T) C L , K is first computed locally on the processor holding blocks of ˆ L C L , K (step 3 ©), and then reduced to the processor

that owns the diagonal block ˆ L K, K within the column processor group to which supernode K is mapped (step e ©). The result

of this reduction is added to the diagonal block during step 4 ©. This completes the computation for the current supernode

K, and the algorithms moves to the next supernode.

3.3. Task scheduling and asynchronous collective communication

In Section 3.2 , we have discussed how to exploit parallelism within a given supernode. Besides such intra-node paral-

lelism, there is potentially a large amount of inter-node concurrency across the work associated with different supernodes.

M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98 91

Fig. 4. A random shifted binary tree broadcast: ranks are randomly shifted before organizing the broadcast along a binary tree.

In [4] we have demonstrated that exploiting such inter-node parallelism is crucial for improving the parallel scalability

of the PSelInv method for symmetric matrices. The basic idea is to use the elimination tree [28] associated with the

sparse LU factorization to add an additional coarse-grained level of parallelism at the for loop level in Algorithm 1 . For

non-symmetric matrices we use the same strategy to exploit the inter-node parallelism.

We create a basic parallel task scheduler to launch different iterates of the for loop in a certain order. This order is

defined by a priority list S , which is indexed by integer priority numbers ranging from 1 to n s , where n s is bounded from

above by the depth of the elimination tree. The task performed in each iteration of the for loop is assigned a priority

number σ (I) . The lower the number, the higher the priority of the task, hence the sooner it is scheduled. The supernode

N associated with the root of the elimination tree clearly has to be processed first. If multiple supernodes or tasks have

the same priority number, they are executed in a random order. Even though we use a priority list to help launch tasks,

we do not place extra synchronization among launched tasks other than requiring them to preserve data dependency. Tasks

associated with different supernodes can be executed concurrently if these supernodes are on different critical paths of the

elimination tree, and if there is no overlap among processors mapped to these critical paths. We refer readers to [4] for

more details on how to create such a task scheduler.

Collective communication operations such as broadcast and reduction in Section 3.2 dominate the communication cost of

the PSelInv method. Each communication event involves potentially a different group of processors, and it is not practical

to create an MPI communicator per group especially when a large number of processors are used. Instead, our implementa-

tion relies on asynchronous point-to-point MPI_Isend/MPI_Irecv routines to communicate between the processors. Take the

broadcast operation for example, the simplest strategy is to let one processor to send information to all other processors

within the relevant communication group. However, such a simple strategy can result in a highly imbalanced communica-

tion volume, as demonstrated in [20] for symmetric matrices. Instead, we employ the shifted binary tree method developed

in [20] for asynchronous communication operations. Assuming that ranks are sorted, this type of tree is built by first shift-

ing ranks of the recipients around a random position, and then by building a binary tree from the root to those shifted

ranks. This technique prevents from always picking the same ranks as forwarding nodes in the binary tree, and thus further

smooths communication load balance. An example of a such tree depicted in Fig. 4 .

In the non-symmetric implementation of PSelInv , we therefore use non-blocking random shifted binary trees for the

following operations:

1. broadcasting ˆ L C L , K to processors owning (A

−T) C L , C U (step a ©),

2. broadcasting ˆ U K, C U to processors owning (A

−T) C L , C U (step b ©),

3. reducing contributions to (A

−T) K, C U (step c ©),

4. reducing contributions to (A

−T) C L , K (step d ©),
−T
5. reducing contributions to (A) K, K (step e ©).

92 M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98

Table 1

Description of test problems for PSelInv .

Problem Description

SIESTA_Si_512_k KSDFT, Si with 512 atoms (complex structurally symmetric)

SIESTA_DNA_25_k KSDFT, DNA with 17875 atoms (complex structurally symmetric)

SIESTA_DNA_64_k KSDFT, DNA with 45760 atoms (complex structurally symmetric)

SIESTA_CBN_0.00_k KSDFT, C-BN sheet with 12770 atoms (structurally symmetric)

SIESTA_Water_4x4x4_k KSDFT, Water with 12288 atoms (complex structurally symmetric)

audikw_1 Automotive crankshaft model with over 90 0 0 0 0 TETRA elements (real symmetric)

shyy161 Direct, fully-coupled method for solving the Navier-Stokes equations for viscous flow calculations (real non-symmetric)

stomach Electro-physiological model of a Duodenum (real non-symmetric)

DG_DNA_715_64cell KSDFT, DNA with 45760 atoms (complex symmetric)

DG_Graphene8192 KSDFT, Graphene sheet with 8192 atoms (complex symmetric)

SIESTA_C_BN_1x1 KSDFT, C-BN sheet with 2532 atoms (complex symmetric)

SIESTA_C_BN_2x2 KSDFT, C-BN sheet with 10128 atoms (complex symmetric)

SIESTA_C_BN_4x2 KSDFT, C-BN sheet with 20256 atoms (complex symmetric)

Table 2

The dimension n , the number of nonzeros | A |, and the number of nonzeros of the factors | L + U| of the

test problems.

problem n | A | | L + U|
SIESTA_Si_512_k 6656 5,016,064 32,686,104

SIESTA_DNA_25_k 179,575 87,521,775 351,534,751

SIESTA_DNA_64_k 459,712 224,055,744 904,281,098

SIESTA_CBN_0.00_k 166,010 251,669,372 2,907,670,098

SIESTA_Water_4x4x4_k 94,208 32,706,432 1,388,275,840

audikw_1 943,695 77,651,847 2,530,341,547

shyy161 76,480 329,762 4,467,806

stomach 213,360 3,021,648 83,840,514

DG_DNA_715_64cell 459,712 224,055,744 898,749,546

DG_Graphene8192 327,680 238,668,800 1,968,211,450

SIESTA_C_BN_1x1 32,916 23,857,418 274,338,850

SIESTA_C_BN_2x2 131,664 95,429,672 1,655,233,542

SIESTA_C_BN_4x2 263,328 190,859,344 3,591,750,262

4. Numerical results

We evaluate the performance of PSelInv on a variety of problems, taken from sources including the SuiteSparse Matrix

Collection [22] , and matrices generated from the SIESTA [29] and DGDFT [30] , two software packages for performing Kohn-

Sham density functional theory [31] calculations using two different types of basis sets. The first matrix collection is a widely

used benchmark set of problems for testing sparse direct methods, while the other set comes from practical large scale

electronic structure calculations. The names of these matrices as well as some of their characteristics are listed in Tables 1

and 2 . The matrices labeled by SIESTA_XXX_k are obtained from the SIESTA package with k-point sampling. These matrices

are complex structurally symmetric matrices, but are neither complex symmetric nor Hermitian. The matrices labeled by

DG_XXX and by SIESTA_XXX are complex symmetric matrices. We include these matrices in the test that compare the

performance of the non-symmetric PSelInv solver with that of PSelInv for symmetric matrices.

In all of our experiments, we used the NERSC Edison platform with Cray XC30 nodes. Each node has 24 cores parti-

tioned among two Intel Ivy Bridge processors. Each 12-core processor runs at 2.4 GHz. A single node has 64 GB of memory,

providing more than 2.6 GB of memory per core. We run one MPI rank per core as an efficient multithreaded scheme

is not yet available in PSelInv implementation. Computations are performed in complex arithmetic for all packages.

Sparse matrices were reordered to reduce the amount of fill using PARMetis 4.0.3 [32] in all experiments. Before apply-

ing PSelInv , a LU factorization is first computed using SuperLU_DIST 5.1.0. In Section 4.3 , we compare PSelInv to

the MUMPS 5.0.0 [9,10,24] package mainly to demonstrate the numerical accuracy, and get insight on the efficiency of our

implementation as well.

4.1. Strong scaling experiments

We illustrate the strong scalability of PSelInv using several non-symmetric and symmetric matrices. In the latter case,

the non-symmetric storage format is used and performance is compared against the symmetric implementation of PSelInv
presented in [4,20] and available in the PEXSI package. 2 Each experiment is repeated 10 times and the average timing

measurements are reported, together with error bars representing standard deviations in the plots.
2 version 0.10.1 on http://www.pexsi.org/

http://www.pexsi.org/

M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98 93

Fig. 5. Strong scaling of PSelInv on audikw_1 and SIESTA_C_BN_2x2 matrices.

Fig. 6. Strong scaling of PSelInv on DG_DNA_64 and DG_Graphene8192 matrices.

Factorization timing measurements from SuperLU_DIST are provided as a reference. LU factorization is a pre-processing

step of PSelInv , and needs to be added to the selected inversion time to reflect the overall cost required to compute

the selected elements of the inverse matrix. Moreover, LU factorization and selected inversion have the same asymptotic

computational cost but the actual cost may differ in practice. For the SIESTA_C_BN_2x2 matrix for instance, the LU factor-

ization requires 1.78373 × 10 13 floating point operations (flops). The selected inversion requires 3.59698 × 10 13 flops, which

is around 2 times larger. This needs to be taken into consideration when comparing the factorization times to the selected

inversion times.

The first set of experiments (Figs. 5 and 6) demonstrate that the strong scalability of the non-symmetric version of

PSelInv rivals that of the symmetric version. Over these 4 matrices, PSelInv can scale up to 6,400 cores. We also note

that SuperLU_DIST can scale up to only 256 processors. Based on the study in [4] , the scalability of PEXSI greatly benefits

from the strategy for handling collective communication operations as well as the coarse-grain level parallelism. The runtime

of the non-symmetric version of PSelInv is 1.5–2.1 times of that of the symmetric version, which illustrates the efficiency

of the non-symmetric implementation despite the more complex communication pattern. In particular, we observe that

such ratio tends to be smaller than 2.0 when more than 20 0 0 cores are used. This is because we have removed some

redundant data communication in the non-symmetric implementation of PSelInv , and we plan to pursue such improved

implementation for the symmetric version of PSelInv in the future as well.

The next set of experiments focuses on assessing the efficiency of the PSelInv for the SIESTA_XXX_k matrices, which

are only structurally symmetric. These matrices correspond to electronic structure calculations of 1D, 2D and 3D quantum

systems. This results in the large difference in the ratio | L + U| / | A | for different matrices. We also stress that we do not

explicitly take advantage of the structural symmetry of the matrix. The results depicted in Figs. 7–9 demonstrate that the

performance of PSelInv for non-symmetric matrices is comparable to that for symmetric matrices. PSelInv can scale to

up to 6,400 cores on all problems except the SIESTA_Si_512_k matrix, which is significantly smaller in size. On the other

hand, SuperLU_DIST can only scale to around 300 processors.

94 M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98

Fig. 7. Strong scaling of PSelInv on SIESTA_Si_512_k and SIESTA_DNA_25_k matrices.

Fig. 8. Strong scaling of PSelInv on SIESTA_DNA_64_k and SIESTA_CBN_0.00_k matrices.

Table 3

Configurations used in the weak scaling experiments.

Problem P flops flops / P

SIESTA_C_BN_1x1 30 1.6 × 10 13 533 × 10 9

SIESTA_C_BN_2x2 256 1.3 × 10 14 508 × 10 9

SIESTA_C_BN_4x2 576 3.0 × 10 14 520 × 10 9

4.2. Weak scaling experiment on symmetric matrices

In this section we evaluate the weak scalability of the non-symmetric version of PSelInv . Since the workload, mea-

sured by the flops of PSelInv , generally does not scale linearly with respect to the matrix size, we perform weak scaling

tests by keeping the flops per core close to be constant while increasing the matrix size and the number of processors

simultaneously. We choose the SIESTA_C_BN_XXX matrices for demonstrating both the weak scaling and the computational

complexity of PSelInv . These matrices correspond to electronic structure calculations of two dimensional C-BN sheets of

increasing sizes. For such matrices, asymptotic complexity analysis [12] shows that the flop count should increase by a fac-

tor of 8 from SIESTA_C_BN_1x1 to SIESTA_C_BN_2x2, but only by a factor of 2 from SIESTA_C_BN_2x2 to SIESTA_C_BN_4x2,

respectively. The nonlinear growth behavior can be explained in terms of the size of the largest separator of the graph as-

sociated with the sparsity pattern of the matrix. In the former case, the size of the largest separator increases by a factor of

2. The dense matrix inversion corresponding to this separator leads to a factor of 2 3 = 8 increase in flops. In the latter case,

the size of the largest separator remains approximately the same despite the increase of the matrix size. Hence the flops

approximately increases linearly with respect to the matrix size. Table 3 shows that the actual flop count obtained from

PSelInv agrees well with the theoretical prediction: From SIESTA_C_BN_1x1 to SIESTA_C_BN_2x2 the flops increase by a

factor of 8.1, while an increase by a factor of 2.3 is seen from SIESTA_C_BN_2x2 to SIESTA_C_BN_4x2. We choose the number

M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98 95

Fig. 9. Strong scaling of PSelInv on SIESTA_Water_4x4x4_k matrix.

Fig. 10. Weak scaling of PSelInv and SuperLU_DIST on SIESTA sparse matrices.

of cores so that the number of flops per core is approximately 5 × 10 9 . The largest number of cores we used for this test

is 576 processors. This is due to the limitation of the strong scalability of SuperLU_DIST as observed in Section 4.1 .

Fig. 10 shows that the non-symmetric implementation of PSelInv exhibits similar weak scalability compared to that

of the symmetric case. We again repeat each experiment 10 times and report the averaged timing results, while error bars

represent standard deviations. The line labeled by the “ideal” weak scaling is constructed by using the timing measurements

obtained from a 30-core run. We observe that that both the symmetric and the non-symmetric versions of PSelInv exhibit

better weak scalability than that of LU factorization implemented in SuperLU_DIST . The non-symmetric version achieves

weak scaling efficiency of 59% on 576 cores, while the weak scaling efficiency of the symmetric version of PSelInv is

slightly higher at 63%. The weak scaling efficiency of SuperLU_DIST is 33% when 576 cores are used.

4.3. Comparison against the MUMPS state-of-the-art solver

In this section, we provide a comparative study of the performance of the non-symmetric implementation of PSelInv
against that of MUMPS (version 5.0.0), which is a state-of-the-art sparse matrix solver. In addition to LU factorization, the

MUMPS package also offers an optimized algorithm for solving multiple sparse right-hand sides which can be used to per-

form selected inversion as well [9,10] . This approach is more generic than the one presented in this paper which is more

restrictive on the element selection in the matrix inverse. Similarly to PSelInv , MUMPS first need to compute the LU fac-

torization prior to computing the entries of the inverse. In the following, we use MUMPS to compute only the diagonal

elements of the inverse matrix, or the full pattern described in Eq. (1) . PSelInv computes all entries corresponding to

Eq. (1) including the diagonal elements. Each experiment is repeated 5 times and average times are reported.

The results in Fig. 11 and Table 4 demonstrate that PSelInv can be orders of magnitude faster than the inversion avail-

able in MUMPS . Another interesting fact is that computing only the diagonal entries of the inverse with MUMPS is marginally

96 M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98

Fig. 11. Strong scaling of PSelInv and MUMPS 5.0.0 on shyy161 and stomach matrices.

Table 4

Run times of PSelInv and MUMPS 5.0.0 on shyy161 and stomach matrices.

p MUMPS LU Factorization MUMPS Diag. Inversion MUMPS Selected Inversion SuperLU_DIST Factorization PSelInv

1 0.572069 11.841920 11.859480 0.556076 1.561718

4 0.328426 8.221570 8.272150 0.317725 1.193488

16 0.205184 9.149670 9.938566 0.226287 0.847977

36 0.354054 9.070224 9.571224 0.295593 0.676077

64 0.222778 9.003740 9.926730 0.326116 0.555733

(a) shyy161 matrix

p MUMPS LU Factorization MUMPS Diag. Inversion MUMPS Selected Inversion SuperLU_DIST Factorization PSelInv

1 11.2990 0 0 553.8450 578.7244 22.455480 39.68122

4 3.932046 374.4712 388.2246 6.904646 16.89038

16 1.706144 346.5160 366.8144 2.638772 10.29646

36 1.086744 242.4746 259.1544 1.743026 10.48112

64 0.780408 223.562 242.4732 1.380420 10.53874

(b) stomach matrix

Table 5

Numerical error of values computed using PSelInv w.r.t. values computed by MUMPS 5.0.0.

shyy161 stomach

P || diag(A −1
MUMPS) − diag(A −T

PSelInv) || || diag(A −1
MUMPS) − diag(A −T

PSelInv) ||
1 4 . 1813 × 10 −15 N.A.

4 4 . 1837 × 10 −15 3 . 0468 × 10 −13

16 4 . 1832 × 10 −15 3 . 0460 × 10 −13

36 4 . 1906 × 10 −15 3 . 0451 × 10 −13

64 4 . 1809 × 10 −15 3 . 0414 × 10 −13

less expensive than the full pattern, as most of these elements need to be computed internally to get the diagonal entries.

The speedup achieved by PSelInv over MUMPS inversion reaches 9.75 for the shyy161 matrix, and 20.40 for the stomach

matrix. The main reason to this is that MUMPS inversion is a more general algorithm, and it does not reuse computations as

efficiently as PSelInv at the algorithm level.

Table 5 illustrates the accuracy of PSelInv is fully comparable to that of MUMPS , measured in terms of the diagonal

entries of the matrix inverse. We remark that the shyy161 matrix, the diagonal contains elements with very small mag-

nitude (some are zero elements). Therefore, row pivoting has to be used to move these elements to off-diagonal positions.

SuperLU_DIST uses a static row pivoting strategy, while MUMPS employs a dynamic one. Table 5 shows that for the matrix

we tested, the static row pivoting strategy is sufficient to obtain accurate matrix inverse elements. Note that the pivoting

strategy impacts the LU factorization time only.

5. Conclusion

In this paper, we extend the parallel selected inversion algorithm called PSelInv , which is originally developed for

symmetric matrices, to handle general non-symmetric matrices. The selected inversion algorithm can efficiently evaluate

M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98 97

the elements of A

−1 indexed by the sparsity pattern of A

T . From an implementation perspective, it is more convenient and

economical to formulate the selected inversion algorithm to compute selected elements of A

−T indexed by the sparsity

pattern of L + U, where L, U are the LU factors for the possibly permuted matrix of A , because such a formulation allows

us to overwrite the sparse matrix L + U by the computed elements of A

−T in situ . We present the data distribution and

communication patterns required to perform selected inversion in parallel. When a large number of processors are used,

it is important to exploit coarse-grained level of concurrency available within the elimination trees to achieve high scala-

bility. We also employ a tree-based asynchronous communication structure for handling various collective communication

operations in the selected inversion algorithm. Our implementation of PSelInv is publicly available. Our numerical results

demonstrates excellent scalability of PSelInv up to 6400 cores depending on the size and sparsity of the matrix. In the

near future, we will explore the efficient implementation of PSelInv on heterogeneous many-core architecture such as

GPU and Intel Knights Landing (KNL).

Acknowledgment

This work was partially supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by

U.S. Department of Energy (DOE), Office of Science , Advanced Scientific Computing Research and Basic Energy Sciences at

Lawrence Berkeley National Laboratory (LBNL) through Contract No. DE-AC02-05CH11231 (M. J., L. L. and C. Y.), the National

Science Foundation under Grant No. 1450372 , and the Center for Applied Mathematics for Energy Research Applications

(CAMERA) (L. L. and C. Y.). This research used resources of the National Energy Research Scientific Computing Center, a

DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No.

DE-AC02-05CH11231. We thank Volker Blum, Alberto García, Xiaoye S. Li, François-Henry Rouet and Pieter Vancraeyveld for

helpful discussion.

References

[1] K. Takahashi , J. Fagan , M. Chin , Formation of a sparse bus impedance matrix and its application to short circuit study, in: 8th PICA Conf. Proc., 1973 .

[2] A. Erisman , W. Tinney , On computing certain elements of the inverse of a sparse matrix, Commun. ACM 18 (1975) 177 .

[3] L. Lin , C. Yang , J. Meza , J. Lu , L. Ying , W. E , SelInv – an algorithm for selected inversion of a sparse symmetric matrix, ACM. Trans. Math. Softw. 37
(2011) 40 .

[4] M. Jacquelin , L. Lin , C. Yang , Pselinv – a distributed memory parallel algorithm for selected inversion: the symmetric case, ACM Trans. Math. Softw. 43
(3) (2016) 21:1–21:28 .

[5] Y.E. Campbell , T.A. Davis , Computing the sparse inverse subset: an inverse multifrontal approach, Technical Report, TR-95-021, University of Florida,
1995 .

[6] S. Li , S. Ahmed , G. Klimeck , E. Darve , Computing entries of the inverse of a sparse matrix using the FIND algorithm, J. Comput. Phys. 227 (2008)
9408–9427 .

[7] S. Li , E. Darve , Extension and optimization of the find algorithm: computing greens and less-than greens functions, J. Comput. Phys. 231 (4) (2012)

1121–1139 .
[8] U. Hetmaniuk , Y. Zhao , M.P. Anantram , A nested dissection approach to modeling transport in nanodevices: algorithms and applications, Int. J. Numer.

Method Eng. (2013) .
[9] P.R. Amestoy , I.S. Duff, J.-Y. L’Excellent , Y. Robert , F.-H. Rouet , B. Uçar , On computing inverse entries of a sparse matrix in an out-of-core environment,

SIAM J. Sci. Comput. 34 (2012) A1975–A1999 .
[10] P.R. Amestoy , I.S. Duff, J.-Y. L’Excellent , F.-H. Rouet , Parallel computation of entries of a −1 , SIAM J. Sci. Comput. 37 (2015) C268–C284 .

[11] D.E. Petersen , S. Li , K. Stokbro , H.H.B. Sørensen , P.C. Hansen , S. Skelboe , E. Darve , A hybrid method for the parallel computation of Green’s functions, J.

Comput. Phys. 228 (2009) 5020–5039 .
[12] L. Lin , J. Lu , L. Ying , R. Car , W. E , Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis

of metallic systems, Commun. Math. Sci. 7 (2009) 755 .
[13] A. Kuzmin , M. Luisier , O. Schenk , Fast methods for computing selected elements of the Greens function in massively parallel nanoelectronic device

simulations, in: Euro-Par 2013 Parallel Processing, Springer, 2013, pp. 533–544 .
[14] L. Lin , M. Chen , C. Yang , L. He , Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion, J. Phys.

Condens. Matter 25 (2013) 295501 .

[15] L. Lin , A. García , G. Huhs , C. Yang , SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix
diagonalization, J. Phys. 26 (2014) 305503 .

[16] G. Kotliar , S.Y. Savrasov , K. Haule , V.S. Oudovenko , O. Parcollet , C. Marianetti , Electronic structure calculations with dynamical mean-field theory, Rev.
Mod. Phys. 78 (2006) 865–952 .

[17] Z. Xu, A.C. Maggs, Solving fluctuation-enhanced Poisson-Boltzmann equations, arXiv:1310.4682 (2013).
[18] G.H. Golub , C.F. Van Loan , Matrix Computations, third, Johns Hopkins Univ. Press, Baltimore, 1996 .

[19] X. Li , J. Demmel , SuperLU_DIST: a scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Softw. 29 (2003)

110 .
[20] M. Jacquelin , L. Lin , N. Wichmann , C. Yang , Enhancing the scalability and load balancing of the parallel selected inversion algorithm via tree-based

asynchronous communication, in: 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2016, pp. 192–201 .
[21] I. Duff, R. Grimes , J. Lewis , User’s Guide for the Harwell-Boeing Sparse Matrix Collection, Research and Technology Division, Boeing Computer Services,

Seattle, Washington, USA, 1992 .
[22] T.A. Davis , Y. Hu , The University of Florida sparse matrix collection, ACM Trans. Math. Software 38 (2011) 1 .

[23] C. Ashcraft , R. Grimes , The influence of relaxed supernode partitions on the multifrontal method, ACM Trans. Math. Softw. 15 (1989) 291–309 .

[24] P. Amestoy , I. Duff, J.-Y. L’Excellent , J. Koster , A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl.
23 (2001) 15–41 .

[25] O. Schenk , K. Gartner , On fast factorization pivoting methods for symmetric indefinite systems, Electron. Trans. Numer. Anal. 23 (2006) 158–179 .
[26] L.S. Blackford , ScaLAPACK User’s Guide, 4, SIAM, 1997 .

[27] E. Rothberg , A. Gupta , An efficient block-oriented approach to parallel sparse Cholesky factorization, SIAM J. Sci. Comput. 15 (1994) 1413–1439 .
[28] J. Liu , The role of elimination trees in sparse factorization, SIAM J. Matrix Anal. Appl. 11 (1990) 134 .

https://doi.org/10.13039/100000015
https://doi.org/10.13039/100006132
https://doi.org/10.13039/100006192
https://doi.org/10.13039/100006151
https://doi.org/10.13039/100000001
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0001
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0002
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0002
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0002
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0003
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0004
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0005
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0006
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0007
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0008
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0009
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0010
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0011
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0012
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0013
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0013
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0013
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0013
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0014
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0015
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0015
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0015
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0015
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0015
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0016
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0016
http://arxiv.org/abs/1310.4682
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0017
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0018
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0019
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0019
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0019
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0019
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0019
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0020
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0021
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0021
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0021
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0022
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0022
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0022
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0023
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0024
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0024
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0024
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0025
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0026
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0026
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0026
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0027
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0027

98 M. Jacquelin et al. / Parallel Computing 74 (2018) 84–98

[29] J.M. Soler , E. Artacho , J.D. Gale , A. García , J. Junquera , P. Ordejón , D. Sánchez-Portal , The SIESTA method for ab initio order-N materials simulation, J.
Phys. 14 (2002) 2745–2779 .

[30] L. Lin , J. Lu , L. Ying , W. E , Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework I: total energy
calculation, J. Comput. Phys. 231 (2012) 2140–2154 .

[31] W. Kohn , L. Sham , Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133–A1138 .
[32] G. Karypis , V. Kumar , A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998) 359–392 .

http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0028
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0028
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0028
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0028
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0028
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0028
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0028
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0028
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0029
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0029
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0029
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0029
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0029
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0030
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0030
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0030
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0031
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0031
http://refhub.elsevier.com/S0167-8191(17)30194-1/sbref0031

	PSelInv - A distributed memory parallel algorithm for selected inversion: The non-symmetric case
	1 Introduction
	2 Selected inversion algorithm for non-symmetric matrices
	3 Distributed memory parallel selected inversion algorithm for non-symmetric matrices
	3.1 Distributed data layout and structure
	3.2 Computing selected elements of within each supernode in parallel
	3.3 Task scheduling and asynchronous collective communication

	4 Numerical results
	4.1 Strong scaling experiments
	4.2 Weak scaling experiment on symmetric matrices
	4.3 Comparison against the MUMPS state-of-the-art solver

	5 Conclusion
	 Acknowledgment
	 References

