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PEXSI-Σ: a Green’s function embedding method
for Kohn-Sham density functional theory∗

Xiantao Li, Lin Lin, and Jianfeng Lu

In this paper, we propose a new Green’s function embedding

method called PEXSI-Σ for describing complex systems within

the Kohn-Sham density functional theory (KSDFT) framework, af-

ter revisiting the physics literature of Green’s function embedding

methods from a numerical linear algebra perspective. The PEXSI-

Σ method approximates the density matrix using a set of nearly

optimally chosen Green’s functions evaluated at complex frequen-

cies. For each Green’s function, the complex boundary conditions

are described by a self energy matrix Σ constructed from a phys-

ical reference Green’s function, which can be computed relatively

easily. In the linear regime, such treatment of the boundary condi-

tion can be numerically exact. The support of the Σ matrix is re-

stricted to degrees of freedom near the boundary of computational

domain, and can be interpreted as a frequency dependent surface

potential. This makes it possible to perform KSDFT calculations

with O(N2) computational complexity, where N is the number of

atoms within the computational domain. Green’s function embed-

ding methods are also naturally compatible with atomistic Green’s

function methods for relaxing the atomic configuration outside the

computational domain. As a proof of concept, we demonstrate the

accuracy of the PEXSI-Σ method for graphene with divacancy and

dislocation dipole type of defects using the DFTB+ software pack-

age.
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1. Introduction

This paper concerns the simulation of defects in materials in the frame-
work of Kohn-Sham density functional theory (KSDFT) [19, 32]. Here we
use the term “defect” to refer to general local perturbations such as vacan-
cies, dislocations, in the otherwise smoothly deformed lattice structure in
materials. We are interested in cases that the global system is too large to
be modeled entirely by KSDFT, so that we can only afford to “embed” the
defect in an auxiliary system, in which the number of degrees of freedom
is comparable to that of the defect region itself. In physics literature this
procedure is known as “embedding”. In the context of KSDFT, the goal
of embedding is to correctly evaluate the density matrix corresponding to
the defect region. The simplest embedding scheme only includes the de-
fect together with some nearby degrees of freedom, and places the resulting
auxiliary system in vacuum. This scheme often leads to large error for real
materials simulation. Practically used embedding schemes often modify the
degrees of freedom near the boundary of the auxiliary system to mimic the
materials environment. Analogous to the setup in partial differential equa-
tions (PDEs), we view such modification as a “boundary condition”. One
common procedure is to embed the defects in a “supercell”, so that the
auxiliary system is periodically extended. In the past two decades, the su-
percell approaches, such as those based on planewave basis sets [33, 45, 51],
have been the most widely used methods in computational material sci-
ence to model defects. On the other hand, many systems are not periodic
to start with, and the inherent periodic boundary treatment in supercell
approaches is therefore not always suitable. Quantum transport, defect mi-
gration, defect-defect interaction, and dislocations are just a few examples
of scenarios where the periodic boundary condition encounters significant
difficulties.

Various embedding schemes [8, 10, 13, 18, 23, 30] have been developed in
the literature in order to model complex material structures more efficiently
without using the periodic boundary conditions. Such methods allow the de-
fect region to be treated not only at the level of KSDFT, but also at higher
levels of electronic structure methods such as the coupled cluster theory,
though the accuracy of the latter approach of embedding is significantly
more difficult to analyze from a numerical analysis perspective. In this pa-
per we focus on Green’s function methods [4, 9, 27, 29, 37, 39, 49, 59, 60, 63],
and treat the defect region at the level of KSDFT. Green’s function meth-
ods evaluate the density matrix through the linear combination of a number
of Green’s functions evaluated at complex frequencies. Since they allow a
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more versatile treatment of complex boundary conditions, they offer an at-
tractive alternative to describe complex systems. In particular, they have
been successfully applied to real materials simulation when localized ba-
sis functions are available. Examples of Green’s function methods include
the locally self-consistent multiple scattering (LSMS) method [50,57], Fermi
operator expansion method [16, 17], the recent extension of the Korringa-
Kohn-Rostoker (KKR) method [61,62] called KKRnano [54], and the PEXSI
method [37,39].

Contribution. In this work, we consider defects embedded in a physical
reference system such as a crystal, modeled at the level of KSDFT. We as-
sume the Hamiltonian operator is discretized using a local basis set, and that
we can obtain a number of Green’s functions G0(z) for the reference system
evaluated at different complex frequencies z. These reference Green’s func-
tions can be obtained, for instance, by means of a band structure calculation
using the periodicity of the reference problem. Then we propose a method
to model the defects by an auxiliary system, which contains the defect and
a minimal set of degrees of freedom defined according to the sparsity of the
Hamiltonian operator. The Hamiltonian operator for this auxiliary system
is constructed by the Hamiltonian operator of the global system restricted
to the auxiliary system, plus a frequency-dependent term that only modi-
fies a submatrix corresponding to boundary degrees of freedom. This extra
term is closely related to a Schur complement, and can be interpreted as
a discrete version of the Dirichlet-to-Neumann (DtN) map operator for the
global system [11,14,28]. In physics literature, such modification is a special
type of “self energy” contribution. Following standard notation in physics,
we denote this extra term by Σ(z), where z is a complex frequency at which
the Green’s function G(z) needs to be evaluated. We demonstrate that in
the linear regime, i.e., in the absence of self-consistent-field (SCF) iteration,
our scheme provides a numerically exact density matrix restricted to the de-
fect region. In such case, there is no error in computing physical observables
such as the atomic force in the defect region.

Since Σ(z) is only nonzero at the boundary of the auxiliary system, we
can efficiently evaluate G(z) for the auxiliary system using the pole expan-
sion and selected inversion (PEXSI) method [37, 39, 40, 42]. The computa-
tional complexity of the PEXSI method is at most O(N2), where N is the
number of atoms within the computational domain. The PEXSI method
does not rely on the near-sightedness principle [31], but only relies on the
sparsity of the Hamiltonian matrix. Hence the PEXSI method is applicable
to metallic systems at room temperature. The PEXSI method can be scal-
able on massively parallel computers [25,26]. PEXSI has been integrated into
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a number of electronic structure software packages such as SIESTA [38,53],
BigDFT [48], CP2K [56] and DGDFT [20,41], and has been used for accel-
erating materials simulation with 10000 atoms or more [21,22].

PEXSI is a Green’s function method for solving KSDFT for the global
system, and our development can be naturally combined with the PEXSI
method, which is referred to as the PEXSI-Σ method. The Σ(z) modification
introduced in this work only modifies matrix elements of the Hamiltonian
corresponding to boundary degrees of freedom, which allows us to solve
the auxiliary system with at most O(N2) cost, where N is the number of
atoms in the auxiliary system. We also present how to combine the PEXSI-
Σ method seamlessly with atomistic Green’s function methods [34, 35] for
structural relaxation of the defect system.

As a proof of concept, we implement the PEXSI-Σ method in the DFTB+
software package [1], and demonstrate the accuracy using a water dimer,
graphene with divacancy, and graphene with a dislocation dipole with re-
laxed geometric structure without SCF iterations. Our numerical results
indicate that the PEXSI-Σ method can obtain accurate description of the
energy and forces in the defect region.

Related work. In physics literature, the “self energy” matrix (or Σ ma-
trix) has been used in the context of the non-equilibrium Green’s func-
tion (NEGF) method in quantum transport calculations (e.g. [6]). Both the
PEXSI-Σ approach and the NEGF approach modify the boundary degrees of
freedom through Schur complements, but there are important differences. In
the context of modeling local defects in a crystal, the strategy in the NEGF
approach would require the Green’s function corresponding to a crystal but
with the defect region removed. The resulting system resembles a crystal
with a “hole” corresponding to the defect region, and this unphysical system
can be very difficult to solve. On the other hand, PEXSI-Σ only requires the
knowledge of Green’s functions for the physical crystal configuration, and
such Green’s functions are much easier to compute. In fact, we think our
strategy for constructing Σ matrices could be potentially beneficial in the
context of quantum transport calculations as well for certain systems. An-
other type of Green’s function embedding methods use the Dyson equation
(e.g. [29,59]), which uses physical reference Green’s functions. However, the
Dyson equation requires dense linear algebra to be performed over the en-
tire auxiliary system, and the computational cost is therefore O(N3), where
N is the number of atoms in the auxiliary system. Meanwhile, PEXSI-Σ
only modifies the Hamiltonian matrix corresponding to boundary degrees of
freedom and is hence more efficient. Our method is also related to the em-
bedding method proposed by Inglesfield [24], which is based on matching the
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boundary condition for each individual eigenfunction. This strategy could
be viable when eigenfunctions are well separated from each other spectrally.
However, when eigenfunctions are clustered such as for large scale KSDFT
calculations, it becomes impractical to derive the boundary condition for
each eigenfunction.

We note that the spirit of Green’s function embedding methods are
very different from that of the quantum mechanics / molecular mechan-
ics (QM/MM) method, which is widely used in chemistry and biology [58].
In the QM/MM method, the coupling of the two types of models is usually
a significant challenge. While QM models involve the degrees of freedom
associated with electrons (for example, electron density or electron orbital
functions), MM models do not explicitly take into account those degrees of
freedom. One intuitive way to understand the issue at the boundary is that
the decomposition of the domain into QM and MM regions creates “dan-
gling bonds” at the interface. Therefore, a popular approach is to introduce
hydrogen-type atoms to passivate those bonds. More advanced approaches
have been proposed to further reduce the artifacts introduced by the cou-
pling. See for example the review articles [7, 12,36,52]. We remark that the
bond passivation model becomes challenging in materials science simula-
tions, such as the description of a local defect in aluminum. In Green’s func-
tion embedding methods, the coupling is through the boundary conditions
imposed on the Green’s function of the QM domain, rather than changing
the local chemical environment of the coupling region. In particular, no bond
passivation is required.

Organization. The manuscript is organized as follows. We briefly intro-
duce Kohn-Sham density functional theory and Green’s function methods
in section 2, and review existing Green’s function methods from a numeri-
cal linear algebra perspective in section 3. In section 4 we introduce a new
Green’s function method called PEXSI-Σ, and a geometry relaxation method
based on atomistic Green’s functions. We report the numerical results using
DFTB+ in section 5, and discuss future directions in section 6.

2. Preliminaries

In Kohn-Sham density functional theory, the ground-state electron charge
density ρ(x) of an atomistic system can be obtained from the self-consistent
solution to the Kohn-Sham equations

(1) Ĥ [ρ]ψi(x) = ψi(x)εi,
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where Ĥ is the Kohn-Sham Hamiltonian that depends on ρ, and {ψi(x)}
are the Kohn-Sham orbitals. The Kohn-Sham orbitals in turn determine the
charge density by

(2) ρ(x) =

∞∑
i=1

|ψi(x)|2fi.

The occupation numbers {fi} are chosen according to the Fermi-Dirac dis-
tribution function

(3) fi = fβ(εi − μ) =
2

1 + eβ(εi−μ)
,

where μ is the chemical potential chosen to ensure that

(4)

∫
ρ(x) dx = Ne.

β is the inverse temperature, i.e., β = 1/(kBT ) with kB being the Boltzmann
constant and T the temperature. The nonlinear iteration with respect to the
electron density ρ can be carried out using a self-consistent-field iteration
(SCF) procedure [46].

The electronic-structure problem can be recast in terms of the one-
particle density matrix defined by

(5) Γ̂ =

∞∑
i=1

|ψi〉fβ(εi − μ)〈ψi| = fβ(Ĥ − μ),

and the chemical potential μ chosen so that Tr Γ̂ = Ne, which is exactly the
same constraint as (4).

To solve for ρ or Γ̂ in practice, we may choose a finite basis set {ϕj}, and
use a Galerkin approximation for (1) as the generalized eigenvalue problem

(6) H[ρ]C = SCΛ,

where Hij = 〈ϕi|Ĥ|ϕj〉 is the projected Hamiltonian matrix, and Sij =
〈ϕi|ϕj〉 is the overlap matrix. The matrix representation of the density ma-
trix, denoted by Γ, can be obtained from the generalized eigenvalue decom-
position (6) as

(7) Γ = Cfβ(Λ− μ)CT .
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For simplicity we consider the case when real arithmetic is used, and H,S,Γ
are real symmetric matrices. The extension to the complex Hermitian case
is straightforward. Using linear algebra notation, let us denote by Φ =
[ϕ1, · · · , ϕN ] the matrix collecting all N basis functions. Then the density
matrix in the real space can be compactly approximated by

(8) Γ̂ ≈ ΦΓΦT .

It turns out that, in KSDFT calculations with the local density ap-
proximation (LDA) and generalized gradient approximation (GGA) for the
exchange-correlation functionals, not all entries of the one-particle density
matrix are needed. In order to carry out the self-consistent field iteration, it
is sufficient to compute the electron density ρ, the diagonal entries of Γ̂ in
the real space, i.e.,

(9) ρ(x) ≈ Φ(x)ΓΦT (x) =
∑
ij

Γijϕj(x)ϕi(x).

When the basis functions ϕi(x) are compactly supported in real space, the
product of two functions ϕi(x) and ϕj(x) is zero when they do not overlap.
This leads to a sparse Hamiltonian matrix H and a sparse overlap matrix
S, respectively. It also implies that in order to compute ρ(x), we only need
Γij such that ϕj(x)ϕi(x) �= 0 in Eq. (9). As shall be seen later, such sparsity
plays a key role in our method.

The Kohn-Sham equations (1) are well-defined for closed systems such
as systems in vacuum (i.e., with Dirichlet boundary condition imposed far
away from the system) and with periodic boundary condition. However, the
eigenvalue formulation imposes major difficulty for treating open systems.
For instance, the embedding of a defect into a crystalline system, which can
be a point defect such as a vacancy, or a line defect such as a dislocation.
As opposed to the solution of PDEs where tailored boundary conditions can
be formulated for specific operators such as in the case of the absorbing
boundary condition [11], in KSDFT each eigenfunction satisfies a different
PDE, and hence requires its own tailored boundary condition. The number
of eigenfunctions is proportional to the number of electrons Ne. Finding
such boundary conditions is not only expensive when Ne becomes large, but
also may not be a stable procedure since the eigenvalues of interest are often
clustered, or even form continuous energy bands in the thermodynamic limit
for solid state systems.

Here we demonstrate that the one-particle density matrix can serve as
a useful tool for quantum embedding. First, Γ̂ can be evaluated without the
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Figure 1: Sketch of the contour used in the PEXSI method.

need for diagonalization, if the Fermi function is approximated by a linear
combination of a number of simpler functions. This is the idea behind the
Fermi operator expansion (FOE) method [15]. The FOE method is typically
used as a linear scaling method to accelerate KSDFT calculations for insu-
lating systems with substantial band gaps, or for general systems under very
high temperature. The recently developed pole expansion and selected in-
version (PEXSI) method extends the FOE method by means of an efficient
rational approximation, and significantly accelerates KSDFT calculations
for large scale metallic systems at room temperature [37,39,40,42].

In the PEXSI method, the single particle density matrix can be exactly
reformulated by means of a contour integral as

(10) Γ̂(x, x′) =
1

2πi

∮
C
fβ(z − μ)(z − Ĥ)−1(x, x′) dz.

Here C can be any contour that encircles the spectrum of Ĥ without en-
closing any pole of the Fermi-Dirac function. In the pole expansion [40], we
carefully choose a contour as in Fig. 1, and approximate the single particle
density matrix Γ̂ by its P -term approximation, denoted by Γ̂P as

Γ̂P (x, x
′) = Φ(x)Im

(
P∑
l=1

ωρ
l

(zl + μ)S −H

)
ΦT (x′)

≡ Φ(x)ΓPΦ
T (x′).

(11)

The complex shifts {zl} and weights {ωρ
l } are determined only by β,ΔE

(the spectrum width of the matrix pencil (H,S)) and the number of poles P .
These coefficients are known explicitly and their calculation takes negligible
amount of time. The pole expansion is an effective way for approximating
the one-particle density matrix, since it requires only O(log βΔE) terms
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of simple rational functions. With some abuse of notation, in the following
discussion we will drop the subscript P originating from the P -term pole
expansion approximation unless otherwise noted.

Eq. (11) converts the problem of computing the one-particle density
matrix by means of eigenfunctions into a problem of evaluating P inverse
matrices or Green’s functions, defined as

(12) Gl =
(
(zl + μ)S −H

)−1
, l = 1, . . . , P.

Note that in order to evaluate the electron density, we only need to evaluate
the entries (Gl)ij such that Hij , Sij �= 0. This allows the PEXSI method
to compute such selected elements of an inverse matrix efficiently. We will
discuss more along this line in section 4.1.

3. Existing Green’s function embedding schemes

In the context of embedding, we only need to find the “boundary conditions”
for Green’s functions {Gl}Pl=1. As mentioned in the introduction, here the
term “boundary condition” can refer to a general way of modifying the de-
grees of freedom in an auxiliary system to mimic the effects of the materials
environment. Since P is independent of the system size Ne, this becomes a
solvable problem even for systems of large sizes. On the other hand, finding
proper boundary conditions for O(Ne) eigenvalue problems can become im-
practical for systems of large sizes [24]. In this section we first review some
existing ideas in the literature, written in consistent linear algebra notation
as used in the previous section.

In the embedding scheme, we partition the degrees of freedom (i.e., nodal
values associated with the basis functions) into interior degrees of freedom
Ωi and exterior degrees of freedom Ωe, where Ωi ∩Ωe = ∅. In this paper we
assume atom-centered basis functions are used in discretizing the Hamilto-
nian operator. This type of basis set includes atomic orbitals, Gaussian type
orbitals, as well as the density-functional tight binding (DFTB) approxima-
tion [1], which will be used in our numerical examples. With some abuse of
notation, we aggregate degrees of freedom corresponding to the single atom,
as illustrated in Fig. 2, and perform the partition geometrically according
to atomic positions. We will not distinguish between the domain and the set
of indices for the basis functions associated with the atoms in the domain.
For example HΩi,Ωi represents the diagonal matrix block of the Hamiltonian
matrix for the basis functions associated with atoms in Ωi. Parts of Ωe are
labeled as boundary degrees of freedom, denoted by ∂Ωe, and defined to be
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the collection of indices k so that HΩi,k �= 0. As a result HΩi,Ωe\∂Ωe = 0.
Hence ∂Ωe defines the minimal separation between the defect and the envi-
ronment in the algebraic sense. We partition H accordingly into the block
form

H =

⎛⎝ HΩi,Ωi HΩi,∂Ωe 0
H∂Ωe,Ωi H∂Ωe,∂Ωe H∂Ωe,Ωe\∂Ωe

0 HΩe\∂Ωe,∂Ωe HΩe\∂Ωe,Ωe\∂Ωe

⎞⎠
≡

⎛⎝ Hαα Hαβ 0
Hβα Hββ Hβ2

0 H2β H22

⎞⎠ ≡

⎛⎝ H11 H12

H21 H22

⎞⎠ .

(13)

For convenience of the discussion in the sequel, we introduce the short hand
notation α ≡ Ωi, β ≡ ∂Ωe, and 1 ≡ Ωi∪∂Ωe ≡ α∪β and 2 ≡ Ωe\∂Ωe. Other
matrices of the same size, such as the overlap matrix S and the density
matrix Γ, can be partitioned accordingly. As will be seen below, grouping
Ωi and ∂Ωe together allows accurate calculation of local physical quantities
such as atomic forces corresponding to the degrees of freedom in Ωi.

The atomic configuration in Ωi can be fully disordered and/or involve
defects, but we assume that the atomic configuration in Ωe is not far away
from relatively simple configurations, such as crystalline systems for which
the Green’s function can be evaluated or approximated using a band struc-
ture calculation, which is not expensive compared to the cost of evaluating
the global system with defects. The quantity of interest is the density matrix
restricted to Ωi. To this end we need to evaluate Γ11. We also require an
embedding scheme to result in a discretized system in the basis Φ involving
only degrees of freedom in 1 ≡ Ωi ∪ ∂Ωe, and the information from the rest
of the domain will be incorporated implicitly.

Below we omit the subscript l (the index of the poles), and denote by

A = (z + μ)S −H, and G = A−1.

Note that the z dependence is implicit in the notation. The submatrices of
G satisfy the equation

(14)

(
A11 A12

A21 A22

)(
G11 G12

G21 G22

)
=

(
I1 0
0 I2

)
,

where I1, I2 are identity matrices.
Green’s function embedding methods typically involve two atomic con-

figurations. We denote by H0 and S0 the matrices corresponding to a refer-
ence system, and H and S the matrices corresponding to a physical system
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Figure 2: Partition of the atoms in the computation domain into interior
domain Ωi (red triangles), boundary between interior and exterior domain
∂Ωe (blue triangles in shaded area), and the rest of the exterior domain
Ωe\∂Ωe (gray circles).

of interest. For simplicity we assume that after discretization, the dimen-
sion of H0 and H are the same. This assumption is clearly violated when
atoms are added or removed from the systems. However, this condition can
be relaxed in the practical numerical schemes as illustrated in section 4.1.
We also assume that the reference density matrix and the physical density
matrix can be evaluated using the same contour using Eq. (11), and define

A0 = (z + μ)S0 −H0.

In physical terms, this means that we choose the same chemical potential for
the two systems. In this paper we assume the reference atomic configuration
is a perfect crystal. In the presence of localized defect, it is possible to
use such grand canonical ensemble treatment with fixed chemical potential.
However, for finite sized reference systems, the grand canonical treatment
is only an approximation, and updating the chemical potential to adjust for
the correct number of electrons may become necessary.

3.1. Schur complement method

The most straightforward way to reduce the degrees of freedom in Ωe is
via the use of a Schur complement (a.k.a Gaussian elimination). The Schur
complement method eliminates the A22 submatrix directly, and obtain

(15) (A11 +Σ)G11 = I1.
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Here

(16) Σ = −A12A
−1
22 A21

is called the Schur complement, which reflects the impact of the exterior
degrees of freedom to the interior degrees of freedom. We note that the use
of Σ to denote the Schur complement is different from the convention in
numerical linear algebra. We choose this notation here and below due to
the direct connection of Schur complement and the “self energy” matrix in
physics literature, which is often denoted by Σ. The Schur complement Σ
depends on the complex shift z. In physics literature, Σ is often referred to as
the self energy matrix [6,44]. The matrix inverse A−1

22 can be interpreted as
the Green’s function corresponding to a system with only degrees of freedom
in Ωe\∂Ωe. In Fig. 2 this system corresponds to the degrees of freedom
represented by gray circles, which contains a very large void by excluding
the degrees of freedom in Ωi ∪ ∂Ωe. In term of the reference system, the
corresponding reference matrix A0 takes the form

A0 =

(
0 0
0 A22

)
.

For quasi-one-dimensional systems, the Schur complement method has
been successfully applied in first principle quantum transport calculations
using the non-equilibrium Green’s function methods [6]. In such calculations,
the vacancy system becomes two independent semi-infinite systems, and can
be calculated efficiently by means of recursive Green’s function methods [43].
This technique becomes very costly for systems in two and three dimensions,
since the cost of computing A−1

22 can be similar to that of the computation
of the entire system.

3.2. Dyson equation method

To overcome the above mentioned difficulty associated with the Schur com-
plement method, let us consider more general reference systems, with the
requirement that they only differ with A in the A11 block, i.e.,

(17) ΔA ≡ A0 −A =

(
A0

11 −A11 0
0 0

)
.

Nonetheless, even local changes in A11 can lead to extended changes in terms
of the difference of Green’s functions G − G0. Green’s function embedding
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methods can be regarded as approximations to solutions of G11 without the
explicit involvement of the rest of blocks.

One possible way to achieve this is described by Williams, Feibelman and
Lang [59], and later extended by Kelly and Car [29], through the Dyson’s
equation. Again using the same numerical linear algebra notation, here we
demonstrate that the Dyson equation method can be interpreted equiva-
lently using the Sherman-Morrison-Woodbury formula. The Dyson’s equa-
tion can be derived by starting with (A0 −ΔA)G = I, and left multiplying
the equation by G0, which yields,

(I −G0ΔA)G = G0.

This is typically rewritten as,

(18) G = G0 +G0ΔAG,

or equivalently

G = (I −G0ΔA)−1G0.

We view ΔA as a “low-rank update” and rewrite as

ΔA = E1(ΔA)11E
T
1 ,

where ET
1 = [I1, 0]. Then by the Sherman-Morrison-Woodbury formula, we

have,

G = G0 +G0E1(ΔA)11(I1 −G0
11(ΔA)11)

−1ET
1 G

0.

In order to evaluate the electron density in Ωi, it is sufficient to evaluate
G11 as

(19) G11 = G0
11 +G0

11(ΔA)11(I1 −G0
11(ΔA)11)

−1G0
11.

Note that all quantities, including the matrix inverse in Eq. (19) only involves
matrices restricted to the degrees of freedom in Ωi ∪ ∂Ωe, and the results
from Eq. (19) and (15) are equivalent.

Compared to the Schur complement approach, one advantage of the
Dyson equation approach is that the reference system can be chosen to be
physically more meaningful for systems of all dimensions. In particular, for
configurations such as the one in Fig. 2, Green’s functions corresponding to
the crystalline configuration can be efficiently computed by means of a band
structure calculation, and can be readily used in Eq. (19).
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Another advantage of the Dyson equation approach is that physical
quantities, such as the differences of energy between the physical system
of interest and the reference system can be evaluated accurately, even for
the contribution to the energy differences in Ωe. To see why this is possible,
we first note that in the contour integral formulation, physical quantities,
such as the total number of electrons and total energy can be computed
with the trace of differences of Green’s functions, multiplied by the overlap
matrix, i.e., Tr[SG−S0G0]. Note that both G and G0 are z-dependent, and
we have the identity

Tr[GS] =
d

dz
Tr [log(zS −H)] =

d

dz
log det(zS −H),

and similarly

Tr[G0S0] =
d

dz
log det(zS0 −H0).

Here we used the identity Tr[log(·)] = log[det(·)]. Then we have

Tr[GS]− Tr[G0S0] =
d

dz
log det(G0G−1)

=
d

dz
log det(I −G0ΔA) =

d

dz
log det(I1 −G0

11(ΔA)11),

where we have used Dyson’s equation for G0G−1. In order to compute dif-
ferences of energy, free energy or number of electrons, only the determinant
of matrices restricted to Ωi ∪ ∂Ωe is needed. In practice the d

dz operator can
be approximated using a finite difference scheme in the complex plane.

Although the reference Green’s function G0 can be efficiently computed
by means of a band structure calculation, the disadvantage of the Dyson
equation approach is that the matrix G0

11 in Eq. (19) is a dense matrix.
Hence dense linear algebra must be used for matrix-matrix multiplication
and matrix inversion operations. The computational cost can still be large
when a large number of degrees of freedom in Ωi is needed.

4. A new Green’s function method

4.1. The PEXSI-Σ method

Let us now introduce the PEXSI-Σ method, which is our new strategy of
treating the boundary conditions for the Green’s function.
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We first note that A0 and A only differ in the A11 block as in Eq. (17),
and the Schur complement in Eq. (16) can be either given by the reference
system or the defect system, i.e.

(20) Σ = −A12A
−1
22 A21 = −A0

12(A
0
22)

−1A0
21.

Consequently, Σ as in Eq. (15) can also be defined using G0 as

G0
11(A

0
11 +Σ) = I1,

or equivalently

(21) G0
11Σ = I1 −G0

11A
0
11.

Here we demonstrate that Eq. (21) can be used to give a compact repre-
sentation for Σ. Recall that in Eq. (13) we split the collective index 1 into
(α, β) ≡ (Ωi, ∂Ωe). Then Eq. (16) can be written as

(22) Σ = −A12A
−1
22 A21 = −

(
0

Aβ2

)
A−1

22

(
0 A2β

)
≡

(
0 0
0 Σββ

)
.

Therefore the Σ matrix is only nonzero on the diagonal matrix block corre-
sponding to β ≡ ∂Ωe. Then Eq. (21) can be written as

(23)

(
G0

αα G0
αβ

G0
βα G0

ββ

)(
0 0
0 Σββ

)
= I1 −G0

11A
0
11.

Here we have used the fact that Σ only has non-zero component on the
boundary degrees of freedom. Take the (β, β) component of the equation (23),
and we have

(24) G0
ββΣββ = Iβ −G0

βαA
0
αβ −G0

ββA
0
ββ,

or in a more compact form

(25) Σββ = (G0
ββ)

−1(I −G0
βαA

0
αβ)−A0

ββ.

Compared to previous schemes in section 3, our approach has the follow-
ing advantages: 1) It is an accurate reformulation of the embedding scheme
under the same assumption of the non-zero pattern of ΔA as that in the
Dyson equation approach. Hence the reference Green’s function G0 can cor-
respond to a physical reference system, such as the crystalline configura-
tion. 2) Compared to the Dyson equation approach, the advantage of using
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Eq. (25) is that it introduces a modification matrix only on the boundary
degrees of freedom ∂Ωe, and hence the reduced system remains to be a
sparse system for systems of large sizes. This is crucial for using fast meth-
ods such as PEXSI, of which the effectiveness relies on the sparsity of the
matrix A.

More specifically, for a symmetric matrix of the form A = zS −H, the
selected inversion algorithm [26, 39, 42] first constructs an LDLT factoriza-
tion of A, where L is a block lower diagonal matrix called the Cholesky
factor, and D is a block diagonal matrix. In the second step, the selected
inversion algorithm computes all the elements A−1

ij such that Lij �= 0. Since
Hij or Sij �= 0 implies that Lij �= 0, all the required selected elements
of A−1 are computed, and the computational scaling of the selected inver-
sion algorithm is only proportional to the number of nonzero elements in
the Cholesky factor L. [39]. For a finite size system, the size of this ma-
trix block is approximately the same as the number of degrees of freedom
corresponding to the surface of the system. Regarding the implementation,
we can use the techniques in sparse linear algebra, and reorder the matrix
A = zS − H so that the interior degrees of freedom Ωi appear before the
boundary degrees of freedom ∂Ωe. The Σ matrix only modifies the matrix
block corresponding to degrees freedom in ∂Ωe. This matrix block becomes
dense anyway, since it is the last block in the Gaussian elimination proce-
dure (or LDLT factorization) [39]. Therefore if number of degrees of free-
dom in Ωi is sufficiently large, the modification due to Σ only increases
the prefactor of the asymptotic complexity of selected inversion, which is at
most O(N2) and N is the number of degrees of freedom corresponding to
Ωi ∪ ∂Ωe.

With G11 computed, physical observables that rely on the local density
matrix, such as the atomic force, can be readily computed. In PEXSI, the
Hellmann-Feynman force associated with the I-th atom is given by [53]

(26) FI = −Tr

[
Γ
∂H

∂RI

]
+Tr

[
ΓE ∂S

∂RI

]
.

Analogous to the density matrix (7), ΓE is the energy density matrix defined
by

(27) ΓE = CΛfβ(Λ− μ)CT .

It has been shown [37] that the energy density matrix can be computed
using the same set of Green’s function Gl as required for the density matrix,
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but with different weights {ωE
l }

(28) ΓE ≈ Im

(
C

P∑
l=1

ωE
l

Λ− (zl + μ)I
CT

)
= Im

(
P∑
l=1

ωE
l

(zl + μ)S −H

)
.

Note that the sparsity pattern of ∂H
∂RI

, ∂S
∂RI

is in general the same as that

of H,S respectively. Therefore if I corresponds to an atom in Ωi, the trace
in Eq. (26) can be computed using Γ,ΓE restricted to Ωi ∪ ∂Ωe, which is
readily computed in the PEXSI-Σ formulation.

In order to evaluate the energy or the number of electrons in the global
domain, one needs to either use exterior degrees of freedom explicitly, or to
use the approach described in Eq. (20) for Dyson’s equation, which we will
not go into details here. On the other hand, PEXSI-Σ can be immediately
used to evaluate the number of electrons restricted to Ωi, denoted by N i

e,
which is a useful quantity to measure in charge transfer processes. Note that
the global number of electrons can be computed as Ne = Tr[SΓ], the interior
number of electrons can be computed as

(29) N i
e = Tr[SααΓαα] + Tr[SαβΓβα].

Similarly one can measure the interior band energy

(30) Ei
band = Tr[SααΓ

E
αα] + Tr[SαβΓ

E
βα],

which is the contribution of the total band energy Eband = Tr[SΓE ] from
the interior degrees of freedom.

4.2. Geometric relaxation by atomistic Green’s function

Another appealing aspect of the present approach is that the relaxation
of the nuclei can be formulated within the same framework. In molecular
mechanics, in order to predict structural properties of lattice defects, the sur-
rounding atoms have to be relaxed so that the system reaches a mechanical
equilibrium. In principle, the forces on every atom can be computed based
on the Hellmann-Feynman theorem. With the same observation that away
from the defects, the lattice deformation is small, we linearize the atomic
interaction in the exterior region. This standard approximation is known
as the harmonic approximation [2], under which the force balance can be
expressed as a linear system of finite difference equations,

(31) fI ≡
∑
J

DI,JuJ = 0, ∀ I ∈ Ωe,
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subject to boundary conditions from the interior region. Here DI,J is the
force constant matrix corresponding to the periodic lattice structure, de-
fined as the second derivative of the energy. In the context of QM/MM
coupling, such approximation has also been used in [8]. The force constant
matrix DI,J can be computed by means of a finite difference approach (also
called the “frozen phonon approach”), or by density functional perturbation
theory [3] in electron structure software packages. Since they are defined for
a crystalline structure, a supercell can be used for this purpose. Similar to
the sparsity of the matrices H and S, we will make a truncation for DI,J

based on the magnitude of the matrix, and denote the spatial cutoff by rcut.
An example will be given in the next section to illustrate how the trunca-
tion is done. Notice that here we have assumed the same partition of the
domain into Ωi and Ωe as in the electronic part. However, depending on
the truncation radius, the sparsity of D might be different compared to the
Hamiltonian matrix H. Therefore we denote the boundary by ∂Ωe

atom, as
opposed to the definition of the boundary for the electron part, which was
denoted by ∂Ωe.

Let us now show that similar to the electronic part, the atomic relaxation
can be determined using a more efficient procedure so that atomic degrees
of freedom can be restricted to the boundary. To see how this reduced model
is derived, we use the matrix representation and denote uα, uβ , and u2 the
displacement in the inner region Ωi, outer boundary ∂Ωe

atom and exterior
Ωe\∂Ωe

atom, respectively.
Given uα, the atomic displacement in the interior, we are left to deter-

mine uβ and u2. Our goal is to eliminate u2, in order to remove the large
number of degrees of freedom in the exterior domain. In analogy to Eq. (13),
the force balance equation (31) can be rewritten as

(32)

(
Dβα Dββ Dβ2

0 D2β D22

)⎛⎝uα
uβ
u2

⎞⎠ =

(
0
0

)
.

From the partition of the domain, we have that D2α = 0. Since Eq. (31)
is only valid for the indices, Ωe ≡ β ∪ 2, Eq. (32) has only two row blocks.
Similar to G0 for the electronic degrees of freedom, we define the atomistic
Green’s function G = D−1. After eliminating the degrees of freedom with
respect to u2 in Eq. (32), we have

(33) Dβαuα + (Dββ +ΣG
ββ)uβ = 0.

Here ΣG
ββ = −Dβ2D

−1
22 D2β is the Schur complement for the atomistic degrees
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of freedom. Analogous to Eq. (24) we can obtain an equivalent formula for
ΣG
ββ using the physical reference Green’s function G as

(34) Gββ(Dββ +ΣG
ββ) = I − GβαDαβ.

Finally multiply Gββ to both sides of Eq. (33) we have

(35) uβ = GβαDαβuβ − GββDβαuα.

This forms a closed system for the displacement of the atoms at the
boundary. The coefficients in this linear system involve the force constant
matrices and the Green’s function for the reference state. Such equations
have been derived and implemented in [34, 35] as a coarse-grained molecu-
lar mechanics model, and the derivation presented in this work provides a
unified perspective for Green’s function methods for electronic and atomic
degrees of freedom. Similar to the Green’s function in the QM model, the
atomistic Green’s can be expressed as a Fourier integral in the first Brillouin
zone. There are various techniques for computing the Green’s functions ef-
ficiently [47,55], especially when the interatomic distance is large.

The geometric optimization can be obtained as follows: For the atoms
in Ωi, the forces are determined from the KSDFT model, and the atomic
positions are relaxed using a nonlinear solver, e.g., the conjugate-gradient
method. These updated positions will be used as input in the Eq. (35), which
becomes a closed linear system for the displacement of the atoms in ∂Ωe

atom.
Once the displacement along ∂Ωe

atom is determined from (35), this equation
can be used to evaluate the displacement of the atoms that are further out
(e.g., those in Ωe\∂Ωe

atom).
Note that in this procedure the atomic degrees of freedom in Ωe are

completely determined by those in Ωi. Due to our choice of the reference
system to be the periodic lattice for A0, in the current method, there is no
feedback of the deformation of the exterior domain to the Ωi. It would be an
interesting future direction to consider how to incorporate the change into
the reference Hamiltonian.

5. Numerical results

In this section we demonstrate the accuracy of the PEXSI-Σ method us-
ing three examples: a water dimer, a graphene system with a divacancy,
and a graphene system with a dislocation dipole with opposite Burgers vec-
tors under relaxed atomic configuration. Our method is implemented in
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the DFTB+ code [1]. DFTB+ uses the density functional tight binding
(DFTB) method, which can be viewed as a numerical discretization of the
Kohn-Sham density equations with minimal degrees of freedom, and thus
allows the study of systems of relatively larger sizes without parallel imple-
mentation. DFTB+ defines a semi-empirical charge density, which can be
computed both self-consistently and non-self-consistently. In the PEXSI-Σ
method, self-consistent charge density calculation requires the charge den-
sity in Ωe to be properly taken into account, which is not yet in the scope
of this work. Hence all calculations below are performed in the non-self-
consistent mode of DFTB+. In all calculations, the electronic temperature
is set to the room temperature 300K. All quantities are reported in atomic
units (au) unless otherwise specified. All the computation is performed on
a single Intel i7 CPU processor with 64 gigabytes (GB) of memory.

We report the results for the following methods. For the full system,
we compare the results from the exact diagonalization (DIAG) method and
the pole expansion with selected inversion (PEXSI) method. We demon-
strate that the results from DIAG and PEXSI for the full system fully agree
with each other. We show the effectiveness of the PEXSI-Σ method without
taking into account directly the exterior degrees of freedom. As a proof of
concept, the Σ matrices are constructed from PEXSI calculations for the ref-
erence system, and is then fixed in the calculation with defects. In order to
demonstrate the effectiveness of the environment-dependent self energy ma-
trix Σ, we also compare with the results by setting Σ to a zero matrix. This
is referred to as the vacuum boundary conditionmethod in this section. In
the non-self-consistent calculations, the vacuum boundary conditionmethod
is equivalent to considering an isolated system with the degrees of freedom in
Ωe directly eliminated from the calculation. In all the examples, we find that
the inclusion of a properly approximated Σ matrix significantly improves the
accuracy.

5.1. Water dimer

Our first example is a water dimer system (Fig. 3). The system is parti-
tioned into two parts, with one water molecule described as Ωi and the
other molecule as Ωe. Here 80 poles are used in the PEXSI and PEXSI-Σ
method to guarantee accuracy. At the equilibrium configuration, the total
energy obtained from the DIAG method is −8.1705870965 au, and the total
energy obtained from the PEXSI method is −8.1705870964 au, with dis-
crepancy less than 10−10 au. Therefore the results from DIAG and PEXSI
fully agree with each other.
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Figure 3: Atomic configuration for water dimer. Large red ball: oxygen (O).
Small white ball: hydrogen (H). The molecule in Ωi is stretched along the
O-O direction.

In order to demonstrate that the PEXSI-Σ method gives accurate results
in different atomic configurations, we stretch the water molecule in Ωi along
the oxygen-oxygen direction, and denote by ΔdOO the displacement away
from equilibrium position. In the PEXSI-Σ method, the value of the Hamil-
tonian matrix elements between Ωi and Ωe vary with respect to the change
of the atomic configuration. Hence in the absence of the energy contribution
from Ωe, the total energies obtained from PEXSI and PEXSI-Σ in general do
not agree with each other. However, as discussed in section 4.1, the interior
band energy Ei

band, together with the atomic force corresponding to atoms
in Ωi should agree well between PEXSI and PEXSI-Σ .

Fig. 3 (a), (b) report the interior band energy, as well as the force on
the oxygen atom in Ωi projected along the O-O direction, respectively. We
find that energies and forces vary smoothly with respect to the change of
the O-O distance, and the results from PEXSI and PEXSI-Σ fully agree
with each other. We remark that due to the small system size, the exterior
degrees of freedom Ωe coincide with the boundary degrees of freedom ∂Ωe.
Hence all Σ matrices are zero. In this special case, the PEXSI-Σ method
and the vacuum boundary conditionmethod are the same.

5.2. Divacancy in graphene

Our second numerical example is a graphene system with a single divacancy
defect. Starting from a periodic configuration with 420 atoms, two atoms are
removed to create a divacancy (Fig. 5). No further structural relaxation is
performed at this stage. In the periodic configuration without the defect, the
total energy computed from the DIAG method is −721.049897496 au, and
the total energy computed from the PEXSI method with 80 poles and at the
same chemical potential is −721.049897489 au. Hence the results from DIAG
and PEXSI fully agree with each other, and all numerical results below will
be benchmarked with that from the PEXSI method.
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Figure 4: (a) The interior band energy, and (b) the force on the oxygen
atom in Ωi projected along the O-O direction, as the molecule in Ωi is
stretched along the O-O direction, using PEXSI-Σ, and full simulation with
PEXSI, respectively. The horizontal line in (b) marks the equilibrium posi-
tion (ΔdOO = 0) for which the force vanishes.

Table 1: The interior band energy for the graphene systems. Unit: au

System Full PEXSI PEXSI-Σ Vacuum
Periodic (P) -145.70244 -145.70244 -145.76624
Divacancy (D) -142.56345 -142.56367 -142.61273
Shifted Divacancy (SD) -142.45347 -142.45368 -142.50003
Energy difference (D-P) 3.13899 3.13877 3.15351
Energy difference (SD-D) 0.10999 0.11003 0.11270

For the divacancy system, the atoms are partitioned according to Fig. 5.
Since Ωe\∂Ωe is non-empty, the Σ matrices are non-zero. In the PEXSI-Σ
method, the Σ matrices are obtained from the PEXSI calculation in the
periodic configuration. We compare the interior band energy between the
divacancy (D) and periodic configuration (P) in Table 1, obtained from
PEXSI for the full system, as well as from PEXSI-Σ , and vacuum boundary
conditionmethods, respectively. In order to assess the relative accuracy of
the methods, we also compare the interior band energy for another system
by shifting one atom in Fig. 5 by a small distance of 0.1 Å along the x-
direction. The resulting configuration is denoted by SD (shifted divacancy,
Fig. 6).

Table 1 indicates that in the periodic configuration, the result from
PEXSI-Σ fully agrees with that from the simulation of the full system with
PEXSI. Even though the Σ matrix is obtained from the periodic configura-
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Figure 5: Atomic configuration of the divacancy example in graphene with
418 atoms, partitioned into interior atoms Ωi (green), boundary atoms ∂Ωe

(yellow), and the rest of the exterior atoms Ωe\∂Ωe (cyan).

Figure 6: Atomic configuration of the divacancy system with one atom (red)
shifted by 0.1 Å along the x-direction. The same partitioning strategy as in
Fig. 5 is used.

tion, the inclusion of Σ matrices in the PEXSI-Σ formulation significantly
improves the accuracy in other atomic configurations as well. The error of
the energy difference between the divacancy and periodic configuration using
the vacuum boundary conditionmethod is 0.0145 au. This error is reduced

by 67 times to 0.0002 au in the PEXSI-Σ method. Similarly the error of the
energy difference between the divacancy and the shifted divacancy configu-
ration using the vacuum boundary conditionmethod is 0.0027 au, and the
error is reduced by about 75 times to 0.000036 au in the PEXSI-Σ method.

We report the maximum of the error of the atomic forces calculated
from all interior atoms in Table 2. In all configurations, the maximum force
error obtained from the PEXSI-Σ method is less than 3 × 10−5 au, which
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Table 2: Maximum error of the force for interior degrees of freedom for the
graphene systems. Unit: au

System PEXSI-Σ Vacuum
Periodic (P) 0.00000 0.00407
Divacancy (D) 0.00003 0.00399
Shifted Divacancy (SD) 0.00003 0.00384

is very accurate for geometry optimization and molecular dynamics studies.
Compared to the vacuum boundary conditionmethod, the improvement due
to the inclusion of the Σ matrix is again nearly 2 orders of magnitude.

5.3. Dislocation dipole in graphene

In this test problem, we consider a dislocation dipole in the graphene system.
Such a dislocation can be identified as a pentagon-heptagon (5–7) pairs
among the hexagonal rings [5]. As comparison, we form a supercell with 720
atoms in total. The entire system is 4.55nm×4.38nm. The lattice constant
is set to a0 = 1.4247Å. For the force constant matrix D, we performed a
calculation in DFTB+ using a supercell with 48 atoms. The matrix D is
then produced by DFTB as the Hessian matrix. Based on the magnitude
of each 3 × 3 block, which corresponds to the interaction of an atom with
its neighbors, we make a truncation. In particular, the diagonal block has
norm (l2 norm) about 0.2160 au. We keep the force constants from up to 6th
neighbors. The distance is about 2a0, where the norm of the force constant
matrix has been reduced to about 0.0017 au. Fig. 7 (a) shows the atomic
configuration as well as the partition of the system. We observe that the cut-
off of the atoms interactions is slightly smaller than that of the QM model.
Compared to the example in section 5.2, the interior domain is reduced to be
just around the dislocation dipole. Structural relaxation is also performed
for the entire system so that all atoms, including the atoms in the exterior
domain, deviate from the equilibrium position, as shown in Fig. 7 (b). The Σ
matrix is still constructed from the graphene system with periodic structure.
Fig. 8 shows that even with a small interior domain and deformed atomic
configuration in the exterior domain, the accuracy of PEXSI-Σ reduces the
error of the force uniformly for all atoms in the interior domain to be around
10−3 au.

6. Conclusion and future work

In this work we proposed a new Green’s function embedding method called
PEXSI-Σ for efficient treatment of boundary conditions in complex ma-



PEXSI-Σ: a Green’s function embedding method 465

Figure 7: (Left) Atomic configuration of the dislocation dipole example with
720 atoms, partitioned into interior atoms Ωi (green), boundary atoms ∂Ωe

(yellow), and the rest of the exterior atoms Ωe\∂Ωe (cyan). (Right) Displace-
ment field (first component) after the geometric relaxation; the position of
interior atoms is plotted on top.

Figure 8: Error of the atomic force for atoms in the interior domain of the
dislocation dipole system.

terials. The Σ matrices can be constructed using Green’s functions corre-
sponding to any physical reference system that shares a similar potential
corresponding to exterior degrees of freedom. The Σ matrices can be viewed
as a surface potential and do not introduce additional interaction among the
interior degrees of freedom. Hence for systems with large number of interior
degrees of freedom, the calculation can be performed efficiently using the
pole expansion and selected inversion method (PEXSI). Numerical results
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using non-self-consistent DFTB+ calculations for water dimer, graphene
with divacancy and graphene with dislocation dipole demonstrated the ac-
curacy of the method.

We note that our current implementation of the PEXSI-Σ method, which
is only serial, is just a proof of principle. As indicated by the performance
of the PEXSI method [26, 38], when the number of interior degrees of free-
dom is large, the PEXSI-Σ method should readily allow a massively parallel
implementation in the future with at most O(N2) complexity. In order to
apply the PEXSI-Σ method for the accurate computation of physical quan-
tities, we need to include the self-consistent field effect, which requires the
solution of a Coulomb-like equation on the global domain. In particular,
the electrostatic energy depends sensitively on the total number of electrons
in the system. It is most natural to use a fixed chemical potential. This
corresponds to the grand canonical ensemble in the PEXSI-Σ method, and
may be a more natural choice for describing processes with charge transfer.
However, the grand canonical ensemble treatment might need to be relaxed
when the reference system is of finite size. The Σ matrices are constructed
from G0, which is only exact in the absence of deformation of exterior de-
grees of freedom. When the potential in the exterior domain changes due
to atomic relaxation or long range Coulomb interaction, the correction to
the Σ matrix could be possibly computed by means of perturbation theory.
We also remark that Green’s function embedding methods may also become
more versatile if the Σ matrices exhibit certain locality properties to accom-
modate structural changes of atoms in the exterior domain such as in the
presence of a single dislocation, and also can be used to study interaction
of defects by using multiple disconnected QM regions. Green’s function em-
bedding methods may also be an attractive alternative for coupling with
electronic structure theories beyond the level of KSDFT (see e.g., the recent
works [9, 49,63]). We plan to explore these directions in the future.
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