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Abstract
We describe how to apply the recently developed pole expansion and selected inversion
(PEXSI) technique to Kohn–Sham density function theory (DFT) electronic structure
calculations that are based on atomic orbital discretization. We give analytic expressions for
evaluating the charge density, the total energy, the Helmholtz free energy and the atomic
forces (including both the Hellmann–Feynman force and the Pulay force) without using the
eigenvalues and eigenvectors of the Kohn–Sham Hamiltonian. We also show how to update
the chemical potential without using Kohn–Sham eigenvalues. The advantage of using PEXSI
is that it has a computational complexity much lower than that associated with the matrix
diagonalization procedure. We demonstrate the performance gain by comparing the timing of
PEXSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D
systems, the complexity of PEXSI is linear with respect to the number of atoms. This linear
scaling can be observed in our computational experiments when the number of atoms in a
nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement
of PEXSI are modest. This even makes it possible to perform Kohn–Sham DFT calculations
for 10 000-atom nanotubes with a sequential implementation of the selected inversion
algorithm. We also perform an accurate geometry optimization calculation on a truncated
(8, 0) boron nitride nanotube system containing 1024 atoms. Numerical results indicate that
the use of PEXSI does not lead to loss of the accuracy required in a practical DFT calculation.

(Some figures may appear in colour only in the online journal)

1. Introduction

Electronic structure calculations based on solving the
Kohn–Sham density functional theory (KSDFT) play an
important role in the analysis of electronic, structural
and optical properties of molecules, solids and other
nanostructures. The efficiency of such a calculation depends
largely on the computational cost associated with the
evaluation of the electron charge density for a given
potential within a self-consistent field (SCF) iteration. The
most straightforward way to perform such an evaluation
is to partially diagonalize the Kohn–Sham Hamiltonian
by computing a set of eigenvectors corresponding to the
algebraically smallest eigenvalues of the Hamiltonian. The

complexity of this approach is O(N3
e ), where Ne is the number

of electrons in the atomistic system of interest. As the number
of atoms or electrons in the system increases, the cost of
diagonalization becomes prohibitively expensive.

Linear scaling algorithms (or O(Ne) scaling methods; see
for example [1–6], and review articles [7, 8]) are attractive
alternatives for solving KSDFT. The traditional linear scaling
methods use the nearsightedness principle, which asserts that
the density perturbation induced by a local change in the
external potential decays exponentially away from where
the perturbation is applied. Consequently, the off-diagonal
elements of the density matrix decay exponentially away from
the diagonal [9, 10]. Strictly speaking, the nearsightedness
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property is valid for insulating systems but not for metallic
systems.

In order to design a fast algorithm that is accurate
for both insulating and metallic systems, we use an
equivalent formulation of KSDFT, in which the charge
density is evaluated as the diagonal of the Fermi–Dirac
function evaluated at a fixed Kohn–Sham Hamiltonian. By
approximating the Fermi–Dirac function through a pole
expansion technique [11], we can reduce the problem of
computing the charge density to that of computing the
diagonal of the inverses of a number of shifted Kohn–Sham
Hamiltonians. This approach was pursued by a number of
researchers in the past. The cost of this approach depends
on the number of poles required to expand the Fermi–Dirac
function and the cost for computing the diagonal of the inverse
of a shifted Kohn–Sham Hamiltonian.

The recent work by Lin et al [11] provides an accurate
and efficient pole expansion scheme for approximating the
Fermi–Dirac function. The number of poles required in
this approach is proportional to log(β1E), where β is
proportional to the inverse of the temperature, and 1E is
the spectral width of the Kohn–Sham Hamiltonian (i.e. the
difference between the largest and the smallest eigenvalues).
This number of expansion terms, or the pole count, here
is significantly lower than those given in the previous
approaches [12–16]. The favorable scaling of the pole
expansion allows us to treat both insulating and metallic
systems efficiently at room temperature or even lower
temperature.

Furthermore, an efficient selected inversion algorithm
for computing the inverse of the diagonal of a shifted
Kohn–Sham Hamiltonian without computing the full inverse
of the Hamiltonian has been developed [17–19]. The idea of
using the inverse of a shifted Hamiltonian operator (Green’s
function) for reducing the complexity of Kohn–Sham density
functional theory has also been pursued in other recent
works [16, 20]. In the selected inversion method, the
complexity of this algorithm is O(Ne) for quasi-1D systems
such as nanorods, nanotubes and nanowires, O(N3/2

e ) for
quasi-2D systems such as graphene and surfaces, and O(N2

e )

for 3D bulk systems. In exact arithmetic, the selected
inversion algorithm gives the exact diagonal of the inverse,
i.e., the algorithm does not rely on any type of localization
or truncation scheme. For insulating systems, the use of
localization and truncation can be combined with selected
inversion to reduce the complexity of the algorithm further
to O(Ne) even for general 3D systems.

In the previous work [18, 19], we used the pole
expansion and selected inversion (PEXSI) technique to solve
the Kohn–Sham problem discretized by a finite difference
scheme. However, it is worth pointing out that PEXSI is a
general technique that is not limited to discretized problems
obtained from finite difference. In particular, it can be readily
applied to discretized Kohn–Sham problems obtained from
any localized basis expansion technique. In this paper, we
describe how PEXSI can be used to speed up the solution of
a discretized Kohn–Sham problem obtained from an atomic
orbital basis expansion. We show that electron charge density,

total energy, Helmholtz free energy and atomic forces can all
be efficiently calculated by using PEXSI.

We demonstrate the performance gain that we can achieve
by comparing PEXSI with the LAPACK diagonalization
subroutine dsygv on nanotubes of two types. We show that by
using the PEXSI technique, it is possible to perform electronic
structure calculations accurately for a nanotube that contains
10 000 atoms with a sequential implementation of the selected
inversion algorithm within a reasonable amount of time. This
is not possible with the sequential LAPACK subroutine. For
this example, PEXSI exhibits linear scaling when the system
size exceeds a few hundred atoms.

This paper is organized as follows. In section 2,
we show how the PEXSI technique previously developed
[11, 17–19] can be extended to solve discretized Kohn–Sham
problems obtained from an atomic orbital expansion scheme.
In particular, we will show how charge density, total energy,
free energy and force can be calculated in this formalism.
We will also discuss how to update the chemical potential.
In section 3, we report the performance of PEXSI on two
quasi-1D test problems.

Throughout the paper, we use Im(A) to denote the
imaginary part of a complex matrix A. A properly defined
inner product between two functions f and g is sometimes
denoted by 〈f |g〉. The diagonal of a matrix A is sometimes
denoted by diag(A). We use Ĥ(x, x′) to denote the
Hamiltonian operator, and H, S to denote the discretized
Hamiltonian matrix and the corresponding overlap matrix
obtained from a basis set 8. Similarly γ̂ (x, x′) denotes the
single-particle density matrix operator, and the corresponding
electron density is denoted by ρ̂(x). The matrix 0 denotes
the single-particle density matrix represented under a basis
set 8. It will be used to define the electron density ρ̂

and the total energy Etot. In a finite temperature ab initio
molecular dynamics simulation, we also need the Helmholtz
free energy Ftot, and the atomic forces on the nuclei {FI}.
To compute these quantities without using Kohn–Sham
eigenvalues and Kohn–Sham orbitals, we need the free energy
density matrix 0F and the energy density matrix 0E. In
PEXSI, these matrices are approximated by finite P-term pole
expansions, denoted by 0P, 0

F
P , 0

E
P respectively. However, to

simplify notation, we will drop the subscript P and simply
use 0,0F , 0E to denote the approximated matrices unless
otherwise noted.

2. Theory

The ground-state electron charge density ρ̂(x) of an atomistic
system can be obtained from the self-consistent solution to the
Kohn–Sham equations

Ĥ[ρ̂(x)]ψi(x) = ψi(x)εi, (1)

where Ĥ is the Kohn–Sham Hamiltonian that depends on
ρ̂(x), {ψi(x)} are the Kohn–Sham orbitals that satisfy the
orthonormality constraints∫

ψ∗i (x)ψj(x) dx = δij, (2)
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and the eigenvalue εi is often known as the ith Kohn–Sham
energy level. Using the Kohn–Sham orbitals, we can define
the charge density by

ρ̂(x) =
∞∑
i

|ψi(x)|
2fi, i = 1, 2, . . . ,∞, (3)

with occupation numbers 0 ≤ fi ≤ 2, i = 1, 2, . . .∞. The
occupation numbers in (3) can be chosen according to the
Fermi–Dirac distribution function

fi = fβ(εi − µ) =
2

1+ eβ(εi−µ)
, (4)

where µ is the chemical potential chosen to ensure that∫
ρ̂(x) dx = Ne, (5)

and β is the inverse of the temperature, i.e., β = 1/(kBT) with
kB being the Boltzmann constant.

Note that ρ̂(x) is simply the diagonal of the single-particle
density matrix defined by

γ̂ (x, x′) =
∞∑

i=1

ψi(x)fβ(εi − µ)ψ
∗
i (x
′), (6)

and the charge sum rule in (5) can be expressed alternatively
by

Tr[γ̂ (x, x′)] = Ne, (7)

where Tr denotes the trace of an operator.
It follows from (1) and (6) that the electron density ρ̂(x)

is a fixed point of the Kohn–Sham map defined by

ρ̂(x) = diag(fβ(Ĥ[ρ̂(x)] − µδ(x, x′))), (8)

where µ is chosen to satisfy (7). The algorithm most widely
used for finding the solution to (7) and (8) is a Broyden type of
quasi-Newton algorithm. In the physics literature, this is often
referred to as the self-consistent field (SCF) iteration. The
most time-consuming part of this algorithm is the evaluation
of ρ̂(x) = γ̂ (x, x) in (8).

2.1. Basis expansion in nonorthogonal basis functions

An infinite-dimensional Kohn–Sham problem can be dis-
cretized in a number of ways (e.g., plane wave expansion,
finite difference, finite element methods etc). In this paper,
we focus on a discretization scheme in which a Kohn–Sham
orbital ψi is expanded as a linear combination of a finite
number of basis functions {ϕj}, i.e.,

ψi(x) =
N∑

j=1

ϕj(x)cji. (9)

We should note that the total number of basis functions N
is generally proportional to the number of electrons Ne or
atoms in the system to be studied. These basis functions {ϕj}

can be constructed to have local nonzero support. But they
may not necessarily be orthonormal to each other. Examples
of these basis functions include Gaussian-type orbitals

[21, 22] and local atomic orbitals [23–28], adaptive curvilin-
ear coordinates [29], optimized nonorthogonal orbitals [1–3]
and adaptive local basis functions [30]. In numerical examples
presented in section 3, we use a set of nonorthogonal local
atomic orbitals.

Substituting (9) into (1) yields a generalized eigenvalue
problem

HC = SC4, (10)

where C is an N × N matrix with cij being its (i, j)th entry, 4
is a diagonal matrix with εi on its diagonal, Sij = 〈ϕi|ϕj〉, and
Hij = 〈ϕi|Ĥ|ϕj〉. For orthogonal basis functions, the overlap
matrix S is an identity matrix, and equation (10) reduces to a
standard eigenvalue problem. When local atomic orbitals are
used as the basis, S is generally not an identity matrix, but both
H and S are sparse.

Without loss of generality, we assume the basis functions
and the Kohn–Sham orbitals to be real in the following
discussion. Let 9 = [ψ1, . . . , ψN] and 8 = [ϕ1, . . . , ϕN];
then equation (9) can be written in a compact form:

9 = 8C. (11)

Consequently, the single-particle density matrix (6) be-
comes [2]

γ̂ (x, x′) = 9(x)fβ(4− µ)9
T(x′)

= 8(x)Cfβ(4− µ)C
T8T(x′). (12)

2.2. Pole expansion and selected inversion for nonorthogonal
basis functions

The most straightforward way to evaluate γ̂ (x, x′) is to
follow the right-hand side of (12), which requires solving
the generalized eigenvalue problem (10). The computational
complexity of this approach is O(N3). This approach becomes
prohibitively expensive when the number of electrons or
atoms in the system increases.

An alternative way to evaluate γ̂ (x, x′), which circum-
vents the cubic scaling of the diagonalization process, is to
approximate γ̂ (x, x′) by a Fermi operator expansion (FOE)
method [13]. In an FOE scheme, the function fβ(4 − µ)

is approximated by a linear combination of a number of
simpler functions, each of which can be evaluated directly
without diagonalizing the matrix pencil (H, S). A variety of
FOE schemes have been developed. They include polynomial
expansion [13], rational expansion [11, 12, 14], and a hybrid
scheme in which both polynomials and rational functions are
used [15, 31]. In all these schemes, the number of simple
functions used in the expansion is asymptotically determined
by β1E, where 1E = maxN

i=1|εi − µ| is the spectrum width
for the discrete problem. An upper bound of 1E can be
obtained inexpensively via a very small number of Lanczos
steps [32].

While most of the FOE schemes require as many
as O(β1E) or O(

√
β1E) terms of simple functions,

the recently developed pole expansion [11] is particularly
promising since it requires only O(logβ1E) terms of simple
rational functions. The favorable scaling of the pole expansion
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allows us to treat both insulating and metallic systems
efficiently at room or even lower temperature. The pole
expansion has the analytic expression

fβ(ε − µ) ≈ Im
P∑

l=1

ω
ρ
l

ε − (zl + µ)
, (13)

where

wρl =
4K
√

mM

πkP

cn(tl)dn(tl)

zl(k−1 − sn(tl))2
fβ(zl), (14)

with m = π2

β2 ,M = 1E2
+

π2

β2 , k =
√

M/m−1
√

M/m+1
. The functions

cn, dn, sn are Jacobi elliptic functions, and K, {zl}, {tl} are
chosen carefully and computed from analytic expressions. We
refer the readers to [11] for more detailed explanations. In
the following discussions, we will also refer to {zl} as the
complex shifts or poles, and refer to {ωρl } as the complex
weights. The complex shifts and weights are determined only
by β,1E and the number of poles P. All quantities in the
pole expansion are known explicitly and their calculation
takes a negligible amount of time. The construction of pole
expansion is based on the observation that the non-analytic
part of the Fermi–Dirac function lies only on the imaginary

axis within
[

iπ
β
,+i∞

]⋃[
−i∞,− iπ

β

]
. A dumbbell-shaped

Cauchy contour (see figure 1) is carefully chosen and
discretized to circle the eigenvalues {εi} on the real axis,
while avoiding the intersection with the non-analytic region.
The pole expansion does not require a band gap between the
occupied and unoccupied states. Therefore, it is applicable
to both insulating and metallic systems. Furthermore, the
construction of the pole expansion relies only on the analytical
structure of the Fermi–Dirac function rather than its detailed
shape. This is a key property that is crucial for constructing
pole expansions for other functions, including the free energy
density matrix and the energy density matrix which are
discussed in section 2.3 for the purpose of computing
Helmholtz free energy and atomic forces (including both the
Hellmann–Feynman force and the Pulay force). In such cases,
one only needs to substitute fβ in the weight function in
equation (14) by the corresponding function that shares the
same analytic structure as the Fermi–Dirac function fβ .

Following the derivation in the appendix, we can use
(13) to approximate the single-particle density matrix γ̂ by
its P-term pole expansion, denoted by γ̂P as

γ̂P(x, x′) = 8(x)Im

(
P∑

l=1

ω
ρ
l

H − (zl + µ)S

)
8T(x′)

≡ 8(x)08T(x′). (15)

In the above expression, 0 is an N × N matrix represented
in terms of the atomic orbitals 8. To simplify our notation,
we will drop the subscript P from the P-term pole expansion
approximation of the single-particle density matrix γ̂ unless
otherwise noted. A similar treatment will be performed for
the electron density ρ̂, the total energy Etot, the Helmholtz
free energy Ftot, and the atomic force on the Ith nuclei FI .
Using equation (15), we can evaluate the electron density in

Figure 1. A schematic view of the placement of poles used in a
pole expansion approximation of fβ(z). The thick black line on the
real axis indicates the range of εi–µ, and the thin blue line on the
imaginary axis indicates the non-analytic part of fβ(z). The yellow
dumbbell-shaped contour is chosen to exclude the non-analytic part
of the complex plane. Each block dot on the contour corresponds to
a pole used in the pole expansion approximation.

the real space as the diagonal elements of γ̂ , i.e.,

ρ̂(x) = 8(x)08T(x) =
∑

ij

0ijϕj(x)ϕi(x). (16)

We assume that each basis function ϕi(x) is compactly
supported in the real space. In order to evaluate ρ̂(x) for any
particular x, we only need 0ij such that ϕj(x)ϕi(x) 6= 0, or
Sij 6= 0. This set of 0ij is a subset of {0ij|Hij 6= 0}. To
obtain these selected elements, we need to compute the
corresponding elements of (H − (zl + µ)S)−1 for all zl.

The recently developed selected inversion method
[17–19] provides an efficient way of computing the selected
elements of an inverse matrix. For a symmetric matrix of
the form A = H − zS, the selected inversion algorithm first
constructs an LDLT factorization of A, where L is a block
lower diagonal matrix called the Cholesky factor, and D is
a block diagonal matrix. In the second step, the selected
inversion algorithm computes all the elements A−1

ij such
that Lij 6= 0. Since Lij 6= 0 implies that Hij 6= 0, all the
selected elements of A−1 required in (16) are computed. As
a result, the computational scaling of the selected inversion
algorithm is only proportional to the number of nonzero
elements in the Cholesky factor L. In particular, the selected
inversion algorithm has a complexity of O(N) for quasi-1D
systems, O(N1.5) for quasi-2D systems, and O(N2) for
3D bulk systems. The selected inversion algorithm achieves
universal improvement over the diagonalization method for
systems of all dimensions. It should be noted that the selected
inversion algorithm is an exact method for computing selected
elements of A−1 if exact arithmetic is to be employed, and
in practice the only source of error is the roundoff error. In
particular, the selected inversion algorithm does not rely on
any localization property of A−1. However, it can be combined
with localization properties of insulating systems to further
reduce the computational cost. We will pursue this approach in
future work. We also remark that the PEXSI technique can be
applied whenever H and S are sparse matrices. However, since
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the selected inversion method relies on an LDLT factorization
of H − zS, the preconstant of the selected inversion method
asymptotically scales cubically with respect to the number
of basis functions per atom. The numbers of basis functions
or degrees of freedom per atom associated with the finite
difference method [33] and the finite element method [34] are
usually much larger than those associated with methods based
on contracted basis functions such as local atomic orbitals.
Therefore the finite difference method and the finite element
method do not benefit as much from the PEXSI technique as
methods that are based on local atomic orbitals.

2.3. Total energy, Helmholtz free energy and atomic force
evaluation

In addition to reducing the computational complexity of the
charge density calculation in each SCF iteration, the PEXSI
technique can also be used to compute the total energy, the
Helmholtz free energy and the atomic forces (including both
the Hellmann–Feynman force and the Pulay force) efficiently
without diagonalizing the Kohn–Sham Hamiltonian.

It is well known that equations (1)–(5) can be derived as
the first-order necessary condition for minimizing the Mermin
free energy [35–39]

Ftot[{ψi}, {fi}] = Etot[{ψi}, {fi}] − TS[{fi}], (17)

under the constraints (2) and
∑
∞

i=1fi = Ne, where

Etot[{ψi}, {fi}] =
∞∑

i=1

fiεi −
1
2

∫∫
ρ̂(x)ρ̂(y)

|x− y|
dx dy

+ Exc[ρ̂] −

∫
Vxc[ρ̂](x)ρ̂(x) dx (18)

is called the internal energy or the total energy, and

S[{fi}] = −2kB

∞∑
i=1

(f̃i log f̃i + (1− f̃i) log(1− f̃i)) (19)

is the entropy due to fractional occupation where f̃i = fi/2 is
used so that 0 ≤ f̃i ≤ 1. The chemical potential µ in (4) is
simply the Lagrange multiplier associated with the occupation
number constraint

∑
∞

i=1fi = Ne.
Furthermore, it is the derivative of the Mermin free

energy (rather than the total energy) with respect to the atomic
positions that gives rise to the correct force in ab initio
molecular dynamics simulation [36–39].

The evaluation of the Mermin free energy functional Ftot
requires explicit knowledge of the Kohn–Sham eigenvalues
{εi} which are not available in the PEXSI scheme. However,
it has been shown in [40] that the Mermin free energy can be
equivalently computed in the form of the following Helmholtz
free energy, which does not contain the Kohn–Sham
eigenvalues explicitly:

Ftot = −2β−1Tr ln(1+ exp(β(µ−4)))+ µNe

−
1
2

∫∫
ρ̂(x)ρ̂(y)

|x− y|
dx dy+ Exc[ρ̂]

−

∫
Vxc[ρ̂](x)ρ̂(x) dx. (20)

Here we assume that the LDA [41] or GGA [42, 43]
exchange–correlation functional is used for the Kohn–Sham
total energy expression. In section 2.2 we have shown that the
electron density ρ̂(x) can be computed in the PEXSI scheme.
Therefore in equation (20), only the first term requires extra
treatment. Note that the function

f F
β (ε − µ) = −2β−1 ln(1+ exp(β(µ− ε))) (21)

is different from the Fermi–Dirac function fβ in equation (4).
In fact f F

β is directly related to fβ as

(f F
β )
′(z) = fβ(z). (22)

Nonetheless f F
β (z) is analytic everywhere in the complex

plane, except for segments of the imaginary axis within[
iπ
β
,+i∞

]⋃[
−i∞,− iπ

β

]
. In this sense, f F

β has the same

analytic structure as the Fermi–Dirac function fβ . The pole
expansion technique can be applied with the same choice of
poles {zl} but different weights, denoted by {ωF

l }, i.e.,

f F
β (ε − µ) ≈ Im

P∑
l=1

ωF
l

ε − (zl + µ)
. (23)

Following the derivation in the appendix, we can rewrite the
Helmholtz free energy as

Ftot = Tr[0F S] + µNe −
1
2

∫∫
ρ̂(x)ρ̂(y)

|x− y|
dx dy

+ Exc[ρ̂] −

∫
Vxc[ρ̂]ρ̂(x) dx, (24)

where the free energy density matrix 0F is given by

0F
= Im

P∑
l=1

ωF
l

H − (zl + µ)S
. (25)

Note that in the expression (24), the first term depends on the
trace of the product of 0F and S. The computation of this term
requires only the (i, j)th entry of 0F for (i, j) satisfying Sij 6= 0
or Hij 6= 0. Since the poles {zl} are the same as those used for
computing the electron density, the selected elements of 0F

correspond to the same selected elements of (H−(zl+µ)S)−1

as are used for the charge density calculation. Thus using them
for computing Ftot does not introduce additional complexity.

It is worth mentioning that the above formulation can be
simplified for insulating systems with a relatively large band
gap (even at zero temperature). In such cases, fi can be chosen
to be 2 for occupied states and 0 for unoccupied states. Then
the entropy term S vanishes and Ftot = Etot. Furthermore,
like for the Helmholtz free energy, we can give an alternative
expression for Etot, as follows:

Etot = Tr[0H] −
1
2

∫∫
ρ̂(x)ρ̂(y)

|x− y|
dx dy

+ Exc[ρ̂] −

∫
Vxc[ρ̂](x)ρ̂(x) dx, (26)

where 0 is the density matrix defined in (6). Note that in this
expression, the first term depends on the trace of the product

5
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of 0 and H. The computation of this term requires only the
(i, j)th entry of 0 for (i, j) satisfying Hij 6= 0. These entries
are already available from the charge density calculation; thus
using them for total energy evaluation does not introduce
additional complexity.

To perform geometric optimization or ab initio molecular
dynamics, we need to compute atomic forces associated
with different atoms. Atomic force is the derivative of the
free energy with respect to the position of an atom. For a
nonorthogonal atomic basis set, the force calculation is not
trivial, and standard methods have been established in [36]
for calculating the force. The calculation includes both the
Hellmann–Feynman force and the Pulay force [44], where the
Pulay force is induced by the change of basis functions with
respect to atomic positions. Following the derivation in the
appendix, we can express the atomic force associated with the
Ith atom in a compact way as

FI = −
∂Ftot

∂RI
= −Tr

[
0
∂H

∂RI

]
+ Tr

[
0E ∂S

∂RI

]
, (27)

where 0E is the energy density matrix defined by

0E
= C4fβ(4− µ)C

T . (28)

We remark that equation (27) itself is not new. We re-derive
this formula in the appendix using linear algebra notation to
make the work more accessible to readers not familiar with
this subject. The concept of the energy density matrix has been
used before [36, 45], and the last term in equation (27) is also
referred to as the ‘orthogonalization force’ in the appendix
of [36], which takes into account the fact that eigenfunctions
must be orthogonalized after atomic positions change.

To illustrate more clearly that both the Hellmann–
Feynman force and the Pulay force are taken into account
correctly, let us look into the first term in equation (27),

∂Hij

∂RI
=

〈
∂ϕi

∂RI
, Ĥϕj

〉
+

〈
ϕi,

∂Ĥ

∂RI
ϕj

〉
+

〈
ϕi, Ĥ

∂ϕj

∂RI

〉
. (29)

The terms ∂ϕi
∂RI

are automatically included to reflect the
change of the atom-centered basis functions with respect to
atomic positions, which gives rise to the Pulay force. From a
computational point of view, the terms in equation (29) that
are related to the kinetic and non-local pseudopotential parts
can be solved by efficient two-center integrals techniques,
while the terms related to local potential parts can be solved
on a real space uniform grid. The Hartree potential and the
exchange correlation potential are involved in the first term
and the third term on the right-hand side of equation (29), but
make no contribution to the second term on the right-hand
side of equation (29). Once all the terms in equation (29)
are evaluated, one only needs to multiply them with density
matrix 0, which is obtained directly from the PEXSI method.

In order to compute the energy density matrix
in equation (28), and therefore the orthogonalization
force without using the Kohn–Sham eigenvalues {εi} and
Kohn–Sham orbitals {ψi}, it is sufficient to note that the
function

f E
β (ε − µ) = εfβ(ε − µ) (30)

has the same analytic structure as the Fermi–Dirac function fβ .
Thus, the energy density matrix can be approximated by the
same pole expansion used to approximate the density matrix
(15). In particular, there is no difference in the choice of poles
zl. But the weights of the expansion, which we denote by ωE

l ,
for the energy density matrix approximation are different. To
be specific, the energy density matrix can be written using the
pole expansion as

0E
= CIm

P∑
l=1

ωE
l

4− (zl + µ)I
CT
=

P∑
l=1

ωE
l

H − (zl + µ)S
. (31)

Again the selected elements of 0E required in (27) can
be easily computed from the selected elements of [H −
(zl + µ)S]−1 which are available from the charge density
calculation.

2.4. Chemical potential update

The true chemical potential µ required in the pole expansions
(15), (24) and (31) is not known a priori. It must be solved
iteratively as part of the solution to (7) and (8). For a fixed
Hamiltonian H associated with a fixed charge density, it is
easy to show that the left-hand side of (7), which can be
expressed as

N(µ) = Tr[γ̂ ] = Tr[08T8] = Tr[0S], (32)

is a non-decreasing function with respect to µ. Hence the
root of (7) can be obtained by either Newton’s method or the
bisection method. Other strategies for updating the chemical
potential have also been discussed in more detail in the
literature [7, 16].

In an SCF iteration, ρ̂ and µ are often updated in
an alternating fashion. When the Kohn–Sham energies εi
associated with a fixed charge density are available, both
N(µ) and its derivative can be easily evaluated in Newton’s
method. However, if γ̂ is approximated via a pole expansion
(15), a new expansion is needed whenever µ is updated. In
Newton’s method, the derivative of N(µ) can be approximated
by the finite difference. When µk is sufficiently close to
the true chemical potential, the derivative of N(µk) can be
approximated by

N′(µk) ≈
N(µk)− N(µk−1)

µk − µk−1 . (33)

We remark that although Newton’s method converges rapidly
near the correct chemical potential as can be seen from
the numerical results in section 3, it may not always
be robust and may give very large correction when the
derivative (33) is small. In such a case a damped Newton’s
method or the bisection method can be used instead to
ensure the convergence of the chemical potential iteration.
It remains challenging to update the chemical potential both
efficiently and robustly for all systems with a wide range
of initial guesses, especially in the presence of gap states,
and dispersive bands which require global Fermi level finding
across multiple k-points. We will develop efficient and robust
schemes to overcome this difficulty in our future work.
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2.5. The flowchart of PEXSI

In algorithm 1 we summarize the main steps of the PEXSI
technique for accelerating atomic orbital-based electronic
structure calculation with the SCF iteration. We see that
PEXSI replaces the diagonalization procedure in solving
KSDFT, and obtains the electron density, the total energy,
the Helmholtz free energy and the atomic force accurately
without computing eigenvalues and eigenfunctions of the
Hamiltonian operator.

3. Numerical results

In this section, we report the performance achieved by
applying the PEXSI technique to an existing electronic
structure calculation code that uses local atomic orbital
expansion to discretize the Kohn–Sham equations.

The test problems we used are nanotubes of two types.
One is a boron nitride nanotube (BNNT) with chirality (8, 0),
which is an insulating system shown in figure 2. The other
is a carbon nanotube (CNT) with chirality (8, 8) shown in
figure 3, which is a metallic system. According to the formula

d =
√

3a
π

√
n2 + mn+ m2, where a is the bond length and

(n,m) is the chirality of the nanotubes [46], the diameter for
BNNT(8, 0) is 12.09 Bohr and for CNT(8, 8) is 20.50 Bohr.
The longitudinal length of BNNT(8, 0) with 256 atoms is
roughly the same as that of CNT(8, 8) with 512 atoms.

Algorithm 1: Flowchart of the PEXSI technique.
Input: Atomic position {RI}. Basis set 8. A subrou-

tine to construct matrices H, S and matrices{
∂H
∂RI

}
,
{
∂S
∂RI

}
given any electron density ρ̂.

Output: Converged electron density ρ̂. Total energy Etot.
Helmholtz free energy Ftot. Atomic forces {FI}.
Chemical potential µ.

1: while ρ̂ has not converged do
2: Update ρ̂ via charge mixing schemes for the SCF

iteration.
3: Construct matrices H, S using the updated electron

density ρ̂.
4: while µ has not converged do
5: Update the chemical potential µ.
6: for each pole l = 1, . . . ,P do
7: Compute the selected elements of each Green’s

function 1
H−(zl+µ)

using selected inversion.
8: end for
9: Compute 0 via equation (15), and compute the

number of electrons N(µ) via equation (32).
10: end while
11: end while
12: Compute the free energy density matrix 0F via

equation (25), and the energy density matrix 0E via
equation (31) using the selected elements of the same
set of Green’s functions for computing 0.

13: Compute the converged electron density ρ̂ via equa-
tion (16), the total energy Etot via equation (26), the
Helmholtz free energy Ftot via equation (24), and the
atomic forces {FI} via equation (27).

We performed our calculation at the Gamma point only.
Because Brillouin zone sampling can be trivially parallelized,

Figure 2. Boron nitride nanotube (8, 0) with 256 atoms. The boron
atoms are labeled as pink (light gray) balls while the nitrogen atoms
are labeled as blue (dark gray) balls. The bond length between a pair
of adjacent boron and nitride atoms is 1.45 Å.

Figure 3. Carbon nanotube (8, 8) with 512 atoms. The carbon
atoms are labeled as gray balls. The bond length between a pair of
adjacent carbon atoms is 1.42 Å.

adding more k-points will not affect the performance of our
calculation.

Our computational experiments were performed on
the Hopper system at the National Energy Research
Scientific Computing (NERSC) center. The performance
results reported below were obtained from running the
existing and modified codes on a single core of Hopper which
is part of a node that consists of two twelve-core AMD
‘MagnyCours’ 2.1 GHz processors. Each Hopper node has
32 GB (gigabytes) DDR3 1333 MHz memory. Each core
processor has 64 kB (kilobytes) L1 cache and 512 kB L2
cache. It also has access to a 6 MB (megabytes) of L3 cache
shared among six cores.

Although the existing code has been parallelized using
MPI and ScaLAPACK, the parallelization of selected
inversion is still work in progress. Hence, the performance
study reported here is limited to single-processor runs.
However, we expect that the new approach of using the
PEXSI technique to compute the charge density, total
energy, Helmholtz free energy and force will have a more
favorable parallel scalability compared to diagonalizing the
Kohn–Sham Hamiltonian by using ScaLAPACK because it
can take advantage of an additional level of parallelism
introduced by the pole expansion. Due to the availability of
such parallelism, the cost of the computational time of PEXSI
is reported as the wall clock time for evaluating the selected
elements of one single pole.

In addition to comparing the performance of the existing
and new approaches in terms of wall clock time, we will also
report the accuracy of our calculation and memory usage.

3.1. Atomic orbitals and the sparsity of H and S

The electronic structure calculation code that we used for
the performance study is based on a local atomic orbital
expansion scheme [24, 25]. We will refer to this scheme
as the CGH scheme below. In the CGH scheme, an atomic

7
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Table 1. The percentage of nonzero elements Hnnz% and Lnnz% for BNNT(8, 0) and CNT(8, 8) of various sizes.

# Atoms 64 128 256 512 1024 1920 5120 10 240

BNNT(8, 0) Hnnz% 100.00 85.54 42.77 21.43 11.69 5.70 2.13 1.06
Lnnz% 100.00 99.48 77.94 46.13 25.07 13.70 5.26 2.64

CNT(8, 8) Hnnz% 40.63 38.67 19.53 9.77 4.88 2.60 0.97 0.49
Lnnz% 69.92 68.45 68.70 54.38 31.75 17.54 7.42 3.79

orbital ϕµ(r) is expressed as the product of a radial
wavefunction fµ,l(r) and a spherical harmonic Ylm(r̂), where
µ = {α, i, ζ, l,m}, and α, i, ζ, l,m represent the atom type,
the index of an atom, the multiplicity of the radial functions,
the angular momentum and the magnetic quantum number
respectively. The radial function fµ,l(r) is constructed as a
linear combination of spherical Bessel functions within a
cutoff radius rc, i.e.,

fµ,l(r) =


∑

q
cµqjl(qr), r < rc

0 r ≥ rc.

(34)

where jl(qr) is a spherical Bessel function with q chosen to
satisfy jl(qrc) = 0, and the coefficients cµqjl(qr) are chosen
to minimize a ‘spillage factor’ [47, 48] associated with a
reference system that consists of a set of (four or five) dimers.
We refer readers to [24, 25] for the details on the construction
of the CGH local atomic orbitals.

The cutoff radius rc determines the sparsity of the
Kohn–Sham Hamiltonian H and the overlap matrix S. The
smaller the radius, the sparser H and S are. The cutoff radius
for the atomic orbitals is set to 8.0 Bohr for B and N atoms in
BNNT, and 6.0 Bohr for C atoms in CNT, respectively. The
reason why we choose a larger cutoff radius for B, N atoms
is that the spillage factor for the B and N atoms is larger than
that for the C atoms if 6.0 Bohr cutoff is used for all atoms,
which affects the accuracy of the atomic orbitals. In general,
the cutoff radius of most atomic orbitals can be chosen below
10 Bohr.

Another parameter that affects the dimension of H and
S is the multiplicity ζ of the radial function fµ,l(r). The
multiplicity determines the number of basis functions per
atom. A higher multiplicity results in larger number of basis
functions per atom, which in turn results in more rows and
columns in H and S. In our experiments, we used both single-ζ
(SZ) orbitals and double-ζ plus polar orbitals (DZP). The
number of local atomic orbitals is 4 for SZ and 13 for DZP.

We measure the sparsity by the percentage of the nonzero
elements in the matrix H denoted by

Hnnz% =
nnz(H)

N2(H)
× 100. (35)

Here nnz(H) is the number of nonzero elements of H and
N(H) is the dimension of H. Since the computational cost of
the selected inversion method is determined by the sparsity
of L + LT for the Cholesky factor L of H − zS, we will also
report the percentage of the nonzero elements in the matrix
L + LT (denoted by Lnnz%) below. To reduce the amount
of nonzero fill-in of L, we use the nested dissection (ND)

Figure 4. The sparsity pattern of H (a) and L+ LT (b) for a
5120-atom BNNT(8, 0) with SZ orbitals. Nested dissection
reordering is used.

technique [49] to reorder the sparse matrix H − zS before
it is factored. Figure 4(a) depicts the sparsity pattern of the
H matrix associated with a 5120-atom BNNT(8, 0) obtained
from SZ atomic orbitals after it is reordered by ND. The
sparsity pattern of L + LT for the corresponding Cholesky
factor L of the same problem is shown in figure 4(b).

Table 1 shows the sparsity of Hamiltonian matrices
associated with BNNT(8, 0) and CNT(8, 8) systems that
consist of 64–10 240 atoms. The Hamiltonians for these
systems are constructed from SZ atomic orbitals. We report
both the Hnnz% and Lnnz% values. We can clearly see from
this table that H and, consequently, L are quite dense when
the number of atoms in the nanotubes is relatively small (less
than 512). This is due to the fact that a large percentage of
the atoms in these small systems are within the rc distance
from each other. When the system size becomes larger (with
more than 512 atoms), both Hnnz% and Lnnz% are inversely
proportional to the system size. This is because for quasi-1D
systems, the numerator in equation (35) scales linearly with
respect to N(H) for large N(H). Hence, the resulting matrices
become increasingly sparse, thereby making the selected
inversion method more favorable.

3.2. Performance comparison between diagonalization and
selected inversion

We now compare the efficiency of selected inversion with
that of diagonalization for computing the charge density in a
single SCF iteration. In the existing code, the diagonalization
of the matrix pencil (H, S) is performed by using the
LAPACK subroutine dsygv when the code is run on a single
processor. The selected inversion is performed by the SelInv
software [18].

8
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Figure 5. Comparisons of the wall clock time used by selected
inversion (at one pole) required for PEXSI and by the LAPACK
dsygv used to diagonalize a Kohn–Sham Hamiltonian associated
with BNNT(8, 0). The Hamiltonians are constructed from SZ
orbitals (four basis functions per atom) in (a) and DZP orbitals
(thirteen basis functions per atom) in (b).

We use BNNT(8, 0) and CNT(8, 8) nanotubes of different
lengths to study the scalability of the computation with respect
to the number of atoms in the nanotube. The number of atoms
in these tubes ranges from 64 to 10 240.

Figure 5 shows how the wall clock time used by SelInv
compares with that used by dsygv for BNNT(8, 0) of different
sizes. When SZ atomic orbitals are used, SelInv takes almost
the same amount of time as dsygv for a BNNT with 64 atoms.
When the number of atoms is larger than 64, SelInv is more
efficient than dsygv. The cubic scaling of dsygv with respect
to the number of atoms can be clearly seen from the slope
of the blue log–log curve, which is approximately 3. The
linear scaling of SelInv, which is indicated by the slope of
the red curve, is evident when the number of atoms exceeds
200. For systems with less than 200 atoms, the wall clock
time consumed by SelInv scales cubically with respect to
the number of atoms also. This is due to the fact that the
H and S matrices associated with these small systems are
nearly dense. Similar observations can be made when the
DZP atomic orbitals are used. In this case, SelInv is already
more efficient than dsygv when the number of atoms is only
64. The linear scaling of SelInv can be observed when the
number of atoms exceeds 128.

Figure 6 shows the timing comparison between SelInv
and dsygv for CNT(8, 8) of different sizes. Because the
cutoff radius for the carbon atom is chosen to be 6.0, which
is smaller than that associated with the boron and nitrogen
atoms, the H and S matrices associated with CNT(8, 0) are
sparser even when the number of atoms in the tube is relatively
small. This explains why SelInv is already more efficient
than dsygv for a CNT with 64 atoms regardless of whether SZ
or DZP atomic orbitals are used. However, the linear scaling
of SelInv timing with respect to the number of atoms does
not show up until the number of atoms reaches 500. The
increase in the crossover point is due to the fact that the
sparsity of H is asymptotically determined by the number of

Figure 6. Comparisons of the wall clock time by selected inversion
(at one pole) required for PEXSI and by the LAPACK dsygv used
to diagonalize a Kohn–Sham Hamiltonian associated with
CNT(8, 8). The Hamiltonians are constructed from SZ orbitals (four
basis functions per atom) in (a) and DZP orbitals (thirteen basis
functions per atom) in (b).

atoms per unit length of the nanotube. Because the CNT(8,
0) that we use in our experiment has a large diameter, there
are more atoms along the radial direction per unit length in
CNT than that in BNNT. Consequently, it takes almost twice
as many as atoms for CNT to reach the same length along the
longitudinal direction when compared to BNNT, as we can
see from figures 2 and 3.

We should note here that it is possible to combine the
PEXSI technique with a SZ atomic orbital-based Kohn–Sham
DFT solver to perform electron structure calculation on
quasi-1D systems with more than 10 000 atoms. On the
Hopper machine, the wall clock time used to perform a single
selected inversion of the H − zS matrix associated with a
5120-atom BNNT(8, 0) is 26.72 s. When the number of
atoms increases to 10 240, the wall clock time increases to
50.07 s. Similar performance is observed for CNT(8, 8). It
takes 47.59 s to perform a selected inversion for a 5120-atom
CNT(8, 8) tube, and 97.16 s for a 10 240-atom tube.

3.3. Memory usage

We should also remark that the memory requirement for
SelInv increases linearly with respect to the number of atoms
when the nanotube reaches a certain size. For a nanotube that
consists of 10 240 atoms, the amounts of memory required
to store L and the selected elements of [H − (zl + µ)S]−1

are 0.66 GB and 0.93 GB respectively. The relatively low
memory requirement of SelInv for quasi-1D system suggests
that the method may even be applicable to quasi-1D systems
that contain more than 100 000 atoms on a single processor.

3.4. Accuracy

When selected inversion can be computed to high accuracy,
which is often the case in practice, the only source of error
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Table 2. The difference between the total energy and atomic force
produced by the existing electronic structure code and the modified
version in which diagonalization is replaced by PEXSI. The
difference in atomic force is measured in terms of the mean absolute
error (MAE).

# Poles EPEXSI − Eref (eV) MAE force (eV Å
−1
)

20 5.868 351 108 0.400 431
40 0.007 370 583 0.001 142
60 0.000 110 382 0.000 026
80 0.000 000 360 0.000 002

introduced by the PEXSI technique comes from the limited
number of terms in the pole expansion (15). The number of
poles needed in (15) to achieve a desired level of accuracy in
total energy (or free energy) and force is largely determined
by the inverse temperature β = 1/(kBT) used in (4) and the
spectrum width 1E. Here we show that at room temperature
T = 300 K, the number of poles required to provide an
accurate pole expansion approximation is modest even for
a metallic system such as CNT(8, 8). Table 2 shows that
when diagonalization is replaced by PEXSI for a single
0 point calculation, the errors in total energy and force
decrease as the number of poles in (15) increases. The force
difference is measured between the force calculated with the
PEXSI scheme using equation (27), and that calculated by the
LAPACK diagonalization subroutine dsygv using standard
methods [36] previously implemented in the CGH atomic
orbital scheme [24, 25]. When the number of poles reaches
80, the difference between the final total energies produced
by the existing code and the modified code (which replaces
diagonalization with PEXSI) is 3.6×10−7 eV. The difference
in the mean absolute error (MAE) is 2× 10−6 eV Å

−1
, which

is quite small for all practical purposes.
The number of chemical potential iterations, as well as

the error of the number of electrons at different SCF steps for a
metallic CNT(8, 8) system with 1024 atoms using the SZ basis
set are reported in figure 7. The chemical potential is relaxed
until the error associated with the total electron number (4096
electrons in this system) is within a given tolerance τ . The
average number of chemical potential iterations is 2.01 for
the low accuracy case (τ = 10−1), and 5.21 for the high
accuracy case (τ = 10−8), respectively. Notice that in both
cases, the number of chemical potential iterations is 1–2 when
the SCF gets close to convergence. Similar behavior is also
observed in the geometry optimization example in section 3.6
for which the change of chemical potential in consecutive
steps is small. We further remark that the chemical potential
does not need to be performed very accurately in the first few
SCF steps. So the tolerance τ can be chosen dynamically with
respect to the accuracy of the current SCF step, in order to
further reduce the number of chemical potential iterations in
the case of high accuracy calculation. We note that SelInv
is a direct method for computing selected elements of the
Green’s function accurately. When low accuracy is allowed,
it is possible to reduce the computational cost of this method
further by discarding elements in the Cholesky factor with
small magnitude. This approach will be pursued in our future
work.

Figure 7. The numbers of chemical potential iteration steps (a), and
the error associated with the number of electrons (b) at different
SCF iterations for CNT(8, 8) with 1024 atoms using the SZ basis
set. The chemical potential is relaxed until the error of the total
number of electrons (4096 electrons in this system) is within 10−1

(blue dashed lines with dots) and within 10−8 (black solid lines with
squares).

3.5. Overall performance

With a sequential machine, the total wall clock time consumed
by each PEXSI-based SCF iteration is tselinv × P× kµ, where
tselinv is the time required to perform one selected inversion,
P is the number of poles used in the pole expansion (13)
and kµ is the average number of chemical potential iterations.
In practice, P = 80 is often more than sufficient to yield an
accurate approximation in (13) as we can see from table 2. The
average kµ can be 1–2 especially in geometry optimization
and molecular dynamics. If we take P = 80 and kµ = 2,
the total wall clock time of a PEXSI-based SCF iteration
is compared with a LAPACK diagonalization-based SCF
iteration for BNNT and CNT of various sizes in figures 8 and
9, respectively. Since the LAPACK diagonalization routine
cannot perform as large a calculation as PEXSI due to
memory constraints, we extrapolate the wall clock time of the
LAPACK diagonalization routine in figures 8 and 9, and we
find that the number of atoms beyond which the sequential
PEXSI method outperforms the diagonalization method is
1650 atoms for BNNT(8, 0) discretized by SZ orbitals, and
1800 atoms for BNNT(8, 0) discretized by DZP orbitals.
Similarly, the crossover for the sequential PEXSI method
to outperform the diagonalization method is 1750 atoms for
CNT(8, 8) discretized by SZ orbitals, and 1700 atoms for
CNT(8, 8) discretized by DZP orbitals.

However, when a large number of processors are
available, the advantage of PEXSI becomes apparent. Because
each term in (13) can be evaluated independently, we achieve
an automatic P-fold speedup whereas the speedup that can be
achieved by a parallel diagonalization procedure implemented
in, for example, the ScaLAPACK software package, is
often limited. Furthermore, each selected inversion can be
parallelized, and our current work, which we will publish in
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Figure 8. Comparisons of the total wall clock time used to perform
a PEXSI-based SCF iteration (using eighty poles and two iterations
of chemical potential) and to perform a LAPACK dsygv
diagonalization-based SCF iteration for BNNT(8, 0) configured
with different numbers of atoms. The Hamiltonians are constructed
from SZ orbitals (four basis functions per atom) in (a) and DZP
orbitals (thirteen basis functions per atom) in (b).

Figure 9. Comparisons of the total wall clock time used to perform
a PEXSI-based SCF iteration (using eight poles and two iterations
of chemical potential) and a LAPACK dsygv diagonalization-based
SCF iteration for CNT(8, 8). The Hamiltonians are constructed from
SZ orbitals (four basis functions per atom) in (a) and DZP orbitals
(thirteen basis functions per atom) in (b).

a separate publication, indicates that excellent speedup can be
achieved for this calculation on hundreds of processors. As
a result, the PEXSI-based SCF iteration can easily scale to
tens of thousands of processors, whereas it is difficult to make
ScaLAPACK diagonalization procedures work efficiently on
that many processors.

3.6. Geometry optimization

The PEXSI scheme with atomic orbitals can also be used for
accurate geometry relaxation of large-scale atomic systems.
We use a truncated boron nitride nanotube (8, 0) with 1024
atoms, shown in figure 10, as an example to illustrate the

Figure 10. A truncated boron nitride nanotube (8, 0) with 1024
atoms, among which 504 boron atoms are labeled as pink (light
gray) balls, 504 nitride atoms are labeled as blue (dark gray) balls,
and 16 hydrogen atoms are labeled as small white balls. The
hydrogen atoms are used to passivate both ends of the nanotube.

Figure 11. The differences of the atomic positions (a) and forces
(b) obtained from separate simulations using the PEXSI method and
the diagonalization method, starting from the same initial condition.
The result is obtained at the tenth geometry optimization step for the
boron nitride nanotube (8, 0) system with 1024 atoms. The absolute
values of the forces at the first and the tenth geometry optimization
steps are also presented (c). The tolerance for the error of the total
number of electrons is chosen to be 10−8.

efficiency of PEXSI in this type of calculation. The nanotube
contains 504 boron atoms (B) and 504 nitride atoms (N). Each
end of the nanotube is passivated by eight hydrogen atoms
(H). We used DZP orbitals for all three atomic elements. The
cutoff radius for B and N is set to 8.0 Bohr. The cutoff radius
for H is set to 6.0 Bohr. We used 96 poles in the pole expansion
for both energy and force calculations.

Convergence is reached after 105 steps of ionic relaxation
steps are taken in the BFGS method. The maximum atomic
force associated with the converged structure is less than
0.04 eV Å

−1
. To demonstrate the accuracy of the PEXSI

method, we compare the differences of the atomic positions
and forces obtained from separate geometry optimization
simulations using the PEXSI method and the diagonalization
method, starting from the same initial condition. Figure 11
shows that at the tenth geometry optimization step, the
maximum difference of the atomic positions among all 1024
atoms is less than 5×10−7 Å (figure 11(a)), and the maximum
difference of the forces is less than 2 × 10−5 eV Å

−1

(figure 11(b)). Figure 11(c) shows that at the tenth geometry
optimization step, the absolute value of the force is still as
large as 0.1–1 eV Å

−1
, and the relative error of the forces

obtained from the PEXSI method is around 0.01%. This result
shows that the PEXSI scheme is accurate for evaluating the
forces for this system.
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Figure 12. The energy per atom (a) and the maximum force (b) for
each geometry optimization iteration step. The criterion for the
convergence of the force is set to 0.04 eV Å

−1
. The energy per atom

at the last iteration step is set to zero.

The convergence history of the energy per atom and the
convergence history of the maximum force with respect to the
iteration number in the geometry optimization procedure are
plotted in figures 12(a) and (b), respectively. In figure 12(a),
the energy per atom at the last iteration step is set to zero.
The energy per atom converges rapidly from 0.05 to 0.005 eV
during the first 16 steps. Correspondingly, in figure 12(b), the
maximum force converges rapidly during the first few steps.
This is mainly because the initial positions of the hydrogen
and boron atoms near the end of the nanotube are not far from
the equilibrium value. After the hydrogen and boron atoms
at the boundary are relaxed to more reasonable positions,
the maximum force begins to decrease slowly but with some
oscillations. In order to illustrate more clearly the origin of the
oscillation, we show the forces of boron atoms in figure 13.
Figures 13(a) and (b) show the forces of the boron atoms
near the center of the nanotube and near the boundary of the
nanotube, respectively. We find that the forces acting on the
boron atoms near the center of the nanotube are much smaller
than those near the boundary. This is mainly due to the fact
that the atomic configuration near the center of the nanotube
is close to the bulk configuration. The magnitude of the force
acting on the atoms near the boundary is much larger, and is
more difficult to converge in the numerical optimization.

4. Conclusion

In this paper, we generalized the recently developed pole
expansion and selected inversion technique (PEXSI) for
solving finite-dimensional Kohn–Sham equations obtained
from an atomic orbital expansion. We gave expressions for
evaluating the electron density, the total energy, the Helmholtz
free energy and the atomic forces (including both the
Hellmann–Feynman force and the Pulay force) without using
eigenvalues and eigenvectors of a Kohn–Sham Hamiltonian.
These expressions are derived from an FOE approximation
to the Fermi–Dirac function using an efficient and accurate
pole expansion technique. The favorable log(β1E) scaling

Figure 13. The force (x, y, z directions) acting on the boron atoms
near the center of the nanotube (a) and near the boundary of the
nanotube (b).

of the pole expansion allows us to treat both insulating and
metallic systems efficiently at room temperature or even lower
temperature. The pole expansion only uses selected elements
of the density matrix, energy density matrix and free energy
density matrix. These selected elements can be obtained from
computing the selected elements of the inverse of a shifted
Kohn–Sham Hamiltonian through the selected inversion
technique. The complexity of the selected inversion is O(Ne)

for quasi-1D systems such as nanorods, nanotubes and
nanowires, O(N3/2

e ) for quasi-2D systems such as graphene
and surfaces, and O(N2

e ) for 3D bulk systems. It compares
favorably to the complexity of diagonalization, which is
O(N3

e ). We reported the performance achieved by comparing
the efficiency of PEXSI with that of diagonalization on
nanotubes of two types. The linear scaling behavior of PEXSI
with respect to the number of atoms is clear when the number
of atoms in these quasi-1D systems is larger than a few
hundreds. For quasi-2D and quasi-3D systems, we expect
the crossover point over which PEXSI exhibits O(N3/2

e ) and
O(N2

e ) scaling to be much larger. However, on the basis of
the experiments presented here, it seems that PEXSI may still
be more efficient than diagonalization (before the crossover
point is reached) as long as the Cholesky factors of the shifted
Kohn–Sham Hamiltonian are not completely dense.

The computational experiments that we presented above
were performed with a sequential implementation of the
selected inversion algorithm. For quasi-1D systems such as
nanotubes, the use of PEXSI allows us to tackle problems
that contain as many as 10 000 atoms. This cannot be
done by using a diagonalization-based approach. We further
demonstrate the applicability of the PEXSI scheme by
performing the geometry optimization of a truncated boron
nitride nanotube with 1024 atoms. For quasi-2D and 3D
systems, a parallel implementation of the PEXSI, which we
are currently working on, is required to solve problems with
that many atoms. We will report the performance for these
large-scale calculations in a future publication.
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Appendix

Derivation of equation (15):
4 is a diagonal matrix, and the pole expansion (13) can

be applied to each component of 4 as

fβ(4− µ) ≈ Im
P∑

l=1

ω
ρ
l

4− (zl + µ)I
, (36)

where I is an N × N identity matrix. Using equation (12), the
approximation of the single-particle density matrix using P
terms of the pole expansion (still denoted by γ̂ to simplify the
notation) can be written as

γ̂ (x, x′) = 8(x)CIm
P∑

l=1

ω
ρ
l

4− zlI
CT8T(x′)

= 8(x)Im
P∑

l=1

ω
ρ
l

C−T4C−1 − zlC−TC−18
T(x′). (37)

Since the generalized eigenvalue problem (10) implies the
identity

CTHC = 4, CTSC = I, (38)

the single-particle density matrix takes the form

γ̂ (x, x′) = 8(x)Im
P∑

l=1

ω
ρ
l

H − (zl + µ)S
8T(x′) (39)

which is equation (15).
Derivation of equation (24):
The first term in the Helmholtz free energy functional is

Tr[f F
β (4− µ)] = Tr[Cf F

β (4− µ)C
TC−TC−1

]

≡ Tr[0F S]. (40)

The second equal sign in equation (40) defines the free energy
density matrix 0F , which can be evaluated using the pole
expansion (23) as

0F
= CIm

P∑
l=1

ωF
l

4− zlI
CT

= Im
P∑

l=1

ωF
l

C−THC−1 − zlC−TC−1

= Im
P∑

l=1

ωF
l

H − zlS
, (41)

which is equation (24).

Derivation of equation (27):
The atomic force is in general given by the derivative

of the Helmholtz free energy Ftot with respect to the atomic
positions. Since the free energy is minimized with respect to
{ψi}, {fi} at each atomic configuration {RI}, all the terms in
Ftot that do not explicitly depend on RI will not contribute to
the atomic force FI . In particular, the double-counting terms
−

1
2

∫∫ ρ̂(x)ρ̂(y)
|x−y| dx dy + Exc[ρ̂] −

∫
Vxc[ρ̂](x)ρ̂(x) dx do not

contribute to the atomic force. Therefore

FI = −
d

dRI
Ftot = −

∂

∂RI
Ftot. (42)

Using the representation of the Helmholtz free energy in
equation (20), and the fact that

(f F
β )
′(z) = fβ(z), Ne = Tr[fβ(4− µ)], (43)

it can be derived that

FI = −
∂

∂RI
Ftot = −

∂

∂RI
(Tr[f F

β (4− µ)] + µNe)

= −Tr
[
(f F
β )
′(4− µ)

(
∂4

∂RI
−
∂µ

∂RI

)]
− Ne

∂µ

∂RI

= −Tr
[

fβ(4− µ)
∂4

∂RI

]
−
∂µ

∂RI
(Ne − Tr[fβ(4− µ)])

= −Tr
[

fβ(4− µ)C
T ∂H

∂RI
C

]
− Tr

[
fβ(4− µ)

∂CT

∂RI
HC

]
− Tr

[
fβ(4− µ)C

TH
∂C

∂RI

]
= −Tr

[
0
∂H

∂RI

]
− Tr

[
fβ(4− µ)

∂CT

∂RI
HC

]
− Tr

[
fβ(4− µ)C

TH
∂C

∂RI

]
. (44)

The second and the third terms in equation (44) come from the
nonorthogonality of the basis functions and should be further
simplified. We have

Tr
[

fβ(4− µ)
∂CT

∂RI
HC

]
+ Tr

[
fβ(4− µ)C

TH
∂C

∂RI

]
= Tr

[
(C−TC−1)[C(CTHC)fβ(4− µ)C

T
]

× (C−TC−1)C
∂CT

∂RI

]
+ Tr

[
C−TC−1

[Cfβ(4− µ)

× (CTHC)CT
]C−TC−1 ∂C

∂RI
CT
]

≡ Tr
[
(C4fβ(4− µ)C

T)

(
SC
∂CT

∂RI
S+ S

∂C

∂RI
CTS

)]
.

(45)

Define the energy density matrix as in equation (28), and
equation (45) can be simplified as

Tr
[
0ES

(
C
∂CT

∂RI
+
∂C

∂RI
CT
)

S

]
= Tr

[
0ES

∂S−1

∂RI
S

]
= −Tr

[
0E ∂S

∂RI

]
. (46)
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Combining equations (46) and (44), we have

FI = −
∂F
∂RI
= −Tr

[
0
∂H

∂RI

]
+ Tr

[
0E ∂S

∂RI

]
. (47)

which proves equation (27).
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