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Abstract. We present a new structure preserving Lanczos algorithm for approximating the op-
tical absorption spectrum in the context of solving the full Bethe–Salpeter equation without Tamm–
Dancoff approximation. The new algorithm is based on a structure preserving Lanczos procedure,
which exploits the special block structure of Bethe–Salpeter Hamiltonian matrices. A recently de-
veloped technique of generalized averaged Gauss quadrature is incorporated to accelerate the con-
vergence. We also establish the connection between our structure preserving Lanczos procedure
with several existing Lanczos procedures developed in different contexts. Numerical examples are
presented to demonstrate the effectiveness of our Lanczos algorithm.
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1. Introduction. Optical absorption and emission processes provide invaluable
information to characterize the electronic properties of solids and molecules. At the
same time, an accurate microscopic theory is also highly valuable to predict optical
behavior of materials and help design more efficient photovoltaic and light-emitting
devices, among many applications. Physically, the optical spectra of materials can
be understood in terms of correlated electron–hole pairs known as excitons. When a
photon gets absorbed by a molecule or solid, an electron can be promoted from an
occupied to an unoccupied state [25, 31] in a process that creates both a negatively
charged particle (known as quasielectron, or simply electron), and a positively charged
particle (known as quasihole, or hole). The excitation energy required to produce such
an electron–hole pair, or exciton, is directly related to the optical absorption and emis-
sion spectrum of the material. A two-particle correlated excitation can be described
by a two-particle Green’s function, of which the real part of its poles give excitation
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energies. Since the two-particle Green’s function satisfies the so-called Bethe–Salpeter
equation (BSE) [26, 31], the excitation energies can be obtained by solving the BSE.

Under an appropriate discretization scheme, the Bethe–Salpeter Hamiltonian
(BSH) matrix, which is a finite dimensional representation of the BSH operator, has
the block structure

(1) H =

[
A B
−B −A

]
∈ C2n×2n,

where

(2) AH = A, B
H

= B.

We can rewrite H as H = CnΩ, where

(3) Cn =

[
In 0
0 −In

]
, Ω =

[
A B
B A

]
.

For most physical systems, Ω is Hermitian positive definite (see, e.g., [39]), which we
will denote by

(4) Ω � 0.

We define a BSH matrix H that satisfies the condition (4) as a definite BSH matrix.
Throughout this paper, we assume that the BSH matrix H is definite, that is, (4) is
always assumed.

The matrices A and B are of size n = nvncnk, where nv, nc, and nk are the
numbers of valence states, conduction states, and k-points sampled from the Brouillon
zone associated with a solid, respectively. Both nv and nc are proportional to the
number of electrons ne in the system. Therefore, the dimension n = O(n2

enk) can be
very large for systems of practical interest.

The optical absorption spectrum of a material, which can be measured in spec-
troscopy experiments, characterizes the excited states properties of the material.
Mathematically, the optical absorption spectrum is a matrix functional of the form
dHr f(H;ω)dl, where f(H;ω) is a function of H and the frequency ω, and dl, dr ∈ C2n.
The function f(H;ω) has local maxima or minima at eigenvalues of H. The locations
of these local maxima and minima correspond to excitation and deexcitation energies.

The optical absorption spectrum can be computed by fully diagonalizing the BSH
matrix [27]. If f is taken to be the Dirac-δ distribution, the computed imaginary part
of the macroscopic dielectric function ε2 which is related to the absorption spectrum
can be written as

ε2(ω) =

2n∑
j=1

sign(λj)τ
2
j δ(ω − λj),

where λj ’s are the eigenvalues of the BSH matrix, and τ2
j is known as the oscillator

strength associated with λj , and describes the relative strength of the excitation (or
de-excitation) occurring at energy level λj .

As we will show in the next section, the special block structure of (1) ensures that
its eigenvalues appear in positive and negative pairs. Due to the additional structures
satisfied by the vectors dl and dr, the signs of oscillator strengths also appear in
positive and negative pairs such that ε2(ω) is of the form

ε2(ω) =

n∑
j=1

τ2
j

[
δ(ω − λj)− δ(ω + λj)

]
, (τ2

j ≥ 0).
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When the problem size n grows, diagonalizing the BSH matrix, whose complexity
is O(n3), becomes increasingly expensive and eventually unaffordable. However, in
many cases, the absorption spectrum is simply used as a screening tool for selecting
materials with a desirable absorption profile. In these cases, there is no need to
accurately locate all eigenvalues and the corresponding oscillator strength—a good
approximation to a smoothed absorption spectrum of the form

ε2(ω) =

n∑
j=1

τ2
j

[
f̂(ω − λj)− f̂(ω + λj)

]
, (τ2

j ≥ 0),

where f̂ is a smooth approximation to the Dirac-δ distribution, is often sufficient.
The use of smooth approximation to the Dirac-δ distribution is physically meaningful
because electron excitation has a finite lifetime, and the width of an isolated peak in
f̂ is related to the inverse of the lifetime. In this paper, we discuss how to estimate
the absorption spectrum efficiently and reliably without diagonalizing H.

Our basic idea is to use a k-step iterative method to construct a Krylov subspace
S onto which the BSH is projected with 2k � n. We compute the eigenvalues θj ,
j = 1, 2, . . . , 2k of the 2k × 2k projected Hamiltonian (i.e., the Ritz values), and use
them to construct an approximate absorption spectrum of the form

(5) ε2(ω) ≈
k∑
j=1

τ̃2
j

[
f̂(ω − θj)− f̂(ω − θj+k)

]
=

k∑
j=1

τ̃2
j

[
f̂(ω − θj)− f̂(ω + θj)

]
,

where τ̃2
j ≥ 0 are approximate oscillator strengths extracted from the same subspace.

In order to obtain an approximation of the form (5), we need to exploit properties of
H to preserve key properties of (5) when constructing the subspace S. In particular,

• we would like the Ritz values to be real and appear in positive and negative
pairs;

• we would like to ensure that the signs of approximate oscillator strengths also
appear in positive and negative pairs and are nonnegative for positive Ritz
values.

An algorithm that achieves the above two criteria when it is used to construct S is
called a structure preserving algorithm.

In the context of Tamm–Dancoff approximation (TDA) [8, 32], which sets the off-
diagonal blocks B in H to zero, we only need to consider the matrix A in H, which
is Hermitian. As a result, we can use the Lanczos algorithm to construct a Krylov
subspace from which a structure preserving approximate absorption spectrum can be
easily obtained. We can choose either a Gaussian function or a Lorentzian function
as f̂ . The latter choice is adopted in the so-called Haydock’s algorithm [14, 37].

For full BSE calculations, which are non-Hermitian, the Arnoldi or nonsymmetric
Lanczos algorithms [2, 15, 21, 34, 35] do not produce a structure preserving subspace
or a projected Hamiltonian that satisfies the desirable properties listed earlier.

Recently a special Lanczos algorithm applicable to a full BSE has been proposed
in [13]. In this paper, we analyze additional properties of this Lanczos algorithm and
develop an alternative algorithm that works at least equally well. The motivation
is to show that both algorithms can produce approximate absorption spectra of the
form (5) and are hence structure preserving.

One main advantage of the new algorithm presented in this paper is that it allows
us to incorporate a new generalized Gauss quadrature rule [19, 30] to further improve
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the accuracy of the approximate absorption spectrum with negligible additional cost.
We examine the connection between the new algorithm and the algorithm presented
in [13], as well as a few other variants of the Lanczos algorithms.

The rest of the paper is organized as follows. In section 2, we review some basic
properties of the definite BSH and the optical absorption spectrum. In section 3, we
describe how the standard Lanczos algorithm can be used to estimate the absorption
spectrum in the context of TDA. Then, in section 4, we discuss how the Lanczos
algorithm can be modified to preserve the desirable structures of BSH and the cor-
responding absorption spectrum to be approximated. We compare several variants
of the Lanczos algorithm, examine the connection among them, and discuss whether
they preserve the desirable properties of the absorption spectrum to be approximated.
Finally, computational examples are presented in section 5 to demonstrate the effec-
tiveness and efficiency of the proposed Lanczos algorithm.

2. Preliminaries.

2.1. Properties of definite Bethe–Salpeter Hamiltonian matrices. We
first briefly review some basic spectral properties of definite BSH matrices. Detailed
discussion on these properties can be found in [5, 27, 29].

Although a definite BSH matrix H defined in (1) is in general non-Hermitian, it
is diagonalizable and has real spectrum. Moreover the special structure of the BSH
leads to a structured spectral decomposition as stated in Theorem 1 below.

Theorem 1 (see [27, Theorem 3]). Let H be a definite BSH matrix. Then the
spectral decomposition of H is of the form

H = Z diag {Λ+,Λ−}Z−1,

where

(6) Z =

[
X Y
Y X

]
, Z−1 = CnZ

HCn =

[
X −Y
−Y X

]H
,

Λ+ = diag {λ1, λ2, . . . , λn}, and Λ− = diag {λn+1, λn+2, . . . , λ2n} with

λ1 = −λn+1 ≥ λ2 = −λn+2 ≥ · · · ≥ λn = −λ2n > 0.

Since the eigenvalues of H appear in positive and negative pairs ±λj , we use
λ+
j ≡ λj and λ−j ≡ −λj for 1 ≤ j ≤ n in the following to emphasize on the signs of

these eigenvalues. Let X = [x1, . . . , xn], Y = [y1, . . . , yn] ∈ Cn×n be the submatrices
in (6). Theorem 1 suggests that the right and left eigenvectors associated with the
positive eigenvalue λ+

j are zj = [xHj , y
H
j ]H and Cnzj = [xHj ,−yHj ]H, respectively, and the

right and left eigenvectors associated with λ−j are zn+j = [yHj , x
H
j ]H and −Cnzn+j =

[−yHj , xHj ]H, respectively. The normalization condition (CnZCn)HZ = I2n implies that

xHj xj − yHj yj = 1

for j = 1, . . . , n. As long as the right eigenvectors associated with the positive eigen-
values are properly normalized, other eigenvectors can be easily recovered.

From (6), we observe that the right eigenvectors ofH are orthonormal with respect
to the C-inner product, 〈u, v〉Cn

= vHCnu, which is an indefinite inner product.
Another observation is

(7) ZHΩZ = ZHCnZ diag {Λ+,−Λ+} = Cn diag {Λ+,−Λ+} = diag {Λ+,Λ+} ,
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Fig. 1. A typical curve for the imaginary part of the dielectric function. This curve is obtained
from a single-wall (8, 0) carbon nanotube.

indicating that the right eigenvectors of H are also orthogonal with respect to the
Ω-inner product 〈u, v〉Ω = vHΩu. These orthogonalities are crucial for developing
structure preserving Lanczos procedures. By structure preserving, we mean that the
positive and negative pairing of the eigenvalues is preserved in the approximations to
the eigenvalues of BSH.

2.2. Optical absorption spectra. Let (zr)j and (zl)j be the right and left
eigenvectors of H, respectively, associated with the eigenvalue λj , (1 ≤ j ≤ 2n). We
denote by ε2(ω) the imaginary part of the macroscopic dielectric function; ε2(ω) is also
proportional to the optical absorption spectrum of a material and can be computed
in a straightforward way from the eigenvalues and eigenvectors of the BSH as

(8)

ε2(ω) =
8π2e2

Vxtal
ε(ω),

ε(ω) := dHr δ(ωI2n −H)dl =

2n∑
j=1

(dHr (zr)j)((zl)
H
j dl)

(zl)Hj (zr)j
δ(ω − λj),

where Vxtal is the crystal volume, e is the elementary charge, and

dr =

[
d

−d

]
and dl =

[
d

d

]
are the right and left optical transition vectors, respectively. Because the dr and dl
depend solely on d, we will simply refer to d as the optical transition vector. The
coefficient, (dHr (zr)j)((zl)

H
j dl)/((zl)

H
j (zr)j), of the Dirac delta function δ(ω−λj) in (8)

is known as the oscillator strength associated to the excitonic state j. Figure 1 shows
a typical curve for the imaginary part of the dielectric function. In order to produce
this plot, each Dirac delta function was broadened by a Gaussian function, as we
will discuss below. The height of each peak in the spectrum is determined by the
oscillator strength associated to each eigenvalue λj and the number of eigenvalues
clustered around an energy. Since the optical absorption spectrum is proportional to
ε2(ω), which is in turn proportional to ε(ω), in this work we will broadly refer to both
ε(ω) and ε2(ω) as the optical absorption spectrum of a material.

If H can be fully diagonalized, we can compute ε(ω) using the eigenpairs of H.
However, diagonalizing H is often costly, especially when the dimension of H becomes
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large. For instance, for many low dimensional systems such as monolayer MoS2, n
is on the order of 360,000 [18]. Similarly, large n’s are required to fully converge
calculations on semiconducting carbon nanotubes and to obtain the correct order of
the excited excitonic states in bulk semiconductors, for example. Therefore, it is
natural to seek alternative approaches.

Using the structure of the eigenvectors of the BSH matrix H, we can simplify
the expression of the absorption spectrum. For positive eigenpairs, we can choose
(zr)j = zj and (zl)j = Cnzj so that (zl)

H
j (zr)j = 1. Then we have

(zl)
H
j dl = (Cnzj)

H(Cndr) = zHj dr = dHr zj .

It follows that

ε+(ω) :=

n∑
j=1

(dHr (zr)j)((zl)
H
j dl)

(zl)Hj (zr)j
δ(ω − λj)

=

n∑
j=1

|dHr zj |2δ(ω − λ+
j )

=

n∑
j=1

∣∣dHxj − dHyj∣∣2δ(ω − λ+
j ).

We remark that the oscillator strength |dHr zj |2 is nonnegative. Similarly, for negative
eigenpairs, we have

(zl)
H
j dl = (−Cnzj)H(Cndr) = −zHj dr = −dHr zj

and

ε−(ω) :=−
2n∑

j=n+1

|dHr zj |2δ(ω − λj) = −
n∑
j=1

∣∣dHxj − dHyj∣∣2δ(ω + λ+
j ) = −ε+(−ω).

Therefore, the absorption spectrum

ε(ω) = ε+(ω) + ε−(ω) = ε+(ω)− ε+(−ω)

can be viewed as an odd function of the frequency ω in the distribution sense.
In practice, it is not desirable to plot the imaginary part of the polarizability as

a sum of Dirac delta functions. A broadened peaked function, such as the Lorentzian
function

Lσ(ω) :=
1

π
· σ

ω2 + σ2
=

1

π
Im

1

ω − iσ

or the Gaussian function

Gσ(ω) :=
1√
2π σ

e−ω
2/(2σ2),

is used to replace the Dirac delta function, where the broadening factor σ > 0 is
a small number. The first reason for doing so is because there is physically a life-
time associated to each excitonic state. The second reason is due to discretization
procedures being performed in the calculations, such as employing a finite number
of k-points in calculations on extended systems. If a calculation could be carried
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with infinitely many k-points, the optical absorption spectrum would consist of a few
isolated low-energy sharp peaks, but the delta functions merge at higher energy and
form a continuum spectrum. On the other hand, a calculation performed with a fi-
nite number of k-points only samples a finite number of transitions in this continuum
region.

Therefore, we wish to plot the imaginary part of the dielectric function using
a generic peaked function gσ(ω) (either Lσ(ω) or Gσ(ω)) characterized by a typical
small width σ instead of δ(ω). The imaginary part of the dielectric matrix can be
expressed now in terms of

(9) εσ(ω) = dHr gσ(ωI2n −H)dl =

n∑
j=1

∣∣dHxj − dHyj∣∣2[gσ(ω − λ+
j )− gσ(ω + λ+

j )
]
,

which is an odd function in ω, that is, εσ(−ω) = −εσ(ω). Thus it suffices to compute
the function value for ω > 0.

Note that (9), which is a scalar function of ω, can be viewed as an expected value of
a matrix function. We are interested in the positions and heights of the major peaks
of this function, which are given by the eigenvalues and eigenvectors of the BSH.
However, the precise position and height of each peak is seldom required, especially
since the underlying theories employed to obtain these spectra are already themselves
approximate. Therefore, efficient methods that can provide estimates of (9) without
computing each individual eigenpair of H are of great interest. In sections 3 and 4,
we discuss how to use Lanczos algorithms to estimate εσ(ω) efficiently.

3. Tamm–Dancoff approximation. TDA [8, 25, 32] is a technique often used
in practice to reduce the computational cost of the absorption spectrum calculation.
For many systems, especially on bulk semiconductors and metals, the TDA incurs a
very small error in the optical absorption spectrum, and for that reason it has been
a widely used approximation in condensed-matter physics. In this section we discuss
how to estimate the absorption spectrum with a Lanczos procedure within the TDA.

However, we remark that for many systems, including systems with reduced di-
mensionality optically excited with light polarized along a confined direction, the TDA
may incur in large errors for the optical absorption spectrum. We shall discuss full
BSE solvers in section 4.

3.1. Lanczos algorithm. In TDA, the off-diagonal block of H, B, is set to
zero. We denote the resulting block diagonal BSH by HTDA = diag

{
A,−A

}
, which

is a Hermitian matrix. It follows that the absorption spectrum associated with HTDA

becomes

ε(ω) = dHr δ(ωI2n −HTDA)dl = dHδ(ωIn −A)d− dHδ(ωIn +A)d.

As dHδ(ωIn ± A)d is real and nonnegative, we can omit the complex conjugation in
the second term. In practice, we compute

(10) εσ(ω) = dHgσ(ωIn −A)d− dHgσ(ωIn +A)d=: dHf(A;ω)d

for ω > 0, where f(t;ω) = gσ(ω − t)− gσ(ω + t).
Since A is Hermitian and positive definite, the matrix functionals in (10) can be

estimated using the Lanczos algorithm. Starting with u1 = d/‖d‖2, a k-step Lanczos
procedure produces

(11) AUk = UkTk + βkuk+1e
H
k , UH

k+1Uk+1 = Ik+1,
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where

(12) Tk = tridiag

 β1 · · · βk−1

α1 · · · · · · αk
β1 · · · βk−1


is a real symmetric, tridiagonal, positive definite, and componentwise nonnegative
matrix. Here we use the convention Uj = [u1, . . . , uj ] (for 1 ≤ j ≤ k+ 1) to represent
the Lanczos vectors, and ej is the jth column of the identity matrix. Then the
absorption spectrum can be estimated by

(13) dHf(A;ω)d = ‖d‖22uH1 f(A;ω)Uke1 ≈ ‖d‖22uH1Ukf(Tk;ω)e1 = ‖d‖22eH1 f(Tk;ω)e1.

As long as k � n, the matrix function of the projected matrix Tk, f(Tk;ω) can
be easily evaluated by diagonalizing Tk. Moreover, there is no need to explicitly
store the whole history of the Lanczos vectors because eventually only Tk is used
in (13). However, it is important to ensure columns of the generated Uk+1 matrix
are orthonormal. A desired feature here is that the estimated absorption spectrum in
this approach is nonnegative for ω > 0. Clearly, the Lanczos algorithm possesses this
desired feature.

Finally, we remark that when the Gaussian functions are replaced by Lorentzian
functions Haydock’s recursive algorithm is mathematically equivalent to the Lanczos
algorithm. As the Lanczos algorithm is more general—it can handle any approxima-
tion to the Dirac delta function, it is a simple and flexible replacement of Haydock’s
recursive method in this context. Another advantage of the Lanczos algorithm will
be discussed in the next subsection.

3.2. Generalized averaged Gauss quadrature. It is well known that the
Lanczos algorithm for estimating matrix functionals can be interpreted as Gauss
quadrature [10, 11]. In [19], a recently developed generalized averaged Gauss quadra-
ture rule [30] has been adopted to improve the accuracy of the Lanczos algorithm with
little extra effort. In the following we briefly describe the procedure of this approach.

After the k-step Lanczos procedure is performed, we can construct a (2k − 1) ×
(2k − 1) symmetric tridiagonal matrix T̂k as

(14) T̂k = tridiag

 β1 · · · βk−1 βk βk−2 · · · β1

α1 · · · · · · αk αk−1 · · · · · · α1

β1 · · · βk−1 βk βk−2 · · · β1

 .

Then we replace eH1 f(Tk;ω)e1 in (13) by eH1 f(T̂k;ω)e1,1 that is,

(15) dHf(A;ω)d ≈ ‖d‖22eH1 f(T̂k;ω)e1.

When k is not very large, the cost of computing f(Tk;ω) or f(T̂k;ω) is negligible

compared to that of forming Tk. As the spectrum of T̂k is a superset of that of Tk−1,

and Λ(T̂k)\Λ(Tk−1) interlaces with Λ(Tk−1), (15) should be a better approximation
compared to (13) with negligible computational overhead. We refer readers to [19, 30]
for detailed discussions.

If the Lanczos procedure breaks down at the kth step, that is, βk = 0, then (13)
holds exactly instead of approximately. In this lucky breakdown, (15) also holds

1The vector e1 is of length k in eH1 f(Tk;ω)e1 and is of length 2k − 1 in eH1 f(T̂k;ω)e1.
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Algorithm 1 Lanczos algorithm for estimating the absorption spectrum under TDA.

Input: A Hermitian positive definite matrix A ∈ Cn×n, an optical transition vector
d ∈ Cn, a broadening factor σ > 0, the number of Lanczos steps k, and a set of
frequencies {ωi}mi=1.

Output: The estimated absorption spectrum εσ(ω) sampled at ωi (for 1 ≤ i ≤ m).
1: Perform k Lanczos steps using d as the starting vector.
2: Formulate T̂k as defined in (14).

3: Compute the spectral decomposition T̂k = Ŝk diag
{
θ̂1, . . . , θ̂2k−1

}
ŜH
k , where

ŜH
k Ŝk = I2k−1.

4: Evaluate

εσ(ωi) = ‖d‖22
2k−1∑
j=1

θ̂j>0

|Ŝk(1, j)|2
[
gσ(ωi − θ̂j)− gσ(ωi + θ̂j)

]

for i = 1, . . . ,m.

exactly because T̂k decouples into two tridiagonal submatrices. We remark that an
extra benefit of using the generalized averaged Gauss quadrature is that, for the same
number of quadrature points, the generalized averaged Gauss quadrature requires
fewer Lanczos steps, and hence the risk of loss of orthogonality among the Lanczos
vectors is reduced.

Certainly the generalized averaged Gauss quadrature can be adopted here for the
estimation of absorption spectrum. Similar to the Lanczos algorithm with standard
Gauss quadrature, the generalized averaged Gauss quadrature also produces nonnega-
tive oscillator strengths. Thus the estimated absorption spectrum is also nonnegative
for ω > 0 when T̂k is positive definite. However, T̂k as defined in (14) can sometimes

have one nonpositive eigenvalue. (The second smallest eigenvalue of T̂k is always pos-

itive since Λ(T̂k)\Λ(Tk−1) interlaces with Λ(Tk−1).) Such a nonpositive eigenvalue
may violate the property εσ(ω) ≥ 0 for ω > 0. A simple remedy is to redefine f(t;ω)
as

f(t;ω) =

{
gσ(ω − t)− gσ(ω + t) if t > 0,

0 if t ≤ 0.

Then in the resulting generalized averaged Gauss quadrature (15) we can simply dis-

card the term involving the nonpositive eigenvalue of T̂k if there is one. In fact, drop-
ping the nonpositive eigenvalue does not affect the accuracy, because the eigenvalues
of Tk−1, as the common Gauss quadrature nodes for both (13) and (15) (assuming
in (13) we use the approximation from a (k − 1)-step Lanczos procedure instead of
a k-step one), have the same weights (up to scaling) in both quadrature rules [30].
We summarize the Lanczos algorithm with generalized averaged Gauss quadrature in
Algorithm 1. The utility of generalized averaged Gauss quadrature provides another
advantage of the Lanczos algorithm over Haydock’s recursive algorithm.

4. Absorption spectrum for full BSE. In this section we investigate how to
estimate the absorption spectrum without using the TDA. Like the Lanczos algorithm
in the TDA setting, the following features are desired.

1. Any breakdown in the Lanczos procedure is a lucky breakdown.



692 SHAO, DA JORNADA, LIN, YANG, DESLIPPE, LOUIE

2. The computed absorption spectrum is real and nonnegative for ω > 0.
3. The full history of Lanczos vectors is not required.
4. The technique of generalized averaged Gauss quadrature can be applied.

We shall demonstrate that all these features are feasible for full BSE calculations.

4.1. Lanczos algorithm for real BSE. We first examine a simpler case in
which both A and B are real symmetric matrices, and

(16) H =

[
A B
−B −A

]
∈ R2n×2n

is real also. Such an H results from systems with real-space inversion symmetry. It is
not difficult to verify that the condition (4) is equivalent to the following conditions:

(17) M :=A+B � 0, K :=A−B � 0.

We also assume that the optical transition vector d is real. A Lanczos algorithm
that can be used to estimate ε(ω) for BSH matrices of this type has been studied
in [7], in the context of linear response time-dependent density functional theory
based calculations. In the following, we briefly summarize this algorithm.

Using the spectral decomposition of H as shown in Theorem 1, we can verify that

M = (X − Y )Λ+(X − Y )T, K = (X + Y )Λ+(X + Y )T,

and
(X − Y )T(X + Y ) = In.

Then we have

ε(ω) =

n∑
j=1

[
dT(xj − yj)

]2[
δ(ω − λ+

j )− δ(ω + λ+
j )
]

= 2 sign(ω)

n∑
j=1

λ+
j

[
dT(xj − yj)

]2
δ
(
ω2 − (λ+

j )2
)

= 2 sign(ω)dT(X − Y )Λ+(X − Y )T(X + Y )δ(ω2In − Λ2
+)(X − Y )Td

= 2 sign(ω)dTMδ(ω2In −KM)d.

Therefore, we reduce this problem size from 2n × 2n to n × n. Although KM is
nonsymmetric in general, it is symmetric and positive definite with respect to the
M -inner product because〈

x,KMy
〉
M

= yTMKMx =
〈
KMx, y

〉
M
.

A Lanczos procedure in which a standard Euclidean inner product is replaced with
an M -inner product reads

(18) KMUk = UkTk + βkuk+1e
T
k

with u1 = d/‖d‖M and UT
k+1MUk+1 = Ik+1. Algorithm 2 outlines the computational

procedure of calculating (18). We remark that in [7] full orthogonalization is used to
maintain numerical stability of the Lanczos procedure. In contrast, Algorithm 2 uses
a careful formulation of short recurrence. The numerical stability is observed to be
comparable with full orthogonalization if k is reasonably small.
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Algorithm 2 Lanczos procedure in M -inner product for real full BSE.

Input: A definite BSH matrix H ∈ R2n×2n; a starting vector u1 ∈ Rn satisfying
uT1 (A+B)u1 = 1; the number of Lanczos steps, k.

Output: α1, . . . , αk, β1, . . . , βk ∈ R, and u1, . . . , uk+1 ∈ Rn satisfying (18) and
UT
k+1(A+B)Uk+1 = Ik+1.

1: β0 ← 0, u0 ← 0, v0 ← 0.
2: v1 = (A+B)u1.
3: for j = 1, . . . , k do
4: x← (A−B)vj − βj−1uj−1.
5: αj ← vTj x.
6: x← x− αjuj .
7: y ← (A+B)x.

8: βj ←
√
xTy.

9: uj+1 ← x/βj , vj+1 ← y/βj .
10: end for

It follows from (18) and the identity

δ(ω − |λ|)− δ(ω + |λ|) = 2|λ| sign(ω)δ(ω2 − λ2)

that ε(ω) can be approximated through

ε(ω) = 2 sign(ω)dTMδ(ω2In −KM)d

≈ 2 sign(ω)dTMUkδ
(
ω2Ik − Tk

)
UT
kMd

= ‖d‖2MeT1
[
δ
(
ωIk − T 1/2

k

)
− δ
(
ωIk + T

1/2
k

)]
T

−1/2
k e1

≈ ‖d‖2MeT1
[
gσ
(
ωIk − T 1/2

k

)
− gσ

(
ωIk + T

1/2
k

)]
T

−1/2
k e1.(19)

Here Tk is a real symmetric tridiagonal matrix as in (12). Similar to the Lanczos
algorithm in the TDA setting, the approximate εσ(ω) is nonnegative for ω > 0, which
is a desired property. There is also no need to keep the whole history of Lanczos
vectors.

We have already seen in section 3.2 that the generalized averaged Gauss quadra-
ture can be incorporated in the Lanczos algorithm. This is also the case for (19).
Let

f(t;ω) = t−1/2
[
g(ω − t1/2)− g(ω + t1/2)

]
.

Then the generalized averaged Gauss quadrature replaces eT1 f(Tk;ω)e1 in (19) by

eT1 f(T̂k;ω)e1, that is,

(20) εσ(ω) ≈ ‖d1‖2MeT1 f(T̂k;ω)e1,

where T̂k ∈ R(2k−1)×(2k−1) is defined as in (14). It is expected that (20) in general
provides a better approximation to εσ(ω) compared to (19). Similar to the discussions

in section 3.2, T̂k can sometimes have one nonpositive eigenvalue. But in (19) T̂k needs

to be positive definite so that T̂
1/2
k is also positive definite. The remedy is to extend

the definition of f(t;ω) as

f(t;ω) =

{
t−1/2

[
gσ(ω − t1/2)− gσ(ω + t1/2)

]
if t > 0,

0 if t ≤ 0,
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Algorithm 3 The Lanczos algorithm for estimating the optical absorption spectrum
for real full BSE.
Input: Real symmetric positive definite matrices M , K ∈ Rn×n, an optical transition

vector d ∈ Rn, a broadening factor σ > 0, the number of Lanczos steps k, and a
set of frequencies {ωi}mi=1.

Output: The estimated absorption spectrum εσ(ω) sampled at ωi (for 1 ≤ i ≤ m).
1: Perform k Lanczos steps in M -inner product using d as the starting vector.
2: Formulate T̂k as defined in (14).

3: Compute the spectral decomposition T̂k = Ŝk diag
{
θ̂2

1, . . . , θ̂
2
2k−1

}
ŜH
k , where

ŜH
k Ŝk = I2k−1 and θ̂2k−1 ≥ · · · ≥ θ̂2 > 0.

4: Evaluate

εσ(ωi) = dTMd

2k−1∑
j=1

θ̂j>0

|Ŝk(1, j)|2 gσ(ωi − θ̂j)− gσ(ωi + θ̂j)

θ̂j

for i = 1, . . . ,m.

and discard the term involving the nonpositive eigenvalue of T̂k if there is one. Al-
gorithm 3 summarizes the Lanczos algorithm for real full BSE incorporated with the
generalized averaged Gauss quadrature.

We should point out that ε(ω) can be obtained by computing the eigenpairs of
KM or H directly. If one is only interested in the low energy region of the ab-
sorption spectrum, iterative methods such as the ones proposed in [1, 20, 36] can be
used to compute the first few eigenpairs. However, these methods can become costly
when the absorption spectrum window becomes large, and more eigenpairs need to
be computed.

4.2. Structure preserving Lanczos procedure for complex BSE. In this
subsection we discuss how to develop a structure preserving Lanczos procedure for
complex BSE. Just like the real case, we will try to reformulate the problem so that
only n-dimensional matrices and vectors are involved. To this end, let us define

Uφ =

{[
u

eiφu

]
: u ∈ Cn

}
, (φ ∈ R).

It can be easily verified that HUφ = Uφ+π and H2Uφ = Uφ. However, we remark that
Uφ is not an invariant subspaces of H2 as it is not a subspace of C2n over C; it can
only be regarded as a linear space over R. To approximate dHr δ(ωI2n − H)dl using
a Lanczos procedure, it is natural to use dl as the starting vector. Note that dl and
dr are structured because dl ∈ U0 and dr ∈ Uπ. In the following, we discuss how to
preserve this type of structure in a Lanczos procedure.

It was observed in [12] that H = CnΩ is self-adjoint with respect to the inner
product defined by Ω in (3), because

〈x,Hy〉Ω = yHΩCnΩx = 〈Hx, y〉Ω.

We make another observation that H2 = (CnΩCn)Ω is Hermitian and positive
definite with respect to the Ω-inner product. Thus there exists a Lanczos procedure
associated with H2 that is defined in terms of the Ω-inner product. If we start with the
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vector q1 ∈ U0, the recurrence relationship among the Lanczos vectors is characterized
by the following theorem.

Theorem 2. Let H = CnΩ be a definite BSH matrix. Suppose that u1 ∈ Cn sat-
isfies Re(uH1Au1 + uH1Bu1) = 1. Then for k < n, applying a k-step Lanczos procedure
to H2 in the Ω-inner product with the starting vector [uH1 , u

H
1 ]H produces

(21) H2

[
Uk
Uk

]
=

[
Uk
Uk

]
Tk + βk

[
uk+1

uk+1

]
eHk ,

where Uk = [u1, . . . , uk] ∈ Cn×k, Tk ∈ Rk×k is defined as in (12). The tridiagonal
matrix Tk is positive definite and componentwise nonnegative, and βk > 0, if the
Lanczos procedure does not break down. The Lanczos vectors satisfy the orthogonality
condition

(22)

[
ui
ui

]H
Ω

[
uj
uj

]
= 2δij , (1 ≤ i, j ≤ k + 1),

where δij is the Kronecker delta notation.

Proof. In the generic case (i.e., assuming no breakdown occurs), the Arnoldi pro-
cedure using the orthogonality condition (22) with starting vector q1 = [uH1 , u

H
1 ] reads

H2Qk = QkTk + βkqk+1e
H
k ,

where Tk is an upper Hessenberg matrix with positive subdiagonal entries, and βk > 0.
Multiplying from the left by QH

kΩ, we obtain that

2Tk = QH
kΩH2Qk = (CnΩQk)HΩ(CnΩQk)

is Hermitian positive definite. Consequently the diagonal entries of Tk are real and
positive. Hence we conclude that Tk is real symmetric, tridiagonal, positive defi-
nite, and componentwise nonnegative. The Arnoldi procedure is in fact a Lanczos
procedure.

Let us denote by αi and βi, respectively, the ith diagonal and subdiagonal entries
of Tk, i.e., Tk is of the form (12). Notice that q1 ∈ U0 implies H2q1 ∈ U0. From the
Lanczos procedure we have

q2 =
1

β1
(H2q1 − α1q1) ∈ U0,

because both α1 and β1 are real. By induction, we have

qi+1 =
1

βi
(H2qi − αiqi − βi−1qi−1) ∈ U0

for i = 2, . . . , k, as the linear combination on the vectors from U0 involves only real
coefficients. This completes the proof.

In section 4.4 we show that this Lanczos procedure reduces to the one given in
section 4.1 for real BSE. The additional factor of two in (22) is introduced to make
the two Lanczos procedures identical.

It may appear that the Lanczos procedure associated with H2 only provides one of
the two sets of vectors required to construct approximations to the oscillator strength.
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The following observation shows that the other set of vectors can be easily recovered.
Let

(23)

[
Vk
V k

]
= Ω

[
Uk
Uk

]
,

or, equivalently, [
Vk
−V k

]
= H

[
Uk
Uk

]
.

The Uk and Vk matrices can also be generated together from the following recurrence:

(24) H

[
Uk Vk
Uk −V k

]
=

[
Uk Vk
Uk −V k

] [
0 Tk
Ik 0

]
+ βk

[
uk+1

uk+1

]
eH2k.

The orthogonality condition (22) becomes

(25)

[
Uk
Uk

]H [
Vk
V k

]
= 2Ik.

However, this condition is not sufficient for constructing the (oblique) projector asso-
ciated with the subspace

span

[
Uk Vk
Uk −V k

]
.

We show a stronger result in the following theorem.

Theorem 3. Under the same assumption given in Theorem 2, let Uk and Vk be
defined as in (23) and (24). Then

(26)

[
Vk Uk
V k −Uk

]H [
Uk Vk
Uk −V k

]
= 2I2k.

Proof. Since[
Vk Uk
V k −Uk

]H [
Uk Vk
Uk −V k

]
=

[
2Ik V H

k Vk − V H
k Vk

UH
k Uk − UH

k Uk 2Ik

]
,

it suffices to show that uHi uj and vHi vj are both real for all i and j. The proof is based
on the fact that[

u
±u

]H
(HH)`1CnH

`2

[
u
±u

]
=

[
u
∓u

]H
(CnΩ)(`1+`2)/2Cn(ΩCn)(`1+`2)/2

[
u
∓u

]
= 0

holds for any u ∈ Cn and any nonnegative integers `1, `2 as long as `1 + `2 is even.
From (21) it can be verified that [uHj , u

H
j ]H can be expressed as[

uj
uj

]
= pj(H

2)

[
u1

u1

]
,

where pj(·) is a polynomial of degree j with real coefficients. Then we obtain

2i · Im(uHi uj) =

[
ui
ui

]H
Cn

[
uj
uj

]
=

[
u1

u1

]H
pi(H

2)HCnpj(H
2)

[
u1

u1

]
= 0
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Algorithm 4 Lanczos procedure in Ω-inner product for complex full BSE.

Input: A definite BSH matrix H ∈ C2n×2n; a starting vector u1 ∈ Cn satisfying[
uH1 , u

H
1

]H
Ω
[
uH1 , u

H
1

]H
= 2; the number of Lanczos steps, k.

Output: α1, . . . , αk, β1, . . . , βk ∈ R, and u1, . . . , uk+1, v1, . . . , vk+1 ∈ Cn satisfy-
ing (23)–(25).

1: β0 ← 0, u0 ← 0, v0 ← 0.
2: v1 = Au1 +Bu1.
3: for j = 1, . . . , k do
4: x← Avj −Bvj − βj−1uj−1.
5: αj ← Re(vHj x).
6: x← x− αjuj .
7: y ← Ax+Bx.
8: βj ←

√
Re(xHy).

9: uj+1 ← x/βj , vj+1 ← y/βj .
10: end for

by expanding pi(H
2)HCnpj(H

2) as the sum of monomials. Similarly, [vHj ,−vHj ]H can
be expressed as[

vj
−vj

]
= H

[
uj
uj

]
= Hpj(H

2)

[
u1

u1

]
= pj(H

2)H

[
u1

u1

]
= pj(H

2)

[
v1

−v1

]
,

and then

2i · Im(vHi vj) =

[
vi
−vi

]H
Cn

[
vj
−vj

]
=

[
v1

−v1

]H
pi(H

2)HCnpj(H
2)

[
v1

−v1

]
= 0.

From Theorem 3, we conclude that

1

2

[
Uk Vk
Uk −V k

] [
Vk Uk
V k −Uk

]H
is the projector we seek, and[

0 Tk
Ik 0

]
=

1

2

[
Vk Uk
V k −Uk

]H
H

[
Uk Vk
Uk −V k

]
is indeed a projected form of H.

The recurrence given by (24) is more desirable than that given by (21) because it
removes the ambiguity introduced by squaring the eigenvalues of the projected matrix[

0 Tk
Ik 0

]
,

which appear in pairs ±θi, where θ2
i is the eigenvalue of Tk. We regard (24) as a

structure preserving Lanczos procedure as the spectrum of the projected matrix is
real and symmetric with respect to the origin. Algorithm 4 outlines the structure
preserving Lanczos procedure for complex BSE. Similar to Algorithm 2, a careful
formulation of short recurrence instead of full orthogonalization is used to largely
retain numerical stability.
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Finally, we remark that this Lanczos procedure can be extended to have a starting
vector from Uφ. Let Dφ = diag

{
In, e

iφIn
}

. Notice that DH
φHDφ = Cn(DH

φΩDφ) is

also a definite BSH matrix. Thus, the Lanczos procedure of DH
φHDφ,

(DH
φHDφ)

[
Uk Vk
Uk −V k

]
=

[
Uk Vk
Uk −V k

] [
0 Tk
Ik 0

]
+ βk

[
uk+1

uk+1

]
eH2k,

is equivalent to

H

[
Uk Vk

eiφUk −eiφV k

]
=

[
Uk Vk

eiφUk −eiφV k

] [
0 Tk
Ik 0

]
+ βk

[
uk+1

eiφuk+1

]
eH2k.

4.3. Estimation of the absorption spectrum. In the following we describe
how to use the Lanczos procedure defined by (24) to estimate the absorption spectrum.
It follows from (24) and the orthogonality condition (26) that

εσ(ω) = dHr gσ(ωI2n −H)dl

=
1

2
‖dl‖2Ω

[
u1

−u1

]H
gσ(ωI2n −H)

[
u1

u1

]
≈ 1

4
‖dl‖2Ω

[
u1

−u1

]H [
Uk Vk
Uk −V k

]
gσ

(
ωI2n −

[
0 Tk
Ik 0

])[
Vk Uk
V k −Uk

]H [
u1

u1

]
.(27)

In the proof of Theorem 3, we showed that UH
k u1 is real. As a result, we obtain that[

u1

−u1

]H [
Uk Vk
Uk −V k

]
= 2

[
0
e1

]H
,

[
Vk Uk
V k −Uk

]H [
u1

u1

]
= 2

[
e1

0

]
.

These equations allow us to further simplify the expression given in (27). The sim-
plification removes Uk and Vk in the approximation of εσ(ω). Hence these vectors do
not need to be explicitly stored. Let Tk = SkΘ2

kS
H
k be the spectral decomposition of

Tk, where Θk = diag {θ1, . . . , θk} � 0. By simple calculation, we obtain

f

([
0 Tk
Ik 0

])
=

[
Sk 0
0 Sk

]
f

([
0 Θ2

k

Ik 0

])[
Sk 0
0 Sk

]H
=

1

2

[
Sk 0
0 Sk

] [
Θk −Θk

Ik Ik

] [
f(Θk) 0

0 f(−Θk)

] [
Θ−1
k Ik

−Θ−1
k Ik

] [
Sk 0
0 Sk

]H
and

(28)

[
0
e1

]H
f

([
0 Tk
Ik 0

])[
e1

0

]
=

1

2
eH1Sk

[
f(Θk)− f(−Θk)

]
Θ−1
k SH

k e1

for any smooth function f(t). Substituting f(t) = f(t;ω) = gσ(ω − t), we finally
arrive at

εσ(ω) ≈ 1

2
‖dl‖2ΩeH1Sk

[
gσ(ωIk −Θk)− gσ(ωIk + Θk)

]
Θ−1
k SH

k e1

= Re
(
dHAd+ dHBd

) k∑
j=1

|Sk(1, j)|2 gσ(ω − θj)− gσ(ω + θj)

θj
.(29)

Again we have the desired property that εσ(ω) ≥ 0 always holds for ω > 0.
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Algorithm 5 The Lanczos algorithm for estimating the optical absorption spectrum
for complex full BSE.

Input: A definite BSH matrix H ∈ C2n×2n, an optical transition vector d ∈ Rn, a
broadening factor σ > 0, the number of Lanczos steps k, and a set of frequencies
{ωi}mi=1.

Output: The estimated absorption spectrum εσ(ω) sampled at ωi (for 1 ≤ i ≤ m).

1: Perform k Lanczos steps in Ω-inner product with starting vector [dH, d
H

]H using
Algorithm 4.

2: Formulate T̂k as defined in (14).

3: Compute the spectral decomposition T̂k = Ŝk diag
{
θ̂2

1, . . . , θ̂
2
2k−1

}
ŜH
k , where

ŜH
k Ŝk = I2k−1 and θ̂2k−1 ≥ · · · ≥ θ̂2 > 0.

4: Evaluate

εσ(ωi) = Re
(
dHAd+ dHBd

) 2k−1∑
j=1

θ̂j>0

|Ŝk(1, j)|2 gσ(ωi − θ̂j)− gσ(ωi + θ̂j)

θ̂j

for i = 1, . . . ,m.

The technique of generalized averaged Gauss quadrature can also be adopted here.
Notice that (28) can be interpreted as

(30)

[
0
e1

]H
f

([
0 Tk
Ik 0

]
;ω

)[
e1

0

]
= eH1 h(Tk;ω)e1,

where h(t;ω) = t−1/2
[
f(t1/2;ω)−f(−t1/2;ω)

]
. We expect to obtain a better approxi-

mation by replacing Tk in (30) with T̂k defined in (14). Certainly, the identity matrix

Ik needs to be replaced by I2k−1 accordingly. Let T̂k = ŜkΘ̂2
kŜ

H
k be the spectral

decomposition of T̂k, where Θ̂k = diag
{
θ̂1, . . . , θ̂2k−1

}
has at most one nonpositive

eigenvalue. The generalized averaged Gauss quadrature produces

(31) εσ(ω) ≈ Re
(
dHAd+ dHBd

) 2k−1∑
j=1

θ̂j>0

|Ŝk(1, j)|2 gσ(ω − θ̂j)− gσ(ω + θ̂j)

θ̂j
,

which is expected to be better than (29) in general. Algorithm 5 summarizes the
Lanczos algorithm with generalized averaged Gauss quadrature for complex full BSE.
All of the four desired features listed in the beginning of this section are satisfied.

4.4. Connection with other Lanczos procedures. In this subsection, we
establish the connection among several variants of the Lanczos procedures. The com-
parison includes the Lanczos procedures we have discussed in sections 4.1 and 4.2, as
well as that proposed in [33] and [13]. The connection with a variant of the symplectic
Lanczos procedure from [38] is also discussed.

Lanczos procedures for real BSE. In [33, section 3], a Lanczos procedure that
produces

(32) ÛT
k V̂k = Ik, KÛk = V̂ T̂k, MV̂k = ÛkD̂k
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is studied for real BSE, where T̂k is symmetric tridiagonal, and D̂k � 0 is diagonal.
By rescaling Ûk, V̂k, and T̂k in (32) as

Uk = ÛkD̂
1/2
k , Vk = V̂kD̂

1/2
k , Tk = D̂

1/2
k T̂kD̂

1/2
k ,

we obtain
UT
k Vk = Ik, KUk = V Tk, MVk = Uk,

which is identical to the Lanczos procedure (18) in the M -inner product. As the
rescaling is invertible, (32) and (18) are mathematically equivalent. Since there is no
need to keep an additional diagonal matrix, (18) is slightly simpler compared to (32).

If both H and the optical transition vector d are real, the Lanczos procedure (24)
simplifies to

KMUk = UkTk + βkuk+1e
H
k .

The orthogonality condition (25) becomes

(33) Vk = MUk, V H
k Uk = Ik,

or simply UH
kMUk = Ik. Thus (24) and (18) are identical for real BSE. In the

computation of the absorption spectrum for real BSE, (29) and (31) also reduce to (19)
and (20), respectively. Therefore, Algorithm 5 can be regarded as a generalization of
Algorithm 3 to complex BSE.

Lanczos procedures for complex BSE. In [12], a Lanczos procedure defined in
terms of the Ω-inner product, which produces

(34) HQ̃k = Q̃kT̃k + β̃kq̃k+1e
H
k , Q̃H

k+1ΩQ̃k+1 = Ik+1,

is presented. However, the projected symmetric tridiagonal matrix T̃k does not neces-
sarily have a real spectrum that is symmetric with respect to the origin. Thus (34) is
not structured preserving in general. In a subsequent paper [13], it was proposed that
a structured starting vector q̃1 ∈ U0 should be used in (34). With such a structured
starting vector, it can be shown that T̃k is a real tridiagonal matrix whose diago-
nal entries are zeros. In addition the nonzero eigenvalues of T̃k appear in pairs ±θ.
Hence (34) with q̃1 ∈ U0 can be regarded as structure preserving. In the following we
shall show that this Lanczos procedure is mathematically equivalent to (24).

We have shown that the real symmetric tridiagonal matrix Tk in (21) and (24)
is positive definite and componentwise nonnegative. Therefore it admits a Cholesky
decomposition Tk = LkL

H
k , where

Lk = tridiag


0 · · · 0

β̃1 · · · · · · β̃2k−1

β̃2 · · · β̃2k−2


is a bidiagonal lower triangular matrix, which is also componentwise nonnegative.
Multiplying diag {Ik, Lk}−H

from the right to (24) yields

H

[
Uk VkL

−H
k

Uk −VkL−H
k

]
=

[
Uk VkL

−H
k

Uk −VkL−H
k

] [
0 Lk
LH
k 0

]
+ βk

[
uk+1

uk+1

] [
0

L−1
k ek

]H
.

Notice that L−1
k ek is parallel to ek. By setting

(35) Ũk =
1√
2
Uk, Ṽk =

1√
2
VkL

−H
k , β̃2k =

√
2 ekL

−1
k ek,
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we arrive at a Lanczos procedure of the form

(36) H

[
Ũk Ṽk

Ũk −Ṽ k

]
=

[
Ũk Ṽk

Ũk −Ṽ k

] [
0 Lk
LH
k 0

]
+ β̃2k

[
ũk+1

ũk+1

]
eH2k.

Let

q̃2j−1 =

[
ũ2j−1

ũ2j−1

]
, q̃2j =

[
ṽ2j

−ṽ2j

]
.

Applying the permutation matrix [e1, ek+1, e2, ek+2, . . . , ek, e2k] from the right to (36)
yields

HQ̃2k = Q̃2kT̃2k + β̃kq̃2k+1e
H
2k,

where

T̃2k = tridiag

 β̃1 β̃2 · · · β̃2k−2 β̃2k−1

0 0 · · · · · · 0 0

β̃1 β̃2 · · · β̃2k−2 β̃2k−1

 .

To obtain the orthogonality condition in terms of Q̃k, we multiply (36) from the left
by [

Ũk Ṽk

Ũk −Ṽ k

]H
Cn.

Using (26) and simple algebraic manipulation, we obtain[
Ũk Ṽk

Ũk −Ṽ k

]H
Ω

[
Ũk Ṽk

Ũk −Ṽ k

]
= I2k.

Thus we have derived (34) from (24), assuming the number of Lanczos steps in (34)
is even. As the transformation (35) is invertible, the two Lanczos procedures are
mathematically equivalent.

The Lanczos procedure (34) can be used to approximate the absorption spectrum
as follows:

εσ(ω) = dHr gσ(ωI2n −H)dl

≈ dHr Q̃2kgσ(ωI2n − T̃2k)Q̃H
2kΩdl

=
1

2
‖dl‖2ΩeH1 gσ(ωI2n − T̃2k)T̃−1

2k e1.(37)

The derivation of the last step requires similar effort compared to the proof of The-
orem 3. The expression (37) is also mathematically equivalent to (29). The main
difference between them is that the spectral decomposition of T̃2k instead of that
of Tk is needed. However, we remark that there exist subtle differences when the
technique generalized averaged Gauss quadrature is adopted. A direct application of
generalized averaged Gauss quadrature replaces T̃2k by a (4k−1)×(4k−1) tridiagonal
matrix

̂̃T 2k = tridiag

 β̃1 · · · β̃2k−1 β̃2k β̃2k−2 · · · β̃1

0 · · · · · · 0 0 · · · · · · 0

β̃1 · · · β̃2k−1 β̃2k β̃2k−2 · · · β̃1

 .
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The positive eigenvalues of ̂̃T 2k are not quite the same as the those of T̂
1/2
k , although

the number of positive Gauss nodes in the generalized averaged Gauss quadrature is
2k − 1 for both case. We shall see from the numerical experiments the generalized

averaged Gauss quadrature based on ̂̃T 2k is in general slightly worse than that based
on T̂k in terms of accuracy.

We remark that in the discussion above we always assume that an even number
of Lanczos steps is performed in (34). In fact, for an odd number of Lanczos steps,
T̃2k+1 always has a zero eigenvalue. In the view of Gauss quadrature for estimating
the absorption spectrum, such a zero eigenvalue is not a very useful Gauss quadrature
node because εσ(0) = 0 is known trivially. Therefore, an even number of Lanczos steps

should be performed when computing (34). Similarly, the zero eigenvalue of ̂̃T 2k is

not very helpful. Thus we only consider the 2k − 1 positive eigenvalues of ̂̃T 2k to be
useful in the generalized averaged Gauss quadrature.

Connection with symplectic Lanczos procedure. We have shown that our new
Lanczos procedure (24) is essentially equivalent to the one proposed in [13], and
both are equivalent to (18) and the one in [33] when applied to real BSE. There exists
other equivalent formulations. We present these formulations below, and exploit more
properties of the Lanczos procedure.

Let

X̃k =
Uk + Vk

2
, Ỹk =

Uk − V k
2

, Ãk =
Ik + Tk

2
, B̃k =

Ik − Tk
2

.

Then we reformulate (24) as

(38) H

[
X̃k Ỹ k

Ỹk X̃k

]
=

[
X̃k Ỹ k

Ỹk X̃k

] [
Ãk B̃k
−B̃k −Ãk

]
+

1

2
βk

[
x̃k+1 ỹk+1

ỹk+1 x̃k+1

] [
0 eHk
0 eHk

]
.

The orthogonality condition (26) becomes

(39)

(
Cn

[
X̃k Ỹ k

Ỹk X̃k

]
Ck

)H [
X̃k Ỹ k

Ỹk X̃k

]
=

[
X̃k −Ỹ k
−Ỹk X̃k

]H [
X̃k Ỹ k

Ỹk X̃k

]
= I2k.

Although (24) is derived from (21), which uses the Ω-inner product, the equivalent
formulation (38) is a Lanczos procedure in the C-inner product. As a result, the
projected matrix is a 2k × 2k BSH matrix. As we have discussed in section 2, the
eigenvectors of H are orthogonal in both the Ω-inner product and the C-inner product.
This suggests that our Lanczos procedure largely preserves properties of H. As a
byproduct of this observation, we obtain the Cauchy interlacing property as stated
in Theorem 4, which provides an estimate on the location of quadrature nodes in the
Gauss quadrature. This can be viewed as a generalization of [33, Lemma 3.5]. A
proof of Theorem 4 can be found in [29].

Theorem 4. Let Tk be defined as in (21) and suppose that the eigenvalues of H
and Tk are ±λ1, ±λ2, . . . ,±λn, and θ2

1, θ
2
2, . . . , θ

2
k, respectively, with 0 < λ1 ≤ λ2 ≤

· · · ≤ λn, 0 < θ1 ≤ θ2 ≤ · · · ≤ θk. Then, under the assumption given in Theorem 2,
we have

λi ≤ θi ≤ λn−k+i, (1 ≤ i ≤ k).

It has been shown in [27] that the matrix

iQH
nHQn = Jn

[
Re(A+B) Im(A−B)
−Im(A+B) Re(A−B)

]
=: JnM̃
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is a real Hamiltonian matrix with M̃ � 0, where

Jn =

[
0 In
−In 0

]
, Qn =

1√
2

[
In −iIn
In iIn

]
.

Using the same unitary transformation, the Lanczos factorization (38) becomes

(40) JnM̃

[
Re(Uk) Im(Vk)
−Im(Uk) Re(Vk)

]
=

[
Re(Uk) Im(Vk)
−Im(Uk) Re(Vk)

] [
0 Tk
−Ik 0

]
+ [rank 1],

and the orthogonality condition (39) becomes

(41)

[
Re(Uk) Im(Vk)
−Im(Uk) Re(Vk)

]H
Jn

[
Re(Uk) Im(Vk)
−Im(Uk) Re(Vk)

]
= Jk.

Since (41) indicates that the Lanczos vectors associated with JnM̃ are symplectic,
the Lanczos factorization (40) yields in fact a symplectic Lanczos procedure (see, e.g.,
[4, 6, 38]) for the real Hamiltonian matrix JnM̃ . Such a variant of symplectic Lanczos
procedures has been discussed in [38]. Therefore, (24) can also be interpreted as a
variant of symplectic Lanczos procedure. Finally we remark that for the purpose
of computing the absorption spectrum, the starting vector in (40) should be chosen

parallel to
[
Re(d)H,−Im(d)H

]H
if (40) is adopted.

4.5. Structure preserving Lanczos algorithm with paired starting vec-
tors. Besides several equivalent structure preserving Lanczos procedures, there are
also other structure preserving Lanczos procedures with paired starting vectors. Ac-
tually, when ‖u1‖2 6= ‖v1‖2, Lanczos procedures of the form

(42) H

[
Uk V k
Vk Uk

]
=

[
Uk V k
Vk Uk

] [
Ak Bk
−Bk −Ak

]
+

[
uk+1 vk+1

vk+1 uk+1

] [
βke

H
k 0

0 −βkeHk

]
can be constructed, where Ak and Bk are tridiagonal, and the orthogonality condition
on the Lanczos vectors is either2

(43)

[
ui vi
vi ui

]H
Ω

[
uj vj
vj uj

]
= δijI2

or

(44) C2

[
ui vi
vi ui

]H
Cn

[
uj vj
vj uj

]
=

[
ui −vi
−vi ui

]H [
uj vj
vj uj

]
= δijI2.

In fact, from the discussion in the previous subsection, we also see that the condi-
tion (44) for BSH matrices is equivalent to the symplecticity condition for real Hamil-
tonian matrices. For both orthogonality conditions, the eigenvalues of the projected
matrix

Hk =

[
Ak Bk
−Bk −Ak

]
are real and occur in pairs ±θ.

When estimating the absorption spectrum using (42), we use u1 = d, v1 = 0 as
the starting vectors because dl does not satisfy the condition ‖u1‖2 6= ‖v1‖2. We point

2If (43) is used, orthogonalization within each two dimensional subspace is required.
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Fig. 2. The real (left) and imaginary (right) parts of the absorption spectrum approximated
using (45) on a small example provided in (46) with k = 4 and σ = 0.1. The real part is not
nonnegative, and the imaginary part is nonzero.

out that the absorption spectrum computed based on (42) is not necessarily real and
nonnegative for ω > 0. For instance, if the orthogonality condition (43) is used, the
absorption spectrum approximated by

(45) εσ(ω) ≈ dHr
[
Uk V k
Vk Uk

]
gσ(ωIk −Hk)

[
Uk V k
Vk Uk

]H
Ωdl

is not guaranteed to be real, although the Ritz values are always real and appear in
pairs. We illustrate this by a small artificial example with n = 16:
(46)

A(i, j) =


4 if i = j,

1 if |i− j| = 1,

0 otherwise,

B(i, j) =

{
ii−1 if i = j,

0 otherwise,
d(i) = (−1)i−1.

As shown in Figure 2, after four steps of the Lanczos procedure the absorption spec-
trum computed by (45) with σ = 0.1 is clearly not real, and the real part is not
nonnegative. Hence, we do not consider using (42) in the Ω-inner product and (45)
for computing the absorption spectrum.

If the orthogonality condition (44) is adopted, also using u1 = d, v1 = 0 as the
starting vectors, the projected matrix Hk is a definite BSH matrix. Let the spectral
decomposition of Hk be

Hk =

[
S1 S2

S2 S1

] [
Θ 0
0 −Θ

] [
S1 −S2

−S2 S1

]H
,

where Θ = diag {θ1, . . . , θk} � 0. It can be shown that (42) and (44) lead to a
structure preserving algorithm because

εσ(ω) ≈ ‖d‖22(e1 − ek+1)Hgσ(ωI −Hk)(e1 + ek+1)

= ‖d‖22
k∑
j=1

∣∣S1(1, j)− S2(1, j)
∣∣2[gσ(ω − θj)− gσ(ω + θj)

]
.(47)

This formulation possesses the second and third features listed in the beginning of
this section. However, theoretically Lanczos procedures in the C-inner product may
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Fig. 3. Single-wall (8, 0) carbon nanotube benchmark system. The black region represents the
unit cell of the system, which is periodic along the “c” axis.

sometimes break down due to C-neutral vectors.3 Such a breakdown is not a lucky
breakdown. It is also not very clear how to incorporate the technique of generalized
averaged Gauss quadrature in (47).

We remark that in general (47) is not as good as (29) even if generalized averaged
Gauss quadrature is not used. Our numerical experiments suggest that (47) typically
requires about twice as many as Lanczos steps to achieve the same accuracy level
compared to (29).4 A brief explanation is that for the same number of Lanczos
steps k, H has been raised to the power H2k in (24), while H has only been raised
to the power Hk in (42). A higher polynomial degree potentially provides better
approximation quality.

5. Computational examples. In this section we present several examples to
demonstrate the accuracy and efficiency of the Lanczos algorithm for computing
the optical absorption spectrum. We implemented the Lanczos algorithms in soft-
ware packages BSEPACK [28] and BerkeleyGW [9]. All tests were performed on the
Linux cluster Edison at the National Energy Research Scientific Computing Center
(NERSC).5 Each computational node on Edison consists of 64 GB DDR3 1866 MHz
memory and two sockets, with a 12-core Intel “Ivy Bridge” processor at 2.4 GHz on
each socket. The computational nodes are connected by a Cray Aries network with
Dragonfly topology, with 23.7 TB/s global bandwidth. Our tests make use of 10 com-
putational nodes and 24 MPI processes per node. The Fortran 90 implementation of
algorithms is compiled by the Intel Fortran compiler, and linked with the Cray LibSci
and Cray MPI libraries. No multithreading feature is utilized.

For our calculations, we use a benchmark system consisting of a single-wall (8, 0)
carbon nanotube with 32 atoms, 128 electrons, and 64 Kohn–Sham spin-degenerate
bands in the unit cell. As depicted in Figure 3, this system is periodic along the “c”
axis, but confined along the other directions labeled by the axes “a” and “b,” which
makes this an interesting benchmark system. In particular, as we will discuss, the
TDA may or may not be a good approximation depending on the direction of optical
excitation in this particular system.

In general, crystal states can be written in a Bloch form as Ψnk(r) = eik·runk(r),
where n is a band index, k is a k-point, and unk(r) is a cell-periodic complex-valued
function. Because “c” is the only periodic direction, we only need to sample k-points

3A C-neutral vector is a vector v ∈ C2n which satisfies vHCnv = 0.
4A similar behavior has been observed in [36] when solving the linear response eigenvalue problem.
5See http://www.nersc.gov/users/computational-systems/edison/.

http://www.nersc.gov/users/computational-systems/edison/
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Fig. 4. The absorption spectrum for a single-wall (8, 0) carbon nanotube for two different
directions for the light polarizations. The label “Full BSE” refers to spectrum obtained from solving
the full BSH in (8), and “TDA” refers to the spectrum obtained within the TDA.

along that axis. When solving the BSE, we include nv = 10 valence states, nc = 12
conduction states, and nk = 256 k-points, so that n = nvncnk = 30,720, and we
picked gσ as a Gaussian function with σ = 100 meV. The matrices A and B are both
dense. We did not perform a systematic convergence test with respect to the number
of conducting bands. However, the use of nc = 12 conducting bands already produces
the main physical features in the absorption spectrum also observed when a larger
number of conduction bands are used.

Full BSE vs. TDA. In our first experiment, we calculate the absorption spectrum
for two different directions for the light polarizations using both full BSE and TDA
solvers. To exclude other sources of errors, we fully diagonalize the matrices H and
A, with dimensions 61,440 and 30,720, respectively. We can see from Figure 4 that
even within the same system, the TDA can either be a valid approximation or give
a qualitatively wrong absorption spectrum depending on the polarization direction
of light. When the polarization of the optical excitation is along the “c” axis, which
is a direction along which the system is periodic, the TDA is a good approximation
for the low-energy optical spectrum. However, if the light polarization is along any
confined direction spanned by the “a” and “b” axes, a large difference between the
two spectra can be observed. This can be understood from a large exciton–plasmon
hybridization which couples to light polarized along the confined direction, and which
cannot be well-described within the TDA [12].

Thus this example confirms the necessity of developing full BSE solvers for ab-
sorption spectrum calculation. In the subsequent tests the light polarizations is chosen
to be perpendicular to the tube so that using a full BSE solver is necessary.

Effectiveness of the Lanczos algorithm. In Figure 5 we plot the approximate ab-
sorption spectra obtained by running 32 steps of different variants of the Lanczos
algorithm. We use the result obtained from full diagonalization as the “exact” so-
lution to measure the accuracy of these Lanczos algorithms. The paired Lanczos
algorithm described in section 4.5 (Figure 5(a), abbreviated as PL) is clearly worse
than the one with a single structured starting vector (Figure 5(b), abbreviated as
SVL). The Lanczos algorithm proposed in [13] (abbreviated as GMG) is equivalent to
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Fig. 5. Comparison of the absorption spectra obtained from different variants of the Lanczos
algorithm with the spectrum obtained from the full diagonalization of the BSH matrix.

ours with a single structured starting vector and is hence omitted here. The technique
of generalized averaged Gauss quadrature (GAGQ) clearly improves the accuracy of
the Lanczos algorithm. With such a small number of Lanczos steps, our Lanczos
algorithm with generalized averaged Gauss quadrature (i.e., Algorithm 5) already
produces a very satisfactory result. Though not very clear from this figure, our Algo-
rithm 5 (Figure 5(d)) is slightly better than the one proposed in [13] with generalized
averaged Gauss quadrature (Figure 5(c)) in this example.

To measure the accuracy of approximate absorption spectrum, we introduce the
concept of angle between two functions as follows. Let ξ(ω) and ζ(ω) be sufficiently
smooth functions of ω over an interval I. Then the angle between ξ(ω) and ζ(ω) is
defined as

(48) ∠(ξ, η) = arccos
〈ξ, ζ〉√
〈ξ, ξ〉〈ζ, ζ〉

,

where

〈ξ, ζ〉 =

∫
I

ξ(ω)ζ(ω) dω

is the usual L2-inner product. The angle ∠(ξ, η) is in fact the principal angle (also
known as canonical angle) between two subspaces, span {ξ(ω)} and span {η(ω)}, of
L2(I). A small angle between two functions implies similar shapes of their curves.
This allows us to measure the error of the approximate absorption spectrum compared
to the “exact” one in terms of the angle between them. This measure is similar to
the cross-correlation measure between two curves. In Figure 6 we plot the errors of
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Fig. 6. The convergence history of different variants of the Lanczos algorithm. The error is
measured by the angle (48) between the approximate absorption spectrum and the one obtained from
full diagonalization. The algorithms used here are the same as those in Figure 5.

different variants of the Lanczos algorithm, with the integrals in (48) approximated
by rectangular rules using the sampling points of ε2(ω)’s. It confirms our observation
from Figure 5, not only for a single snapshot after 32 Lanczos steps, but also con-
sistently throughout the whole iterative procedure. The difference between the two
different variants with generalized averaged Gauss quadrature becomes more clear in
Figure 6. Overall Algorithm 5 is better than the variant from [13] combined with
generalized averaged Gauss quadrature. We remark that there are about 10% cases
in this example involving nonpositive definite T̂k in Algorithm 5. Figure 6 shows that
dropping the nonpositive eigenvalue of T̂k does not harm the accuracy.

It takes 62 iterations and 4.1 seconds for Algorithm 5 to achieve the accuracy
level 10−3 (in terms of angles), which is more than sufficient for practical use. This
is over 500 times faster compared to full diagonalization (2125.8 seconds). If the
multiplications of A and B with vectors can be implemented more efficiently by further
exploiting the structures of A and B (see, e.g., [3]), the improvement is expected to
be more significant.

In our test, the number of Lanczos steps is always prescribed by the user. We
remark that it is possible to instead specify the desired accuracy in the input and
automatically determine the required number of Lanczos steps in the calculation.
One strategy proposed in [19] is to estimate the error using the difference between the
results obtained with and without generalized averaged Gauss quadrature. However,
since this strategy relies on the result without generalized averaged Gauss quadrature,
which is in a relatively low accuracy as we have shown in Figure 6, the estimate is
in general too pessimistic. A better strategy is to use the difference between two
consecutive iterations (i.e., (k− 1)th and kth steps) instead in the stopping criterion.

Systems with real-space inversion symmetry. Our last example uses another sys-
tem which has real-space inversion symmetry. When a system has real-space and
time-reversal symmetry, the wave functions in reciprocal space, and thus the BSH
matrix, can be written as real numbers [9]. We use bulk silicon for this benchmark,
with nv = 4, nc = 6, and nk = 1,000, so that the dimension of the A and B blocks
of BSH is n = 24,000. We also use a Gaussian broadening in this system, but with
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Fig. 7. The convergence history of Algorithms 3 and 5 for bulk silicon. The error is measured
by the angle (48) between the approximate absorption spectrum and the one obtained from full
diagonalization.

σ = 150 meV. Since the BSH matrix is real, both Algorithms 3 and 5 are applicable
and are identical as discussed in section 4. Our experiment confirms the theoretical
prediction. In Figure 7 we plot the convergence history (in terms of angles) of the two
algorithms. The curves of convergence history are indeed on the top of each other
in the left plot. As for the execution time, the real solver is faster than the complex
one, due to some additional operations involving the imaginary parts in the complex
solver when applied to real matrices.

6. Concluding remarks. In this paper we presented and analyzed a simple
structure preserving Lanczos procedure for definite BSH matrices and combined it
with the recently developed technique of generalized averaged Gauss quadrature to
estimate the optical absorption spectrum. The analyzed Lanczos procedure possesses
several attractive features, such as being free of serious breakdown, and preserving
nonnegativity of the absorption spectrum. The use of alternative inner products
based on the orthogonalities of the eigenvectors plays a key role in preserving the
structure. By some theoretical analysis we established the equivalence between the
Lanczos procedure presented in this paper with several existing Lanczos procedures in
the literature, including the ones in [13, 33] for random phase approximation, and one
variant of symplectic Lanczos procedure in [38]. Numerical experiments demonstrate
that the Lanczos algorithm can provide accurate approximation of the absorption
spectrum with a relatively small number of Lanczos steps. In addition, the technique
of generalized averaged Gauss quadrature largely improves the accuracy of the Lanczos
algorithm. When this technique is applied, our Lanczos algorithm is more efficient
and more accurate compared to other variants.

In this work the blocks A and B in the BSH matrix H are formed as dense
matrices. However, the Lanczos algorithm does not require these matrices to be
explicitly formed. An implicit representation that allows one to perform matrix–vector
multiplication suffices. Efficient ways of constructing and applying the BSH matrix
have been described in [16, 17, 22, 23, 24]. The development of other approximation
and compression strategies is planned as future work.
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[30] M. M. Spalević, On generalized averaged Gaussian formulas, Math. Comp., 76 (2007),
pp. 1483–1492, https://doi.org/10.1090/S0025-5718-07-01975-8.

[31] G. Strinati, Application of the Green’s functions method to the study of the optical properties
of semiconductors, La Rivista del Nuovo Cimento, 11 (1988), pp. 1–86.

[32] I. Y. Tamm, Relativistic interaction of elementary particles, J. Phys. (USSR), 9 (1945), pp. 449–
460.

[33] Z. Teng and R.-C. Li, Convergence analysis of Lanczos-type methods for the linear response
eigenvalue problem, J. Comput. Appl. Math., 247 (2013), pp. 17–33, https://doi.org/10.
1016/j.cam.2013.01.003.

[34] I. Timrov, N. Vast, R. Gebauer, and S. Baroni, Electron energy loss and inelastic x-ray
scattering cross sections from time-dependent density-functional perturbation theory, Phys.
Rev. B, 88 (2013), 064301, https://doi.org/10.1103/PhysRevB.88.064301.

[35] I. Timrov, N. Vast, R. Gebauer, and S. Baroni, turboEELS—A code for the simulation of
the electron energy loss and inelastic X-ray scattering spectra using the Liouville–Lanczos
approach to time-dependent density-functional perturbation theory, Comput. Phys. Com-
mun., 196 (2015), pp. 460–469, https://doi.org/10.1016/j.cpc.2015.05.021.

[36] E. Vecharynski, J. Brabec, M. Shao, N. Govind, and C. Yang, Efficient block precondi-
tioned eigensolvers for linear response time-dependent density functional theory, Comput.
Phys. Commun., 221 (2017), pp. 42–52, https://doi.org/10.1016/j.cpc.2017.07.017.

[37] B. Walker, A. M. Saitta, R. Gebauer, and S. Baroni, Efficient approach to time-dependent
density-functional perturbation theory for optical spectroscopy, Phys. Rev. Lett., 96 (2006),
113001, https://doi.org/10.1103/PhysRevLett.96.113001.

[38] D. S. Watkins, On Hamiltonian and symplectic Lanczos processes, Linear Algebra Appl., 385
(2004), pp. 23–45, https://doi.org/10.1016/j.laa.2002.11.001.

[39] R. Zimmermann, Influence of the non-Hermitian splitting terms on exciontic spectra, Phys.
Stat. Sol., 41 (1970), pp. 23–43, https://doi.org/10.1002/pssb.19700410103.

https://doi.org/10.1007/s10543-015-0592-7
https://doi.org/10.1007/s10543-015-0592-7
https://doi.org/10.1063/1.3677667
https://doi.org/10.1063/1.2899649
https://doi.org/10.1063/1.2899649
https://doi.org/10.1063/1.3494540
https://doi.org/10.1103/PhysRevB.85.045116
https://doi.org/10.1021/ct5000956
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/PhysRev.84.1232
https://doi.org/10.1016/j.laa.2015.09.036
https://doi.org/10.1007/978-3-319-62426-6_7
https://doi.org/10.1007/978-3-319-62426-6_7
https://doi.org/10.1090/S0025-5718-07-01975-8
https://doi.org/10.1016/j.cam.2013.01.003
https://doi.org/10.1016/j.cam.2013.01.003
https://doi.org/10.1103/PhysRevB.88.064301
https://doi.org/10.1016/j.cpc.2015.05.021
https://doi.org/10.1016/j.cpc.2017.07.017
https://doi.org/10.1103/PhysRevLett.96.113001
https://doi.org/10.1016/j.laa.2002.11.001
https://doi.org/10.1002/pssb.19700410103

	Introduction
	Preliminaries
	Properties of definite Bethe–Salpeter Hamiltonian matrices
	Optical absorption spectra

	Tamm–Dancoff approximation
	Lanczos algorithm
	Generalized averaged Gauss quadrature

	Absorption spectrum for full BSE
	Lanczos algorithm for real BSE
	Structure preserving Lanczos procedure for complex BSE
	Estimation of the absorption spectrum
	Connection with other Lanczos procedures
	Structure preserving Lanczos algorithm with paired starting vectors

	Computational examples
	Concluding remarks
	References

