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GLOBALLY CONSTRUCTED ADAPTIVE LOCAL BASIS SET FOR

SPECTRAL PROJECTORS OF

SECOND ORDER DIFFERENTIAL OPERATORS

YINGZHOU LI∗ AND LIN LIN†

Abstract. Spectral projectors of second order differential operators play an important role in
quantum physics and other scientific and engineering applications. In order to resolve local features
and to obtain converged results, typically the number of degrees of freedom needed is much larger
than the rank of the spectral projector. This leads to significant cost in terms of both computation
and storage. In this paper, we develop a method to construct a basis set that is adaptive to the
given differential operator. The basis set is systematically improvable, and the local features of the
projector is built into the basis set. As a result the required number of degrees of freedom is only a
small constant times the rank of the projector. The construction of the basis set uses a randomized
procedure, and only requires applying the differential operator to a small number of vectors on
the global domain, while each basis function itself is supported on strictly local domains and is
discontinuous across the global domain. The spectral projector on the global domain is systematically
approximated from such a basis set using the discontinuous Galerkin (DG) method. The global
construction procedure is very flexible, and allows a local basis set to be consistently constructed
even if the operator contains a nonlocal potential term. We verify the effectiveness of the globally
constructed adaptive local basis set using one-, two- and three-dimensional linear problems with local
potentials, as well as a one dimensional nonlinear problem with nonlocal potentials resembling the
Hartree-Fock problem in quantum physics.

Key words. Adaptive local basis; Discontinuous Galerkin; Spectral projector; Differential
operator; Global construction; Random sampling; Quantum physics

1. Introduction. Consider the second order differential operator

H = −∆+ V (x), x ∈ Ω, (1.1)

where Ω is a rectangular, bounded domain in Rd with periodic boundary conditions.
V is a real, bounded and smooth potential function. Then H is a self-adjoint operator
on Ω. Using the eigen-decompositionHψi = εiψi, a spectral projector P is an integral
operator with its kernel defined as

P (x,x′) = 1I(H)(x,x′) =
∑

εi∈I

ψi(x)ψ
∗
i (x

′). (1.2)

Here I is an interval that can be interpreted as an energy window indicating the
eigenfunctions of interest, 1I(·) is an indicator function, and ψ∗

i (x) is the complex
conjugation of ψi(x). Denote by n the number of eigenfunctions in the summation
of Eq. (1.2), then the rank of P is n. We assume n is large, which can range from
hundreds to hundreds of thousands. The spectral projector of such a form or of similar
forms arises in many scientific and engineering problems. One notable example is the
widely used Kohn-Sham density functional theory [18, 21] in quantum physics, where
I contains the lowest n eigenvalues of H . Typically, a large number of degrees of
freedom associated with a fine numerical discretization are required to resolve the local
features of ψi’s with sufficient accuracy. This is the case when standard discretization
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methods such as finite difference, finite element, discontinuous Galerkin, planewave,
and wavelet type of methods are used. The ratio between the total number of degrees
of freedom (DOFs) and n can range from hundreds to hundreds of thousands in
quantum physics applications [2, 38, 11]. As a consequence, both the storage cost and
the computation cost associated with the spectral projector P can be large.

1.1. Contribution. In this paper, instead of using a general basis set, we in-
troduce a new basis set that can be specifically tailored to represent the spectral
projector P , for a given operator H and an interval I. The key observation is as
follows. Let us partition Ω into a suitable collection of non-overlapping sub-domains
called elements. If the size of each element is small enough, then the numerical rank
(a.k.a. the approximate rank up to certain truncation tolerance ǫ [14]) of each row
block of P restricted to any element can be bounded by a small constant. We shall
quantify the details of the statement above later in the paper. The singular value
decomposition of one such row block of P defines the optimal basis set on an element.
Since the local features of the range of P is directly built into the basis set, we can
expect that the number of degrees of freedom in such an optimal basis set is much
smaller than that in a general basis set. However, such an optimal basis set cannot
be practically obtained, since it requires the knowledge of P a priori. We devise a
numerical algorithm to compute a nearly optimal basis set. This is done by apply-
ing an approximate spectral projector, characterized by a matrix function f(H), to
a small number of random vectors defined on the global domain Ω. The number of
random vectors is only slightly larger than the approximate rank of f(H) restricted
to each element. The range of P is then approximately a subspace of the span of this
basis set, and we find that this is an efficient and accurate way to generate the basis
functions on all elements. Due to the non-overlapping condition, each basis function
is only supported on one element, and is discontinuous on the global domain Ω. We
use the discontinuous Galerkin (DG) method [4] to patch the basis set to obtain an
approximation to {ψi}εi∈I or P . Motivated by our previous work of the locally con-
structed adaptive local basis set (LC-ALB) [27, 47, 19], the basis set in this work is
dubbed the globally constructed adaptive local basis set (GC-ALB).

The GC-ALB set has the following advantages: 1) Systematically improvable. As
the number of basis functions in each element increases, the accuracy of the projector
represented in this basis set systematically improves towards the converged spectral
projector. 2) Efficient. The number of basis functions is directly related to the
numerical rank of the row blocks of the projector, and is much smaller compared to
the number of degrees of freedom needed to resolve the local shape of {ψi} in the real
space. The strict locality of the basis set can significantly reduce the computation and
storage cost for {ψi} and P . 3) Flexible. The construction of the basis set only requires
matrix-vector multiplication ofH defined on the global domain Ω. This allows existing
matrix-vector multiplication routines for computing Hv to be readily used without
the need of constructing auxiliary operators. This also facilitates the generalization
to operators beyond the form in (1.1). This can occur e.g. for H = −∆ + V +W ,
where W is an integral operator and hence H becomes a nonlocal operator. Such
an operator arises in applications such as the Kohn-Sham density functional theory
with hybrid exchange-correlation functionals [6, 17] and the Hartree-Fock theory in
quantum physics.

1.2. Related work. In the context of quantum physics, many tailored basis set
have been designed to reduce the number of DOFs to represent spectral projectors (or
density matrices in physics terminology). Notable examples include the Gaussian basis
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set and the atomic orbital basis set [43, 36, 8]. Such basis sets are developed based
on physical intuition, and can provide relatively accurate solution with much reduced
number of degrees of freedom compared to more conventional basis sets. However,
expert knowledge is often required to systematically converge the solution. These
basis sets have also been used to “enrich” conventional basis sets to achieve a balance
between the small number of DOFs and the systematic convergence property [41, 44].
However, the number of DOFs in the mixed basis representation is often much larger
than those using Gaussian orbital or atomic orbital basis sets alone.

In order to achieve systematic convergence without sacrificing the number of
DOFs, one may give up the concept of designing a basis set a priori, but instead
generate the basis set on the fly. This has been demonstrated via a number of ap-
proaches based on filtration [27, 31, 39, 10, 35] as well as optimization [42, 28, 9, 34]
principles. A common ingredient of these methods is to truncate the H operator into
a series of operators defined only on different sub-domains, and the basis set is then
generated from the truncated operators. This requires each basis function to satisfy
zero Dirichlet boundary conditions at each subdomain, which is not always achievable
without sacrificing the accuracy of the resulting basis set. The method in this paper
only uses matrix-vector multiplication on the global domain, and hence the concern
from the choice of boundary conditions on local domains is completely removed. Our
numerical results indicate that the GC-ALB set can also be more efficient than the
LC-ALB set measured in terms of the number of DOFs to reach the same target
accuracy.

1.3. Outline of the paper. The rest of the paper is organized as follows. We
review the interior penalty formulation of the discontinuous Galerkin framework, in-
troduce the optimal discontinuous basis set and the locally constructed adaptive local
basis set in section 2. We present the globally constructed adaptive local basis set in
section 3. The numerical results are given in section 4, followed by the conclusion and
discussion in section 5.

2. Preliminaries.

2.1. Discontinuous Galerkin method. Without loss of generality, let Ω =
[0, L)d where d = 1, 2, 3, and K be a regular partition of Ω into a set of non-overlapping
elements. For κ ∈ K, we denote by κ the closure of κ. For any two elements κ, κ′ ∈ K,
The periodic boundary condition on Ω implies that the partition is regular across the
boundary ∂Ω. We remark that generalization to other boundary conditions such as
Dirichlet or Neumann boundary conditions, as well as to non-rectangular domains,
can be done with minor modification.

We denote by H1(κ) the standard Sobolev space of L2(κ)-functions such that the
first partial derivatives are also in L2(κ). We denote the set of piecewise H1-functions
by

H1(K) =
{
v ∈ L2(Ω)

∣∣ v|κ ∈ H1(κ), ∀κ ∈ K
}
,

which is also referred to as the broken Sobolev space. For v, w ∈ H1(K), the inner
product is

(v, w)K =
∑

κ∈K

(v, w)κ :=
∑

κ∈K

∫

κ

v∗(x)w(x) dx, (2.1)

which induces a norm ‖v‖K = (v, v)
1

2

K.
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For v, w ∈ H1(K) and κ, κ′ ∈ K, define the jump and average operators on a face
κ ∩ κ′ by

{{v}} = 1
2 (v|κ + v|κ′), {{∇v}} = 1

2 (∇v|κ +∇v|κ′), (2.2)

and

[[v]] = v|κnκ + v|κ′nκ′ , [[∇v]] = ∇v|κ · nκ +∇v|κ′ · nκ′ , (2.3)

where nκ denotes the exterior unit normal of the element κ.
In order to numerically solve the eigenvalue problem

Hψi = εiψi,

we need to identify a basis set which spans a subspace of H1(K). Let Nκ be the
number of DOFs on κ, and the total number of DOFs is NK =

∑
κ∈KNκ. Let

VN (κ) = span {ϕκ,j}
Nκ

j=1, where each ϕκ,j is a function defined on Ω with compact

support only in κ. Hence VN (κ) is a subspace of H1(K) and is associated with a
finite dimensional approximation for H1(κ). Then VN =

⊕
κ∈K VN (κ) is a finite

dimensional approximation to H1(K). We also assume all functions {ϕκ,j} form an
orthonormal set of vectors in the sense that

(ϕκ,j , ϕκ,j′)K = δκ,κ′δj,j′ , ∀κ, κ′ ∈ K, 1 ≤ j ≤ Nκ, 1 ≤ j′ ≤ Nκ′ . (2.4)

The interior penalty formulation of the discontinuous Galerkin method [4] intro-
duces the following bilinear form

a(w, v) =
∑

κ∈K

[
(∇w,∇v)κ + (V w, v)κ

]
+ 1

2

∑

κ∈K

[
− (∇w, [[v]])∂κ − ([[w]],∇v)∂κ

]

+ 1
2

∑

κ∈K

[
γκ([[w]], [[v]])∂κ

]
. (2.5)

Here the terms in the first bracket corresponds to the operator H . The terms in the
second bracket are obtained from integration by parts, and the terms in the third
bracket is a penalty term to guarantee the stability of the bilinear form [5]. The
penalty parameter γκ on each element κ needs to be large enough, and the value of
γκ depends on the choice of basis set VN . For general non-polynomial basis functions
the value of γκ is not known a priori. One possible solution is given in [29] which
provides a formula for evaluating γκ on the fly for general non-polynomial basis sets
based on the solution of eigenvalue problems restricted to each element κ.

Using the bilinear form (2.5), the solution of

a(ψVN

i , v) = εVN

i (ψVN

i , v)K, ∀v ∈ VN (2.6)

gives the numerical solution of eigenpairs of the form (εVN

i , ψVN

i ) and ψVN

i ∈ H1(K).
Eq. (2.6) can be equivalently written as a standard linear eigenvalue problem

∑

κ′,j′

HVN

κ,j;κ′,j′cκ′,j′;i = εVN

i cκ,j;i, (2.7)

where {cκ,j;i} satisfies ψVN

i =
∑

κ,j cκ,j;iϕκ,j , and the reduced matrix HVN is of size
NK ×NK with matrix elements

HVN

κ,j;κ′,j′ = a(ϕκ,j , ϕκ′,j′). (2.8)
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Using the solution of Eq. (2.7), we can select εVN

i ∈ I and obtain an approximation
to the spectral projector

P (x,x′) ≈
∑

ε
VN
i

∈I

ψVN

i (x)
(
ψVN

i (x′)
)∗

=
∑

κ,κ′,j,j′

ϕκ,j(x)Γκ,j;κ′,j′ϕ
∗
κ′,j′(x

′). (2.9)

Here Γ is the NK ×NK matrix representation of P in the basis set VN , and

Γκ,j;κ′,j′ =
∑

ε
VN
i

∈I

cκ,j;ic
∗
κ′,j′;i. (2.10)

2.2. Optimal discontinuous basis set. The discontinuous Galerkin method in
section 2.1 can be applied to very general basis sets VN . Here we consider the optimal

basis set VN for representing the spectral projector P with a discontinuous basis set.
To simplify the discussion below, we also use linear algebra notation in this section
when necessary. This means that we may not distinguish the kernel of an operator and
a finite dimensional matrix consisting of its nodal values discretized on a fine set of real
space grid points, with the number of grid points denoted by Ng. Then notation such
as x,x′ can be real space grid points in Ω, or row / column indices of vectors / matrices.
We call P (x, :) := {P (x,x′),x′ ∈ Ω} a row vector, and P (:,x) := {P (x′,x),x′ ∈ Ω}
a column vector, respectively. Similarly, we call P (κ, :) := {P (x,x′),x ∈ κ,x′ ∈ Ω} a
row block, and P (:, κ) := {P (x′,x),x ∈ κ,x′ ∈ Ω} a column block, respectively.

Since the rank of the spectral projector P is n, if we choose a partition K fine
enough we may expect that the numerical rank of each row block P (κ, :) becomes
small. The singular value decomposition (SVD) of P (κ, :) can be written as

P (κ, :) ≈ ΦκSκV
∗
κ , (2.11)

where Sκ is a diagonal matrix containing the leading Nκ singular values on κ, and
Φκ(x) = [ϕκ,1(x), . . . , ϕκ,Nκ

(x)] for x ∈ κ. The support of each function ϕκ,j ∈ H1(K)
is strictly in κ. Since Φκ’s are generated from the SVD of P , clearly the range of P is
approximately contained in span{ϕκ,j}. For a given κ ∈ K, the basis Φκ achieves the
smallest error for representing P (κ, :) thanks to the optimal approximation property of
the SVD [14] using Nκ basis functions. Hence the basis set {Φκ}κ∈K can be regarded
as the optimal discontinuous basis set for representing P for a given set of degrees
of freedom {Nκ}κ∈K. We illustrate the decomposition (2.11) for the entire spectral
projector P in Fig. 2.1.

2.3. Locally constructed adaptive local basis set. The optimal discontinu-
ous basis set cannot be used for practical computation, since its construction depends
on the knowledge of P . One possible approximation of such a basis set using non-
polynomial basis functions is the adaptive local basis (ALB) set [27]. More specifically,
we refer to this basis set the locally constructed adaptive local basis (LC-ALB) set, in
order to distinguish from the globally constructed adaptive local basis set in section
3.

Consider the case that I contains the lowest n eigenvalues of H . In the d-
dimensional space, for each element κ, we form an extended element κ̃ around κ,
and we refer to κ̃\κ as the buffer region for κ. Fig. 2.2 illustrates a particular κ
together with its butter region. On κ̃ we solve the eigenvalue problem

−∆ϕ̃i + V ϕ̃i = λiϕ̃i, (2.12)
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Fig. 2.1: Construction of the optimal discontinuous basis set for spectral projector.
Left: the spectral projector P is partitioned into 4 row blocks; Middle: each P (κ, :)
is low-rank factorized via SVD, i.e., P (κ, :) ≈ Φκ(SκV

∗
κ ); Right: subspace VN is

assembled from {Φκ}.

with certain boundary conditions on ∂κ̃. This eigenvalue problem can be solved using
standard basis set such as finite difference, finite elements, or planewaves. For the
numerical examples in this paper, the periodic boundary conditions is applied on
each ∂κ̃, and the eigenvalue problem is solved via the pseudo-spectral method (the
planewave basis set). Note that the size of the extended element κ̃ is independent of
the size of the global domain, and so is the number of basis functions per element.
In order to obtain VN , the eigenfunctions corresponding to lowest Nκ eigenvalues are
restricted from κ̃ to κ, i.e.

ϕi(x) =

{
[ϕ̃i] |κ(x), x ∈ κ;

0, otherwise,
i = 1, . . . , Nκ.

After orthonormalizing {ϕi} locally on each element κ and removing the linearly
dependent functions via a local singular value decomposition, the resulting set of
orthonormal functions form the LC-ALB set.

Fig. 2.2: The entire two-dimensional domain is partitioned into 4 by 4 blocks denoted
by the white blocks. A particular element κ and its buffer region κ̃\κ are denoted as
the red block and yellow block respectively.

The advantage of the LC-ALB set is that the basis functions for each element κ
can be generated completely independently. However, due to the fictitious boundary
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conditions imposed on the extended element ∂κ̃, the effectiveness of the LC-ALB
set depends on the size of the buffer region. On one extreme, if the size of the
buffer region is 0 and when the periodic boundary condition is used, since V is in
general not a periodic function on κ, the accuracy of the basis set can be severely
affected by the Gibbs phenomena. On the other hand, if the buffer region is chosen
to be too large, then the solution of the local eigenvalue problem (2.12) can become
expensive. In practice we find that choosing κ̃ to contain κ and its 3d− 1 neighboring
elements yields a relatively good balance between efficiency and accuracy, as has been
demonstrated by the usage for solving PDEs [29, 30] and for solving practical Kohn-
Sham equations [27, 19].

3. Globally constructed adaptive local basis set. In this section, we pro-
pose a new strategy to construct an approximation to the optimal discontinuous basis
set by using matrix-vector multiplication involving the operator H defined on the
global domain Ω. This allows us to overcome the difficulty of choosing the boundary
condition and the size of the extended element as in the LC-ALB set. The resulting
basis set is more effective in terms of the number of DOFs, and the strategy can be
adapted to more general cases such as when V is an integral operator with a nonlocal
kernel.

3.1. Formulation. We first introduce Algorithm 1, which is a variant of e.g.
Algorithm 4.1 in [16] for finding the approximate range of a numerically low rank
matrix.

Algorithm 1: Randomized range finder for a given matrix A.

Input: A ∈ Cp×q. Approximate rank k.
Output: Left-singular vectors U ∈ Cp×k.
1: Generate an orthonormal random matrix R ∈ Cq×(k+c) where c is a small

oversampling constant.
2: Compute W = AR.
3: Perform the SVD for W = USV ∗, with the diagonal entries of S ordered

non-increasingly.
4: Return the first k columns of U .

If we treat A as a dense matrix and apply the SVD directly, the computational
complexity will be O(pqk). On the other hand, Alg. 1 only requires applying the
matrix A to (k+ c) vectors, together with the SVD for W which costs O(pk2) opera-
tions. Hence the randomized range finder algorithm significantly reduces the cost, if
k is much smaller than q and if the matrix vector multiplication Av can be evaluated
quickly. Usually, step 2 is the most expensive operation in Algorithm 1.

Assume K is a partition of Ω so that each matrix row block P (κ, :) is a numerically
low rank matrix. If we apply Algorithm 1 to P (κ, :), the output gives highly accurate
approximation to the optimal basis set {Φκ} for κ ∈ K. Furthermore, the random
matrix R can be repeatedly used for different κ ∈ K. Therefore, the matrix-vector
multiplication for different matrix row blocks P (κ, :) do not need to be applied inde-
pendently. Instead it is equivalent to apply the entire matrix P to a random matrix
R, and to perform the SVD for each element independently to obtain an approximate
range represented by Φκ for each P (κ, :). The collection of the functions {Φκ} gives
the globally constructed adaptive local basis set (GC-ALB). Algorithm 2 describes
this procedure for a general matrix A ∈ CNg×Ng , where Ng is the number of DOFs
corresponding to a fine numerical discretization such as planewaves.

When taking the matrix A to be the spectral projector P , Fig. 3.1 illustrates
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Algorithm 2: Globally constructed adaptive local basis set for a given matrix
A.

Input: A ∈ CNg×Ng . Partition K = {κ} with approximate rank for each
element {Nκ}.

Output: The basis set {Φκ}.
1: Generate an orthogonal random matrix R ∈ CNg×(maxκ Nκ+c), where c is a small

oversampling constant.
2: Compute W = AR.
3: for κ ∈ K do

4: Perform the SVD for W (κ, :) = UκSκV
∗
κ , with the diagonal entries of Sκ

ordered non-increasingly.
5: Obtain Φκ from the first Nκ columns of Uκ.
6: end for

Fig. 3.1: Globally constructed adaptive local basis functions. Left: the spectral pro-
jector P is applied to random vectors R; Middle-left: the result of the left part
contains the column basis of each block; Middle-right: the column basis of each block
is revealed via SVD; Right: subspace VN is assembled by {Φκ}.

Alg. 2 for the case that K is partitions the domain Ω into 4 elements. Comparing
to Fig. 2.1 where each block of P is explicitly factorized, Fig. 3.1 first applies P to
random vectors R and then factorizes each block of PR. Such an extra step is crucial
here. Computing the dense P is expensive in terms of both computation and memory,
whereas the matrix vector multiplication Pv can be efficiently calculated, which could
be orders of magnitudes faster for large problems.

3.2. Rational approximation for matrix-vector multiplication. In order
to construct the GC-ALB set for the projector P , Alg. 2 requires an efficient method
to compute the matrix-vector multiplication Pv. Since the spectral projector is a
non-smooth matrix function 1I(·), the computation of Pv = 1I(H)v may still be a
costly procedure. Fortunately, we only need Alg. 2 to find an approximate range of
P . Hence we may replace 1I(·) by a smooth function f(·), with the requirement that
the support of f covers the interval I, and that f(H)v is relatively easy to compute.
Then we can apply Alg. 2 to find the approximate range of f(H). The choice of f is
certainly not unique. Here we use a modified Zolotarev’s function to be f(·), which
is an optimal rational approximation to the indicator function as to be demonstrated
below.
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Without loss of generality, we assume that I = [a, b] in the following discussion.
Zolotarev’s function Z2r(x; ℓ) was initially proposed as the best rational approximant
of type (2r − 1, 2r) for the signum function sign(x) on the interval [−1,−ℓ] ∪ [ℓ, 1]
with a positive parameter ℓ < 1 [50, 1]. Recently, it was composed with a Möbius
transformation T (x) and a linear transformation [15, 23] to become the best ratio-
nal approximant of type (2r, 2r) for an indicator function 1[a,b](x) on the interval
(−∞, a−] ∪ [a, b] ∪ [b+,+∞), where a− and b+ are two parameters such that a− < a
and b < b+. Both the Möbius transformation T (x) and the parameter ℓ in Zolotarev’s
function depend on a− and b+. To be more precise, the Möbius transformation is
defined as follows,

T (x) = γ
x− α

x− β
, (3.1)

with α ∈ (a−, a) and β ∈ (b, b+) such that

T (a−) = −1, T (a) = 1, T (b) = ℓ, and T (b+) = −ℓ. (3.2)

Here, the variables α, β, γ, and ℓ are determined by a−, a, b, and b+ via solving the
equations in (3.2). Combining with a simple linear transformation, (x + 1)/2, we
arrive at a modified Zolotarev’s function,

R(x) =
Z2r(T (x); ℓ) + 1

2

=
M

2

r∑

j=1

ajγ

γ2 + c2j−1
+

1

2
+
M

2

r∑

j=1

(
wj

x− σj
+

w̄j

x− σ̄j

)
,

(3.3)

where γ is the same as in (3.1), M,aj , cj, wj , and σj are constants as defined in [23],
and ·̄ denotes the complex conjugate. {σj , σ̄j}

r

j=1 are known as the poles of the
modified Zolotarev’s function.

When the modified Zolotarev’s function is used as f(·), and the matrix A in Alg. 2
is replaced by f(H), the line 2 in Alg. 2 can be evaluated via,

f(H)R =



M

2

r∑

j=1

ajγ

γ2 + c2j−1
+

1

2



R

+
M

2

r∑

j=1

(
wj (H − σjI)

−1
R+ w̄j (H − σ̄jI)

−1
R
)
.

(3.4)

This requires solving 2r complex-shifted linear systems, where I denotes the identity
matrix of the same size asH . If bothH andR are real matrices, then w̄j (H − σ̄jI)

−1
R

is the complex conjugate of wj (H − σj)
−1
R. Therefore, solving 2r shifted linear sys-

tems in (3.4) can be reduced to solving r shifted linear systems instead. These shifted
linear systems can be solved via standard iterative methods such as GMRES [40] and
MINRES [37] with a preconditioner.

Through the discussion above, the choice of a− and b+ remains to be determined.
For a fixed indicator function 1I with the given interval I = [a, b], a− and b+ deter-
mine the quality of the approximation of the modified Zolotarev’s function in (3.3).
Generally, if either interval [a−, a] or [b, b+] becomes too narrow, it may require a
large number of terms r in (3.4) to reach the same target accuracy. This translates to
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Fig. 3.2: An example with I = [−1, 1] and (1,∞) being the excluded spectrum. A
modified Zolotarev’s function is constructed with an artificial gap (1, 1.1) and r = 16.
(a) and (b) describe the locations of the poles on the complex plane. (c) is the
modified Zolotarev’s function and (d) is the absolute error comparing to indicator
function 1I(·).

solving more shifted linear systems. However, the situation simplifies when I = [a, b]
covers the lowest n eigenvalues of H , as will be demonstrated in the numerical results.
Let the eigenvalues of H be λ1 ≤ λ2 ≤ · · · ≤ λn ≤ λn+1 ≤ · · · ≤ λNg

. The parameter
a− can be an arbitrary number in (−∞, a), and we can set a− to be −∞. The choice
of b+ relies on the spectrum property of H around b. When there is an eigenvalue
gap around b, i.e., λn ≤ b < λn+1, b+ is set to be λn+1 or its estimated lower bound
calculated via a few steps of Lanczos method [49]. In the case that H has continuous
spectrum around b, we construct a small gap as b− = b and b+ = b+ δ for some small
positive constant δ. The consequence of such a gap is that the approximated projector
of P would include extra eigenvectors with non-zero weights. In practice, we find that
the GC-ALB method is robust to this choice of δ. Such an observation even allows us
to choose b+ to be larger than λn+1 even in the presence of a gap, in order to reduce r
and hence the computational cost. When the location of λ1, λn is not known a priori,
similar to the situation in Chebyshev filtering techniques [49, 48], the initial guess of
(a, b) can be efficiently obtained through a few Lanczos [22] iterations in practice.

Fig. 3.2 gives an example of the modified Zolotarev’s function for the approxi-
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mation of 1I where I = [−1, 1]. We assume 1 is in the continuous spectrum of H .
We choose a− = −∞ and b+ = 1.1 so that r = 16 is sufficient to approximate the
indicator function with error below 10−10 in the interval (a, b) ∪ (b+,∞).

3.3. Complexity. In practical computation of the spectral projector, the follow-
ing two scenarios are often encountered when counting the complexity with respect
to the increase of the number of DOFs.

1. The size of the global domain Ω is fixed, and the number of DOFs increases
due to the refinement of the discretization.

2. The size of the global domain Ω increases, and the number oe DOFs increases
proportionally to the volume of Ω.

Let M be the number of elements in K, and Ng be the number of DOFs corre-
sponding to a fine discretization on the global domain. For simplicity let all elements
have the same number of basis functions denoted by nb, and the number of DOFs
corresponding to a fine discretization on κ is Ng/M . Hence the total number of basis
functions is NK = nbM . We also assume nb is bounded by a constant whileM,Ng can
increase. In scenario 1, we increase Ng and fix M . In scenario 2, Ng is proportional
to M while the ratio Ng/M is fixed.

The computational cost of the matrix vector multiplication associated with ap-
plying f(H) to nb random vectors is NpoleNitcHnb. Here Npole = r is the number
of poles in the rational approximation, Nit is the number of iterations to solve for
each pole, and cH is the cost of per iteration. Since f(H) is a smooth function, Npole

is bounded by a constant independent of Ng,M, nb. When a good preconditioner
is available, Nit can also be bounded by a constant. cH often is dominated by the
matrix-vector multiplication associated with H . Furthermore, when V is a local po-
tential and when the planewave basis set is used, the cost of applying H is dominated
by applying the Laplacian operator which can be performed using the fast Fourier
transform (FFT). Then cH ∼ O(Ng logNg). Since nb is fixed, in both scenarios the
cost of the matrix-vector multiplication is O(Ng logNg). The cost of each SVD in
step 4 is O((Ng/M)× (nb + c)2), and the cost for all SVDs is O(Ng(nb + c)2). Hence
the overall complexity for constructing the GC-ALB set is O(Ng logNg). Note that
the LC-ALB approach uses a domain decomposition method, and the computational
complexity of is trivially O(Ng). However, GC-ALB removes redundant calculations
due to overlapping extended elements, and our numerical results indicate that the
efficiency of the GC-ALB approach can be comparable or even faster when compared
to LC-ALB.

The use of the GC-ALB set can also significantly reduce the storage cost for the
spectral projector P . The storage cost for the GC-ALB set is (Ng/M) × nb ×M =
Ngnb. Viewed as a matrix, the storage cost for P is N2

g . This is generally very
expensive, and P is usually stored using a low rank format as P = ΨΨ∗, where
Ψ is of size Ng × n. Then the storage cost for the coefficient matrix cκ,j;i as in
Eq. (2.7) is nbMn, and the total storage cost for representing P in the GC-ALB set
is Ngnb + nbMn. Hence when the rank of the projector satisfies

n >
nb

1− nbM/Ng

,

the use of the GC-ALB set leads to reduction in the storage cost for Ψ. In practical
applications such as Kohn-Sham equations, this condition is easy to satisfy since n
increases with respect to the system size, while nb is usually a constant on the order
of 10 ∼ 100.
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Similarly, the computational cost for Ψ using standard iterative eigensolvers is
asymptotically dominated by the need of orthonormalizing Ψ when n is large. The
complexity of this orthonormalization step scales as O(Ngn

2). In the GC-ALB set is
constructed, the cost for the orthonormalization is reduced to O(nbMn2).

3.4. Generalization to nonlocal potentials. Another advantage of the GC-
ALB approach is that it handles local and nonlocal potentials on the same footing.
The need of computing spectral projectors associated with nonlocal potentials arise,
for instance, in solving the Hartree-Fock-like equations in quantum chemistry [45,
32]. The Hartree-Fock-like equations require the self-consistent computation of the
projector

H [P ] = −
1

2
∆+ Vion + VHxc[P ] + VX [P ], P = 1I(H [P ]). (3.5)

Here the interval I contains the lowest n eigenvalues of H [P ]. Vion, VHxc[P ] are local
potentials, and VX [P ] is an integral operator with a nonlocal kernel. Here [P ] indicates
the nonlinear dependence with respect to P . There is no natural way to consistently
incorporate the nonlocal term VX [P ] in the LC-ALB approach, while GC-ALB only
requires the matrix-vector multiplication associated with VX [P ]. A detailed example
of Eq. (3.5) will be given in section 4.2.

4. Numerical examples. We demonstrate the effectiveness of the GC-ALB
method for finding the spectral projector for a linear problem in one, two and three
dimensions in section 4.1, and for a nonlinear problem in one dimension in section 4.2.
Numerical examples are performed on Stanford Sherlock cluster bigmem node with
quad socket Intel(R) Xeon(R) CPU E5-4640 @ 2.40GHz and 1.5 TB RAM. In all
numerical examples, we assume the global domain Ω satisfies the periodic boundary
condition. The pseudo-spectral discretization (a.k.a. the planewave basis set) provides
the reference solution to the spectral projector, as well as the discretized operator for
performing the matrix-vector multiplication on the global domain in order to construct
the GC-ALB set. We measure the accuracy of the DG based methods in terms of the
relative error of the eigenvalues within the range of the spectral projector compared
to the reference solution, defined as

∑
i∈I |ε

VN

i − εi|∑
i∈I |εi|

.

The pseudo-spectral discretization can be identified with a set of uniform grid to
discretize Ω. The integrals needed to construct the DG bilinear form is done using
the Legendre-Gauss-Lobatto (LGL) grid. A Fourier interpolation procedure is used to
interpolate functions from the uniform grid to the LGL grid, and a stable barycentric
Lagrange interpolation [7] procedure is used to interpolate functions from the LGL
grid back to the uniform grid when needed. In the rational approximation for the
matrix vector multiplication, 16 poles on the upper half complex plain are actually
solved. Since the potential function V (x) in all numerical examples are real, the rest of
the 16 poles are evaluated via the complex conjugation as in Eq. (3.4). For each pole,
we use the GMRES [40] method to solve the associated equations with 30 being the
restarting number and 10−12 being the tolerance. The preconditioner is the inverse of a
shifted Laplacian [46] with the pole being the shift, which can be carried out efficiently
using fast Fourier transforms (FFT). The oversampling parameter c in Algo. 2 is set to
be 5. All pseudo-spectral discretized systems, including the systems for the reference



13

solutions and the system on each extended element in LC-ALB method, are solved
via the LOBPCG [20] method, and the associated tolerance is 10−12 measured in
terms of the maximal residual norm. We use the interior penalty formulation to
patch the discontinuous basis functions to approximate the eigenfunctions, and the
penalty parameter is determined automatically by solving a local eigenvalue problem
as in [29].

4.1. Linear problems with local potentials.

4.1.1. One dimensional case. Our first example is a second order differential
operator (1.1) on Ω = [0, 2π) in 1D. V is a local potential with four Gaussian potential
wells at positions x = {1.0367, 2.4504, 3.8642, 5.2779}. The depth for each well is
−10.0 whereas the standard deviation is set to be 0.2. Fig. 4.1 (a) shows the potential
V (x). The interval I associated with the spectral projector P is assumed to cover the
lowest 16 eigenvalues.

The global domain Ω is partitioned into 7 elements. Within each element, 40
LGL grid points are used to evaluate the integrals in the DG bilinear form accurately.
The pseudo-spectral method discretizes Ω using 140 planewave basis functions, which
can be identified with a uniform grid with 140 grid points. Under these settings,
three adaptive local basis construction methods are considered, i.e., LC-ALB, GC-
ALB with rational approximation for the projector (GC-ALB), and the optimal basis
set (Opt). For different methods, we vary the number of basis functions used in each
element from 6 to 14. The relative error of the smallest 16 eigenvalues is measured
against a reference solution, which is calculated via the pseudo-spectral method with
500 planewave basis functions directly. In the GC-ALB, we set the interval as I =
[a, b] = [λ1, λ16] and the gap parameters as a− = −∞ and b+ = λ16 + 1.0, where λ1
and λ16 denote the smallest eigenvalue and the 16th smallest eigenvalue, respectively.
Fig. 4.1 (b) shows the relative errors for different methods with varying number of
basis functions. More details are reported in Tab. 4.1.
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Fig. 4.1: (a) the 1D potential function (b) the relative errors of LC-ALB, GC-ALB,
and Opt method for different number of basis functions.

For the one dimensional operator, as shown in Fig. 4.1 (b), the relative errors
for all three methods decay exponentially as the number of basis functions increases.
As discussed in section 2.2, the Opt basis defines the optimal discontinuous basis
set for a given partition of the global domain and number of basis functions in each
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Method nb err TBasis (sec) TDG (sec) ntot iter

GC-ALB

6 1.41e-04 5.69e-01 1.12e-02 147
8 2.27e-08 6.14e-01 1.06e-02 147
10 1.65e-11 6.22e-01 1.18e-02 148
12 7.64e-14 7.21e-01 1.49e-02 149
14 2.41e-14 7.24e-01 1.26e-02 150

LC-ALB

6 4.45e-04 2.91e-01 1.05e-02 -
8 4.93e-06 3.24e-01 1.06e-02 -
10 2.51e-09 3.59e-01 1.55e-02 -
12 3.71e-11 3.91e-01 1.42e-02 -
14 1.93e-13 4.20e-01 1.25e-02 -

Table 4.1: Numerical results for GC-ALB method and LC-ALB method. nb is the
maximum number of basis functions for each element, err is the relative error of the
smallest 16 eigenvalues, TBasis and TDG are the runtime for basis construction and
DG solving respectively, ntot iter is the total number of iterations for solving linear
systems throughout the algorithm.

element, and this is confirmed in Fig. 4.1 (b). On the other hand, the performance
both GC-ALB and LC-ALB closely follow the Opt basis. Given the same number
of basis functions, GC-ALB is about one digit more accurate than LC-ALB. When
the number of basis functions is larger than or equal to 14, both methods reach the
numerical accuracy limit and can not be further improved. The runtime of the GC-
ALB method and LC-ALB are about the same. The numbers of total iterations are
about 148, which means the iteration number for solving each pole in (3.4) is on
average smaller than 10.

4.1.2. Two dimensional case. This example is a second order differential op-
erator (1.1) on Ω = [0, 2π)2 in 2D. V is a local potential with four Gaussian wells as
shown in Fig. 4.2 (a). The depth for each well is −10.0 and the standard deviation is
0.2. Similar to one dimensional example, the interval I associated with the spectral
projector P is assumed to cover the lowest 16 eigenvalues.

The global domain Ω is partitioned into 7 × 7 elements. Within each element,
40 × 40 two dimensional LGL grid points are used to evaluate the integrals in the
DG bilinear form accurately. The pseudo-spectral method discretizes Ω using 1402

planewave basis functions, which can be identified with a uniform two dimensional
grid with 140× 140 grid points. Similar name conventions for LC-ALB, GC-ALB and
Opt are used as in the one dimensional example. For different methods, we vary the
number of basis functions used in each element from 8 to 22. The relative error of the
smallest 16 eigenvalues is measured against a reference solution, which is calculated via
the pseudo-spectral method with 3002 planewave basis functions directly. In the GC-
ALB, we set the interval as I = [a, b] = [λ1, λ16] and the gap parameters as a− = −∞
and b+ = λ16 + 0.1, where λ1 and λ16 denote the smallest eigenvalue and the 16th
smallest eigenvalue. Fig. 4.2 (b) shows the relative errors for different methods with
varying number of basis functions. More details are reported in Tab. 4.2.

Fig. 4.2 (b) shows that the differences among LC-ALB, GC-ALB and Opt basis
sets become more significant in 2D. The relative errors for Opt and GC-ALB decreases
to the level of 10−14 when 16 and 22 basis functions are constructed for each element
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Fig. 4.2: (a) the 2D potential function (b) the relative errors of LC-ALB, GC-ALB,
and Opt method for different number of basis functions.

Method nb err TBasis (sec) TDG (sec) ntot iter

GC-ALB

6 5.27e-02 2.72e+01 2.53e-01 156
8 1.13e-02 2.95e+01 2.80e-01 156
10 2.43e-03 3.37e+01 3.29e-01 156
12 6.67e-04 3.71e+01 3.95e-01 156
14 5.98e-05 3.83e+01 4.76e-01 156
16 9.99e-06 4.15e+01 4.61e-01 156
18 2.98e-06 4.12e+01 6.31e-01 156
20 4.10e-08 4.59e+01 6.51e-01 157
22 6.87e-14 4.99e+01 6.78e-01 156

LC-ALB

6 2.27e-01 1.41e+01 2.21e-01 -
8 2.25e-02 1.49e+01 2.45e-01 -
10 5.53e-03 2.59e+01 3.12e-01 -
12 2.75e-03 2.52e+01 3.75e-01 -
14 1.67e-03 3.30e+01 4.75e-01 -
16 6.95e-04 2.76e+01 5.17e-01 -
18 2.69e-04 2.85e+01 5.90e-01 -
20 1.05e-04 2.90e+01 6.21e-01 -
22 6.37e-05 4.38e+01 7.39e-01 -

Table 4.2: Numerical results of GC-ALB method and LC-ALB method for the two
dimensional example.

respectively. On the other hand side, the relative errors for LC-ALB method remains
around 6.37 × 10−5 when 22 basis functions are used for each element. In order to
achieve an relative error that is below 10−12, we also find that 120 basis functions
per element are needed in the LC-ALB approach. Tab. 4.2 shows that the cost for
the GC-ALB and LC-ALB approaches are comparable in 2D. The fluctuation of the
runtime in the LC-ALB approach is mostly due to the fluctuation of the number of
iterations for the LOBPCG solver. In the GC-ALB approach, the number of iterations
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for solving each pole here is around 9 on average for all cases, which gives ntot iter to
be around 156 in all cases.

Below we demonstrate the weak scaling performance of the GC-ALB set in 2D.
Starting from the potential in Fig. 4.2 (a), we increase the size of the domain by
periodically repeating the potential along x and y directions by a factor of ℓ. We vary
ℓ from 1 to 6, as shown in Tab. 4.3, and the domain Ω is extended from [0, 2π)2 to
[0, 12π)2. The number of planewave basis functions, the number of elements, as well
as the number of eigenvalues to be computed are proportional to the size of Ω. The
parameters used within each element are the same as before and 20 basis functions
are constructed for each element. In terms of the parameters in Zolotarev’s function
approximation, we set the interval as I = [a, b] = [λ1, λn] and the gap parameters
as a− = −∞ and b+ = λn + 0.1, where λ1 and λn denote the smallest eigenvalue
and the nth smallest eigenvalue. The relative error of the smallest n eigenvalues is
measured against reference solutions, which are calculated via the pseudo-spectral
method with (300ℓ)2 planewave basis functions directly. Since the reference solution
for ℓ = 6 cannot be finished within the limited runtime on the Sherlock system, only
the GC-ALB runtime and the total iteration number are reported here.

ℓ Ω n err TBasis (sec) TDG (sec) ntot iter

1 [0, 2π)2 16 1.14e-07 4.97e+01 8.74e-01 156
2 [0, 4π)2 64 4.47e-07 3.17e+02 6.29e+00 197
3 [0, 6π)2 144 5.78e-07 6.21e+02 4.64e+01 209
4 [0, 8π)2 256 7.29e-07 2.09e+03 1.87e+02 271
5 [0, 10π)2 400 6.33e-07 3.53e+03 6.11e+02 268
6 [0, 12π)2 576 - 7.52e+03 1.66e+03 268

Table 4.3: Numerical results of the weak scaling of the GC-ALB method for the two
dimensional example. Here 20 basis functions are used within each element, ℓ denotes
the number of repeated domain on each dimension, n denotes the number of calculated
eigenvalues.

104 105 106

Ng

10-1

100

101

T
im

e(
se
c)

TBasis/ntot iter
O(Ng logNg) Reference

(a)

104 105 106

Ng

10-2

10-1

100

101

102

103

T
im

e(
se
c)

TDG

O(N 3
g ) Reference

(b)

Fig. 4.3: Scalings of (a) average single iteration runtime and (b) DG solving time.
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Tab. 4.3 shows that the relative errors are approximately the same for all ℓ.
The runtime, TBasis, for the basis construction in GC-ALB increases proportional to
ℓ2 log ℓ, which means TBasis is quasi-linear in the number of planewave basis functions
(see Fig. 4.3 (a)). Meanwhile TDG, which is the cost for solving the DG problem is
super-linear with respect to the number of planewave basis functions (see Fig. 4.3
(b)). TBasis is consist with the complexity analysis and TDG is close aligned with the
complexity analysis when Ng is large. We observe that when ℓ is relatively small, the
number of total iterations mildly increases with respect to ℓ. As ℓ keeps on increasing,
the total iteration number stays around 270.

4.1.3. Three dimensional case. This example is a second order differential
operator (1.1) on Ω = [0, 2π)3 in 3D. V is a local potential with four Gaussian wells.
The depth for each well is −10 whereas the standard deviation is set to be 0.2.
Fig. 4.2 (a) shows the isosurface for the potential function V (x, y, z) = −1. Similar to
previous examples, the interval I associated with the spectral projector P is assumed
to cover the lowest 16 eigenvalues.

The global domain Ω is partitioned into 4× 4× 4 elements. Within each element,
30× 30× 30 three dimensional LGL grid points are used to evaluate the integrals in
the DG bilinear form accurately. The pseudo-spectral method discretizes Ω using 603

planewave basis functions, which can be identified with a uniform three dimensional
grid with 60× 60× 60 grid points. Similar name conventions for LC-ALB, GC-ALB
and Opt are used as in the one dimensional example. For different methods, we
vary the number of basis functions used in each element from 8 to 24. The relative
error of the smallest 16 eigenvalues is measured against a reference solution, which
is calculated via the pseudo-spectral method with 1003 planewave basis functions
directly. In the GC-ALB, we set the interval as I = [a, b] = [λ1, λ16] and the gap
parameters as a− = −∞ and b+ = λ16 + 0.01, where λ1 and λ16 denote the smallest
eigenvalue and the 16th smallest eigenvalue. Fig. 4.4 (b) shows the relative errors for
different methods with varying number of basis functions. More details are reported
in Tab. 4.4.
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Fig. 4.4: (a) isosurface plot V (x, y, z) = −1 for the 3D potential function (b) the
relative error of LC-ALB, GC-ALB and Opt method with different numbers of basis
functions.

For three dimensional systems, the GC-ALB method exhibits even clearer advan-
tage over the LC-ALB method. In Fig. 4.4 (b) and Tab 4.4, the relative errors for



18

Method nb err TBasis (sec) TDG (sec) ntot iter

GC-ALB

6 9.89e-01 1.52e+02 3.07e+00 128
8 5.15e-01 1.60e+02 3.60e+00 128
10 1.01e-01 2.07e+02 4.34e+00 129
12 4.24e-02 1.81e+02 4.87e+00 129
14 1.64e-02 2.43e+02 5.68e+00 129
16 5.76e-03 2.40e+02 6.48e+00 129
18 9.42e-04 2.89e+02 7.66e+00 129
20 2.92e-11 3.04e+02 8.30e+00 129
22 9.63e-12 3.19e+02 8.84e+00 129
24 1.65e-11 3.51e+02 1.23e+01 129

LC-ALB

6 1.62e+00 5.25e+02 3.15e+00 -
8 8.84e-01 2.02e+03 3.31e+00 -
10 7.32e-01 1.54e+03 5.23e+00 -
12 5.73e-01 1.22e+03 6.18e+00 -
14 3.04e-01 1.16e+03 7.05e+00 -
16 6.48e-02 1.26e+03 7.82e+00 -
18 1.79e-02 1.46e+03 9.00e+00 -
20 5.00e-03 1.87e+03 9.19e+00 -
22 5.02e-03 1.81e+03 1.07e+01 -
24 5.04e-03 1.96e+03 1.20e+01 -

Table 4.4: Numerical results of GC-ALB method and LC-ALB method for the three
dimensional example.

nb err DOFs n err DOFs

GC-ALB

14 1.69e-02 896

planewave

16 9.50e-03 4096
16 4.34e-03 1024 20 2.13e-03 8000
18 1.36e-04 1152 26 1.60e-04 17576
20 9.19e-12 1280 60 1.10e-10 216000

Table 4.5: Comparison of the degrees of freedom for GC-ALB method and planewave
method for the three dimensional example.

GC-ALB method decay quickly to the level of 10−11, while the asymptotic decay rate
of the LC-ALB method is much slower. The GC-ALB approach is also more efficient
in terms of the runtime. For most of the cases in Tab 4.4, the GC-ALB method
is about 6 times faster than LC-ALB method. The numbers of the applications of
the operator to test vectors are 129 in GC-ALB method for all different number of
bases. In addition, Tab. 4.5 shows that the number of DOFs for the GC-ALB set is
much smaller than that needed for the planewave basis set to reach the same level of
accuracy. Here the DOFs for the GC-ALB set is equal to the dimension of the DG
matrix, and the DOFs for the planewave basis set is the number of planewave basis
functions.
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4.2. Nonlinear problems with nonlocal potentials. In order to test the ef-
fectiveness of the GC-ALB approach for nonlocal potentials, we consider the following
model for Hartree-Fock-like equations in one dimension. The Hamiltonian operator
acting on a function ψ is given by

(H [P ]ψ)(x) =−
1

2

d2

dx2
ψ(x) +

(∫
K(x, y)(m(y) + P (y, y)) dy

)
ψ(x)

− α

∫
K(x, y)P (x, y)ψ(y) dy

(4.1)

Compared to Eq. (3.5), the second term on the right hand side of Eq. (4.1) corresponds
to Vion and VHxc[P ] and is a local potential, while the third term corresponds to VX [P ]

and is a nonlocal potential. Here m(x) =
∑M

i=1mi(x − Ri), with the position of the
i-th nuclei denoted by Ri. Each function mi(x) takes the form

mi(x) = −
Zi√
2πσ2

i

e
− x2

2σ2

i , (4.2)

where Zi is an integer representing the charge of the i-th nucleus. Instead of using a
bare Coulomb interaction, which diverges in 1D, we adopt a Yukawa kernel

K(x, y) =
2πe−µ|x−y|

µǫ0
, (4.3)

which satisfies the equation

−
d2

dx2
K(x, y) + µ2K(x, y) =

4π

ǫ0
δ(x− y). (4.4)

As µ → 0, the Yukawa kernel approaches the bare Coulomb interaction given by
the Poisson equation. The parameters ǫ0, α are used to ensure that the contribution
from different terms are comparable. And the notations here are different from the
ones in Section 3.2. In this example, we choose Ω = (0, 80), M = 8, σi = 3.0,
Zi = 2.0, µ = 0.01, ǫ0 = 10, α = 0.05. Besides these parameters, for the Zolotarev’s
function approximation in every iteration, 16 poles are used, a− = −∞, a is the
smallest eigenvalue calculated each iteration, b = −3.388 which is the converged Fermi
level, and b+ = 0. The self-consistent spectral projector P is given by the lowest 16
eigenfunctions of H [P ].

In order to find the self-consistent spectral projector, we use a two level self
consistent field (SCF) iteration that is commonly adopted to solve such Hartree-Fock-
like equations [12, 24]. The SCF iterations are split into an outer loop and an inner
loop. At the beginning of each outer SCF loop, we update the nonlocal potential
VX [P ] using a fixed point iteration, i.e. P is updated by the converged spectral
projector P from the inner SCF loop. In the inner SCF loop, we fix the nonlocal
potential VX [P ] as if it were independent of P , and update the local potential via the
diagonal part of the projector P (x, x) using the Anderson mixing method for charge
mixing [3]. The convergence of the outer iteration is measured by the convergence of
the exchange energy defined as

EX = −

∫
P (x, y)K(x, y)P (x, y) dxdy. (4.5)
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In each inner SCF iteration, we apply the GC-ALB method with Zolotarev’s
function approximation together with DG method to construct the spectral projector
efficiently, which is denoted as “GC-ALB” in the rest of this paper. As a compari-
son, we also conduct the inner and outer SCF iterations with the spectral projector
calculated via planewave method, which is denoted as “planewave”.
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Fig. 4.5: GC-ALB: (a) The relative errors of the total local potential. Each point is a
inner SCF iteration whereas each color line indicates a outer SCF iteration. (b) The
relative errors of the energy associated with the nonlocal potential.

Fig. 4.5 (a) and (b) show the convergence behavior of the two level SCF iterations
using the GC-ALB set. Fig. 4.5 (a) shows the relative error of the total local potential
for each inner SCF iteration, where x-axis is the total number of inner SCF iterations
and each lines represent the inner SCF iterations for an outer SCF iteration. The
jump between the end of previous line and beginning of the next line is introduced by
the update of the nonlocal potential. This is a typical behavior in the two-level SCF
iteration for solving Hartree-Fock-like equations. As the converged spectral projector
in the inner SCF iteration getting closer to the final convergence, the magnitude of
the jump also decreases. Fig. 4.5 (b) shows the relative error of the energy associated
with the nonlocal potential for each outer SCF iteration.

Tab. 4.6 indicates that the calculation using both the GC-ALB set and the
planewave basis set converges within 11 outer SCF iterations to a relative error around
6 × 10−6, and the number of inner iterations in each outer iteration is comparable
in both methods. This indicates that the use of the GC-ALB set does not increase
the number of the SCF iterations in the nonlinear setup. The relative error from
both methods also behaves similarly throughout the SCF iteration. The spectral pro-
jector, as well as electron density defined to be diagonal of the converged projector
ρ(x) = P (x, x) for both methods are given in Fig. 4.6. The point-wise relative differ-
ences for the projector and the density are provided at the last row of Fig. 4.6, where
the errors are about the same level as that of the relative error in Tab. 4.6.
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Outer GC-ALB Planewave
SCF No. SCFin EX rel err No. SCFin EX rel err

1 10 -2.825403 1.77e-02 8 -2.825400 1.77e-02
2 7 -2.841545 5.68e-03 7 -2.841543 5.68e-03
3 6 -2.849557 2.81e-03 6 -2.849555 2.81e-03
4 5 -2.852925 1.18e-03 5 -2.852922 1.18e-03
5 6 -2.854591 5.84e-04 6 -2.854588 5.84e-04
6 5 -2.855331 2.59e-04 4 -2.855328 2.59e-04
7 6 -2.855691 1.26e-04 6 -2.855688 1.26e-04
8 5 -2.855855 5.73e-05 5 -2.855852 5.73e-05
9 5 -2.855934 2.77e-05 4 -2.855932 2.80e-05
10 4 -2.855970 1.27e-05 5 -2.855968 1.24e-05
11 3 -2.855989 6.45e-06 2 -2.855986 6.49e-06

Table 4.6: Comparison of the GC-ALB method and the planewave method in self
consistent field iteration. The Hamiltonian operator defined in (4.1) is solved by a two
levels of SCF iteration combined with either the GC-ALB method or the planewave
method. No. SCFin denotes the number of inner SCF iterations, EX denotes the
energy associated with the nonlocal potential, and rel err is the relative change of the
EX every outer SCF iteration.
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Fig. 4.6: (a) Kernel of the spectral projector and (b) electron density associated with
the 1D model for Hartree-Fock-like equation calculated by the GC-ALB method,
whereas (c) kernel of the spectral projector and (d) electron density are calculated by
the planewave method. (e) is the absolute difference between (a) and (c), and (f) is
the absolute difference between (b) and (d).
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5. Conclusion. We developed a new method to construct an efficient basis set
to represent the spectral projector of a second order differential operator H with
reduced degrees of freedom. For a given partition of the global domain into sub-
domains called elements, the optimal discontinuous basis set on any element can be
given by the singular value decomposition of the matrix row block of the spectral
projector associated with the element. Our globally constructed adaptive local basis
set (GC-ALB) can efficiently approximate such an optimal basis set in practice. The
GC-ALB set can be obtained by only applying a matrix function f(H) to a small
number of random vectors on the global domain, without the need of any buffer areas
to define a series of local problems. The GC-ALB set can be used in the context of the
discontinuous Galerkin (DG) framework to approximate the spectral projector on the
global domain. When the potential is local, the reduced DG matrix is a block sparse
matrix. Hence the evaluation of the matrix representation of the spectral projector can
be evaluated using fast methods based on sparse linear algebra operations, such as the
pole expansion and selected inversion method (PEXSI) [26, 25], and the purification
methods [33, 13]. Our method is also flexible and can be applied to operators with
local and nonlocal potentials. We verified the effectiveness of the basis set using
one, two and three dimensional linear problems, as well as one-dimensional nonlocal,
as well as nonlinear problems resembling Hartree-Fock problems. Numerical results
indicate that the GC-ALB set achieve nearly optimal performance in terms of the
number of degrees of freedom per element, which reduces both the storage and the
computational cost. In the near future, we will explore the usage of the GC-ALB set
for Kohn-Sham density functional theory calculations for real materials.
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