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Recently, we have proposed the adaptive local basis set for electronic structure calculations 
based on Kohn–Sham density functional theory in a pseudopotential framework. The 
adaptive local basis set is efficient and systematically improvable for total energy 
calculations. In this paper, we present the calculation of atomic forces, which can be 
used for a range of applications such as geometry optimization and molecular dynamics 
simulation. We demonstrate that, under mild assumptions, the computation of atomic 
forces can scale nearly linearly with the number of atoms in the system using the adaptive 
local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of 
physical systems, benchmarked against converged planewave calculations, and find that 
the adaptive local basis set is efficient for both force and energy calculations, requiring at 
most a few tens of basis functions per atom to attain accuracies required in practice. 
Since the adaptive local basis set has implicit dependence on atomic positions, Pulay 
forces are in general nonzero. However, we find that the Pulay force is numerically small 
and systematically decreasing with increasing basis completeness, so that the Hellmann–
Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. 
We verify the accuracy of the computed forces in static calculations of quasi-1D and 
3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular 
dynamics calculations of H2 and liquid Al–Si alloy systems, where we show systematic 
convergence to benchmark planewave results and results from the literature.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Kohn–Sham density functional theory (KSDFT) [1,2] is the most widely used electronic structure model for molecules 
and condensed matter systems. Kohn–Sham density functional theory gives rise to a nonlinear eigenvalue problem, which 
is commonly solved using the self-consistent field (SCF) iteration method [3]. At each SCF step, a linear eigenvalue problem 
with a fixed Kohn–Sham Hamiltonian defined by a fixed electron density ρ is solved. The solution to this linear eigen-
value problem is used to update the electron density and Kohn–Sham Hamiltonian in the SCF iteration. This is the most 
computationally expensive part of the SCF iteration. Although the asymptotic complexity of the computation with respect 
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to the number of atoms depends on the algorithm used to solve the algebraic eigenvalue problem, the prefactor, which is 
related to the number of basis functions per atom, is characterized by how the problem is discretized. Methods such as the 
planewave method [4], finite difference method [5], and finite element method [6–10] exhibit systematic convergence with 
respect to the number of basis functions per atom, but can require a large number of basis functions per atom, from hun-
dreds to thousands or more. The number of degrees of freedom can be reduced by incorporating atomic orbital physics into 
the basis [11–18]. Compared to methods such as the planewave method, however, it is more difficult to improve the quality 
of such atomic-orbital bases in a systematic fashion. The improvement can rely heavily on the practitioner’s experience with 
the underlying chemical system.

In a recent publication [19], we presented a new basis to discretize the Kohn–Sham Hamiltonian, called the adaptive 
local basis (ALB). The basic idea is to partition the global domain into a number of subdomains (called elements), and 
solve the Kohn–Sham problem locally around each element to generate the basis functions in each element. The basis so 
constructed is discontinuous across element boundaries. Therefore, we use the discontinuous Galerkin (DG) method [20] to 
construct a finite dimensional Kohn–Sham Hamiltonian in the discontinuous representation. The DG approach for solving 
the Kohn–Sham equations is also explored recently with enriched polynomial basis functions [21]. Recently, the adaptive 
local basis has been implemented in the DGDFT massively parallel electronic structure code [22]. By virtue of the adap-
tive local basis, the DGDFT solution converges systematically to the exact Kohn–Sham solution as the number of basis 
functions is increased, and the error can be measured by a posteriori error estimators [23]. We remark that the idea of 
generating localized basis functions on the fly has also been explored in other electronic structure software packages such 
as ONETEP [24] and BigDFT [25], where localized basis functions are continuous and are improved through an optimization 
procedure. Filter diagonalization [26] is another approach for contracting basis functions and has been applied to contract 
Gaussian type functions. Filter diagonalization requires choosing trial functions, although the choice of trial functions may 
not be straightforward for an initial set of fine basis functions such as planewaves, finite elements or wavelets. Compared 
to ONETEP and other approaches mentioned above, one main advantage of the ALBs is that the basis functions are strictly 
local and form an orthonormal basis set. Therefore the reduced eigenvalue problem is well conditioned. The DG Hamiltonian 
matrix has a regular structure and resembles that obtained from finite difference discretization. We find that this facilitates 
load balancing in the massively parallel context, and allows the DGDFT code to scale beyond 100,000 processors [22,27].

In KSDFT, many quantities of interest can be obtained from the total energy and atomic forces. We have previously 
demonstrated the effectiveness of the adaptive local basis [19] and a variant, the element orbitals [28], for computing the 
total energy of systems such as disordered bulk Na and Si, graphene with defects, and edge reconstruction of large scale 
armchair phosphrene nanoribbon systems [29]. In order to compute the atomic forces, which are given by the derivatives 
of the total energy with respect to atomic positions, the Hellmann–Feynman theorem [30,31] is typically employed, and the 
resulting force is called the Hellmann–Feynman force. Since the adaptive local basis set depends implicitly on the atomic 
positions, however, the atomic force and Hellmann–Feynman force are in general not the same, and their difference, the 
Pulay force [32], reflects the effect of the atomic-position dependence of the basis. Although we have recently demonstrated 
that the Pulay force can be eliminated systematically through an additional optimization procedure [33], the procedure can 
be costly, especially in three-dimensional simulations. Therefore, it is of interest to determine the extent to which the Pulay 
force is reduced without such additional optimization as the size of the adaptive local basis is increased, and to determine 
the size of basis required for accurate quantum mechanical forces in practice.

Here, we describe the details to compute Hellmann–Feynman forces in the adaptive local basis, which can be evaluated 
with near linear scaling cost with respect to the number of atoms, provided the density matrix represented in the adaptive 
local basis is obtained. We quantify the accuracy of the Hellmann–Feynman forces for a range of systems compared to 
converged planewave calculations, and find that the adaptive local basis set is accurate and efficient for both energy and 
force calculations, achieving accuracies required in practice with a few tens of basis functions per atom. We quantify the 
Pulay force for two test systems, including a quasi-1D disordered Si system and a 3D disordered Si system. We find that 
the magnitude of the Pulay force is readily reduced to 10−4 au with a few tens of basis functions per atom. To demonstrate 
that such accuracy is sufficient in practice, we compute the vibrational frequencies for the quasi-1D disordered Si system 
using a frozen phonon approach, and find that the vibrational frequencies agree well with those obtained from converged 
planewave calculations using ABINIT [34]. We further validate the accuracy of the computed forces through molecular 
dynamics simulations, and vibrational calculations of H2 molecules and pair-correlation functions of a liquid Al–Si alloy, and 
we find excellent agreement with independent results in literature.

The remainder of this paper is organized as follows. Section 2 introduces the discontinuous Galerkin framework for 
Kohn–Sham density functional theory and the construction of the adaptive local basis functions. Section 3 discusses the 
computation of the Hellmann–Feynman force. We report numerical results in Section 4, followed by discussion and conclu-
sions in Section 5.
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2. Discontinuous Galerkin framework for Kohn–Sham density functional theory

2.1. Kohn–Sham density functional theory

We consider a system consisting of N A nuclei and N electrons. In the Born–Oppenheimer approximation, for each set 
of nuclear positions {R I }N A

I=1, the electrons are relaxed to their ground state. The ground state total energy is denoted by 
Etot({R I }N A

I=1), and can be computed in Kohn–Sham density functional theory [1,2] according to

Etot({R I}N A
I=1) = min

{ψi}N
i=1

EKS({ψi}N
i=1; {R I }N A

I=1). (1)

For simplicity, we assume all quantities are real, and neglect spin degeneracy, as well as temperature effects leading to 
fractional occupation. We also omit the range of indices I, i unless otherwise specified. EKS is the Kohn–Sham energy 
functional and is given by

EKS({ψi}; {R I}) = 1

2

N∑
i=1

∫
|∇ψi(x)|2 dx +

∫
V loc(x; {R I })ρ(x)dx

+
N∑

i=1

∫
ψi(x)V nl(x, y; {R I})ψi(y)dx dy + 1

2

∫∫
ρ(x)ρ(y)

|x − y| dx dy

+ Exc[ρ] + 1

2

∑
I �= J

Z I Z J∣∣R I − R J
∣∣ .

(2)

We include the {R I } dependence explicitly to facilitate the derivation of atomic forces. Here,

ρ(x) =
N∑

i=1

|ψi(x)|2 (3)

is the electron density. The eigenfunctions (also called Kohn–Sham orbitals) {ψi} satisfy the orthonormality constraints∫
ψi(x)ψ j(x)dx = δi j. (4)

In (2), we use a norm-conserving pseudopotential [3]. Here

V loc(x; {R I }) =
N A∑
I=1

V loc,I (x − R I ) (5)

is the local part of the pseudopotential. Each term V loc,I (x − R I ) is centered on the I-th atom, and decays asymptotically as 
− Z I|x−R I | for large |x − R I |, where Z I is the charge of the I-th nucleus. The nonlocal part of the pseudopotential takes the 
Kleinman–Bylander form [35]

V nl(x, y; {R I}) =
N A∑
I=1

LI∑
�=1

γI,�bI,�(x − R I)bI,�(y − R I ). (6)

For each atom I , there are LI functions {bI,�} called projectors of the nonlocal pseudopotential. Each bI,� is centered at R I

and is supported locally in real space around R I . γI,� is a real scalar. Exc is the exchange-correlation energy. Here, we assume 
local or semi-local exchange-correlation functionals are used. The last term in Eq. (2) is the ion–ion Coulomb interaction 
energy. We note that for extended systems, modeled as infinite periodic structures, both the local-pseudopotential and 
ion–ion terms require special treatment in order to avoid divergences due to the long-range 1/r nature of the Coulomb 
interaction. We provide corresponding expressions for this case in the appendix A.

When the atomic positions {R I } are fixed, we may simplify the notation and drop the {R I }-dependence in V loc and V nl. 
The Kohn–Sham equation is the Euler–Lagrange equation associated with (2):

Heff[ρ]ψi =
(

−1

2
� + V eff[ρ] + V nl

)
ψi = Eiψi . (7)

Here the effective single-particle potential V eff is defined as

V eff[ρ](x) = V loc(x) + V H (x) + V xc[ρ](x), (8)
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in which the Coulomb potential is given by

V H (x) =
∫

ρ(y)

|x − y| dy. (9)

V xc[ρ](x) = δExc
δρ (x) is the exchange-correlation potential. Note that Eq. (7) is a nonlinear eigenvalue problem, as V eff de-

pends on ρ , which is in turn determined by {ψi}. The electron density is self-consistent if both (3) and (7) are satisfied. 
After obtaining the self-consistent electron density, the total energy of the system can be expressed using the eigenvalues 
{Ei} and density ρ as [3]

Etot =
N∑

i=1

Ei − 1

2

∫∫
ρ(x)ρ(y)

|x − y| dx dy + Exc[ρ] −
∫

V xc[ρ](x)ρ(x)dx + 1

2

∑
I �= J

Z I Z J∣∣R I − R J
∣∣ . (10)

In the self-consistent field iteration for solving the Kohn–Sham equations, the total computational time is usually dom-
inated by the following step: Given an input electron density and associated effective potential V eff(x), we find the output 
electron density ρ̃(x) from

ρ̃(x) =
N∑

i=1

|ψi(x)|2 , (11)

where {ψi} are the lowest N eigenfunctions of Heff in Eq. (7). The {ψi} then minimize the quadratic energy functional

Eeff({ψi}) = 1

2

N∑
i=1

∫
|∇ψi(x)|2 dx +

N∑
i=1

∫
V eff(x) |ψi(x)|2 dx +

N∑
i=1

∫
ψi(x)V nl(x, y)ψi(y)dx dy, (12)

with {ψi} being orthonormal. Note that the ion–ion interaction is a constant depending only on {R I }, and is dropped in 
Eq. (12).

2.2. Adaptive local basis and discontinuous Galerkin framework

In [19], the adaptive local basis functions in a discontinuous Galerkin (DG) framework have been proposed to reduce the 
computational time for solving the equations of KSDFT. The DG method relaxes the continuity constraint on basis functions, 
and provides flexibility in choosing the basis set for efficient discretization. Among the different formalisms in the DG 
framework, we use the interior penalty method [36,37], which naturally generalizes the variational principle (12).

We denote by � the computational domain with periodic boundary conditions, which corresponds to 	 point sampling 
in the Brillouin zone [3]. The domain � is also referred to as the global domain in the following. More general Bloch 
boundary conditions may be accommodated as well. Let T be a collection of quasi-uniform rectangular partitions of �,

T = {E1, E2, · · · , E M}, (13)

and S be the collection of surfaces that correspond to T . Each Ek is called an element of �. For a typical choice of partitions 
used in practice, the elements are chosen to be of the same size.

We define the following inner products:

〈v, w〉E =
∫
E

v(x)w(x)dx, 〈v, w〉S =
∫
S

v(x) · w(x)ds(x), (14)

〈v, w〉T =
M∑

i=1

〈v, w〉Ei
, 〈v, w〉S =

∑
S∈S

〈v, w〉S . (15)

In the interior penalty method, the energy functional corresponding to (12) is given by

EDG({ψi}) = 1

2

N∑
i=1

〈∇ψi,∇ψi〉T + 〈V eff,ρ〉T +
N A∑
I=1

LI∑
�=1

γI,�

N∑
i=1

∣∣〈bI,�(· − R I ),ψi
〉
T

∣∣2

−
N∑

i=1

〈{{∇ψi
}}

,
�
ψi

�〉
S + α

N∑
i=1

〈�
ψi

�
,

�
ψi

�〉
S .

(16)

Here, 
{{ · }}

and 
� · �

are the average and the jump operators across surfaces, defined as follows. Because of the periodic 
boundary condition, each surface S ∈ S is an interior surface in the sense that S is shared by elements K1 and K2. Denote 
by n1 and n2 the unit normal vectors on S pointing exterior to K1 and K2, respectively. With ui = u|∂ Ki , i = 1, 2, we set
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�
u

� = u1n1 + u2n2 on S ∈ S. (17)

For vector-valued function q, we define{{
q
}} = 1

2
(q1 + q2) on S ∈ S, (18)

where qi = q|∂ Ki . The second to last term in Eq. (16) comes from integration by parts of the Laplacian operator, which 
cures the ill-defined operation of applying the Laplacian operator to discontinuous functions in order to define the kinetic 
energy. The last term in Eq. (16) is a penalty term which penalizes the jumps of functions across element surfaces to 
guarantee stability [38], and the constant α is a positive penalty parameter. We have demonstrated that the adjustable 
penalty parameter α is mainly used to ensure the stability of the numerical scheme, and has relatively little effect of the 
accuracy of the scheme when it takes a large range of values [19,22].

Assume that we have chosen for each element Ek a set of basis functions {ϕk, j} Jk
j=1, where Jk is the number of basis 

functions in Ek . We extend each ϕk, j to the whole computational domain � by setting it to zero on the complement set 
of Ek . Define the function space V as

V = span{ϕk, j, k = 1, · · · , M; j = 1, · · · , Jk}. (19)

The local basis functions {ϕk, j} Jk
j=1 which we use to discretize the Kohn–Sham problem are constructed as follows. For 

each Ek ∈ T , we introduce an associated extended element Q k ⊃ Ek , with Q k\Ek a buffer region surrounding Ek . We define 
V Q k

eff = V eff|Q k to be the restriction of the effective potential at the current SCF step to Q k , and V Q k
nl = V nl|Q k to be the 

restriction of the nonlocal potential to Q k . We solve the local eigenvalue problem on each extended element(
−1

2
� + V Q k

eff + V Q k
nl

)
ϕ̃k, j = λk, jϕ̃k, j . (20)

The lowest Jk eigenvalues {λk, j} Jk
j=1 and corresponding orthonormal eigenfunctions {ϕ̃k, j} Jk

j=1 are computed. We then restrict 
{ϕ̃k, j} Jk

j=1 from Q k to Ek . The truncated functions are not necessarily orthonormal. Therefore, we apply a singular value 
decomposition (SVD) to obtain {ϕk, j} Jk

j=1. The SVD procedure can ensure the orthonormality of the basis functions inside 
each element, as well as eliminating the linearly dependent and nearly linearly dependent functions in the basis set. We 
then extend each ϕk, j to the global domain by setting it to zero outside of Ek , so that it is in general discontinuous across 
the boundary of Ek . As a result, the overlap matrix corresponding to the adaptive local basis set is an identity matrix.

There are a number of possible ways to set the boundary conditions for the local problem (20). In practice, we use 
periodic boundary conditions for all eigenfunctions {ϕ̃k, j} Jk

j=1 in Q k . In some sense, the details of boundary condition do not 
affect the accuracy of the adaptive local basis set much as the buffer size increases. This permits the use of highly efficient 
Fourier based solution methods for the local problem. Note that while the eigenfunctions are required to satisfy periodic 
boundary conditions, the potential is obtained from the restriction of the global Kohn–Sham potential to the extended 
element. The size of each extended element should be chosen to balance between the effectiveness of the basis functions 
and the computational cost for obtaining them. For a typical choice used in practice, the elements are chosen to be of the 
same size, and each element contains on average a few atoms. The partition does not need to be updated when the atomic 
configuration is changed, as in the case of structure optimization and molecular dynamics.

After obtaining the basis functions, we minimize (16) for {ψi} ⊂ V , i.e.,

ψi(x) =
M∑

k=1

Jk∑
j=1

ci;k, jϕk, j(x). (21)

The output electron density is then computed as

ρ̃(x) =
N∑

i=1

M∑
k=1

∣∣∣∣∣∣
Jk∑

j=1

ci;k, jϕk, j(x)

∣∣∣∣∣∣
2

. (22)

Note that the computation of the electron density can be performed locally in each element, since for each x ∈ � there is 
a unique k ≡ k(x) such that ϕk, j(x) �= 0. We refer readers to [19] for details of solving the minimization problem (16) as an 
eigenvalue problem in the DG formulation.

3. Calculation of atomic forces

Once the SCF iteration reaches convergence to yield converged electron density ρ(x) and Kohn–Sham orbitals {ψi}, 
the force on the I-th atom can be computed as the negative derivative of the total energy with respect to the atomic 
position R I :
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F I = −∂Etot({R I})
∂ R I

. (23)

The required derivative can be computed directly, e.g., via finite differences. However, even for first order accuracy, the 
number of energy evaluations for a system containing N A atoms is 3N A + 1, i.e., the Kohn–Sham equations must be solved 
3N A + 1 times independently. This approach becomes prohibitively expensive as the system size increases. The cost of 
the force calculation is greatly reduced via the Hellmann–Feynman theorem, which states that, at self-consistency, the 
partial derivative ∂

∂ R I
only needs to be applied to terms in Eq. (2) which depend explicitly on the atomic position R I . The 

Hellmann–Feynman (HF) force is then given by

F HF
I = −

∫
∂V loc

∂ R I
(x; {R I })ρ(x)dx −

N∑
i=1

∫
ψi(x)

∂V nl

∂ R I
(x, y; {R I})ψi(y)dx dy

+
∑
J �=I

Z I Z J∣∣R I − R J
∣∣3

(R I − R J ).

(24)

Note that Eq. (5) gives

∂V loc

∂ R I
(x; {R I }) = ∂V loc,I

∂ R I
(x − R I ) = −∇x V loc,I (x − R I),

and similarly Eq. (6) gives

∂V nl

∂ R I
(x, y; {R I }) =

LI∑
�=1

γI,�

(
∂bI,�

∂ R I
(x − R I )bI,�(y − R I ) + bI,�(x − R I)

∂bI,�

∂ R I
(y − R I )

)

= −
LI∑

�=1

γI,�
(∇xbI,�(x − R I )bI,�(y − R I ) + bI,�(x − R I )∇ybI,�(y − R I)

)
.

Then the Hellmann–Feynman force in Eq. (24) can be written as

F HF
I =

∫
∇x V loc,I (x − R I)ρ(x)dx

+ 2
N∑

i=1

LI∑
�=1

γI,�

(∫
ψi(x)∇xbI,�(x − R I)dx

)(∫
ψi(y)bI,�(y − R I )dy

)
+

∑
J �=I

Z I Z J∣∣R I − R J
∣∣3

(R I − R J ).

(25)

From the computational cost point of view, if we denote by Ng the number of grid points to discretize quantities such 
as ρ(x) in the global domain, then the cost of computing each integral in the form 

∫ ∇x V loc,I (x − R I )ρ(x) dx is O(Ng), 
since V loc,I (x − R I ) is a delocalized quantity in the global domain. On the other hand, each nonlocal projector bI,�(x − R I )

is localized around R I , and the cost of evaluating the integral 
(∫

ψi(x)∇xbI,�(x − R I )dx
)

or 
(∫

ψi(y)bI,�(y − R I )dy
)

is a 
constant Nl independent of the global number of grid points Ng . The computation of the last term 

∑
J �=I

Z I Z J∣∣R I −R J
∣∣3 (R I − R J )

involves only scalar operations, and its cost is usually negligibly small in electronic structure calculations. N g and N A

are proportional to the number of electrons N . Hence, neglecting constant terms independent of N , we have that the 
computational cost of the Hellmann–Feynman force on each atom is O(N g + N LI Nl) ∼ O(N), so that the cost for all atoms 
is O(N2).

We now demonstrate that with auxiliary quantities, the cost of computing the Hellmann–Feynman forces on all atoms 
can be reduced to O(N) without loss of accuracy in the DG formulation. The strategy is different for the local pseudopo-
tential term and nonlocal pseudopotential term, respectively.

For the local term, let us rewrite V loc,I (x − R I ) as

V loc,I (x − R I ) = −
∫

ρloc,I (y − R I )

|x − y| dy. (26)

The term ρloc,I is called the ionic pseudocharge density, or smeared ionic density corresponding to the local pseudopoten-
tial [39,40], and the minus sign in Eq. (26) reflects the opposite sign of electronic and ionic charge. While V loc,I is delocalized 
in the global domain due to the long-range Coulomb interaction, the corresponding pseudocharge ρloc,I is localized around 
the nuclear position R I , similar to the projector bI,� of the nonlocal pseudopotential. Then,
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∫
∇x V loc,I (x − R I )ρ(x)dx =

∫
∇x

(
−

∫
ρloc,I (y − R I )

|x − y| dy

)
ρ(x)dx

=
∫

ρloc,I (y − R I )∇y

(
1

|x − y|
)

ρ(x)dx dy

=
∫

ρloc,I (y − R I )∇y

(∫
ρ(x)

|x − y| dx

)
dy

=
∫

ρloc,I (y − R I )∇y V H (y)dy.

(27)

Here, V H is the Coulomb potential defined in Eq. (9). Note that V H and its gradient only needs to be evaluated once 
for all atoms. Due to the locality of the ionic pseudocharge, the cost of numerical integration using the last equality in 
Eq. (27) is independent of the global number of grid points Ng and number of electrons N . So the computation of the local 
pseudopotential part of the Hellmann–Feynman force for all atoms scales as O(N).

For the nonlocal part of the pseudopotential, the cost arises from the fact that all N Kohn–Sham orbitals need to partici-
pate in the evaluation of the force for each atom I . The cost can be reduced by an alternative formulation using the density 
matrix, defined as

P (x, y) =
N∑

i=1

ψi(x)ψi(y). (28)

Recalling the expansion of the Kohn–Sham orbitals in Eq. (21) in terms of the adaptive local basis functions, the density 
matrix can also be expanded as

P (x, y) =
N∑

i=1

M∑
k=1

Jk∑
j=1

M∑
k′=1

Jk′∑
j′=1

ϕk, j(x)ϕk′, j′(y)ci;k, jci;k′, j′ .

Omitting the range of summation for k, j, k′, j′ , the nonlocal part of the force becomes

2
N∑

i=1

LI∑
�=1

(∫
ψi(x)∇xbI,�(x − R I )dx

)(∫
ψi(y)bI,�(y − R I)dy

)

= 2
LI∑

�=1

∫
∇xbI,�(x − R I )P (x, y)bI,�(y − R I)dx dy

= 2
LI∑

�=1

∑
k, j,k′, j′

(
V nl,I,�

)
k, j;k′, j′ Pk, j;k′, j′ ≡ 2

LI∑
�=1

Tr[V nl,I,� P ].

(29)

Here, (
V nl,I,�

)
k, j;k′, j′ =

(∫
ϕk, j(x)∇xbI,�(x − R I)dx

)(∫
ϕk′, j′(y)bI,�(y − R I )dy

)
is the nonlocal pseudopotential matrix element for the �-th nonlocal pseudopotential projector of the I-th atom, represented 
in the adaptive local basis set, and

Pk, j;k′, j′ =
N∑

i=1

ci;k, jci;k′, j′

is the corresponding density matrix element represented in the adaptive local basis set. Since the basis functions and projec-
tors are localized, the cost of evaluating each matrix element of V nl,I,� is independent of N , and the number of nonzeros in 
V nl,I,� is independent of N as well. Thus the cost of evaluating the trace operation in Eq. (29) for each atom I is independent 
of N . Therefore, if the density matrix represented in the adaptive local basis set is computed, the computational cost of the 
nonlocal pseudopotential component of the force for all atoms scales as O(N) as well. We remark that diagonalization-free 
numerical methods for computing the density matrix represented in the adaptive local basis set are available. They include 
linear scaling methods [41,42] for insulating systems, and the recently developed pole expansion and selected inversion 
(PEXSI) method [43–45] for both insulating and metallic systems. The DG Hamiltonian matrix corresponding to the adaptive 
local basis set has a block stencil like sparsity structure and the overlap matrix is an identity matrix, and is therefore well 
suited for such diagonalization free methods.
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In sum, the Hellmann–Feynman force can be compactly written and computed in the DG formulation as

F HF
I =

∫
ρloc,I (x − R I )∇x V H (x)dx + 2

LI∑
�=1

Tr[V nl,I,� P ] +
∑
J �=I

Z I Z J∣∣R I − R J
∣∣3

(R I − R J ). (30)

The computational cost to obtain the forces on all atoms is O(N), provided that the density matrix represented in the 
adaptive local basis set is computed, neglecting the small cost of the ion–ion term.

In general, the force F I in Eq. (23) and Hellmann–Feynman force F HF
I in Eq. (30) are not the same when the basis used 

in discretization depends on R I . But they can be the same if one of the following three conditions is satisfied

1. The basis set is complete.
2. The basis set is not complete, but is independent of the atomic positions. This is the case, e.g., for planewave basis 

functions.
3. The basis set is not complete, but the basis set can be embedded in a larger subspace which is independent of atomic 

positions, and the basis set achieves the minimal energy among all choices of basis sets within the larger subspace. This 
is the case, e.g., for the recently proposed optimized local basis (OLB) functions [33], which is a variant of the ALB in 
the DG framework.

If none of the conditions above is satisfied, as e.g., for Gaussian type orbitals (GTO) or atomic orbitals (AO), an additional 
term called the Pulay force [32] (denoted by F Pulay

I ) is needed so that

F I = F HF
I + F Pulay

I . (31)

Since the Pulay force arises from the {R I }-dependence of the basis, it is present for the adaptive local basis also. However, 
due to the local optimality of the construction in the vicinity of each element, the Pulay force is small and readily reduced 
to chemical accuracy, as we show below.

4. Results and discussion

In order to ascertain the accuracy and convergence of the obtained Hellmann–Feynman forces in the adaptive local basis, 
we consider a range of test cases, including quasi-1D and 3D, metallic and insulating. We first consider static configurations, 
where we compare directly to converged planewave calculations to determine the absolute accuracy and convergence of 
the computed forces and size of the Pulay component as the number of ALBs is increased. We then employ the forces so 
obtained to compute vibrational frequencies using a frozen phonon approach and pair correlation functions from ab initio
molecular dynamics simulations, comparing to independent calculations and previous work.

The ALB and DG based calculation is carried out using our new massively parallel code called DGDFT [22]. Along each 
dimension (x, y, z), the size of the extended element is fixed to be 3 times the size of the element, unless there is only 
1 element along this dimension. Since periodic boundary conditions are assumed for the extended elements, we use the 
planewave basis set to expand the ALBs in the extended element. It follows from the standard planewave convention that the 
number of grid points in the extended element is determined by the kinetic energy cutoff denoted by Ecut . The relationship 
between Ecut and the number of uniform grid points along the ith direction (Ni ), where i ∈ {x, y, z}, can be written as

Ni =
√

2EcutLi

π
, (32)

where Li is the dimension of the extended element along the ith direction. Since the wavefunctions are generally smoother 
than the electron density and potential, a second set of uniform grids is employed to accurately represent the density 
and potential with a higher kinetic energy cutoff Eden

cut . In all of our calculations, we set Eden
cut = 4Ecut. In addition to the 

wavefunction and density grids, we generate another grid which we call the Legendre–Gauss–Lobatto (LGL) grid on each 
element to perform accurate numerical quadrature. To be consistent in notation, the number of LGL grid points along each 
dimension is also defined in terms of a kinetic energy cutoff denoted by ELGL

cut , where for accuracy consistent with Ecut, we 
set ELGL

cut = 4Ecut. We note that ELGL
cut does not carry any physical meaning for LGL grids, but is merely used as a convenient 

notation for fixing the number of grid points from an equation analogous to Eq. (32). More details of the implementation in 
DGDFT can be found in [19,22].

For all calculations here, we use the local density approximation (LDA) [46,47] for exchange and correlation, and 
Hartwigsen–Goedecker–Hutter (HGH) [48] pseudopotentials to model the ions.

We use the ABINIT planewave DFT code [34] as reference to assess the accuracy of our calculations. The same exchange-
correlation functionals and pseudopotentials are employed in ABINIT and DGDFT so that results can be compared directly, 
and errors assessed rigorously.

All calculations were carried out on the Hopper and Edison systems at the National Energy Research Scientific Computing 
Center (NERSC). There are 24 processors on each computational node on both Hopper and Edison, with 32 and 64 gigabyte 
(GB) of memory per node, respectively.
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Fig. 1. (Color online.) 3D-bulk disordered Si system with 216 atoms is partitioned (red dashed lines) into 4 elements along each direction, 64 elements 
in total, viewed along the z direction. Blue balls represent Si atoms, yellow surfaces represent the charge density at a given isosurface, and green/orange 
surfaces represent cross sections of charge density at boundaries. The disorder of the structure is manifested in the differences between bonds.

4.1. Static calculations

We first examine the accuracy of the Hellmann–Feynman force for quasi-1D and 3D disordered Si systems.
For the quasi-1D Si system, we replicate the 8-atom unit cell with diamond structure along the z direction 4 times, 

forming a 1 × 1 × 4 structure with 32 atoms in the supercell. The 1 × 1 × 4 Si system is partitioned into 6 elements along 
the z direction resulting in about 5 atoms per element. For the 3D bulk Si system, we replicate the unit cell along x, y, and 
z directions 3 times, to form a 3 × 3 × 3 structure with 216 atoms in the supercell. The 3 × 3 × 3 structure is partitioned 
into 4 elements along each direction. This gives 64 elements in total, and the size of each element along each direction is 
7.65 Bohr. Each element contains around 3 atoms. The partition of the 3 × 3 × 3 Si structure is shown in Fig. 1. The lattice 
constant of the Si unit cell is 10.2 au. The positions of atoms in both Si systems are slightly perturbed by applying a random 
displacement uniformly distributed within [−0.2, 0.2] au.

To assess accuracy and convergence, we define the force error to be

max
I

|�F I |, (33)

where I is the atom index,

�F I = F HF
I − F ABINIT

I ,

with F HF
I the Hellmann–Feynman force computed by DGDFT and F ABINIT

I the fully converged force computed by ABINIT. The 
magnitude of the force error, denoted by |�F I |, is then given by

|�F I | =
√

�F 2
I,x + �F 2

I,y + �F 2
I,z,

where �F I,x , �F I,y , and �F I,z represent the x, y, and z components of �F I , respectively.
The main contributors to the force error defined by (33) are: 1) numerical quadrature error that results from an in-

sufficient number of grid points required to perform numerical integration of several quantities such as ALBs, density, and 
potential; 2) an insufficient number of ALBs required to accurately represent the Kohn–Sham wavefunctions. We shall refer 
the latter as basis set error. Note that the basis set error contributes directly to the Pulay force through the incompleteness 
of the basis.

In order to examine the Pulay force and compare it with the error (33), we first reduce the numerical quadrature 
error by increasing the kinetic energy cutoff Ecut. Specifically, we start from a large number of ALBs, and increase the Ecut
in DGDFT gradually until the difference between the total energy obtained from DGDFT and that obtained from a fully 
converged ABINIT calculation is negligible, at least two orders of magnitude below chemical accuracy. Once a sufficient Ecut
is determined, we use this energy cutoff in subsequent calculations to examine how the force error changes with respect to 
the number of basis functions per element.

4.1.1. Convergence with respect to energy cutoff
We first check the quadrature errors of the total energy and atomic forces with respect to the kinetic energy cutoff. Fig. 2

shows the convergence of the DGDFT total energy and forces for quasi-1D and 3D Si systems to reference planewave results 
with increasing kinetic energy cutoff Ecut.
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Fig. 2. (Color online.) Convergence of DGDFT total energy and forces for quasi-1D and 3D Si systems to reference planewave results with increasing kinetic 
energy cutoff Ecut (Ha). (a) Total energy error per atom �E (Ha/atom). (b) Maximum atomic force error �F (Ha/Bohr). The dashed green line corresponds 
to chemical accuracy. The number of ALB functions per atom is 45.0 and 71.1 for quasi-1D and 3D Si systems, respectively, and the penalty parameter 
α = 40. When Ecut is sufficiently large, the error is well below the target accuracy (green dashed line).

Fig. 3. (Color online.) Convergence of DGDFT total energy and forces for quasi-1D and 3D Si systems to reference planewave results with increasing number 
of ALB functions per atom. (a) Total energy error per atom �E (Ha/atom). (b) Maximum atomic force error �F (Ha/Bohr). The dashed green line corresponds 
to chemical accuracy. Energy cutoff Ecut = 60 Ha and penalty parameter α = 40. When the number of basis functions per atom is sufficiently large, the 
error is well below the target accuracy (green dashed line).

To achieve convergence of the total energy in ABINIT, we increase Ecut until the change of the computed total energy 
is below 10−8 Ha per atom. We find that the smallest Ecut that achieves this level of convergence is 80 Ha. We then take 
Ecut = 100 Ha results as reference for subsequent error computations.

In the DGDFT calculations, we use a large number of basis functions (45.0 and 71.1 ALBs per atom respectively for the 
quasi-1D and bulk 3D Si systems) to ensure that the basis set error is small. When Ecut is increased to 60 Ha in DGDFT, the 
difference between the DGDFT total energy and converged ABINIT total energy is below 10−5 Ha per atom. Fig. 2 indicates 
that we may set Ecut to 60 Ha in DGDFT to make quadrature errors negligible in subsequent calculations.

4.1.2. Convergence with respect to number of ALB functions
We next check the basis set error of the total energy and atomic forces in DGDFT. Fig. 3 shows the convergence of the 

total energy and atomic forces for the quasi-1D and 3D Si systems with increasing number of ALB functions per atom. We 
set the energy cutoff to 60 Ha and the penalty parameter α to 40. First, we see that chemical accuracy is obtained with less 
than 10 basis functions per atom for the quasi-1D system and a few tens of basis functions per atom for the 3D system. 
Furthermore, for the quasi-1D Si system, we find that the total energy error can be as small as 2.78 × 10−8 Ha/atom and 
the maximum error of the atomic forces can be as small as 8.47 × 10−7 Ha/Bohr when 22.5 ALB functions per atom are 
used. For the bulk 3D Si system, the total energy error can be as small as 2.10 × 10−6 Ha/atom and the maximum error in 
atomic forces can be as small as 1.70 × 10−5 Ha/Bohr when 71.11 ALB functions per atom are used.

We note that the errors for the 3D system are generally larger than for the quasi-1D system for comparable number of 
ALB functions per atom. This is due to the fact that the ALB functions are discontinuous at element boundaries and the 
boundary surface to volume ratio in 3D systems is larger than in 1D systems. Indeed, when we increase the size of the 3D 
elements to 10.2 Bohr along each direction with 54 basis functions per atom, the total energy error is reduced to 9.49×
10−9 Ha/atom and the maximum error in atomic forces is reduced to 5.12× 10−6 Ha/Bohr.

4.1.3. Penalty parameter
The penalty parameter α in Eq. (16) is used to penalize potential large jumps of Kohn–Sham orbitals between neigh-

boring elements. If α is too small, the resulting numerical error can be large. This leads to significantly lower total energy 
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Fig. 4. (Color online.) Total energy error per atom �E (Ha/atom) and maximum atomic force error �F (Ha/Bohr) for quasi-1D and 3D Si systems as a 
function of penalty parameter α in DGDFT calculations. The dashed green line corresponds to chemical accuracy. Kinetic energy cutoff Ecut = 100 Ha and 
ALB functions per atom is 45.0 and 71.1 for quasi-1D and 3D Si systems, respectively. For all values of α, the error is well below the target accuracy (green 
dashed line).

Table 1
DGDFT force error (�F ) for quasi-1D Si system and Pulay force (F Pulay) with respect to the number of adaptive local basis functions per atom. #ALB/atom 
indicates the number of adaptive local basis functions per atom. Forces are in units of Ha/Bohr.

#ALB/atom �Fx �F y �F z F Pulay
x F Pulay

y F Pulay
z

9.0 1.26 × 10−4 7.38 × 10−5 −6.55 × 10−4 2.45 × 10−4 −6.13 × 10−5 −6.61 × 10−4

15.8 −1.18 × 10−5 3.00 × 10−6 8.68 × 10−5 −1.29 × 10−5 −1.21 × 10−5 5.08 × 10−5

25.5 2.92 × 10−6 −4.27 × 10−7 −3.60 × 10−6 1.82 × 10−6 4.46 × 10−6 4.00 × 10−7

and is easily detected. On the other hand, as the penalty parameter is increased beyond a certain point, energies and forces 
remain stable and so the method is insensitive to the choice [19,22].

Fig. 4 shows how the errors in the total energy and atomic forces change with respect to α for the quasi-1D and 3D Si 
systems. We set the energy cutoff to 100 Ha and choose 45 ALBs per atom in the quasi-1D case and 71.1 ALBs per atom 
in the 3D case to obtain highly accurate results. For the quasi-1D system, when α is increased from 4 to 400, the error 
in total energy remains around 2.78 × 10−8 Ha/atom, while the maximum error in atomic forces decreases slightly from 
9.41 ×10−7 to 8.47 ×10−7 Ha/Bohr. For the bulk 3D Si system, the error in total energy ranges between 1.06 ×10−6 Ha/atom
and 2.31 × 10−6 Ha/atom when α is increased from 4 to 400, while the maximum error in atomic forces changes from 
1.72 × 10−5 Ha/Bohr to 3.24 × 10−5 Ha/Bohr. In both cases, we see that the error remains stable over a broad range of 
penalty parameter values, so that the method is generally insensitive to the choice.

4.1.4. Pulay force
In order to compute the Pulay force F Pulay

I defined by Eq. (31), we use a second order finite difference method with grid 
spacing 0.05 au to compute the required derivatives to obtain the force F I (Eq. (23)), and subtract the Hellmann–Feynman 
force F HF

I (Eq. (30)). For all examples, we report the Pulay force F Pulay
I for the atom I with the largest absolute force error 

in magnitude.
The computed DGDFT force error (33) and Pulay force (31) for the quasi-1D Si system are shown in Table 1 for several 

choices of #ALB/atom. We find that the DGDFT force error decreases rapidly as the number of ALBs per atom increases. The 
force error is on the order of 10−5 au or below when approximately 16 ALBs per atom are used. If we increase the number 
of ALBs further, the force error can decrease to 10−6 au or smaller. We also see from Table 1 that the computed Pulay 
forces are on the same order as the total force error. This observation suggests that, after reducing the numerical quadrature 
error, the error in forces is comparable in magnitude to the Pulay contribution, which decreases rapidly with the number 
of adaptive local basis functions used. Therefore, DGDFT force error can be readily reduced to a level typically required in 
molecular dynamics and geometry optimization applications, around 10−3 au with ∼10 basis functions/atom.

The same trend is observed for the 3D bulk Si system, as shown in Table 2. For the 3D bulk system, using around 71 
ALBs per atom allows us to reduce the force error to 10−4 Ha/Bohr or below. The latter system requires a few times more 
basis functions per atom due to the 3D element partition, consistent with previous findings [19] for total energies.

4.1.5. Translation and boundary effects
In electronic structure calculations of periodic systems, the total energy and atomic forces should remain the same when 

all atoms are translated along a given direction. However, DGDFT employs a fixed element partition, and therefore can give 
slightly different energies and forces for atomic configurations that differ by translation only. We call this the translation 
effect. Furthermore, DGDFT uses discontinuous basis functions, hence one might expect differing errors when atoms are near 
boundaries versus far away. We call this the boundary effect. Below we study these effects by translating the disordered 
3D Si216 system relative to the fixed element partition along X, Y, and Z directions. In each of the shifted configurations, 
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Table 2
DGDFT force error for 3D bulk Si system (�F ) and Pulay force (F Pulay) with respect to the number of adaptive local basis functions per atom. #ALB/atom 
indicates the number of adaptive local basis functions per atom. Force errors are in units of Ha/Bohr.

#ALB/atom �Fx �F y �F z F Pulay
x F Pulay

y F Pulay
z

35.6 1.78 × 10−4 −1.14 × 10−4 4.94 × 10−3 3.63 × 10−3 4.79 × 10−3 5.40 × 10−3

47.4 −9.38 × 10−5 −6.00 × 10−5 −6.68 × 10−5 6.12 × 10−5 8.20 × 10−5 −1.53 × 10−4

71.1 1.50 × 10−5 −5.58 × 10−6 −1.32 × 10−5 3.38 × 10−5 1.62 × 10−5 −1.83 × 10−5

Fig. 5. (Color online.) Three dimensional Si216 systems translated along the X direction about 0.018 Bohr. (a) Original structure of Si216. (b) Structure 
translated along positive X direction (Si216 X+). (c) Structure translated along negative X direction (Si216 X−).

Table 3
Errors in total energy �E (Ha/atom) and atomic forces �F
(Ha/Bohr) for bulk 3D Si systems translated along X, Y, and Z direc-
tions. The energy cutoff is 60 Ha and the number of ALB functions 
per atom is 71.1.

3D Si systems �E �F

Si216 4.56 × 10−6 2.92 × 10−5

Si216 X+ 8.60 × 10−6 6.47 × 10−5

Si216 X− 9.08 × 10−6 6.31 × 10−5

Si216Y + 7.28 × 10−6 7.05 × 10−5

Si216Y − 1.08 × 10−5 5.39 × 10−5

Si216 Z+ 8.80 × 10−6 6.51 × 10−5

Si216 Z− 1.13 × 10−5 5.58 × 10−5

there are a number of atoms on or close to element boundaries. Fig. 5 shows two such examples, shifting the system in the 
positive and negative directions along the X axis. We report the corresponding errors in the total energy and atomic forces 
in Table 3. We set the energy cutoff to 60 Ha and the number of ALB functions per atom to 71.1. We see that translation 
and boundary effects remain small for all configurations, as expected given the construction of ALBs for each configuration.

4.1.6. Linear scaling cost of force computation
Here we demonstrate that the computation of atomic forces in DGDFT scales linearly with respect to system size. Fig. 6

shows the wall time for computing the atomic forces with respect to the number of silicon atoms in a series of bulk 3D 
Si systems. We set the energy cutoff to 40 Ha and use 64 ALB functions per atom in the calculations. For all calculations, 
we use 4096 computational cores, on which we obtain wall times for computing forces of 0.35 s, 1.21 s, 2.20 s, and 5.22 s
for Si64, Si512, Si1728, and Si4096, respectively. Hence, the cost associated with atomic force computation in DGDFT is a small 
fraction in the total, and increases linearly with the number of atoms in the system.

4.1.7. Vibrational frequencies
Vibrational frequencies are important observables for characterizing material properties at finite temperature. For a sys-

tem at equilibrium atomic configuration, the dynamical matrix is defined as

D I; J = 1√
MI M J

∂2Etot({R∗
K })

∂ R I∂ R J
,

which is a square matrix of dimension 3N A . Here {R∗
K } is the equilibrium atomic position for which all atomic forces vanish. 

The square root of its eigenvalues gives the vibrational frequencies. The computation of vibrational frequencies requires 
highly accurate force calculations since the second order derivatives of the energy are needed.

We compute the vibrational frequencies of the quasi-1D Si system using the frozen phonon method. The second deriva-
tives of the total energy are computed by applying a central difference formula to the Hellmann–Feynman forces computed 
by DGDFT as follows. Starting from the perfect crystal configuration {R∗ }, we have
K
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Fig. 6. Wall time for computing atomic forces for a series of bulk Si systems (Si64, Si512, Si1728 and Si4096) using 4096 computational cores. The energy 
cutoff is 40 Ha with 64 ALB functions per atom.

Fig. 7. (Color online.) Vibrational spectrum for quasi-1D Si obtained from DGDFT using 45 basis functions per atom and 15 basis functions per atom, and 
ABINIT. The error is measured against the result from ABINIT.

∂2Etot({R∗
K })

∂ R I∂ R J
≈ 1

2h

(
∂Etot({R∗

K + δR(I)
K })

∂ R J
− ∂Etot({R∗

K − δR(I)
K })

∂ R J

)

= 1

2h

(
F J ({R∗

K − δR(I)
K }) − F J ({R∗

I + δR(I)
K })

)
.

Here the change of the atomic configuration is denoted by δR(I) , which is a vector of length 3N A . The vector δR(I) has 
only one nonzero entry corresponding to the X , Y , or Z direction of the position of the I-th atom R I , and the value 
of this entry is denoted by h. In all calculations we choose h = 0.01 Bohr. The first order derivative of the energy is 
then directly computed as the negative of the atomic force. Hence each phonon calculation for the quasi-1D Si system 
requires 6 × 32 = 192 independent DGDFT calculations for the shifted configurations, and no symmetry is explicitly used. 
We note that the purpose of the present calculation is to demonstrate the applicability of ALBs for the computation of such 
second derivative information, rather than to produce a physically meaningful vibrational spectrum, which would require 
a considerably larger supercell and/or k-point sampling to obtain. At the equilibrium configuration, all eigenvalues of the 
dynamical matrix are non-negative, and the vibrational frequencies are the square roots of the eigenvalues of D , i.e.,

Duk = ω2
k uk. (34)

The vibrational spectrum is the spectral density of the vibrational frequencies smeared by a Gaussian distribution, which is 
defined as

P (ω) =
∑

k

1√
2πσ 2

e
− (ω−ωk)2

2σ2 , (35)

with smearing parameter σ = 10 cm−1.
To compute vibrational frequencies, we set the kinetic energy cutoff to 60 Ha in both DGDFT and ABINIT, and use 15 and 

45 ALBs per atom in DGDFT. As shown in Fig. 7, we find that the vibrational frequencies obtained from DGDFT converge to 
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Fig. 8. (Color online.) Vibrational frequency of H2 molecule obtained from DGDFT (blue solid line) and ABINIT (red dashed line) at 300 K.

those from ABINIT as the number of ALBs is increased, with excellent agreement at 45 ALBs/atom, as expected given the 
agreement of DGDFT and ABINIT forces shown in Section 4.1.2.

4.2. Molecular dynamics

We have shown for randomly displaced configurations that the DGDFT force error can be as small as 10−4 Ha/Bohr with 
a moderate number of adaptive local basis functions per atom. In this section, we demonstrate that this level of accuracy, 
as for standard planewave methods, yields converged ab initio molecular dynamics simulations as well.

We consider two systems: one molecular and the other condensed matter. The first system consists of four H2 molecules 
initially evenly spaced in a box of dimension 10 × 10 × 40 au. The other system is a liquid Al–Si alloy. When performing 
molecular dynamics simulations in DGDFT, we partition the four H2 molecules into 4 elements of equal size along the 
z direction, and partition the Al–Si alloy into 4 × 4 × 4 elements of equal size. These two systems constitute a quasi-1D 
structure and 3D structure, respectively.

4.2.1. H2
The four H2 molecules are simulated in the constant-temperature–constant-volume (NVT) ensemble at 300 K, using 

a Nose–Hoover thermostat [49,50]. The integration time step is 25 au (∼0.6 fs), and the thermostat masses Q s are set to 
20 au for both DGDFT and ABINIT. In DGDFT, we set the kinetic energy cutoff to 160 Ha. With 10 adaptive local basis 
functions per atom, the force computed by DGDFT is accurate to 10−6 au in the initial configuration. We perform 2000 MD 
simulation steps in both ABINIT and DGDFT, which corresponds to 1.2 ps of simulation time.

The vibrational spectrum is given by the Fourier transform of the bond length of one H2 molecule along the MD trajec-
tory. Fig. 8 (blue solid line) shows the vibrational spectrum calculated using DGDFT for the first H2 molecule. The general 
profile of the calculated spectrum agrees well with that obtained from ABINIT (red dashed line). The characteristic vi-
brational frequencies estimated by DGDFT and ABINIT differ by only a few cm−1 . Although we obtain good quantitative 
agreement from the 1.2 ps trajectories, longer trajectories may be required to eliminate the multiple peaks around the 
characteristic frequency.

4.2.2. Liquid Al–Si alloy
Simulations of liquid Al–Si alloy Al0.88Si0.12 were performed in a 200-atom cell with lattice constant 15.68 Å in the 

canonical ensemble at target temperature 973 K, as in Ref. [51]. In the initial configuration, Al and Si atoms are randomly 
placed in the cubic cell. The system is then relaxed at 4000 K, well above the target temperature, so that any biases 
in the initial configuration are removed. We then cool down the system from 4000 K to 973 K gradually, at the rate 
of 0.471 K/fs, and continue the simulation in the canonical ensemble at 973 K for more than 2.0 ps to equilibrate. The 
simulation continues under these conditions for another 7.0 ps, and data is collected during this period to compute the 
properties of the Al–Si alloy. We use a Nose–Hoover chain thermostat. In DGDFT, we set the integration time step for the 
equation of motion to 100 au (∼2.42 fs), the thermostat mass to 10000 au, the energy cutoff to 10 Ha, and employ a basis 
of 51.2 adaptive local basis functions per atom on average. The Nose–Hoover thermostat has a conserved energy, which 
can be used to check the consistency of energies and forces. We find a drift of the conserved energy of 2.6 meV/ps/atom, 
consistent with the high accuracy of forces.

We next compare the statistical properties of the liquid Al–Si alloy obtained from DGDFT with those obtained from 
SIESTA [39], and results presented in Ref. [51], obtained from the PARSEC electronic structure code. In particular, we examine 
the pair correlation function, a statistical quantity widely used to characterize liquid structure and coordination. For alloy 
systems, the total pair correlation is given by:

gtot(r) = 1

b2
(xi

2bi
2 gii(r) + 2xi x jbib j gi j(r) + x j

2b j
2 g jj(r)) (36)

according to the Faber–Ziman formalism [52]. Here, the indices i and j indicate different types of atoms, xi , x j are the cor-
responding molar fractions, bi , b j are neutron scattering lengths or x-ray form factors, gij(r) are the partial pair correlation 
functions, and b = xibi + x jb j . For Al and Si, we use the neutron scattering length ratio bAl/bSi = 0.8318.
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Fig. 9. (Color online.) Comparison of total pair correlation function of liquid Al0.88Si0.12 calculated at 973 K from 200-atom simulations: DGDFT (red solid 
line), SIESTA (blue solid line), and previous work [51] (yellow dots).

Fig. 10. (Color online.) G(r) derived from partial and total pair correlation functions for liquid Al0.88Si0.12 calculated at 973 K from 200-atom simulations 
using DGDFT (red solid line) and SIESTA (blue solid line), and from 500-atom simulations in previous work [51] (yellow dots).

In Fig. 9, we show the total pair correlation functions g(r) computed using DGDFT and SIESTA, and results from Ref. [51]
(labeled NVE). The curve produced by DGDFT matches well with the other two results, especially near the first peak. The 
liquid structure and coordination are thus well described by all three codes. Slight differences among the three are likely 
due to differences in pseudopotentials, basis sets, and ensembles used.

In Ref. [51], the functions G(r) = r(g(r) − 1) and Gij(r) = r(gij(r) − 1) are considered. We plot the corresponding quan-
tities in Fig. 10. The G(r), G Al–Al(r), and G Al–Si(r) obtained by all three codes agree well. The agreement of the curves, 
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especially up to the first minimum, indicates that DGDFT describes the Al–Si and Al–Al bond lengths and coordinations 
well. In addition to the differences in basis sets used in three methods, the number of atoms used in the DGDFT and SIESTA 
simulations is different from that used in the PARSEC simulations. The result in Ref. [51] in Fig. 10 used a 500-atom Al–Si 
system, while 200 atoms were used in the DGDFT and SIESTA simulations. The difference in number of atoms can also con-
tribute to the slight differences in computed pair correlation functions at larger r. Unlike the other partial pair correlation 
functions, the differences in G Si−Si(r) among the three methods is more noticeable. As noted in Ref. [51], the uncertainties 
are primarily a result of insufficient statistics for the Si, which occurs in much smaller number than Al in the present alloy.

5. Conclusion

In this work, we detail the calculation of atomic forces in Kohn–Sham density functional theory using an adaptive local 
basis. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the 
number of atoms in the system using the adaptive local basis set. The method is implemented in the recently developed 
massively parallel DGDFT electronic structure code. We quantify the accuracy of the Hellmann–Feynman forces for a range 
of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is 
efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies 
required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in gen-
eral nonzero. However, by virtue of the adaptive local construction, we find that the Pulay force is small and systematically 
decreasing with increasing basis completeness; so that the Hellmann–Feynman force is sufficient for basis sizes of a few 
tens of basis functions per atom. We verified the accuracy of computed Hellmann–Feynman forces in static calculations of 
quasi-1D and 3D Si systems, finding convergence of forces to 10−4 Ha/Bohr with at most a few tens of basis functions per 
atom in all cases. We further verified the accuracy of the computed forces in frozen phonon calculations of the vibrational 
spectrum of quasi-1D Si, and molecular dynamics simulations of H2 molecules and liquid Al–Si alloy, finding in all cases 
excellent agreement with benchmark planewave results and literature.

Whereas the Hellmann–Feynman force is sufficient for adaptive local bases of a few tens of basis functions per atom or 
more, if still smaller bases are desired, as for example in density-matrix based O(N) calculations, then Pulay forces will 
become significant. In such case, optimized local basis functions (OLB) [33] may be a better candidate than adaptive local 
basis functions (ALB) since the Pulay force can be reduced systematically and substantially. However, the optimized local 
basis functions introduce other difficulties in implementation, particularly for 3D systems. We plan to investigate this in the 
future.
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Appendix A. Treatment of electrostatic interactions in extended systems

In this appendix, we discuss how extended periodic systems can be treated, and provide corresponding expressions 
for the total energy and atomic forces. The most widely used method for treating periodic systems relies on the use of 
Ewald summation for long-range interactions, which appear both in the local part of the pseudopotential and in the ion–ion 
interaction. An alternative approach is to use the pseudocharge formulation as given in Eq. (26) to replace long-range ionic 
potentials by corresponding short-range charge densities, eliminating the need for Ewald summation altogether [39,40]. The 
advantage of such a formulation is that the electrons and ions are treated on the same footing, in a single Poisson solution, 
permitting both electron–ion and ion–ion interactions to be evaluated at once in O(N) operations.

The total ionic pseudocharge in a unit cell is the sum of pseudocharges from all atoms:

ρloc(x) =
N A∑
I=1

ρloc,I (x − R I ), (A.1)

where N A includes all atoms with nonvanishing pseudocharge ρloc,I in the unit cell. The Kohn–Sham energy functional can 
then be written as
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EKS({ψi}; {R I}) = 1

2

N∑
i=1

∫
|∇ψi(x)|2 dx +

N∑
i=1

∫
ψi(x)V nl(x, y; {R I})ψi(y)dx dy

+ 1

2

∫
(ρ(x) − ρloc(x))V C (x)dx + Exc[ρ] − Es.

(A.2)

Since 
∫

ρ(x) −ρloc(x) dx = 0 in the unit cell, the total Coulomb potential V C due to ionic and electronic charge densities can 
be obtained by solving the Poisson equation

−�V C (x) = 4π(ρ(x) − ρloc(x)) (A.3)

subject to periodic boundary conditions on the unit cell. Es is the self-interaction energy of pseudocharges ρloc,I in the 
unit cell, a constant independent of atomic positions [40]. Having computed the total Coulomb potential V C , the Hellmann–
Feynman force is then given by

F HF
I =

∫
ρloc,I (x − R I )∇x V C (x)dy + 2

LI∑
�=1

Tr[V nl,I,� P ]. (A.4)

Compared to Eq. (30), the force due to the ion–ion interaction is taken into account by the total Coulomb potential.
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