
Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin
method for large-scale electronic structure calculations
Amartya S. Banerjee, Lin Lin, Wei Hu, Chao Yang, and John E. Pask

Citation: The Journal of Chemical Physics 145, 154101 (2016); doi: 10.1063/1.4964861
View online: http://dx.doi.org/10.1063/1.4964861
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/145/15?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
DGDFT: A massively parallel method for large scale density functional theory calculations
J. Chem. Phys. 143, 124110 (2015); 10.1063/1.4931732

Preconditioned iterative minimization for linear-scaling electronic structure calculations
J. Chem. Phys. 119, 8842 (2003); 10.1063/1.1613633

Density matrix search using direct inversion in the iterative subspace as a linear scaling alternative to
diagonalization in electronic structure calculations
J. Chem. Phys. 119, 7651 (2003); 10.1063/1.1607961

Vibrational eigenstates of NO 2 by a Chebyshev-MINRES spectral filtering procedure
J. Chem. Phys. 117, 8314 (2002); 10.1063/1.1512651

Comparison of conjugate gradient density matrix search and Chebyshev expansion methods for avoiding
diagonalization in large-scale electronic structure calculations
J. Chem. Phys. 109, 3308 (1998); 10.1063/1.476927

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1624400372/x01/AIP-PT/JCP_ArticleDL_091416/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Amartya+S.+Banerjee&option1=author
http://scitation.aip.org/search?value1=Lin+Lin&option1=author
http://scitation.aip.org/search?value1=Wei+Hu&option1=author
http://scitation.aip.org/search?value1=Chao+Yang&option1=author
http://scitation.aip.org/search?value1=John+E.+Pask&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4964861
http://scitation.aip.org/content/aip/journal/jcp/145/15?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/143/12/10.1063/1.4931732?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/119/17/10.1063/1.1613633?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/119/15/10.1063/1.1607961?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/119/15/10.1063/1.1607961?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/117/18/10.1063/1.1512651?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/109/9/10.1063/1.476927?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/109/9/10.1063/1.476927?ver=pdfcov

THE JOURNAL OF CHEMICAL PHYSICS 145, 154101 (2016)

Chebyshev polynomial filtered subspace iteration in the discontinuous
Galerkin method for large-scale electronic structure calculations

Amartya S. Banerjee,1,a) Lin Lin,1,2,b) Wei Hu,1,c) Chao Yang,1,d) and John E. Pask3,e)
1Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Department of Mathematics, University of California, Berkeley, California 94720, USA
3Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA

(Received 10 June 2016; accepted 3 October 2016; published online 17 October 2016)

The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB)
set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin
framework. The adaptive local basis is generated on-the-fly to capture the local material physics
and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom.
A central issue for large-scale calculations, however, is the computation of the electron density (and
subsequently, ground state properties) from the discretized Hamiltonian in an efficient and scalable
manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI)
can be used to address this issue and push the envelope in large-scale materials’ simulations in a
discontinuous Galerkin framework. We describe how the subspace filtering steps can be performed
in an efficient and scalable manner using a two-dimensional parallelization scheme, thanks to the
orthogonality of the DG basis set and block-sparse structure of the DG Hamiltonian matrix. The
on-the-fly nature of the ALB functions requires additional care in carrying out the subspace iterations.
We demonstrate the parallel scalability of the DG-CheFSI approach in calculations of large-scale two-
dimensional graphene sheets and bulk three-dimensional lithium-ion electrolyte systems. Employing
55 296 computational cores, the time per self-consistent field iteration for a sample of the bulk 3D
electrolyte containing 8586 atoms is 90 s, and the time for a graphene sheet containing 11 520 atoms
is 75 s. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4964861]

I. INTRODUCTION

Kohn-Sham Density functional theory (KS-DFT)1,2 is
the most widely used methodology for electronic structure
calculations of condensed matter and nano-material systems.
KS-DFT requires the solution of a nonlinear eigenvalue
problem, and this is usually achieved by means of self-
consistent field (SCF) iterations in conjunction with conver-
gence acceleration schemes.3,4 The most computationally
intensive part of conventional KS-DFT calculations is the
solution of the linear eigenvalue problem associated with
diagonalization of the Kohn-Sham Hamiltonian on every
SCF step. The results of this eigenvalue problem are used
to update the electron density ρ, from which the various
terms of the Kohn-Sham Hamiltonian are computed. As the
SCF iterations progress, the solution to the linear eigenvalue
problem on successive SCF steps forms increasingly better
approximations to the actual Kohn-Sham eigenstates.

The computational complexity (or algorithmic comple-
xity) of the solution of the linear eigenvalue problem, with
respect to the number of electronic states in the system, is
dependent on the algorithm used for solution of the eigenvalue
problem — in particular, it depends on whether direct or

a)asb@lbl.gov
b)linlin@math.berkeley.edu
c)whu@lbl.gov
d)cyang@lbl.gov
e)pask1@llnl.gov

iterative methods of solution are used. The prefactor in
such algorithmic complexity estimates strongly influences the
simulation wall times in practical computations. The ability
to tackle large-scale complex materials science problems,
therefore, is closely related to how small the prefactor
can be made in real computations, regardless of which
diagonalization algorithm is used.

The prefactor is not only influenced by the choice of
algorithm but also by the discretization scheme. Specifically,
it depends on the number of basis functions per atom required
to obtain accurate and reliable results. The widely used
planewave method3,5,6 allows high fidelity calculations to be
carried out since systematic convergence with respect to the
number of basis functions per atom can be obtained. However,
this method requires a large number of basis functions per
atom — often thousands or more planewaves per atom need
to be employed. Similar observations hold true for methods
based on finite elements,7–10 finite differences,11–14 and other
planewave-like spectral basis functions.15,16 On the other hand,
methods based on atom centered basis functions17–20 typically
require fewer basis functions per atom (often, as few as
10–80). However, it can be nontrivial to improve the quality
of solutions obtained via such methods, as a result of which the
success of a practical calculation can depend on the experience
of the practitioner.

In a series of recent contributions,21–24 a new methodology
for discretizing the Kohn-Sham equations using so-called
adaptive local basis (ALB) functions has been presented. This

0021-9606/2016/145(15)/154101/13/$30.00 145, 154101-1 Published by AIP Publishing.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

http://dx.doi.org/10.1063/1.4964861
http://dx.doi.org/10.1063/1.4964861
http://dx.doi.org/10.1063/1.4964861
http://dx.doi.org/10.1063/1.4964861
http://dx.doi.org/10.1063/1.4964861
http://dx.doi.org/10.1063/1.4964861
http://dx.doi.org/10.1063/1.4964861
http://dx.doi.org/10.1063/1.4964861
http://dx.doi.org/10.1063/1.4964861
http://dx.doi.org/10.1063/1.4964861
mailto:asb@lbl.gov
mailto:asb@lbl.gov
mailto:asb@lbl.gov
mailto:asb@lbl.gov
mailto:asb@lbl.gov
mailto:asb@lbl.gov
mailto:asb@lbl.gov
mailto:asb@lbl.gov
mailto:asb@lbl.gov
mailto:asb@lbl.gov
mailto:asb@lbl.gov
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:linlin@math.berkeley.edu
mailto:whu@lbl.gov
mailto:whu@lbl.gov
mailto:whu@lbl.gov
mailto:whu@lbl.gov
mailto:whu@lbl.gov
mailto:whu@lbl.gov
mailto:whu@lbl.gov
mailto:whu@lbl.gov
mailto:whu@lbl.gov
mailto:whu@lbl.gov
mailto:whu@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:cyang@lbl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
mailto:pask1@llnl.gov
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4964861&domain=pdf&date_stamp=2016-10-17

154101-2 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

approach involves partitioning the global simulation domain
into a set of subdomains (called elements) and solving the
Kohn-Sham equations locally in and around each element.
The results of these local calculations are used to generate
the ALB functions (in each element) and the Kohn-Sham
equations in the global simulation domain are then discretized
using them. Since the ALB functions form a discontinuous
basis set globally (the discontinuity occurs at the element
boundaries), the interior penalty Discontinuous Galerkin (DG)
approach25 is used for constructing the Hamiltonian matrix.
The DG formulation ensures that the global continuity of the
relevant Kohn-Sham eigenstates and related quantities such as
electron density is approximately obtained.

The solution obtained by the above procedure converges
systematically to the infinite basis set limit as the number
of ALB functions is increased. The error in this scheme can
be gauged by means of a posteriori error estimators.26–28

Owing to the fact that the ALB functions incorporate local
materials physics into the basis, an efficient discretization of
the Kohn-Sham equations can be obtained in which chemical
accuracy in total energies and forces can be attained with a
few tens of basis functions per atom.21,22 The DG approach
for solving the Kohn-Sham equations with ALB functions has
been incorporated into a massively parallel software package
called DGDFT.23,24

Although the DG framework for the Kohn-Sham
equations (as implemented in the DGDFT code) has been
successfully used to study material problems involving
many thousands of atoms,24 a persistent issue has been to
obtain the electron density from the discretized Kohn-Sham
Hamiltonian in an efficient manner for systems containing
a thousand atoms or more. Due to the relatively small
size of the discretized Hamiltonian matrices involved, direct
diagonalization methods (via ScaLAPACK,29,30 for example)
are feasible for systems of smaller size. However, the
computational cost of the these methods scales in a cubic
manner, i.e., as O(N3

b
), with Nb denoting the total number of

basis functions used in the simulation. Thus, the computational
cost increases steeply with respect to the size of the system.
The cubic scaling problem is compounded by the fact that
direct diagonalization solvers (for dense matrices) typically
do not scale well beyond a few thousand processors on
distributed memory machines. In recent work with the DGDFT
code in massively parallel computing environments,23,24 we
have found that for systems containing more than a few
thousand atoms, the step of obtaining the electron density
from the Hamiltonian can consume 95% or more of the total
computational time.

Direct diagonalization methods do not take advantage of
the fact that the DG Hamiltonian matrix, denoted henceforth
by HDG, is a block-sparse matrix. The sparsity of HDG allows
several alternatives for mitigating the issues associated with
direct diagonalization methods. One alternative is to employ
“linear scaling” methods (see, e.g., Refs. 31 and 32), based on
direct calculation of truncated density matrices. While linear
scaling methods have been very successful for tackling large
insulating systems with sizable band gaps,33–35 they are less
well suited for metallic systems or semiconducting systems
with small band gaps. The sparse nature of the HDG matrix

also allows for the Pole Expansion and Selected Inversion
(PEXSI) technique36,37 to be employed for directly computing
the electron density and other ground state properties. The
computational cost of the PEXSI technique is at most
O(N3

b
/Ns) ∼ O(N2

s), with Ns denoting the number of Kohn-
Sham states, even for metallic systems. The PEXSI technique
has excellent parallel scalability23,24,38 and has been shown to
work well in conjunction with DGDFT while studying two-
dimensional materials. However, it becomes more expensive
(both in terms of memory and run time) for three-dimensional
bulk materials and has limited ability to make use of good
starting guesses (from previous geometry optimization or
molecular dynamics steps) to accelerate computations.

With the above considerations in mind, an alternate
strategy for reducing the simulation wall time in practical
computations is to revert to the usage of an algorithm
that scales in a cubic manner with respect to the system
size, but to reduce the pre-constant of the algorithm.
This includes the use of iterative diagonalization methods
such as the Davidson method,39,40 conjugate gradient-type
methods,5,41,42 and residual minimization methods.6 However,
the effectiveness of these schemes relies on the availability
of a good preconditioner, which is currently not available
for HDG.

In this work, we utilize the technique of Chebyshev
polynomial filtered subspace iteration (CheFSI) to address the
diagonalization problem in the DG framework and implement
it within the DGDFT code. While the CheFSI technique
has been utilized with great success by various practitioners
working with finite differences, finite elements, and spectral
basis sets,15,43–49 its application to basis sets resulting in
reduced-size Hamiltonian matrices (such as atomic orbital
type or adaptive basis sets), with on-the-fly adaptation in
particular, has not been considered before to our knowledge.

The DG framework has a number of features that make
the use of CheFSI attractive. First, since the ALB functions
are orthonormal, one does not need to consider the overlap
matrix (for usual pseudopotential calculations), thus ensuring
that the CheFSI method in its original form can be readily
employed. Second, compared to Hamiltonian and overlap
matrices resulting from other high-quality orbital-based basis
sets, such as augmented Gaussians50 or partition-of-unity
finite-elements,51 the HDG matrix has relatively small spectral
radius — of the order of a few thousand (atomic units) for
the systems considered here. As a result of this, Chebyshev
polynomial filters of relatively low order suffice. In contrast
to direct diagonalization methods which scale as O(N3

b
),

the computational complexity of CheFSI43 is reduced to
O(NbN2

s + N3
s). Since Nb/Ns is typically ∼2 to 20 for ALB

functions, this reduction of prefactor can be sizable for
systems with thousands of atoms, leading to substantially
shorter simulation times. Finally, due to the sparse nature of
the HDG matrix and its nearest neighbor block structure, the
computation of the product of this matrix with a block of dense
vectors can be carried out with relatively low communication
volume between processors. This observation leads to an
efficient and scalable Hamiltonian matrix times vector product
implementation that is crucial for the success of the CheFSI
method within the DG framework.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

154101-3 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

Overall, we seek an approach for conventional KS-DFT
calculations of large systems with substantially reduced pref-
actor, while retaining the accuracy, systematic improvability,
and general applicability of established planewave and other
spectral approaches. This is made possible by the use of
ALB functions which ensure that the number of degrees
of freedom per atom is kept low, combined with the use
of the CheFSI method which is known to have a low
prefactor compared to conventional algorithms — as long
as an efficient implementation of the Hamiltonian matrix
times vector product can be set up. As we show subsequently,
through this combination of strategies, we are able to tackle
systems containing thousands of atoms routinely, with wall
times on the order of a few tens of seconds per SCF step on
large-scale parallel computing clusters.

The rest of the paper is structured as follows. In
Section II, we outline the background on the DG formulation
of KS-DFT and the CheFSI method, before delving into
the implementation of the CheFSI method within the DG
framework. In Section III, we present results and comparisons
with competing methods. We conclude and comment on future
research directions in Section IV.

II. METHODOLOGY

A. Discontinuous Galerkin formulation of KS-DFT

In this section, we discuss aspects of the DG framework
for the Kohn-Sham equations — as implemented within the
DGDFT code — relevant to the implementation of the CheFSI
method. More details on the theoretical underpinnings and
practical implementation strategies of the DG framework can
be found in Refs. 21–23.

In the present work, we consider Γ-point calculations
of periodic systems, as typical in ab initio molecular
dynamics, and large-scale calculations generally. The Kohn-
Sham orbitals can be taken to be real valued in this case.
In the DG framework, the global simulation domain Ω is
partitioned into a number of subdomains (or elements) such
that the union of these subdomains tiles the whole domain and
adjacent subdomains are non-overlapping (except possibly at
corners, edges, or at a surface). Due to the periodic boundary
conditions on Ω, each surface of each element is shared
between two neighboring elements. We denote the collection
of the sub-domains as T = {E1, . . . ,EM} and the collection
of all the surfaces as S. Each element EK is embedded into
a slightly larger extended element QK that includes a buffer
region surrounding EK . Figure 1(a) shows a model 2D system
partitioned using 16 equal elements {E1, . . . ,E16}.

Due to the decomposition of Ω into elements, global L2

inner products between various quantities (denoted here as
⟨·, ·⟩T) can be taken as the sum of local L2 inner products over
individual elements. We introduce the notation ⟨·, ·⟩S to define
the sum of local L2 surface inner products on all surfaces of
all elements. We will also employ the notation

��
·
		

to denote
the average of a quantity across a surface while

��
·
��

denotes
the jump across a surface for discontinuous quantities.

In DGDFT, each SCF iteration includes a preliminary
step of generating the ALB functions on the fly. This

FIG. 1. Partitioning of a domain into DG elements and the resulting dis-
cretized Hamiltonian HDG. (a) Schematic 4 × 4 partition of a model 2D
computational domain into 16 elements. (b) The DG Hamiltonian matrix
HDG with its block sparsity pattern resulting from such a partition. White
represents zero blocks.

is accomplished by iteratively solving a local Kohn-Sham
problem on each of the extended elements — the effective
potential used for this calculation is simply the restriction of
the effective potential on the global simulation domain to the
extended element. The resulting (approximate) Kohn-Sham
states over QK are then restricted to EK and orthonormalized
to produce the ALB functions over EK .

At the end of the ALB generation process, each element
EK has a collection of JK ALB functions, denoted by
{ϕK, j}JKj=1. Each ALB is compactly supported on one element.
The complete collection of ALB functions

A =
�
ϕK, j

	K=M, j=JK
K=1, j=1 (1)

forms an L2 orthonormal set over Ω, i.e.,

ϕK, j, ϕK ′, j′

�
T = δK,K ′δ j, j′, (2)

for K,K ′ = 1, . . . ,M; j = 1, . . . , JK ; and j ′ = 1, . . . , JK ′. The
global Kohn-Sham states over Ω can be expanded using the
ALB functions as

ψi(x) =
M
K=1

JK
j=1

ci;K, jϕK, j(x). (3)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

154101-4 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

Due to the fact that the ALB functions are discontinuous
over the global domain, whereas the Kohn-Sham states (and
related physical quantities such as the electron density) are
continuous, the DG framework penalizes discontinuities in
these quantities across element surfaces. Accordingly, the
electronic free energy of a system with Ns occupied electronic
states is written as

EDG
free({ψi, f i}) =

Ns
i=1

2 f i⟨∇ψi,∇ψi⟩T + ⟨Veff, ρ⟩T

+

Ns
i=1

2 f i
NA
I=1

L I
ℓ=1

γI,ℓ

bI,ℓ(· − RI),ψi

�
T

2

−Tel Sel({ f i})
−

Ns
i=1

2 f i

��
∇ψi

		
,
��
ψi

���
S

+ α

Ns
i=1

2 f i

��
ψi

��
,
��
ψi

���
S , (4)

where 0 ≤ f i ≤ 1 are the electronic occupation numbers
(specified via Fermi-Dirac smearing), Veff denotes the effective
potential (consisting of local pseudopotential, Hartree,
and exchange correlation contributions), the scalars γI,ℓ
and projector functions bI,ℓ correspond to the nonlocal
pseudopotential expressed in the Kleinman-Bylander form,52

and Tel and Sel correspond to the electronic temperature and
electronic entropy, respectively. The quantity α is an adjustable
penalty parameter that ensures that Eq. (4) has a well-defined
ground state free energy.

Using the ALB functions to discretize the above
expression for the free energy and subsequently minimizing
the discretized energy with respect to the expansion
coefficients ci;K, j (as well as the occupation numbers f i), while
maintaining the orthonormality constraint on the orbitals, lead
us to the discretized version of the Euler–Lagrange equations.
This takes the form of the following eigenvalue problem:

K ′, j′
HDG

K, j ;K ′, j′ci;K ′, j′ = λici;K, j, (5)

with the discretized Hamiltonian operator expressible as

HDG
K, j ;K ′, j′

=
(1
2

∇ϕK, j,∇ϕK, j′

�
T +

ϕK, j,VeffϕK, j′

�
T

)
δK,K ′

+
(
I,ℓ

γI,ℓ

ϕK, j,bI,ℓ

�
T

bI,ℓ, ϕK ′, j′

�
T

)
+

(
−1

2

��
ϕK, j

��
,
��
∇ϕK ′, j′

		�
S

+ − 1
2

��
∇ϕK, j

		
,
��
ϕK ′, j′

���
S

+ α

��
ϕK, j

��
,
��
ϕK ′, j′

���
S

)
. (6)

The matrix HDG can be naturally partitioned into blocks based
on the element indices. We will denote the (K,K ′)th matrix
sub-block (of size JK × JK ′) as

HDG
K ;K ′ = HDG

K, j=1, ...,JK ;K ′, j′=1, ...,JK ′
. (7)

Since the ALB functions are compactly supported on their
respective elements, the block HDG

K ;K ′ is non-zero only when

K and K ′ refer to neighboring elements. This situation is
illustrated in Figure 1.

Further details on interpretation and computation of the
various terms described above as well as the significance of
the parameter α in practical calculations can be found in
Refs. 21 and 23. Note that the appearance of average and
jump operators in Eqs. (4) and (6) is a distinguishing feature
of the interior penalty DG formulation of the Kohn-Sham
equations.

During the SCF iterations, the matrix HDG is constructed
using the most recent effective total potential Veff. Following
this, the electron density needs to be computed from HDG.
So far, this step has been achieved in the DGDFT code in
two distinct ways. In the first approach, the use of a parallel
eigensolver (the ScaLAPACK routine PDSYEVD) allows one
to directly compute the eigenvalues and eigenvectors of HDG.
From these, the orbital occupations { f i}Ns

i=1 can be computed
via Fermi-Dirac smearing while the density matrix (also
called the Fermi matrix at finite electronic temperature) and
the electron density can be computed from the eigenvectors
as

PK, j ;K ′, j′ =

Ns
i=1

f ici;K, jci;K ′, j′, (8)

ρ(x) = 2
M
K=1

JK
j=1

JK
j′=1

ϕK, j(x)ϕK, j′(x)PK, j ;K, j′. (9)

Eq. (9) shows that only the diagonal blocks of the density
matrix need to be computed to evaluate the electron density.
Note that the calculation of these blocks can be done
individually on each element.

The second approach involves the use of the PEXSI tech-
nique to directly compute the density matrix elements, without
going through the intermediate eigenvalues and eigenvectors.
The electron density can be evaluated subsequently from
Eq. (9) using the diagonal blocks of the density matrix,
while the computation of forces requires computation of the
non-diagonal blocks corresponding to the sparsity pattern of
HDG.22,38

Considering the limitations of each of the above
approaches (as described earlier), we now explore the option
of using Chebyshev polynomial filtered subspace iteration to
compute the eigenvalues and eigenvectors of HDG.

B. Chebyshev polynomial filtered subspace
iteration within DGDFT

Subspace iteration is a generalization of the classical
power method for computing the dominant eigenpair of a
matrix.53,54 The standard subspace iteration can be used to
obtain an approximation to the invariant subspace associated
with the largest few eigenvalues. In Kohn-Sham DFT, the
invariant subspace of interest is the one associate with the
occupied states (and possibly a few unoccupied states above
the Fermi level)55,56 which do not correspond to the dominant
eigenvalues of the Kohn-Sham Hamiltonian.

A Chebyshev polynomial pm(λ) can be constructed to
map eigenvalues at the low end of the spectrum (corresponding

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

154101-5 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

to the occupied states) of HDG to the dominant eigenvalues of
pm(HDG). The exponential growth property of the Chebyshev
polynomials outside the region [−1,1] can be used to ensure
that the wanted part of the spectrum (i.e., the occupied
states in ground state electronic structure calculations) can
be magnified while the unwanted part (corresponding to the
unoccupied states) is damped in comparison.57–59 Applying
subspace iteration to pm(HDG) yields the desired invariant
subspace. Within each iteration, the multiplication of pm(HDG)
with a block of vectors can be carried out by using the three-
term recurrence satisfied by Chebyshev polynomials. The
application of the Chebyshev polynomial filtered subspace
iteration (CheFSI) technique for computing the occupied
eigenspace of the Kohn-Sham operator was introduced in
Refs. 43 and 44. Within the SCF iteration framework, this
methodology can be thought of as a form of nonlinear subspace
iteration in the sense that the approach de-emphasizes the
accurate solution of the intermediate linearized Kohn-Sham
eigenvalue problems on every SCF step. With the progress of
the SCF iterations, the approximate Hamiltonian approaches
the self-consistent one and the span of the (approximately)
computed eigenvectors approaches the converged occupied
subspace simultaneously. This particular feature of CheFSI
has some bearing on the way it is implemented within the DG
framework, as explained later.

The main desirable features of CheFSI which make it
suitable for application to large-scale electronic structure
problems are the following: (1) It is a block method in
which HDG can be multiplied with a block of vectors
simultaneously. This additional level of concurrency allows
the algorithm to achieve better parallel scalability compared
to standard Krylov subspace methods such as the Lanczos
algorithm. (2) Compared to other Krylov subspace methods,
it performs fewer Rayleigh-Ritz calculations in which
a projected subspace eigenvalue problem is solved. The
Rayleigh-Ritz procedure is often the computational bottleneck
when the number of eigenvalues to be computed is relatively
large.

The key steps in a CheFSI cycle (see Algorithm 1 for
details) are an application of the Chebyshev polynomial filter
on a block of vectors, subsequent orthonormalization of the
filtered block, a Rayleigh-Ritz step, and finally a so-called
subspace rotation step.43,45 Together, the last three steps will
be referred to as solving the subspace problem. Note that
the Rayleigh-Ritz and subspace rotation steps are useful for
explicitly obtaining the (approximate) occupied eigenpairs
of the Hamiltonian from the filtered subspace. We will now
elaborate on various important aspects of our implementation
of these steps within DGDFT.

1. The multiplication of HDG with a block of vectors

One of the key computational steps of the CheFSI method
is to perform Y = pm(HDG) X . This step requires an efficient
and scalable implementation of multiplying HDG with a block
of vectors. Additionally, computation of the action of the
Hamiltonian matrix on vectors is required for estimating the
spectral bounds of the Hamiltonian via the Lanczos algorithm
as well as during the Rayleigh-Ritz step (see Algorithm 1).

Given a block of vectors X consisting of columns {xi}Ns
i=1,

the multiplication of HDG with a subset of these columns
xi1, ..., i2, with 1 ≤ i1 ≤ i2 ≤ Ns, can be written as

yi1, ..., i2;K, j =

K ′, j′

HDG
K, j ;K ′, j′xi1, ..., i2;K ′, j′, (10)

where K,K ′ = 1, . . . ,M and j = 1, . . . , JK , j ′ = 1, . . . , Jk′.
Using the fact that HDG

K ;K ′ is non-zero only for K ′ ∈ N (K),
i.e., the neighboring elements of the K th element, we may
rewrite this as

yi1, ..., i2;K, j =


K ′∈N (K)
HDG

K ;K ′xi1, ..., i2;K ′, j′. (11)

Thus, the portion of the resulting set of vectors yi1, ..., i2 that is
associated with the element K can be written as

yi1, ..., i2;K =


K ′∈N (K)
HDG

K ;K ′xi1, ..., i2;K ′. (12)

Since the individual blocks HDG
K ;K ′ and xi1, ..., i2;K ′ are dense,

Eq. (12) can be computed as the sum of a series of
matrix-matrix products (i.e., GEMM operations in Level-3
BLAS). Further, since the above operation can be carried
out independently over the various columns of X , it is
natural to take advantage of the manifestly parallel nature
of the problem by distributing the columns among separate
processing elements in an appropriate manner.

The data distribution of the various quantities involved
in Eq. (12) is important in deciding how the operation
can be carried out in practice. As explained in Ref. 23,
the DGDFT code uses a two-level parallelization strategy
implemented via Message Passing Interface (MPI) to handle
inter-process communication. At the coarse grained level,
work is distributed among processors by elements, leading
to inter-element parallelization. Further, within each element,
the work associated with construction of the local portions
of the DG Hamiltonian, evaluation of the electron density,
and the ALB generation process is parallelized leading to
intra-element parallelization. The processors are partitioned
into a two-dimensional logical process grid with a column
major order (Fig. 2). We will refer to this layout of the
MPI processes as the global process grid. For the sake of

ALGORITHM 1. CheFSI cycle.

Input: Matrix HDG, starting vector block X , filter order m
1. Compute lower bound blow using previous Ritz values and the upper bound bup using a few steps of the Lanczos algorithm.
2. Perform Chebyshev polynomial filtering, i.e., compute Ỹ = pm(HDG)X with [blow,bup] mapped to [−1,1].
3. Orthonormalize columns of Ỹ : Set S = ỸTỸ , compute UTU = S, and solve ŶU = Ỹ .
4. Rayleigh-Ritz step: Compute the projected subspace matrix Ĥ = ŶTHDGŶ and solve the eigenproblem ĤQ =QD.
5. Perform a subspace rotation step Xnew= ŶQ.

Output: Vector block Xnew (approximate eigenvectors) and Ritz values D (approximate eigenvalues).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

154101-6 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

FIG. 2. Two-level parallelization scheme within DGDFT: the number of DG
elements is M and each element has Pe processors dedicated to it, making
the total number of processors Ptot=M × Pe.

discussion, we assume here that the total number of MPI
processes (in the global process grid) is Ptot = M × Pe, so that
there are Pe processes assigned to each of the M elements.
Specifically, the processes with MPI ranks (K − 1)Pe + 1 to
K Pe (K = 1, . . . ,M) are in the K th global column processor
group, and they work on the element EK at the level of
intra-element parallelization. Analogously, the ith global row
processor group consists of the processes with MPI ranks
i,Pe + i, . . . , (M − 1)Pe + i (i = 1, . . . ,Pe). Any process in the
global process grid can be referred to by its row and column
indices (I,K) in the process grid, with I = 0, . . . ,Pe − 1 and
K = 0, . . . ,M − 1.

The two-level parallelization scheme within DGDFT
allows (12) to be evaluated efficiently and in a scalable
manner. A given block of vectors X is distributed at the
inter-element parallelization level in a manner consistent with
the element-wise partition suggested by Eq. (12), and it is
further distributed by its columns (i.e., Kohn-Sham states) at
the intra-element parallelization level. In other words, for a
block of vectors of size Nb × Ns (with Nb =

M
k=1 JK , i.e., the

total number of basis functions in use and Ns denoting the
total number of Kohn-Sham states), the MPI process with row
and column indices (I,K) holds a block of size JK × ⌊ Ns

Pe
⌋

and evaluates this portion of the result (i.e., left hand side of
Eq. (12)). In DGDFT, the matrix HDG is stored element-wise,
i.e., all Pe processes in a given process grid column assigned
to a particular element K store all non-zero blocks of the form
HDG

K ;K ′. Hence, for a given process, evaluation of (12) only
incurs nearest neighbor communication within each process
grid row so that blocks of the form xi1, ..., i2;K ′ (with i1, i2
corresponding to the start and end indices of the block of
states that the process is working on, and K ′ corresponding to
its nearest neighbor elements) may be obtained.

The strategy of employing a process grid avoids costly
global communication and restricts all communication to indi-
vidual row and column process grids. Additionally, the block

nearest-neighbor type sparsity structure of the Hamiltonian
matrix results in further reduction in communication volume.
As demonstrated later, these factors result in a particularly well
scaling matrix-vector product routine for DGDFT. In contrast,
expressing HDG and the block of vectors to be multiplied as
dense matrices and the subsequent direct use of parallel dense
linear algebra routines (PBLAS,60 for example) for carrying
out the matrix-vector product operation would have incurred
a higher computational cost and also significantly degraded
the scalability of the computation.

2. Parallel solution of the subspace problem

The various steps involved in solving the subspace
problem all require dense linear algebra operations. For
example, given the Chebyshev polynomial filtered block
of vectors Ỹ = pm(HDG) X , we need to orthonormalize this
block of vectors so as to obtain an orthonormal basis for the
(approximate) occupied subspace. We carry out this operation
by computing the overlap matrix S = ỸTỸ , computing the
Cholesky factorization of S as S = UTU , and then using the
Cholesky factor to solve the equation ŶU = Ỹ . The resulting
block of vectors Ŷ is then orthonormal. The cost of these
operations grows cubically with respect to the number of atoms
involved in the simulation. Once the number of occupied states
exceeds a few hundred, it becomes necessary to parallelize
these operations so as to reduce the computational wall times.
We use the parallel dense linear algebra routines in the
PBLAS60 and ScaLAPACK29,30 software libraries to do this.

PBLAS and ScaLAPACK routines employ a two-
dimensional block-cyclic data distribution over a process grid
for their operations. We will refer to this process grid as the
linear algebra process grid. Since the performance of some
of the required routines (particularly, those involved with
eigenvalue computation and Cholesky factorization) tends to
stagnate (or sometimes, even deteriorate) quite easily if too
many processes are in use, we typically use only the first
row of processes of the global process grid to set up the
linear algebra process grid for the problems of moderate
size. Thus, the number of processes in the linear algebra
process grid typically equals the number of DG elements in
use. As the system size grows bigger, we include additional
rows of processors in the global processor grid in the linear
algebra process grid to reduce the cost of dense linear algebra
operations.

Before the sequence of dense linear algebra operations
can be initiated, the vector block that contains the product of
pm(HDG) and X must be redistributed over the linear algebra
process grid from its distribution over the DG elements. We
have implemented routines for seamlessly inter-converting
between a block of vectors distributed over the DG elements
to one distributed over the linear algebra process grid, at
relatively low communication cost.23 In our experience, this
step takes no more than 0.1% of the total time spent in the
CheFSI routine, even for the largest systems considered here.

The original Chebyshev filtering method presented in
Refs. 43 and 44 employs a QR factorization or the DGKS
algorithm61 for orthonormalization. Here, we have used the
faster (but sometimes less stable) Cholesky factorization

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

154101-7 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

method instead. We have found that this speeds up the
orthonormalization by a factor of 2–3 in most cases with
no problematic side effects.

With the orthonormalized and filtered block of vectors
Ŷ , the next step is to compute the projection of HDG onto
the occupied subspace: Ĥ = ŶT(HDGŶ). This step requires
the vector block Ŷ distributed over the linear algebra process
grid to be redistributed over the DG elements, so that the
action of HDG on it can be computed. Once again, this data
redistribution step takes no more than 0.1% of the total time
spent in the CheFSI routine, even for the largest problems
considered here.

After diagonalizing the projected matrix Ĥ , the resulting
block of eigenvectors Q can be used to compute the final
results of one CheFSI cycle as Xnew = ŶQ. Eq. (8) can now
be used to compute the diagonal blocks of the density matrix
locally on each element, by using the eigenvector coefficients
in Xnew. The corresponding Ritz values Λi can be used for
adjusting the polynomial filter bounds as well as computing
the Fermi energy and occupation numbers.

3. Alignment of eigenvectors with current basis

What distinguishes DGDFT from traditional Kohn-Sham
DFT solvers is the change of the basis set in each SCF cycle.
This change has implications for the way we prepare the
starting vectors for CheFSI on every SCF step. Conventionally,
the input to CheFSI at the ith SCF cycle is chosen to be the
approximate invariant subspace computed at the (i − 1)th SCF
step.43,45 However, since the basis set changes from one SCF
cycle to the next in DGDFT, the eigenvector coefficients
computed in a given SCF cycle relative to the basis of
that cycle are not applicable to subsequent SCF cycles with
different bases. In practice, the change of basis from one
SCF cycle to the next becomes smaller as self-consistency
is approached; however, as we show below, the change
is sufficiently large to require explicit accommodation to
minimize CheFSI iterations.

Figure 3 shows that even for a simple system containing
a few hydrogen atoms, a naive implementation of CheFSI,
which simply uses the eigenvector coefficients computed in the

FIG. 3. SCF convergence of normalized electron density residual for dif-
ferent variants of CheFSI within DGDFT (naive implementation, multiple
cycles, and eigenvector re-alignment to adjust for evolving basis set) for a
simple system containing a few hydrogen atoms. Reference ScaLAPACK
results are also presented.

previous SCF cycle as the starting guess for the current SCF
cycle, fails to converge in even 45 iterations (green curve),
whereas a direct diagonalization of HDG via ScaLAPACK
results in SCF convergence (blue curve) in less than 20 SCF
iterations. To address this problem, we may perform several
cycles of CheFSI in every SCF step to compensate for the
poor initial approximation provided by the coefficients of the
previous SCF step. This strategy produces results closer to
those produced by exact diagonalization in each SCF cycle
(black curve) but repeating the CheFSI cycle multiple times
on every SCF step increases the overall computational cost of
the method.

Since the basis in a given SCF iteration is distinct from
that of the previous, with distinct span, the eigenvectors of the
previous SCF iteration cannot be expressed in terms of the
basis of the current SCF iteration without approximation. For
optimality, we choose the best approximation in the ℓ2 norm,
which, by virtue of the orthonormality of the DG basis, is
readily obtained by ℓ2 projection. Specifically, if X (i) denotes
an Nb × Ns block of vector coefficients (where Nb denotes
the total number basis functions in use and Ns denotes the
number of Kohn-Sham states) computed by CheFSI on a
given SCF step, and V i denotes an Nr × Nb block of basis
vectors corresponding to the ALB functions sampled on an
Nr-dimensional real-space grid (consisting of Gauss-Lobatto
integration points, for example, Ref. 21), then the starting
point for the CheFSI method on SCF step i + 1 is given by

X (i+1) = (V i+1)T V i X (i). (13)

Since the ALB functions and the eigenvector coefficients
X (i) and X (i+1) are all distributed DG-element-wise (i.e., X (i),
for example, is represented as M blocks X (i)

K ; K = 1, . . . ,M ,
stacked column-wise), this becomes

X (i+1) =
M
K=1

�(V i+1)T V i
�
K
(X (i))K . (14)

Further noting that ALB functions from different elements
are orthogonal to each other due to disjoint supports, we may
rewrite the above as

X (i+1)
K = (V i+1

K)T V i
K (X (i)

K), (15)

with V i
K and V i+1

K denoting the matrix representation of ALB
functions originating from the element K on SCF steps i and
i + 1, respectively. Eq. (15) can be evaluated locally on each
element by means of two matrix-matrix multiplications. As
shown by the red curve in Figure 3, this extra step of re-
aligning results in SCF convergence with a rate comparable
to that of exact diagonalization.

In all the calculations presented here, this extra step of
aligning the wavefunction coefficients was always carried out
from SCF step 2 onwards. The overhead due to this step is
minimal (typically less than 0.1% of the total time spent on
a CheFSI cycle) and does not grow with system size since
larger systems employ more elements and the re-alignment
calculation is carried out locally on each element.

A flowchart summarizing the various steps involved in
the DG-CheFSI method is presented in Figure 4.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

154101-8 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

FIG. 4. Flowchart depicting the various steps of CheFSI within DGDFT.
Typically, 3 or 4 CheFSI cycles are applied on the first SCF step when starting
from a random guess for the eigenvector block X .

4. Complexity analysis

For the purpose of this discussion, we let Nb denote the
total number basis functions in use (i.e., Nb =

M
K=1 JK) and

we let Ns denote the number of Kohn-Sham states. Further,
we let Ng represent the total number of real-space grid points
in use, with Ng/M grid points used for storing each ALB
locally within its associated element, with M elements. The
quantities Nb

M
and Ng

M
then correspond to the number of ALB

functions per element and number of real-space grid points
per element, respectively, and are constants for a particular
simulation and accuracy level.

As explained above, the CheFSI approach mainly involves
the application of the Chebyshev polynomial filter on a block
of vectors and subsequent solution of the subspace problem.
Within the DG framework, there is an additional step of
aligning the DG coefficients of the Kohn-Sham states from
one SCF step to the next. Regardless of the basis set in
use (e.g., finite elements, planewaves, or ALB functions), the
subspace problem solution scales as O(NbN2

s + N3
s) due to the

requirement of dense matrix multiplications.43

Let us now focus on the polynomial filtering step. This
involves computing the product of the Hamiltonian matrix
with the block of Kohn-Sham states. After the generation
process of the ALB functions (a step which incurs a memory
cost of O(NgNb/M) on every element), the memory cost
associated with storage of the coefficients of Kohn-Sham

states in terms of the ALB functions is O
(
NbNs + Nb

Ng

M

)
.

This contrasts with the storage cost of O(NgNs) that would be
required by finite differences, finite elements, or planewave
methods using the same number of real-space grid points.
In this sense, the use of ALB functions can be seen as a
systematically improvable compressed format for storing the
Kohn-Sham states. In practice, the number of ALB functions
per element Nb/M is at most a few hundreds and this number
is usually far exceeded by the number of Kohn-Sham states
Ns, in large calculations. Further Nb/Ns is typically 2–20.
Hence, once the ALB functions have been generated, there is
overall less memory cost involved in storing the Kohn-Sham
states using the ALB functions.

As explained earlier (Section II B 1, Eq. (11)), multiplying
the block sparse matrix HDG with the block of Kohn-Sham
states involves a few dense matrix multiplications of small

blocks (of size
Nb

M
× Nb

M
) coming from HDG, with blocks

(of size
Nb

M
× Ns) coming from the coefficients of the Kohn-

Sham states, for each DG element. If there are cN such
multiplications to be carried out for each element (this being
related to the number of nearest neighbors of elements), the
total cost for the application of one step of the polynomial
filter is proportional to

cN
(Nb

M

)2
NsM = O(NsM), (16)

since Nb
M

is a constant. Splitting this calculation into the
respective M elements therefore incurs a computational cost
of O(Ns) on every element. Note that, in contrast, this
computation using finite differences or finite elements would
have a complexity of O(NsNg) in total and is likely to incur a
greater computational cost.

Finally, the step of aligning the Kohn-Sham states with
the current basis set on every SCF step (Eq. (14)) incurs a cost
that is proportional to

(Nb

M

)2 Ng

M
+

(Nb

M

)2
Ns = O(Ns), (17)

on every element.
In contrast to the computational complexity of the various

steps involved in the CheFSI approach, direct diagonalization
of HDG involves a computational complexity of O(N3

b
)

while the PEXSI approach involves a cost of O
(� Nb

M

�3MαD

)
(with αD = 1.0,1.5,2.0 for one-, two-, and three-dimensional
systems, respectively). Direct diagonalization is more
computationally intensive while the PEXSI approach results
in a larger prefactor, because of which both methods result in
longer wall times to solution compared to CheFSI for the full
range of system sizes considered here.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

154101-9 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

III. RESULTS

In this section, we investigate the parallel scalability of
the CheFSI method and compare its performance with the
existing ScaLAPACK and PEXSI methods in DGDFT. Two
prototypical systems have been used for our calculations. The
first, referred to as Li3D, consists of a three-dimensional bulk
lithium-ion electrolyte system originating from the design
of energy storage devices. Atoms of hydrogen, lithium,
carbon, phosphorus, oxygen, and fluorine, numbering 318
in total, are present in this system. The second, referred
to as Graphene2D, consists of a two-dimensional sheet of
graphene containing 180 carbon atoms. These systems were
chosen for their technological relevance as well as the fact that
KS-DFT calculations on large samples of these systems can
be challenging. Figure 5 shows the Li3D and Graphene2D
systems along with the first ALB from one of the DG elements
of these systems.

In order to be able to work with larger system sizes, we
have employed multiple unit cells of these systems replicated
along the coordinate axes. Thus, Li3D1×2×2, for example,
refers to a system in which the 318-atom unit cell has been

FIG. 5. Prototype 2D and 3D systems used for the computations in this work.
Larger sized systems were obtained by periodic replication of these unit cells.
Iso-surface of the first ALB from one of the DG elements of these systems
is also shown. (a) Bulk Li3D system containing 318 atoms. (b) Graphene2D
system containing 180 atoms.

replicated along Y and Z directions to produce a 1272-
atom bulk system, and similarly, Graphene2D4×4 refers to a
graphene sheet containing 2880 atoms.

In what follows, we shall consider the time to solution.
For the CheFSI and ScaLAPACK diagonalization methods,
this will refer to the wall clock time that these methods require
to compute the eigenvalues and eigenvectors of HDG as well as
the diagonal blocks of the density matrix (via Eq. (8)), during
a general SCF cycle. For the PEXSI method, it will refer to the
wall clock time that is required to compute directly the density
matrix corresponding to the sparsity pattern of HDG. In order to
have a fair comparison between the methods, it is important to
ensure that the three methods show the same convergence rate
over multiple SCF cycles. This then allows the comparison
between the methods to be carried out with reference to the
time to solution for one SCF cycle. Accordingly, we have
adjusted the Chebyshev polynomial filter order as well as
the various parameters used in PEXSI (such as the number
of poles and the number of chemical potential iterations), so
that these methods converge at least as fast as the reference
ScaLAPACK calculations. Figure 6 shows the convergence of
all the three methods for the prototype systems in use here.

For most of the calculations described here, the poly-
nomial filter order used was between 80 and 100. However,
these employed relatively hard pseudopotentials;62 lower filter
orders may be expected to suffice for softer pseudopotentials.
Additionally, in practical molecular dynamics and geometry
optimization calculations, fewer SCF cycles are likely to be
required for the CheFSI method on every electronic relaxation
step, since the method will be able to make use of wavefunction
extrapolation (with re-alignment to account for the evolving
basis set). Thus, the performance of CheFSI in the context
of MD simulations may be expected to improve still further
relative to the results of static calculations, as presented here.

We have used the local density approximation for
the exchange-correlation functional with the parametrization
described in Ref. 63. Hartwigsen-Goedecker-Teter-Hutter
pseudopotentials62,63 are employed to remove inert core
electrons from the computations. We have typically employed
100–120 additional states in most calculations to accommo-
date partial occupation. SCF convergence was accelerated by
means of Pulay’s scheme64 or its periodic variant,65 and an
electronic temperature of 300 K was used in Fermi-Dirac

FIG. 6. SCF convergence of normalized electron density residual for
two prototypical systems using ScaLAPACK diagonalization, PEXSI, and
CheFSI methods.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

154101-10 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

occupation. To attain chemical accuracy (i.e., error in the total
energy less than 10−3 Ha/atom relative to the fully converged
result; additionally we also ensured that the error in the atomic
forces is less than 10−3 Ha/bohr relative to the fully converged
result), the 318-atom bulk Li3D system was partitioned into
4 × 4 × 4 elements, with 200 ALB functions per element,
giving ∼40 ALB functions per atom. Likewise, the 180-atom
Graphene2D system was partitioned into 1 × 6 × 6 elements,
with 120 ALB functions per element, giving 24 ALB functions
per atom.

All calculations described here were performed on
the Edison platform at the National Energy Research
Scientific Computing (NERSC) center. Edison has 5462 Cray
XC30 nodes. Each node has 64 GB of memory and 24
cores partitioned among two Intel Ivy Bridge processors,
running at 2.4 GHz. Edison employs a Cray Aries high-
speed interconnect with Dragonfly topology for inter-node
communication.

A. Scaling performance

We first investigate the strong scaling performance of
CheFSI within the DG framework and compare it against
that of PEXSI and ScaLAPACK. For this, we consider the
systems Li3D2×2×2 (2544 atoms, 4536 Kohn-Sham states) and
Graphene2D6×6 (6480 atoms, 13 080 Kohn-Sham states).

Figure 7 shows the wall time to solution (per SCF
iteration) vs. number of computational cores employed. From

FIG. 7. Strong scaling efficiency of CheFSI in DGDFT, compared against
PEXSI and direct ScaLAPACK diagonalization. Scaling performance of the
filtering routine is also shown. (a) Li3D2×2×2 system (2544 atoms). (b)
Graphene2D6×6 system (6480 atoms).

the figures, it is evident that the overall strong scaling
performance of CheFSI lies in between that of PEXSI
and direct ScaLAPACK diagonalization. For the Li3D2×2×2
system, the performance using 12 288 cores is at about 56%
efficiency (measured against the result from 1500 cores), while
for the Graphene2D6×6 system, using 10 368 processors, it is
at about 46% efficiency (measured against the result from
1200 cores). It is interesting to note, however, that the strong
scaling performance of the filtering routine by itself is nearly
ideal, remaining close to 80% efficiency for the Li3D2×2×2
case and at about 90% efficiency for the Graphene2D6×6 case.
In particular, the performance of the filtering routine is better
in the 2D system due to fewer neighboring elements and
correspondingly less communication required. The overall
scaling performance of CheFSI, therefore, is limited by the
performance of the subspace problem solution, whenever
the total time for this step forms a significant fraction of
the total CheFSI time. For the systems here, the subspace
problem solution time was about 33% of the total CheFSI
time for the Li3D2×2×2 system using 12 288 cores and 57%
of the total CheFSI time for the Graphene2D6×6 system
using 10 368 cores. The larger fraction of time spent on
the subspace problem helps explain why the overall scaling
performance of CheFSI is somewhat lower for the 2D case
here. These observations suggest possible avenues for further
improvement of the overall scaling performance of CheFSI.

Next, we investigate the weak scaling performance
of CheFSI within DGDFT, i.e., the performance with
increasing system size. We investigate the following systems
in 3D: Li3D1×1×1,Li3D1×1×2, and Li3D1×2×2. The system
sizes have been doubled successively, and as a result,
the number of Kohn-Sham states involved (approximately)
is doubled as well. In 2D, we investigated the systems:
Graphene2D1×1,Graphene2D2×2, and Graphene2D4×4. For
these cases, the system sizes have been quadrupled
successively, and as a result, the number of Kohn-Sham
states involved (approximately) is quadrupled as well. As a
measure of weak scaling performance, the wall clock time to
solution (per SCF iteration) is shown in Figure 8. For each
system, the number of computational cores was quadrupled
successively as sizes were doubled (Li3D) and quadrupled
(Graphene2D) successively.

On increasing the system size n fold, the number of
DG elements used for the calculation has to increase by the
same factor to keep each local calculation manageable and

FIG. 8. Weak scaling performance of CheFSI in DGDFT. Performance of the
filtering routine is also shown.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

154101-11 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

to maintain the same level of accuracy of solution. Since
the number of Kohn-Sham states involved also increases
n fold, there is an overall n2 factor increase in the time
required for applying the Chebyshev polynomial filter to
all the states involved (Eq. (16)). Hence, if the number of
computational cores used for doing the larger calculation is
increased by a factor of s, the expected wall time for applying
the Chebyshev polynomial filter will change by a factor of
n2/s. This observation should also hold for the total CheFSI
time, as long as the time for solution of the subspace problem
forms a small fraction of the total CheFSI time. Thus, for the
Li3D systems, the wall-times for each system should ideally
remain constant (n = 2, s = 4), while for the Graphene2D
systems, an increase by a factor of 4 should be observed
(n = 4, s = 4). Figure 8 shows that this expectation holds
reasonably well for the overall CheFSI time and particularly
well for the Chebyshev polynomial filter application time. For
the Li3D systems, the weak scaling efficiency of CheFSI is
about 70% using 3072 cores, while it is about 65% using 4608
cores for the Graphene2D systems. The performance of the
polynomial filter application routine for both these systems
is close to 90%. These results demonstrate again the critical
importance of an efficient, well scaling subspace solution as
system size increases beyond a few thousand atoms.

B. Benchmark calculations

As the final test of computational efficiency, we study
the performance of CheFSI on large benchmark systems and
compare the wall time to solution between CheFSI, direct
ScaLAPACK diagonalization, and PEXSI. We choose the
Li3D3×3×3 and Graphene2D8×8 systems for this study. 13 824
computational cores were used for both systems. The results
are shown in Table I.

The results show that CheFSI is by far the fastest of
all the three approaches (up to more than an order of
magnitude faster), particularly for the bulk system. Even
for the two-dimensional material system, a geometry in which
PEXSI is known to perform particularly well, CheFSI is able
to outperform with the same number of cores. Due to the
good scalability properties of PEXSI, the wall time for the
Graphene2D8×8 system can be brought down to be comparable
to CheFSI (using 55 296 cores, for instance), but overall
CheFSI remains more economical in terms of computational
resources used (total CPU-hours, for example). We have
also observed that the timing results remain favorable for

TABLE I. Solution wall times per SCF step (rounded to nearest second) for
direct ScaLAPACK diagonalization, PEXSI, and CheFSI on 13 824 compu-
tational cores for two large systems.

System ScaLAPACK PEXSI CheFSI

Li3D3×3×3

8586 atoms 3323 3784 170
∼15 000 states

Graphene2D8×8
11 520 atoms 2473 426 105
∼23 200 states

TABLE II. Wall times for various stages of the SCF cycle (rounded to nearest
second) with the DGDFT–CheFSI approach for two large systems using
55 296 computational cores. The numbers in parentheses indicate the wall
time spent on the filtering step.

ALB Hamiltonian CheFSI Total SCF
System generation update (filtering) time

Li3D3×3×3 11 3 76 (36) 90
Graphene2D8×8 5 4 66 (16) 75

CheFSI for smaller systems, such as those used in the scaling
performance studies.

In order to obtain an estimate of the SCF wall times
achievable with the DGDFT-CheFSI framework on large-
scale computational platforms, we studied the Li3D3×3×3 and
Graphene2D8×8 systems using 55 296 computational cores.
The results are shown in Table II.

It is apparent from the results in Table II that for these
systems, the largest fraction of the total SCF time is spent
on the solution of the subspace problem. Thus the cubic
computational complexity associated with the solution of the
subspace problem starts to dominate as the system size grows
larger, beyond a few thousand atoms in the present case.

IV. CONCLUSION

We have used Chebyshev polynomial filtered subspace
iteration (CheFSI) within the discontinuous Galerkin method
to enable large-scale first principles simulations of a
wide variety of materials systems using density functional
theory. Due to a number of attractive features of the DG
Hamiltonian matrix, the implementation of CheFSI within the
discontinuous Galerkin framework allows the computation of
the Kohn-Sham eigenstates of the Hamiltonian to be carried
out in a highly efficient and scalable manner. By virtue of
the limited spectral width of the DG Hamiltonian matrix,
relatively low polynomial orders suffice, reducing the number
of matrix-vector multiplies required, while the block-sparse
structure of the DG Hamiltonian facilitates efficient, parallel
implementation of each multiply. In addition, the strict locality
and orthonormality of the adaptive local basis facilitates
realignment of eigenvector coefficients from one SCF step to
the next, as the basis is optimized on-the-fly at each step. Taken
together, these advantages yield an accurate, systematically
improvable electronic structure method, applicable to metals
and insulators alike, capable of simulating thousands of atoms
in tens of seconds per SCF iteration on large-scale parallel
computers.

In the near future, we aim to carry out large-scale quantum
molecular dynamics simulations of various materials systems
using the DGDFT-CheFSI technique. Of particular interest to
us are accurate simulations of the solid-electrolyte interphase
(SEI) layer in lithium-ion batteries, and we anticipate that
the new methodology will enable accurate simulations of
unprecedented size.

While the current methodology can simulate a few
thousand atoms in a few tens of seconds per SCF iteration with
planewave accuracy, to reach further still, to 10 000 atoms or

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

154101-12 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

more with comparable efficiency, will require a substantially
more efficient and scalable solution of the subspace problem.
We aim to address this issue in future work. One possible
avenue for making this step more scalable is to replace the use
of Cholesky factorization and eigensolution (for the Rayleigh-
Ritz step) with operations which involve only parallel dense
matrix multiplications in the occupied subspace. Parallel
dense matrix multiplication tends to scale more favorably
and therefore stands to relieve the scalability bottleneck in the
current approach. Yet another, more radical possibility would
be to dispense with the CheFSI methodology completely, thus
avoiding the Rayleigh-Ritz step. Computational techniques
such as FEAST66 or spectrum slicing67 might be used to
compute the spectrum of HDG instead. However, compared
to more conventional methods like CheFSI, these techniques
are likely more suitable for the next generation of computing
platforms.49 An interesting avenue for future work, therefore,
would be to investigate whether such techniques can be made
to yield significant performance benefits on current parallel
computing platforms for physical systems of the types and
sizes considered here.

Finally, comparison of the performance of DGDFT-
CheFSI with other massively parallel electronic structure
codes, such as Qbox,68,69 is another interesting avenue for
research, which the authors are pursuing presently.

ACKNOWLEDGMENTS

This work was performed, in part, under the auspices
of the U.S. Department of Energy by Lawrence Liver-
more National Laboratory under Contract No. DE-AC52-
07NA27344. The support for this work was provided through
Scientific Discovery through Advanced Computing (SciDAC)
program funded by the U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research and
Basic Energy Sciences (A.S.B., L.L., W.H., C.Y., and J.E.P.),
and by the Center for Applied Mathematics for Energy
Research Applications (CAMERA), which is a partnership
between Basic Energy Sciences and Advanced Scientific
Computing Research at the U.S. Department of Energy
(L.L. and C.Y.). The authors thank the National Energy
Research Scientific Computing (NERSC) center for making
computational resources available to them. A.S.B. would
like to thank Meiyue Shao (Lawrence Berkeley Lab) for
informative discussions and for his help with improving the
presentation of the manuscript. The authors would also like
to thank the anonymous reviewers for their comments which
helped in improving the manuscript.

1P. C. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).
2W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).
3R. M. Martin, Electronic Structure: Basic Theory and Practical Methods,
1st ed. (Cambridge University Press, 2004).

4J. Kohanoff, Electronic Structure Calculations for Solids and Molecules:
Theory and Computational Methods, 1st ed. (Cambridge University Press,
2006).

5M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos,
Rev. Mod. Phys. 64, 1045 (1992).

6G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
7J. Pask and P. Sterne, Modell. Simul. Mater. Sci. Eng. 13, R71 (2005).
8E. Tsuchida and M. Tsukada, Phys. Rev. B 52, 5573 (1995).

9H. Chen, X. Dai, X. Gong, L. He, and A. Zhou, Multiscale Model. Simul.
12, 1828 (2014).

10P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya, and M. Ortiz,
J. Mech. Phys. Solids 58, 256 (2010).

11J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev. B 50, 11355
(1994).

12J. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lett. 72, 1240 (1994).
13S. Ghosh and P. Suryanarayana, preprint arXiv:1603.04334 (2016).
14A. Castro, H. Appel, M. Oliveira, C. Rozzi, X. Andrade, F. Lorenzen, M.

Marques, E. Gross, and A. Rubio, Phys. Status Solidi B 243, 2465 (2006).
15A. S. Banerjee, R. S. Elliott, and R. D. James, J. Comput. Phys. 287, 226

(2015).
16A. S. Banerjee, Density Functional Methods for Objective Structures: The-

ory and Simulation Schemes, Ph.D. thesis, University of Minnesota, Min-
neapolis, 2013.

17W. Hehre, R. Stewart, and J. Pople, J. Chem. Phys. 51, 2657 (1969).
18J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
19J. Soler, E. Artacho, J. Gale, A. Garca, J. Junquera, P. Ordejn, and D. Snchez-

Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
20V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M.

Scheffler, Comput. Phys. Commun. 180, 2175 (2009).
21L. Lin, J. Lu, L. Ying, and E. Weinan, J. Comput. Phys. 231, 2140 (2012).
22G. Zhang, L. Lin, W. Hu, C. Yang, and J. E. Pask, preprint arXiv:1510.

06489 (2015).
23W. Hu, L. Lin, and C. Yang, J. Chem. Phys. 143, 124110 (2015).
24W. Hu, L. Lin, and C. Yang, Phys. Chem. Chem. Phys. 17, 31397 (2015).
25D. N. Arnold, SIAM J. Numer. Anal. 19, 742 (1982).
26J. Kaye, L. Lin, and C. Yang, Commun. Math. Sci. 13, 1741 (2015).
27L. Lin and B. Stamm, preprint arXiv:1502.01738 (2015).
28L. Lin and B. Stamm, preprint arXiv:1603.04456 (2016).
29L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,

J. Dongarra, S. Hammarling, G. Henry, A. Petitet et al., ScaLAPACK Users’
Guide (SIAM, 1997), Vol. 4.

30J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K.
Stanley, D. Walker, and R. C. Whaley, Applied Parallel Computing Compu-
tations in Physics, Chemistry and Engineering Science (Springer, 1995),
pp. 95–106.

31S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).
32D. Bowler and T. Miyazaki, Rep. Prog. Phys. 75, 036503 (2012).
33N. D. Hine, P. D. Haynes, A. A. Mostofi, C.-K. Skylaris, and M. C. Payne,

Comput. Phys. Commun. 180, 1041 (2009).
34J. VandeVondele, U. Borstnik, and J. Hutter, J. Chem. Theory Comput. 8,

3565 (2012).
35J.-L. Fattebert and F. Gygi, Phys. Rev. B 73, 115124 (2006).
36L. Lin, J. Lu, L. Ying, R. Car, and W. E, Commun. Math. Sci. 7, 755 (2009).
37L. Lin, M. Chen, C. Yang, and L. He, J. Phys.: Condens. Matter 25, 295501

(2013).
38L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26,

305503 (2014).
39E. R. Davidson, J. Comput. Phys. 17, 87 (1975).
40E. R. Davidson, Comput. Phys. Commun. 53, 49 (1989).
41F. Bottin, S. Leroux, A. Knyazev, and G. Zérah, Comput. Mater. Sci. 42, 329

(2008).
42E. Vecharynski, C. Yang, and J. E. Pask, J. Comput. Phys. 290, 73 (2015).
43Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, J. Comput. Phys. 219,

172 (2006).
44Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky, Phys. Rev. E 74,

066704 (2006).
45Y. Zhou, J. R. Chelikowsky, and Y. Saad, J. Comput. Phys. 274, 770 (2014).
46V. Michaud-Rioux, L. Zhang, and H. Guo, J. Comput. Phys. 307, 593 (2016).
47P. Motamarri, M. Nowak, K. Leiter, J. Knap, and V. Gavini, J. Comput. Phys.

253, 308 (2013).
48A. S. Banerjee and P. Suryanarayana, J. Mech. Phys. Solids 96, 605 (2016).
49A. Levitt and M. Torrent, Comput. Phys. Commun. 187, 98 (2015).
50D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).
51Y. Cai, Z. Bai, J. E. Pask, and N. Sukumar, J. Comput. Phys. 255, 16 (2013).
52L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
53Y. Saad, Numerical Methods for Large Eigenvalue Problems, Revised ed.

(SIAM, 2011).
54M. Gu, in Templates for the Solution of Algebraic Eigenvalue Problems: A

Practical Guide, edited by Z. Bai, J. Demmelc, J. Dongarra, A. Ruhe, and
H. van der Vorst (SIAM, Philadelphia, 2000).

55U. Stephan, D. A. Drabold, and R. M. Martin, Phys. Rev. B 58, 13472 (1998).
56S. Baroni and P. Giannozzi, Europhys. Lett. 17, 547 (1992).
57F. L. Bauer, Z. Angew. Math. Phys. ZAMP 8, 214 (1957).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/RevModPhys.64.1045
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1088/0965-0393/13/3/R01
http://dx.doi.org/10.1103/PhysRevB.52.5573
http://dx.doi.org/10.1137/130916096
http://dx.doi.org/10.1016/j.jmps.2009.10.002
http://dx.doi.org/10.1016/j.jmps.2009.10.002
http://dx.doi.org/10.1103/PhysRevB.50.11355
http://dx.doi.org/10.1103/PhysRevLett.72.1240
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://arxiv.org/abs/1603.04334
http://dx.doi.org/10.1002/pssb.200642067
http://dx.doi.org/10.1016/j.jcp.2015.02.009
http://dx.doi.org/10.1063/1.1672392
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.jcp.2011.11.032
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://arxiv.org/abs/1510.06489
http://dx.doi.org/10.1063/1.4931732
http://dx.doi.org/10.1039/C5CP00333D
http://dx.doi.org/10.1137/0719052
http://dx.doi.org/10.4310/CMS.2015.v13.n7.a5
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1502.01738
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://arxiv.org/abs/1603.04456
http://dx.doi.org/10.1103/RevModPhys.71.1085
http://dx.doi.org/10.1088/0034-4885/75/3/036503
http://dx.doi.org/10.1016/j.cpc.2008.12.023
http://dx.doi.org/10.1021/ct200897x
http://dx.doi.org/10.1103/PhysRevB.73.115124
http://dx.doi.org/10.4310/CMS.2009.v7.n1.a12
http://dx.doi.org/10.1088/0953-8984/25/29/295501
http://dx.doi.org/10.1088/0953-8984/26/30/305503
http://dx.doi.org/10.1016/0021-9991(75)90065-0
http://dx.doi.org/10.1016/0010-4655(89)90147-1
http://dx.doi.org/10.1016/j.commatsci.2007.07.019
http://dx.doi.org/10.1016/j.jcp.2015.02.030
http://dx.doi.org/10.1016/j.jcp.2006.03.017
http://dx.doi.org/10.1103/PhysRevE.74.066704
http://dx.doi.org/10.1016/j.jcp.2014.06.056
http://dx.doi.org/10.1016/j.jcp.2015.12.014
http://dx.doi.org/10.1016/j.jcp.2013.06.042
http://dx.doi.org/10.1016/j.jmps.2016.08.007
http://dx.doi.org/10.1016/j.cpc.2014.10.015
http://dx.doi.org/10.1063/1.3484283
http://dx.doi.org/10.1016/j.jcp.2013.07.020
http://dx.doi.org/10.1103/PhysRevLett.48.1425
http://dx.doi.org/10.1103/PhysRevB.58.13472
http://dx.doi.org/10.1209/0295-5075/17/6/012
http://dx.doi.org/10.1007/BF01600502

154101-13 Banerjee et al. J. Chem. Phys. 145, 154101 (2016)

58H. Rutishauser, Numer. Math. 13, 4 (1969).
59H. Rutishauser, Numer. Math. 16, 205 (1970).
60J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Wha-

ley, Applied Parallel Computing Computations in Physics, Chemistry and
Engineering Science (Springer, 1995), pp. 107–114.

61J. W. Daniel, W. B. Gragg, L. Kaufman, and G. Stewart, Math. Comput. 30,
772 (1976).

62C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).
63S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
64P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

65A. S. Banerjee, P. Suryanarayana, and J. E. Pask, Chem. Phys. Lett. 647, 31
(2016).

66E. Polizzi, Phys. Rev. B 79, 115112 (2009).
67G. Schofield, J. R. Chelikowsky, and Y. Saad, Comput. Phys. Commun. 183,

497 (2012).
68F. Gygi, R. K. Yates, J. Lorenz, E. W. Draeger, F. Franchetti, C. W. Ueberhu-

ber, B. R. d. Supinski, S. Kral, J. A. Gunnels, and J. C. Sexton, Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing (IEEE Computer
Society, 2005), p. 24.

69F. Gygi, IBM J. Res. Dev. 52, 137 (2008).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 128.3.5.42 On: Mon, 17 Oct

2016 15:06:34

http://dx.doi.org/10.1007/BF02165269
http://dx.doi.org/10.1007/BF02219773
http://dx.doi.org/10.2307/2005398
http://dx.doi.org/10.1103/PhysRevB.58.3641
http://dx.doi.org/10.1103/PhysRevB.54.1703
http://dx.doi.org/10.1016/0009-2614(80)80396-4
http://dx.doi.org/10.1016/j.cplett.2016.01.033
http://dx.doi.org/10.1103/PhysRevB.79.115112
http://dx.doi.org/10.1016/j.cpc.2011.11.005
http://dx.doi.org/10.1147/rd.521.0137

