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Edge reconstruction in armchair phosphorene
nanoribbons revealed by discontinuous
Galerkin density functional theory

Wei Hu,*a Lin Lin*ab and Chao Yang*a

With the help of our recently developed massively parallel DGDFT (Discontinuous Galerkin Density

Functional Theory) methodology, we perform large-scale Kohn–Sham density functional theory calcu-

lations on phosphorene nanoribbons with armchair edges (ACPNRs) containing a few thousands to ten

thousand atoms. The use of DGDFT allows us to systematically achieve a conventional plane wave basis

set type of accuracy, but with a much smaller number (about 15) of adaptive local basis (ALB) functions

per atom for this system. The relatively small number of degrees of freedom required to represent the

Kohn–Sham Hamiltonian, together with the use of the pole expansion the selected inversion (PEXSI)

technique that circumvents the need to diagonalize the Hamiltonian, results in a highly efficient

and scalable computational scheme for analyzing the electronic structures of ACPNRs as well as

their dynamics. The total wall clock time for calculating the electronic structures of large-scale

ACPNRs containing 1080–10 800 atoms is only 10–25 s per self-consistent field (SCF) iteration, with

accuracy fully comparable to that obtained from conventional planewave DFT calculations. For the

ACPNR system, we observe that the DGDFT methodology can scale to 5000–50 000 processors.

We use DGDFT based ab initio molecular dynamics (AIMD) calculations to study the thermodynamic

stability of ACPNRs. Our calculations reveal that a 2 � 1 edge reconstruction appears in ACPNRs at

room temperature.

1 Introduction

Kohn–Sham density functional theory (DFT)1,2 is the most
widely used methodology for performing ab initio electronic
structure calculations to study the structural and electronic
properties of molecules, solids and nanomaterials. However,
until recently, DFT calculations are limited to small systems
because they have a relatively high complexity (O(N2,3)) with
the system size N. As the system size increases, the cost of
traditional DFT calculations becomes prohibitively expensive.
Therefore, it is still challenging to use DFT calculations to treat
large-scale systems that may contain thousands or tens of
thousands of atoms. Although various linear scaling O(N1)
methods3–5 have been proposed for improving the efficiency
of DFT calculations, they rely on the nearsightedness principle,
which leads to exponentially localized density matrices in
real-space for systems with a finite energy gap or at finite
temperature. On the other hand, most of the existing linear

scaling DFT codes, such as SIESTA,6 CONQUEST,7 OPENMX8

and HONPAS,9 are based on the contracted and localized basis
sets in the real-space, such as Gaussian-type orbitals or numerical
atomic orbitals.4 It is relatively difficult to improve the accuracy
of methods based on such contracted basis functions in a
systematic fashion compared to methods based on conventional
uniform basis sets, for example, the planewave basis set.10 The
disadvantage of using uniform basis sets is the relatively large
number of basis functions required per atom.

Recently, we have developed a massively parallel DGDFT
(Discontinuous Galerkin Density Functional Theory) metho-
dology for performing efficient large-scale Kohn–Sham DFT
calculations. The methodology is based on the combination
of the adaptive local basis (ALB) set11 and the pole expansion
and selected inversion (PEXSI) technique.12–14 The ALB func-
tions are localized in the real space and discontinuous in
the global domain. The continuous Kohn–Sham orbitals and
density are assembled from the discontinuous basis functions
using the discontinuous Galerkin (DG) method.15,16 Because
it is rooted in a domain decomposition approach that takes
the chemical environment effects into account, the ALB set
constructed by the DGDFT methodology is systematically
improvable. It can achieve the same level of accuracy obtained
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by conventional plane wave calculations with much fewer
number of basis functions. The sparse Hamiltonian matrix
generated from DGDFT can take advantage of the PEXSI
method. The PEXSI method overcomes the O(N3) scaling limit
for solving Kohn–Sham DFT, and scales at most as O(N2) even
for metallic systems at room temperature. In particular, the
computational complexity of the PEXSI method is only O(N) for
1D systems, and is O(N1.5) for 2D systems. This also makes the
DGDFT methodology particularly suitable for analyzing low-
dimensional (1D and 2D) systems regardless of whether the
system is a metal, a semiconductor or an insulator.13

In this paper, we demonstrate the accuracy and efficiency
of DGDFT by using it to analyze the electronic structures
and thermodynamic stability of armchair phosphorene nano-
ribbons (ACPNRs), which are interesting 1D derivatives of
phosphorene with some remarkable properties. We use DGDFT
to perform both static electronic structure calculations as well as
ab initio molecular dynamics (AIMD) calculations. Our AIMD
calculations reveal that a 2 � 1 edge reconstruction appears in
the edge unpassivated ACPNRs at room temperature.

The paper is organized as follows. In Section 2, we introduce
our recently developed massively parallel DGDFT methodology
for efficient large-scale Kohn–Sham DFT based electronic
structure calculations. In Section 3, we provide some back-
ground on phosphorene nanoribbons that we examine. We
report the results obtained from applying DGDFT to ACPNRs in
Section 4. We demonstrate that the DGDFT methodology
can achieve high accuracy with much fewer basis functions
compared to the conventional planewave discretized calcu-
lations. We also show that DGDFT can handle large ACPNR
systems with thousands or even tens of thousands of atoms.
Furthermore, we show that the DGDFT methodology is highly
scalable on modern high performance computers because it
contains multiple levels of parallelization. Finally, we show that
by using DGDFT based ab initio molecular dynamics (AIMD)
calculations, we are able to identify a 2 � 1 edge reconstruction
in the edge-unpassivated ACPNRs at room temperature. This
observation suggests that PNRs may modify their electronic
structures over time, hence are suitable phosphorene-based
candidate materials for nanoelectronics.

2 DGDFT methodology

In this section, we briefly present the mathematical foundation
and algorithmic ingredients of the DGDFT methodology.
DGDFT constructs an adaptive local basis set (ALB) in the
discontinuous Galerkin (DG) framework.11 We explain why
the implementation of DGDFT is highly scalable on massively
parallel computers. Because the sparse Hamiltonian con-
structed by DGDFT can take full advantage of the recently
developed pole expansion and selected inversion (PEXSI)
method12–14 to overcome the O(N3) scaling of diagonalization
methods, it can be used to study the electronic structures
and ab initio molecular dynamics (AIMD) of large-scale
atomistic systems.

2.1 Adaptive local basis set in a discontinuous Galerkin
framework

In our recent work,11 we have presented a new way to discretize
the Kohn–Sham Hamiltonian, called the adaptive local basis
functions (ALB). The basic idea of ALB is to use eigenfunctions
of the Kohn–Sham Hamiltonian defined on local domains to
construct basis functions. Compared to atom-centered basis
functions such as Gaussian type orbitals and numerical atomic
orbitals, such a procedure encodes not only the atomic struc-
ture but also environmental effects into the basis functions. In
practice, we partition the global computational domain into a
number of subdomains (called elements). Then we define a
buffer area for each element that typically includes its nearest
neighbor elements. We refer to the element together with its
buffer area as an extended element. For instance, Fig. 1 shows
an ACPNR with 54 P atoms (P54 system) partitioned along the
Z-direction into 5 elements. The extended element associated
with the second element E2 contains elements E1, E2, E3, and
the extended element associated with the third element E3

contains elements E2, E3, E4 and so on. We compute eigenfunc-
tions for a local Kohn–Sham problem in each extended element
with periodic boundary conditions using a local planewave
basis set. The artificial effect due to the periodic boundary
condition of the extended element is reduced by restricting the
point-wise values of eigenfunctions from the extended element
to the element, and the restricted eigenfunctions are mutually
orthogonalized on the element. We call such orthogonalized
functions adaptive local basis functions. Note that the ALB
functions can be computed at each step of the self-consistent
field (SCF) iteration through an efficient iterative eigensolver
using e.g. the locally optimal block preconditioned conjugate
gradient (LOBPCG).17

Since the elements are disjoint from each other, each ALB is
strictly zero outside its element, and is not continuous across
the boundaries of different elements. Therefore, we use the
discontinuous Galerkin (DG) method15,16 to construct a finite
dimensional Kohn–Sham Hamiltonian represented by these

Fig. 1 The isosurface of the first three ALB functions, (a) f1, (b) f2, (c) f3,
belonging to the second element and (d) the electron density r across the
YZ plane in the global domain in the example of P54. There are 5 elements
and 160 ALB functions in each element in the P54 system.
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types of discontinuous basis functions. For instance, for
periodic systems in a norm-conserving pseudopotential frame-
work, the linearized DG energy functional at each step of the
self-consistent field (SCF) iteration becomes

EDGðfcigÞ ¼
1

2

XN

i¼1
rci;rcih iTþ Veff ; rh iT

þ
XNA

I¼1

XLI

‘¼1
gI ;‘
XN

i¼1
bI ;‘ð� � RI Þ;ci

� �
T

�� ��2

�
XN

i¼1
ffrcigg; ½½ci��h iS þ a

XN

i¼1
½½ci��; ½½ci��h iS:

(1)

Here T is the collection of all elements in Fig. 1 T = {E1, E2, E3,
E4, E5}, with the collection of all its surfaces denoted by S.
The set {ci}

N
i=1 contains the N occupied Kohn–Sham orbitals

represented as the linear combination of ALB functions. We use
Veff to denote the effective one-body potential (including local
pseudopotential, Hartree potential and the exchange–correlation
potential) at each SCF iteration. The terms that contain bI,c and
gI,c correspond to the nonlocal pseudopotential. Here h�,�iT is
the sum of the inner product on each element, and h�,�iS
is the sum of the inner product on each surface. {{�}} and [[�]]
are the average and the jump operators across surfaces due to
the discontinuity of the basis functions. We refer the readers to
ref. 11 for more detailed information. What distinguishes the
DG formulation from the standard Kohn–Sham formulation of
the DFT problem is the last two terms in eqn (1), which comes
from the integration by parts of the Laplacian operator, and a
penalty term to stabilize the numerical evaluation of the energy,
respectively. The DG method modifies the Kohn–Sham energy
functional so that the kinetic energy functional is well defined
even with discontinuous basis functions. The DG solution is
also fully consistent with the solution of standard Kohn–Sham
equations in the limit of a complete basis set, and the error
can be measured by a posteriori error estimators.18 The ALB
functions can achieve high accuracy (less than 1 meV per atom)
in the total energy calculation with a very small number (4–40)
of basis functions per atom, compared to fully converged
planewave calculations.

Using a 1D ACPNR (P54) as an example, we show the
isosurfaces of the first three ALB functions in the second
element in Fig. 1(a)–(c). The global computational domain is
partitioned along the Z-direction into 5 elements. Each ALB
function shown is strictly localized inside the second element
and is therefore discontinuous across the boundary of elements.
On the other hand, each ALB function is delocalized across a
few atoms inside the element since they are obtained from
eigenfunctions of local Kohn–Sham Hamiltonian. Although
the basis functions are discontinuous, the electron density is
well-defined and is very close to be a continuous function in
the global domain (Fig. 1(d)) once the local contributions are
assembled. It should be noted that all ALB functions are by
construction mutually orthogonal. Thus the corresponding

overlap matrix is an identity matrix. Hence, this formulation
avoids solving a generalized eigenvalue problem that has a
potentially ill-conditioned overlap matrix.

2.2 Two level parallelization strategy

The DGDFT framework naturally allows two levels of parallelization.
For each element, the computation of eigenfunctions for the
local Kohn–Sham Hamiltonian can be parallelized similar to
how a regular Kohn–Sham DFT solver with planewave basis sets
is parallelized. This type of fine-grained parallelization is called
intra-element parallelization. On top of this, the computation
of eigenfunctions for different elements together with the
construction of the DG Hamiltonian can be naturally parallelized
at a coarse grain level. This is called inter-element parallelization.
We optimized the data communication structure so that different
levels of parallelization can be seamlessly and efficiently performed.
We will demonstrate the details of the parallelization strategy
on massively parallel computers in a separate publication
in preparation.19

In the intra-element parallelization, the wavefunction and
eigenfunctions of each extended element are distributed
among different processors. The number of eigenfunctions to
be computed for a single element is usually on the order of 100,
and intra-element parallelization can scale to several hundred
processors. The level of concurrency that can be achieved in the
inter-element parallelization is determined by the number of
elements. In the DGDFT method, each element usually takes
around 10 atoms, and for a system containing 1000 atoms there
should be around 100 elements. As a result, the two-level
parallelization strategy can readily scale to 10 000 processors.
For the largest ACPNR system studied in this work, the number
of processors used is 50 000 processors.

2.3 Pole expansion and selected inversion method

Once the DG Hamiltonian is constructed, one can solve a
standard eigenvalue problem to obtain physical quantities such
as electron density, total energy and atomic forces. This can be
done by treating the DG Hamiltonian matrix as a dense matrix
and by solving the eigenvalue problem via standard parallel
linear algebra software packages for dense matrices, e.g.
ScaLAPACK20 (referred to as the ‘‘DIAG’’ method). The compu-
tational cost of the DIAG method scales as O(N3). This parallel
scalability of the ScaLAPACK diagonalization subroutine is
limited to a few thousands of processors. When more than
10 000 processors are available, DIAG can become the computa-
tional bottleneck because it cannot take advantage of that many
processors even though other parts of the DGDFT calculation
become less time consuming.

The recently developed pole expansion and selected inversion
(PEXSI) method12–14 avoids the diagonalization procedure com-
pletely. It evaluates physical quantities such as electron density,
energy, atomic force without calculating any eigenvalue or eigen-
function, and reduces the computational complexity to at most
O(N2) without sacrificing accuracy even for metallic systems. In
particular, the computational complexity of the PEXSI method is
only O(N) for 1D systems (such as ACPNRs studied here), and is
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O(N1.5) for 2D systems. These are much more favorable
compared with the O(N3) complexity of the DIAG method.
Therefore, the PEXSI method is particularly suitable to study
the electronic structure of large scale low-dimensional (1D
and 2D) systems. The PEXSI method is also highly scalable to
more than 10 000 processors, as recently demonstrated in the
massively parallel SIESTA-PEXSI method14,21 based on numerical
atomic orbitals. Therefore the combined DGDFT-PEXSI method
can scale beyond 10 000 processors and solves electronic structure
problem with more than 10 000 atoms.

3 Theoretical model of ACPNRs

Phosphorene, a new two dimensional (2D) elemental
monolayer,22–25 has received a considerable amount of interest
recently after it has been experimentally isolated through
mechanical exfoliation from bulk black phosphorus. Phosphorene
exhibits some remarkable electronic properties superior to
graphene, a well known elemental sp2-hybridized carbon
monolayer.26–28 For example, phosphorene is a direct semi-
conductor with a high hole mobility.22 It has the drain current
modulation up to 105 in nanoelectronics.23 These remarkable
properties have already been used for wide applications in field
effect transistors24 and thin-film solar cells.25 Furthermore, up to
now, phosphorene is the only stable elemental 2D material which
can be mechanically exfoliated in experiments22 besides graphene.
Therefore, it can potentially be used as an alternative to graphene29

in the future and lead to faster semiconductor electronics.
By cutting 2D phosphorene into finite-sized 1D phosphorene

nanoribbons (PNRs), a bandgap engineering technique often
used for graphene30–32 to get graphene nanoribbons (GNRs),33–35

one obtains a new type of material that has been subject to many
theoretical and experimental studies.36–39 The stability and electro-
nic properties of PNRs depend sensitively on the ribbon width and
how it is cut from the 2D phosphorene, which can result in either
armchair or zigzag shaped edges.37 Unlike GNRs,33–35 hydrogen-
passivated PNRs with armchair and zigzag edges are all semi-
conductors with direct band gaps.37 For edge-unpassivated PNRs,
armchair edged PNRs (ACPNRs) are all semiconducting, but zigzag
edged PNRs (ZZPNRs) all exhibit metallic characteristics. Further-
more, it has been found that edge-unpassivated ZZPNRs exhibit
instability at the edge boundary that may easily induce edge
reconstruction and disorder. Using density functional theory
(DFT) calculations, Ramasubramaniam et al.36 have shown that a
2 � 1 edge reconstruction appears in the edge-unpassivated
ZZPNRs. The reconstruction induces different stability and
electronic structures of ZZPNRs. Edge disorder is also observed
by Guo et al.37 in the edge-unpassivated ZZPNRs with ab initio
molecular dynamics calculations.

However, the edge-unpassivated ACPNRs seem to be thermo-
dynamically stable at the edge boundary,37 and up to now, no
edge reconstruction or disorder has been predicted theoretically in
the edge-unpassivated ACPNRs. In the present work, we focus on
the edge-unpassivated ACPNRs because the hydrogen-passivated
PNRs been theoretically proved to be very thermodynamically

stable and the edge reconstruction has been observed in the
edge-unpassivated ZZPNRs.36

Fig. 2 shows the atomic configuration of a 2D phosphorene
monolayer in a 1 � 6 � 4 supercell and some examples of 1D
ACPNRs with a width N = 4 in the unit cell (P18), 1 � 1 � 3 (P54)
and 1 � 1 � 10 (P180) supercells. Other ACPNRs in very large
supercells involving thousand or tens of thousands of atoms, such
as the 1 � 1 � 120 (P2160), 1 � 1 � 240 (P4320) and 1 � 1 � 600
(P10800) supercells, which we adopt in this work, are not shown
here. The vacuum space in the X and Y directions is about 10 Å to
separate the interactions between neighboring slabs in ACPNRs.

4 Results and discussion

In this section, we present computational results obtained by
applying DGDFT to ACPNRs of different sizes. We demonstrate
the accuracy of the calculation and parallel efficiency of DGDFT.
We also report a 2 � 1 edge reconstruction observed in an AIMD
study performed to assess the thermodynamic stability of ACPNRs.

We use the conventional plane wave software package ABINIT40

as a reference to check the accuracy of our DGDFT calculations.
The same exchange–correlation functionals, including the local
density approximation of Goedecker, Teter, Hutter (LDA-Teter93)41

and generalized gradient approximation of Perdew, Burke, and
Ernzerhof (GGA-PBE),42 and the Hartwigsen–Goedecker–Hutter
(HGH) norm-conserving pseudopotential43 are adopted in both
ABINIT and DGDFT software packages. All calculations are per-
formed on the Edison system available at the National Energy
Research Scientific Computing (NERSC) center.

4.1 Computational accuracy

We first check the accuracy of total energy and atomic force of
the DGDFT software package by using P54 shown in Fig. 2(c) as

Fig. 2 Geometric structures of (a) 2D phosphorene in the 1 � 6 � 4
supercell and different 1D ACPNRs with a width N = 4 in the (b) unit cell
(P18), (c) 1 � 1 � 3 (P54) and (d) 1 � 1 � 10 (P180) supercells. The violet balls
denote phosphorus atoms. Two types of edges, armchair and zigzag, are
highlighted in the inset.
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an example. To simplify our discussion, we define the total
energy error per atom DE (Hartree per atom) and maximum
atomic force error DF (Hartree per Bohr) as

DE = (EDGDFT � EABINIT)/N

and

DF ¼ max
I

FDGDFT
I � FABINIT

I

�� ��

respectively, where N and I correspond to the total number of
atoms and an atom index, EDGDFT and EABINIT represent the
total energy computed by DGDFT and ABINIT respectively, and
FDGDFT

I and FABINIT
I represent the Hellmann–Feynman force on

the Ith phosphorus atom in P54 computed by DGDFT and
ABINIT, respectively. We find that neglecting the Pulay force
in the atomic force leads to moderate deviation in the conserved
energy in the AIMD simulation. The ABINIT results are obtained by
setting the energy cutoff to 200 Hartree for the wavefunction to
ensure full convergence. The kinetic energy cutoff (denoted by Ecut)
in the DGDFT method is used to define the grid size for computing
the ALBs as is in standard Kohn–Sham DFT calculations using
planewave basis sets. Ecut is also directly related to the Legendre–
Gauss–Lobatto (LGL) integration grid defined on each element and
used to perform numerical integration as needed to construct the
DG Hamiltonian matrix.

Table 1 shows that the total energy and atomic forces
produced by the DGDFT method are highly accurate compared
to the ABINIT results. In particular, the total energy error DE
can be as small as 6.6 � 10�6 Hartree per atom if the DIAG
method is used to compute the charge density and 3.7 � 10�5

Hartree per atom if the PEXSI method is used to compute the
charge density respectively. The maximum error of the atomic
force can be as small as 9.4� 10�5 Hartree per Bohr when DIAG
is used and 9.1 � 10�5 Hartree per Bohr when PEXSI is used.
These results are obtained when only a relatively small number
(28) of ALB functions per atom are used to construct the global
DG Hamiltonian. The energy cutoff for the local wavefunctions
use to represent the ALB functions is set to 200 Hartree in this
case. Note that the accuracy of total energy and atomic force in

DGDFT depends on both the energy cutoff for local wave-
functions defined on an extended element and the number of
ALB functions. We can see from Table 1 that the accuracy in energy
and forces both improve as either the energy cutoff or the number
of ALB functions increases. This clearly demonstrates that the ALB
set produced by the DGDFT methodology is systematically impro-
vable. Furthermore, DGDFT can also give accurate energy gaps of
P54, which are calculated to be 0.72927 and 0.72919 eV with
DGDFT and ABINIT, respectively, when the energy cutoff is
set to be 200 Hartree.

When the PEXSI method12–14 is used to compute the charge
density, the accuracy of the computation is determined by the
number of poles used in the pole expansion.13 We examined
the effect of the number of poles on the accuracy of total energy
and atomic force in DGDFT, and found that sufficiently high
accuracy (comparable to that achieved by using the DIAG
method to compute the charge density) can be achieved when
the number of poles is set to 50.

In our parallel efficiency tests and AIMD simulations, we use
an energy cutoff of 40 Hartree for wavefunction and 15 ALB
functions per atom to achieve a good agreement between accuracy
and computational efficiency, and also give a good energy gap of
0.7302 eV for P54. For this particular choice of energy cutoff and
number of ALB functions, we are able to keep the total energy
error under 1 � 10�4 Hartree per atom and atomic force error
under 1 � 10�3 Hartree per Bohr for large-scale ACPNRs.

4.2 Parallel efficiency

In the DGDFT method, each SCF iteration performs the follow-
ing three main steps of computation: (a) the generation of ALB
functions, (b) the construction of the DG Hamiltonian matrix
via ALB functions and (c) the evaluation of the approximate
charge density, energy and atomic forces by either diagonaliz-
ing the DG Hamiltonian (DIAG) or by using the PEXSI techni-
que. Note that there are some additional steps such as the
computation of energy, charge mixing or potential mixing, and
intermediate data communication etc. The cost of these steps is
included in the total wall clock time in Fig. 3(d).

Fig. 3 shows the strong parallel scaling of these three
individual steps of computation, as well as the overall compu-
tation, for three large scale ACPNRs (P2160, P4320 and P10800) in
terms of the wall clock time per SCF step.

The wall clock time of the first two steps is independent of
whether PEXSI or DIAG is used to evaluate electron density,
energy and forces. Fig. 3(a) and (b) show that they both scale
nearly perfectly with respect to the number of processors used
in the computation for all test problems we used. Furthermore,
the total wall clock time required to perform each one of these
steps is reduced to a few seconds even for P10800 when more
than 10 000 processors are used in the computation.

Fig. 3(c) and (d) show that the evaluation of the approximate
charge density using the DG Hamiltonian matrix dominates the
total wall clock time per SCF iteration in the DGDFT methodol-
ogy. For large-scale ACPNRs, the PEXSI method can effectively
reduce the wall clock time compared to the DIAG method in the
DGDFT methodology. Furthermore, using the DIAG method

Table 1 The accuracy of DGDFT in terms of the total energy error per
atom DE (Hartree per atom) and the maximum atomic force error DF
(Hartree/Bohr) in the DIAG and PEXSI methods with different energy cutoff
Ecut (Hartree) of wavefunction and the number of ALB functions per atom,
compared with converged ABINIT calculations. #ALB means the number
of ALB functions per atom

DGDFT P54 DIAG PEXSI

Ecut #ALB DE DF DE DF

10 28 1.94 � 10�02 4.81 � 10�02 1.94 � 10�02 4.81 � 10�02

20 28 6.49 � 10�04 5.12 � 10�03 5.39 � 10�04 1.67 � 10�02

40 10 1.28 � 10�03 1.52 � 10�02 1.21 � 10�03 4.19 � 10�03

40 12 5.54 � 10�04 2.17 � 10�03 6.45 � 10�04 2.17 � 10�03

40 15 1.87 � 10�04 9.54 � 10�04 1.16 � 10�04 9.57 � 10�04

40 19 7.00 � 10�05 4.00 � 10�04 7.12 � 10�05 4.13 � 10�04

40 28 9.64 � 10�06 2.90 � 10�04 4.21 � 10�05 2.84 � 10�04

100 28 8.25 � 10�06 1.24 � 10�04 2.90 � 10�05 1.31 � 10�04

200 28 6.62 � 10�06 9.43 � 10�05 3.66 � 10�05 9.09 � 10�05
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with ScaLAPACK20 appears to limit the strong parallel scalability
for large-scale ACPNRs to at most 5000 processors on the Edison.
Increasing the number of processors beyond that can lead to an
increase in wall clock time. In contrast, the PEXSI method exhibits
highly scalable performance. It can make efficient use of more
than 20 000–50 000 processors on Edison for P10800. It should be
noted that the total wall clock time required for performing large-
scale ACPNRs containing thousands or tens of thousands of
atoms is only about 10–25 seconds per SCF iteration.

4.3 AIMD simulation

Ab initio molecular dynamics (AIMD) simulation capability has
been implemented in the DGDFT method.44 We use DGDFT
AIMD simulation to study the thermodynamic stability of
ACPNRs. Using P180 as an example, we perform an AIMD
simulation to obtain a 2.5 picosecond (ps) trajectory of ACPNR
dynamics with a time step of 2.0 femtosecond (fs) under a
canonical ensemble with the temperature fixed at 300 K controlled
by a single level Nose–Hoover thermostat.45,46 The mass of
the Nose–Hoover thermostat is chosen to be 85 000 au. We
use the GGA-PBE42 exchange–correlation functional for this
particular simulation.

In Fig. 4, we plot the temperature (computed by 3/2NkBT = EK

where EK is the kinetic energy) and total free energy of P180

along the simulated trajectory. The temperature of the system
reaches around 300 K after 1.5 ps. Although DGDFT only uses
the Hellmann–Feynman force, we have observed that the drift
of the conserved Hamiltonian in the Nose–Hoover thermostat
is relatively small at 2.6 � 10�4 Hartree per atom per ps.

We examine the electronic structures of P180 during 2.5 ps at
300 K as shown in Fig. 5. Geometric structures and density of
states (DOS) of three AIMD snapshots at t = 0.0, 0.6 and 2.0 ps
are plotted in Fig. 5(b) and (c). In the initial configuration (t =
0.0 ps), the geometry of ACPNR is optimized first by using a
gradient descent method with the Barzilai–Borwein line search
technique47 implemented in DGDFT. After t = 0.6 ps, the
ACPNR exhibits some local deformations due to the thermal
perturbation introduced by the temperature. After t = 2.0 ps,
2 � 1 edge reconstruction can be observed. We find that the
electronic structures of ACPNRs are also affected by thermal
perturbation and edge reconstruction. Fig. 5(a) indicates that
the highest occupied molecular orbital (HOMO) energy is
shifted by around �0.3 eV, and the lowest unoccupied
molecular orbital (LUMO) energy is shifted by around �0.2 eV
along the MD trajectory. The HOMO–LUMO energy gaps of P180

are calculated to be 0.63, 0.44 and 0.38 eV at t = 0.0, 0.6 and
2.0 ps, respectively, showing that the shift of the energy level is
more pronounced for the HOMO than the LUMO as shown in
Fig. 5(c). Therefore, the edge-unpassivated ACPNRs are also
thermodynamically unstable just like the edge-unpassivated
ZZPNRs.36,37 This behavior is quite different from that of

Fig. 3 The change of wall clock time with respect to the number of
processors used for the computation for three ACPNR systems of different
sizes (P2160, P4320 and P10800). (a) Strong scaling of the generation of ALB
function step, (b) strong scaling of the DG Hamiltonian matrix construction
step, (c) strong scaling of the evaluation of the approximate charge density,
energy and forces from the constructed DG Hamiltonian matrix, (d) strong
scaling of the overall computation. The reported wall clock time is for one
SCF iteration. The timing and scaling shown in (c) and (d) depend on
whether DIAG (hollow markers) or PEXSI (solid markers) is used to evaluate
physical quantities such as charge density, energy and forces.

Fig. 4 (a) Kinetic temperature and (b) total free energy along the AIMD
trajectory for the ACPNR (P180). The simulation is performed for 2.5 ps at 300 K.
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edge-unpassivated graphene nanoribbons.33–35 The recon-
struction of edges in PNRs can modify their electronic36,37

and transport38 properties and make them potential candidate
materials for phosphorene-based electronic devices, such as
field effect transistors.24

5 Conclusions

In summary, we developed a massively parallel DGDFT
(Discontinuous Galerkin Density Functional Theory) metho-
dology for efficient large-scale Kohn–Sham density functional
theory (DFT) calculations based on the combination of the
adaptive local basis (ALB) set and the pole expansion and
selected inversion (PEXSI) technique. The DGDFT methodology

can achieve a high basis set accuracy comparable to that
provided by conventional plane wave calculations but with a
small number of ALB basis functions per atom for large-scale
electronic structure calculations that involve thousands or tens
of thousands of atoms. Furthermore, the DGDFT methodology
is highly scalable based on two levels of parallelization (intra-
and inter-element parallelization), which can make efficient
use of more than 50 000 processors on high performance
machines for the systems studied here. Using ab initio molecular
dynamics calculations on armchair phosphorene nanoribbons
(ACPNRs), we find that a 2 � 1 edge reconstruction appears in
ACPNRs at room temperature to modify their electronic structures
for phosphorene-based nanoelectronics in future.
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M. Côté, T. Deutsch, L. Genovese, P. Ghosez,
M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet,
F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-
M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent,
M. J. Verstraete, G. Zerah and J. W. Zwanziger, Comput.
Phys. Commun., 2009, 180, 2582–2615.

41 S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B: Condens.
Matter Mater. Phys., 1996, 54, 1703.

42 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,
1996, 77, 3865.

43 C. Hartwigsen, S. Goedecker and J. Hutter, Phys. Rev. B:
Condens. Matter Mater. Phys., 1998, 58, 3641.

44 G. Zhang, L. Lin, W. Hu, C. Yang and J. E. Pask, 2015,
in preparation.
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