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CONVERGENCE OF ADAPTIVE COMPRESSION METHODS FOR

HARTREE-FOCK-LIKE EQUATIONS

LIN LIN∗ AND MICHAEL LINDSEY†

Abstract. The adaptively compressed exchange (ACE) method provides an efficient way for
solving Hartree-Fock-like equations in quantum physics, chemistry, and materials science. The key
step of the ACE method is to adaptively compress an operator that is possibly dense and full-rank. In
this paper, we present a detailed study of the adaptive compression operation, and establish rigorous
convergence properties of the adaptive compression method in the context of solving linear eigenvalue
problems. Our analysis also elucidates the potential use of the adaptive compression method in a
wide range of problems.
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1. Introduction. The Fock exchange operator plays a fundamental role in many-
body quantum physics. The Hartree-Fock equation (HF) [34] is the starting point of
nearly all wavefunction based correlation methods in quantum chemistry. Hartree-
Fock-like equations also appear in the widely used Kohn-Sham density functional
theory (KSDFT) [17, 20] with hybrid exchange-correlation functionals [2, 16, 30] in
quantum chemistry and materials science. As an example, the B3LYP functional [2],
which is only one specific functional used by KSDFT, has generated more than 60, 000
citations.1

Hartree-Fock-like equations require the solution of a large number of eigenpairs
of a nonlinear integro-differential operator. From a computational perspective, after
linearization and a certain numerical discretization to be detailed later, we solve the
following linear eigenvalue problem

(A+B)vi = λivi, i = 1, . . . , n. (1.1)

Here A,B ∈ CN×N are Hermitian matrices. The eigenvalues {λi} are real and or-
dered non-decreasingly. Due to the Pauli exclusion principle we need to compute the
eigenpairs (λi, vi) corresponding to the lowest n eigenvalues, which are separated from
the rest of the eigenvalues by a positive spectral gap λg := λn+1−λn. Here n encodes
the number of electrons in the system, and can range from tens to tens of thousands.
This means that a potentially large number of eigenpairs need to be computed. We
consider the case that N is large enough so that it is only viable to use an iterative
method to solve (1.1).

In Hartree-Fock-like equations, A in (1.1) is obtained by discretizing a differen-
tial operator involving the Laplace operator. B is obtained by discretizing the Fock
exchange operator, which is an integral operator, and B is negative definite. The
discretized Fock exchange operator B is in general a dense full-rank matrix, and it is
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prohibitively expensive to compute or even to store B. As one refines the discretiza-
tion, the spectral radius of A, denoted by ‖A‖2, can become unbounded, while ‖B‖2
remains bounded. In an iterative method, one needs to repeatedly apply (A + B)
to some vector v, i.e. the matrix-vector multiplication operations Av and Bv are
coupled together. Due to the large spectral radius ‖A‖2, many matrix-vector mul-
tiplications may be needed to reach convergence. In practice, each matrix vector
multiplication Bv requires the solution of n Poisson type equations [15], which is
far more expensive than computing Av. Therefore the computational cost of most
iterative solvers will be dominated by the number of matrix-vector multiplication op-
erations involving B. It is common that the evaluation of Bv alone takes 95% or
more of the overall computational time, which severely limits the capability of solving
Hartree-Fock-like equations for studying quantum systems of large sizes. In the past
decades, there has been a large amount of work dedicated to reducing the cost of per-
forming each matrix-vector multiplication Bv. This is often done by approximating
the dense matrix B by a sparse matrix, which is valid when the spectral gap λg is
large [19, 25, 14, 10, 27, 4, 37, 9, 3, 8, 7].

Recently we have developed an adaptively compressed exchange operator formula-
tion (ACE) [22], which reduces the cost for solving Hartree-Fock-like equations from
a different and yet more general perspective. The key observation is that we only
need to find an effective operator B so that Bv = Bv is satisfied for v ∈ span V ,
where V = [v1, . . . , vn]. B can be constructed to be of strict rank n, and hence the
computational cost of Bv is much smaller than that of Bv. Note that the subspace
span V is precisely the solution for (1.1) and is not known a priori. Therefore B needs
to be constructed in an adaptive manner. Starting from some initial guess V (0), we
will obtain a sequence V (k) and corresponding compressed operators B[V (k)]. More
specifically, our approach is a fixed-point iteration given by

(A+B[V (k)])v
(k+1)
i = λ

(k+1)
i v

(k+1)
i , i = 1, . . . , n. (1.2)

Here the operator B depends nonlinearly on V . If the sequence of subspaces span V (k)

converges to span V , then in the limit the compressed operator B[V (k)] will agree with
B on span V , and the eigenvalue problem (1.1) is solved without loss of accuracy.

This paper aims to prove the convergence properties of this adaptive compression
method. At first glance, the advantage of converting a linear eigenvalue problem (1.1)
to a nonlinear eigenvalue problem (1.2) is not clear. We will see that the adaptive
compression method decouples the matrix-vector multiplication operations Av and
Bv, and asymptotically the number of Bv operations is independent of the spectral
radius ‖A‖2.

We will demonstrate that B depends only on span V , so we can consider the
fixed point iteration (1.2) to be a map P (k) 7→ P (k+1), where P (k) is the orthogonal
projector P (k) = V (k)(V (k))∗. Let HN denote the set of Hermitian N ×N matrices,
and D ⊂ CN×N denote the set of rank-n orthogonal projectors on CN . The main
results of the paper are as follows.

Theorem 1.1 (Optimality). For B ≺ 0, the adaptive compression B[V ] is the
unique rank-n Hermitian matrix that agrees with B on span V . Furthermore, B �
B[V ] � 0.

Theorem 1.2 (Local convergence). For every pair (A,B) ∈ HN × HN with
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B ≺ 0, the fixed point iteration (1.2) converges locally to P = V V ∗. The number
of matrix-vector multiplications Bv needed for k steps of fixed point iteration is nk.
Starting from P (0) ∈ D, the asymptotic convergence rate is

‖P − P (k)‖2 . γk‖P − P (0)‖2, where γ ≤
‖B‖2

‖B‖2 + λg
.

Theorem 1.3 (Global convergence). For almost every pair (A,B) ∈ HN ×HN

(with respect to the Lebesgue measure on HN × HN ) with B ≺ 0, the fixed point
iteration (1.2) converges globally to P = V V ∗ for almost every initial guess P (0) ∈ D
(with respect to a natural measure on D).

Remark 1.4. With minor modification, the condition B ≺ 0 can be relaxed, so
that the adaptive compression method is applicable to all B ∈ HN . See Section 3.2.

Remark 1.5. Let SN denote the set of real-symmetric N×N matrices, and DR ⊂
RN×N denote the set of rank-n orthogonal projectors on RN . Then Theorems 1.2
and 1.3 hold if we replace HN with SN and D with DR.

In practice, Eq. (1.1) is only the linearized Hartree-Fock-like equation, and it
is possible to employ the flexibility in the adaptive compression formulation by de-
laying the update of the compressed operator B to further reduce the number of
Bv operations. This strategy is undertaken in [22]. Numerical observation indicates
that the ACE formulation can significantly reduce the number of iterations to solve
Hartree-Fock-like equations, and may reduce the computational time by an order of
magnitude [22]. The adaptive compression formulation has already been adopted by
community software packages for electronic structure calculations such as Quantum
ESPRESSO [11] for solving Hartree-Fock-like equations for real materials.

1.1. Applicability to nearly degenerate eigenvalue problems. Theorem 1.2
suggests that the adaptive compression method converges fast when the spectral gap
λg is large, which is the case for insulating systems in quantum physics. However, λg
is small for semiconducting systems, and can be virtually zero for metallic systems.
In this case, one can compute n eigenvectors, where n is set to be larger than m, the
number of eigenvectors needed in solving Hartree-Fock-like equations. Although the
convergence of the rank-n projector P (k) is expected to be slow, one is actually only

interested in the convergence of the rank-m “sub-projector” P
(k)
m onto the span of

the lowest m eigenvectors. This procedure is rigorously justified in Theorem 1.6. We
find that the asymptotic convergence rate of the sub-projector is governed by the gap
λn+1−λm, rather than the gap λm+1−λm > 0, which is assumed to be positive only
to ensure that the rank-m orthogonal projector Pm is unambiguously defined.

Theorem 1.6 (Convergence of sub-projectors). Let P (k) converge to P (as

broadly guaranteed by Theorem 1.3). Then P
(k)
m converges to Pm with asymptotic

convergence rate given by

‖Pm − P
(k)
m ‖2 . γkm‖P − P

(0)‖2, where γm ≤
‖B‖2

‖B‖2 +∆m
.
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Here ∆m = λn+1 − λm.

1.2. Applicability to more general problems. Although we have Hartree-
Fock-like equations in mind throughout the paper, it is easy to see that the adaptive
compression method can be applied to a wider variety of problems. The case that B
is “small” and “costly” can occur when B comes from the discretization of an inte-
gral operator or a more general nonlocal operator. For example, in linear response
theories such as time-dependent density functional theory and Bethe-Salpeter equa-
tions [31, 26], generalized eigenvalue problems arise involving matrices of the form
A + B, where A is a diagonal matrix and B is a discretized nonlocal operator with
additional structure. Adaptive compression methods with structure-preserving prop-
erties could be applicable to these problems. The concept of adaptive compression can
also be useful in solving linear equations, as recently demonstrated in the adaptively
compressed polarizability operator formulation for first principle phonon spectrum
calculations [23]. We are currently exploring these directions.

1.3. Related work. A Hartree-Fock-like equation, considered as in (1.1) af-
ter linearization and discretization, constitutes a standard linear eigenvalue problem,
and the present work should be directly compared with existing iterative eigensolvers,
such as the subspace iteration method [28], the shift-invert Lanczos method [29], the
preconditioned steepest descent method [5], the preconditioned conjugate gradient
method [18], the Jacobi-Davidson method [33], etc. In these approaches, the matrix-
vector multiplication always takes the form (A+B)v, and the number of Bv operations
is n times the number of iterations. In the absence of a good preconditioner, the num-
ber of iterations in these solvers typically depends on ‖A+B‖2, which is undesirable.
Even when a good preconditioner is available, we still find that the adaptive compres-
sion method can be advantageous, thanks to the flexibility introduced by decoupling
Av and Bv operations. Note that Eq. (1.2) is only a fixed point iteration, and the
convergence rate of the adaptive compression method can be further enhanced by
combining with existing acceleration techniques such as the usage of conjugate direc-
tions [18] and Broyden type methods [1]. We will report detailed numerical study of
the adaptive compression methods in a forthcoming publication. We also note that
the adaptive compression method is very simple to implement and only requires a
“black-box” subroutine for the computation of Bv. Hence in the context of solving
Hartree-Fock-like equations, it is compatible with any existing method that reduces
the cost of the matrix-vector multiplication, such as those using linear scaling tech-
niques and using fast solvers for elliptic equations.

1.4. Outline of the paper. The rest of the paper is organized as follows. After
presenting a brief introduction to Hartree-Fock-like equations in Section 2, we intro-
duce the adaptive compression method in Section 3. Section 4 discusses the properties
and optimality of the compression map V 7→ B[V ]. In Section 5 we establish the local
convergence with an asymptotic rate, followed by the global convergence in Section 6.
Finally, some technical calculations and proofs omitted in the main text are presented
in the appendices.
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2. Hartree-Fock-like equations. The Hartree-Fock-like equations are a set of
nonlinear equations as follows [24]

H [P ]ψi =

(
−
1

2
∆ + Vion + VHxc[P ] + VX [P ]

)
ψi = εiψi,

∫
ψ∗
i (r)ψj(r) dr = δij , P (r, r′) =

Ne∑

i=1

ψi(r)ψ
∗
i (r

′).

(2.1)

Here the eigenvalues {εi} are ordered non-decreasingly, and Ne is the number of
electrons (spin degeneracy omitted). P is the density matrix, which is an orthogo-
nal projector with an exact rank Ne. The diagonal entries of the kernel of P gives
the electron density ρ(r) = P (r, r). Vion characterizes the electron-ion interaction in
all-electron calculations. VHxc is a local operator, and characterizes the Hartree con-
tribution and the exchange-correlation contribution modeled at a local or semi-local
level. It typically depends only on the electron density. The exchange operator VX is
an integral operator with kernel

VX [P ](r, r′) = −P (r, r′)K(r, r′). (2.2)

Here K(r, r′) is the kernel for the electron-electron interaction. For example, in the
Hartree-Fock theory, K(r, r′) = 1/|r − r′| is the Coulomb operator. In screened
exchange theories [16], K can be a screened Coulomb operator with kernel K(r, r′) =
erfc(µ|r − r′|)/|r − r′|. VX is a negative semidefinite operator. The kernel of VX is
not low rank due to the Hadamard product (i.e. element-wise product) between the
kernels of P and K. From a computational perspective, it is prohibitively expensive
to explicitly construct VX [P ], and it is only viable to apply it to a vector v(r) as

(VX [P ]v) (r) = −
Ne∑

i=1

ψi(r)

∫
K(r, r′)ψ∗

i (r
′)v(r′) dr′. (2.3)

This operation is much more expensive than computing (H [P ]−VX [P ])v. In practical
Hartree-Fock calculations, the application of VX [P ] to vectors can often take more
than 95% of the overall computational time.

The Hartree-Fock-like equations require the density matrix P to be computed
self-consistently. A common strategy is to solve the linearized Hartree-Fock equa-
tion by fixing the density matrix P so that H [P ] becomes a fixed operator. Then
ones solves a nonlinear fixed point problem to obtain the self-consistent P . The most
time consuming step is to solve the linearized Hartree-Fock equation. After numerical
discretization, this gives rise to the linear eigenvalue problem (1.1), where B corre-
sponds to the discretized Fock operator VX [P ], and A corresponds to the remaining
partH [P ]−VX [P ]. We also remark that after numerical discretization, B is a negative
definite matrix.

3. Adaptive compression method.

3.1. Method description. In order to reduce the number of matrix-vector mul-
tiplication operations Bv, the simplest idea is to fix wi := Bvi at some stage, and to
replace Bvi by wi for a number of iterations. This leads to the following sub-problem

Avi + wi = λivi, i = 1, . . . , n. (3.1)
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Note that Eq. (3.1) is not an eigenvalue problem: if vi is a solution to (3.1), then
vi multiplied by a constant c is typically not a solution. Eq. (3.1) could be solved
using optimization based methods, but such a problem is typically more difficult than
an Hermitian eigenvalue problem. In practice, software packages for solving Hartree-
Fock-like equations are typically built around eigensolvers, which is another important
factor that makes the sub-problem (3.1) undesirable.

The adaptive compression method reuses the information in {wi = Bvi} in a
different way, which retains the structure of the eigenvalue problem (1.1). Define
V = [v1, . . . , vn], W = [w1, . . . , wn], so V,W ∈ CN×n, and construct

B[V ] =W (W ∗V )−1W ∗. (3.2)

Since B ≺ 0, W ∗V ≡ V ∗BV has only negative eigenvalues and is invertible. B[V ] is
Hermitian of rank n, and agrees with B when applied to V as

B[V ]V =W (W ∗V )−1W ∗V =W = BV. (3.3)

We shall refer to the operation from B to B[V ] as an adaptive compression.

In an iterative scheme, denote by V (k) = [v
(k)
1 , . . . , v

(k)
n ] the approximate eigenvec-

tors at the k-th iteration of (1.2). Then the adaptive compression method proceeds as
follows. After B[V (k)] is constructed, (1.2) can be solved via any iterative eigensolver
to obtain V (k+1). The iterative eigensolver only requires the application of A and
the low rank matrix B to vectors, and does not require any additional application
of B until V (k+1) is obtained. If span V (k) converges to span V , then the consis-
tency condition B[V ]V = BV is satisfied, and the adaptive compression method is
numerically exact. The adaptive compression method for solving the linear eigen-
value problem (1.1) is given in Algorithm 1, where we initialize V (0) by solving the
eigenvalue problem in the absence of B.

Algorithm 1 The adaptive compression method for solving Eq. (1.1)

1: Initialize V (0) by solving Av
(0)
i = λ

(0)
i v

(0)
i , i = 1, . . . , n.

2: while convergence not reached do

3: Compute W (k) = BV (k).

4: Evaluate
[
(W (k))∗V (k)

]−1
to construct B[V (k)] implicitly.

5: Solve (1.2) to obtain V (k+1).
6: Set k ← k + 1.
7: end while

3.2. Relaxing the definitiveness condition for B. As will be seen later, the
condition that B ≺ 0 is important for the consistency of the adaptive compression
method, but this constraint can be easily relaxed as follows for more general B. Note
that replacing B with Bt := B−t (here t as a matrix means the identity matrix scaled
by a real number t) in the eigenvalue problem (1.1) yields an equivalent eigenvalue
problem, where all eigenvalues are shifted down by t and the corresponding eigenspaces
are unchanged. Thus taking t > λmax(B) ensures that Bt is negative definite. We
call this procedure a t-shifted adaptive compression. The spirit of this construction is
related to the “level-shifting” method used in quantum chemistry [32]. Theorem 1.2
suggests that the convergence rate of Algorithm 1 can be optimized by minimizing
‖Bt‖2. This also opens up the interesting possibility of accelerating the convergence
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of the adaptive compression method by taking t to be negative when B is already
negative definite. In the discussion below, we will assume that B is negative definite
unless otherwise specified.

4. Optimality of the adaptive compression. In (3.2), we have specified how
to compress an Hermitian negative definite matrix B into a rank n matrix with the
same behavior on span V . Since V has orthonormal columns, the orthogonal projector
onto span V is

P = V V ∗. (4.1)

In the context of Hartree-Fock-like equations, P in Eq. (4.1) is the discretized density
matrix. In the discussion below, we use the terminology density matrix in a slightly
more general sense:

Definition 4.1. For H ∈ HN with eigenvalues {λi}Ni=1 ordered non-decreasingly
and a given number 1 ≤ n ≤ N , if the spectral gap λg := λn+1 − λn is positive, the
density matrix associated with H and n is defined to be the orthogonal projector onto
the span of the first n eigenvectors of H.

Remark 4.2. In this paper, all density matrices are idempotent, i.e. P 2 = P .
When the context is clear, we may drop the dependence on H and n and simply refer
to an orthogonal projector P as a density matrix. We also let D = DC ⊂ CN×N

denote the set of rank-n density matrices.
Using the density matrix, the compressed matrix B[V ] can be expressed as

B[V ] = BV (V ∗BV )−1V ∗B = B(PBP )†B, (4.2)

where (PBP )† is the Moore-Penrose pseudoinverse [12] of the rank-n matrix PBP .
In order to prove the second equality of (4.2), we denote by {vi}Ni=1 a completion

of {vi}ni=1 to an orthonormal basis of CN . For any 1 ≤ m ≤ N , define

Vm = [v1, . . . , vm]. (4.3)

In particular, VN = [v1, . . . , vN ] consists of all eigenvectors, and V ≡ Vn = [v1, . . . , vn]
consists of the eigenvectors to be computed. The matrix representation of PBP with
respect to the basis VN is given in the block form by

[PBP ]VN
=

(
V ∗BV 0

0 0

)
, (4.4)

where the size of the upper-left block is n× n. Thus the matrix representation of the
pseudoinverse (PBP )† is

[(PBP )†]VN
=

(
(V ∗BV )−1 0

0 0

)
. (4.5)

Hence (PBP )† = V (V ∗BV )−1V ∗, which implies the second equality of (4.2). Eq. (4.2)
suggests that B is a matrix function of the density matrix P , or equivalently, a func-
tion of the subspace Im(P ) = span V . With some abuse of notation, we will not
distinguish between B[V ] and B[P ], and we will mostly use the projector formulation
B[P ] in the discussion below.

Denote by

[B]VN
=

(
B11 B12

B∗
12 B22

)
(4.6)
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the matrix representation of B, and B11 = V ∗BV . Then (4.2) and (4.5) give the
matrix representation of B[P ] as

[B[P ]]VN
=

(
B11 B12

B∗
12 B∗

12B
−1
11 B12

)
. (4.7)

Note that only the lower-right matrix block is changed in the adaptive compression.
Remark 4.3 (Smoothness of adaptive compression). We can rewrite (4.2) as

B[P ] = B [PBP + (I − P )]−1
B −B(I − P )B,

from which it is clear that B is smooth (in particular, continuous) as a function
P 7→ B[P ] on the set of density matrices.

Our consideration of adaptive compression is motivated by the following fact:
Proposition 4.4 (Axiomatic characterization of adaptive compression, I). Let

B ∈ HN be negative definite, and let P be a rank-n orthogonal projector. Then B[P ]
is the unique Hermitian matrix B′ satisfying B′|Im(P ) ≡ B|Im(P ) and rankB′ ≤ n.
(In fact, rank(B[P ]) = n.)

Proof. We have already established that B[P ] satisfies the stated properties, so
we need only prove uniqueness.

To this end, suppose that B′ is a matrix satisfying the stated properties, so B′

is Hermitian, has rank at most n, and agrees with B on Im(P ). As in the preceding
discussion, let v1, . . . , vN be an orthonormal basis for CN , with v1, . . . , vn forming an
orthonormal basis for Im(P ). With VN as in (4.3), write the matrix of B′ in this
basis:

[B′]VN
=

(
B′

11 B′
12

B′∗
12 B′

22

)
.

where the upper-left block is n × n. Since B′ must agree with B on v1, . . . , vn, we
must have B′

11 = B11 and B′
12 = B12, where the Bij are as in (4.6). In summary,

[B′]VN
=

(
B11 B12

B∗
12 ∗

)
. (4.8)

Since B11 = V ∗BV is invertible (where V = [v1, . . . , vn]), the first n columns of
[B′]VN

must be linearly independent. This means that the rank of B′ is at least n,
hence equal to n. Then for any j = 1, . . . , N − n, the (n + j)-th column of [B′]VN

must be a linear combination of the first n columns. However, the coefficients of this
linear combination are completely determined by B, since by (4.8) the j-th column
of B12 is a linear combination of the columns of B11 with these same coefficients. By
the linear independence of the columns of B11, there is exactly one way to write each
column of B12 as a linear combination of columns of B11, i.e. Eq. (4.7).

Remark 4.5. For Proposition 4.4 (and indeed for the entire discussion of Sec-
tion 4 thus far), it is not necessary to assume that B ≺ 0. In fact, it is sufficient
to assume that B is Hermitian and V ∗BV is invertible. (Note that there exist in-
vertible Hermitian matrices such that V ∗BV is not invertible, though this cannot
happen if B is definite.) However, the case of definite B affords adaptive compression
with additional properties (see Lemma 4.8) that are crucial for the utility of adaptive
compression in solving eigenvalue problems. As discussed in Section 3.2, when B is
indefinite, the appropriate generalization of adaptive compression for the purpose of
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solving the eigenvalue problem (1.1) does not involve performing adaptive compression
on B directly, but rather reduces to the case of definite B by subtracting a multiple of
the identity.

Before proceeding, we state a linear-algebraic result on Schur complements that
will be useful for understanding the adaptive compression.

Lemma 4.6. The positive semidefiniteness [resp., definiteness ] of a Hermitian

matrix M :=

(
X Y
Y ∗ Z

)
(where X is invertible) is equivalent to having both X � 0

and S := Z − Y ∗X−1Y � 0 [resp., ≻ 0]. In fact, if M � t ≥ 0, then S � t as well.
Remark 4.7. Note that S is a Schur complement. Excluding the last sentence,

Lemma 4.6 is a standard result in linear algebra (see, e.g., Theorem 1.12 of [38]).
Proof. We only prove the last statement. Assume that M � t. Define

F (u, v) :=

(
u
v

)∗

M

(
u
v

)
= u∗Xu+ u∗Y v + v∗Y ∗u+ v∗Zv.

Observe that

F (−X−1Y v, v) = v∗Y ∗X−1Y v − v∗Y ∗X−1Y v − v∗Y ∗X−1Y v + v∗Zv = v∗Sv.

Using the previous two equalities and the fact that M � t ≥ 0, observe that for any
v,

v∗Sv =

(
−X−1Y v

v

)∗

M

(
−X−1Y v

v

)
≥ t

∥∥∥∥
(
−X−1Y v

v

)∥∥∥∥
2

2

≥ t‖v‖22.

This completes the proof via the Courant-Fischer minimax theorem [12].
Taking B to be negative definite, it follows from (4.2) that B[P ] is negative

semidefinite, i.e., B[P ] � 0. Since B[P ] is a low-rank substitute for the negative
definite matrix B, one might additionally hope that the compression does not make
B “more negative” in any direction, i.e. B[V ] � B. Lemma 4.8 shows that this is
indeed the case.

Lemma 4.8. Let B ∈ CN×N be a negative definite matrix. For any rank-n
projector P , the matrix B[P ]−B is positive semidefinite. Therefore B � B[P ] � 0.

Proof. Note from (4.6) and (4.7) that

[B[V ]−B]VN
=

(
0 0
0 B∗

12B
−1
11 B12 −B22

)
, (4.9)

so Lemma 4.8 is equivalent to the statement that B∗
12B

−1
11 B12−B22 � 0, i.e., that the

Schur complement B22 − B∗
12B

−1
11 B12 is negative semidefinite. But this follows from

Lemma 4.6, together with the fact that B is negative definite.
Remark 4.9. Observe that Theorem 1.1 follows directly from Proposition 4.4

and 4.8. Lemma 4.8 will also be key for proving the convergence of Algorithm 1.
The Schur complement perspective on adaptive compression yields further in-

sights. Note that the stipulation that B[V ] agrees with B on span V determines the
upper-left and upper-right blocks of B[V ] as in (4.7), and the stipulation that B[V ]
is Hermitian then fixes the lower-left block. The only thing that then remains to be
specified is the lower-right block, which is identified as in B[V ]. This suggests the
following characterization of adaptive compression:

Proposition 4.10 (Axiomatic characterization of adaptive compression, II). Let
B ∈ CN×N be a negative definite matrix, and let E be an n-dimensional subspace of
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CN . Then B[E] is the maximal Hermitian negative semidefinite matrix B′ satisfying
B′|E ≡ B|E , in the sense that for any other such B′, we have B′ � B[E].

Proof. Suppose that B′ � 0 with B′ � B[E]. Let VN = [v1, . . . , vN ] be an
orthonormal basis for CN , with v1, . . . , vn forming an orthonormal basis for E. As in
the proof of Proposition 4.4, the matrix of B′ in this basis is of the form

[B′]VN
=

(
B11 B12

B∗
12 Z

)
,

where the Bij are as in (4.6). Since B′ is negative semidefinite, by Lemma 4.6 the
Schur complement Z−B∗

12B
−1
11 B12 is also negative semidefinite, i.e., Z � B∗

12B
−1
11 B12.

But by (4.7) this implies that B′ � B[E].
Similar results hold for the t-shifted adaptive compression. For B Hermitian,

t > λmax(B), and a rank-n projector P , define B[P, t] = Bt[P ] + t, where Bt = B− t.
Then we have

1. B and B[P, t] agree on the image of P denoted by Im(P ).
2. B � B[P, t] � t.
3. B[P, t] is not of rank n, but B[P, t] is the sum of a rank-n matrix and a

multiple of the identity, and hence is computationally efficient to apply.

5. Local convergence analysis. Since each step of (1.2) is an Hermitian eigen-
value problem, we can require V (k) to be columns of a unitary matrix and let P (k) =
V (k)(V (k))∗. Then let P (k+1) be the density matrix associated with A+B[P (k)]. The
convergence of the adaptive compression method for the linear problem (1.1) can be
stated in terms of the convergence of the density matrix P (k) → P . For any H ∈ HN ,
let λi {H} denote its i-th smallest eigenvalue (counting multiplicity). In this notation,
the true eigenvalues of (A+B) are λi ≡ λi {A+B}.

We now formally define the fixed point iteration map F(·) as follows.
Definition 5.1. For a density matrix Q, let F(Q) be the orthogonal projector∑n

i=1 uiu
∗
i , where the ui are orthonormal eigenfunctions of

(
A+B[Q]

)
ui = λi

{
A+B[Q]

}
ui.

F(Q) is canonically defined if A + B[Q] has a positive spectral gap, such a projector
is unique, and it is the density matrix associated with A+B[Q]. Otherwise, we make
an arbitrary choice in the eigenspace associated with λn

{
A + B[Q]

}
so that F(Q) is

of rank n.
Using the fixed point iteration map, we can rephrase Algorithm 1 compactly as

P (k+1) := F(P (k)). (5.1)

We will see below that for Q sufficiently close to P (the true density matrix of A+B),
A+B[Q] has a positive spectral gap, and hence its density matrix is indeed canonically
defined. Thus, for all Q in a neighborhood of P , F(Q) is the density matrix associated
with A+B[Q]. The local convergence of Algorithm 1 can be studied via the properties
of the map F near the true density matrix P . A necessary requirement for Algorithm 1
to converge is the consistency condition

F(P ) = P. (5.2)

In order to guarantee local linear convergence, the spectral radius for the Jacobian of
F must also be bounded by unity, so that the fixed point P is attractive with respect
to the iteration (5.1). This leads to a sharp estimate of the local convergence rate,
which is upper-bounded by the rate provided in Theorem 1.2.
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5.1. Consistency. For a general Hermitian B ∈ HN , even if B is constructed
from the true density matrix P , the true eigenvectors {v1, . . . , vn} of A+B may not
correspond to the lowest n eigenvalues of the modified operator A + B[P ], despite
the fact that they are still eigenvectors of the modified operator. In such case, the
consistency requirement (5.2) is violated.

However, the consistency condition of the fixed point iteration will be satisfied
when B ≺ 0. Lemma 4.8 implies that B[P ]− B � 0. Thus replacing B by B[P ] just
means adding a positive semidefinite operator that is zero on span V . This keeps the
bottom n eigenvalues intact and shift the rest of the eigenvalues upwards. Lemma 5.2
verifies this statement, which implies Eq. (5.2).

Lemma 5.2. Let P be the density matrix associated with A + B, and P be the
density matrix associated with A+B[P ]. Then

λi
{
A+B[P ]

}
≥ λi = λi {A+B}

for i = 1, . . . , N , with equality if i ≤ n. Moreover, P = P .

Proof. Eq. (3.3) implies that {(λi, vi)}
n
i=1 are eigenpairs of A+B[P ]. Hence it is

sufficient to show that {λi}ni=1 are also the lowest n eigenvalues.
The Courant-Fischer minimax theorem [12] and Lemma 4.8 give

λi {A+B} = min
dimS=i

max
06=u∈S

u∗(A+B[P ])u

u∗u

= min
dimS=i

max
06=u∈S

(
u∗(A+B)u

u∗u
+
u∗(B[P ]−B)u

u∗u

)

≥ min
dimS=i

max
06=u∈S

u∗(A+B)u

u∗u
= λi.

(5.3)

Since {λi}ni=1 are already eigenvalues, the only possibility is that λi = λi {A+B} for
1 ≤ i ≤ n, and hence P = P .

We now verify that F is canonically defined for density matrices in a neighborhood
of P . This amounts to proving that A+B[Q] has a spectral gap for density matrices
Q sufficiently close to P . By Lemma 5.2, the spectral gap of A + B[P ] is at least as
large as the spectral gap of A + B denoted by λg. In particular, the spectral gap of
A + B[P ] is positive. Then since the k-th eigenvalue of a Hermitian matrix M is a
Lipschitz function of M (see e.g. [12]), and since B[Q] is continuous in the density
matrix Q (see Remark 4.3), A+B[Q] has a positive spectral gap for density matrices
Q sufficiently close to P , as claimed.

5.2. Linearization. We study the response of F to a small perturbation of P
in two steps. First we determine the change in the density matrix induced by a small
perturbation of the matrix H = A + B[P ]. This gives a Jacobian denoted by DPH .
Then we describe how B (and hence also the matrix A+B of the eigenvalue problem
in question in each iteration) responds to the small perturbation of P . This gives
a Jacobian DBP . The composition of these Jacobian operators yields the Jacobian
of F at P , denoted by DFP . In the physics literature for solving Hartree-Fock-like
equations, DPH is called the irreducible polarizability matrix.

For any orthogonal projector Q, let Q⊥ := I −Q denote the orthogonal projector
onto Im(Q)⊥. We first give explicit expressions for DPH and DBP in Lemma 5.3
and 5.4 respectively, for which the proofs are given in Appendix A.

Lemma 5.3. For H ∈ HN with a positive spectral gap, ∆H ∈ HN , 1 ≤ n ≤ N
and ǫ > 0 sufficiently small, let P, Pǫ be the rank-n density matrices associated with
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H and H + ǫ∆H, respectively. Then

DPH [∆H ] =

n∑

i=1

N∑

a=n+1

1

µi − µa
ua(u

∗
a∆Hui)u

∗
i + h.c.

=
n∑

i=1

[
P⊥(µi −H)P⊥

]†
∆Huiu

∗
i + h.c.,

where h.c. stands for the Hermitian conjugate of the term that precedes it and u1, . . . , uN
are orthonormal eigenvectors of H with corresponding eigenvalues µ1 ≤ · · · ≤ µN .
(Note that µn < µn+1 by assumption.)

Lemma 5.4. For ǫ > 0 sufficiently small, let P, Pǫ be density matrices with
∆P = limǫ→0(Pǫ − P )/ǫ. Then

DBP [∆P ] := lim
ǫ→0

B[Pǫ]−B[P ]

ǫ
= (B −B[P ]) (∆P )(PBP )†B + h.c. (5.4)

The composition of Lemma 5.3 with Lemma 5.4 gives an explicit expression for
DFP :

Lemma 5.5. For ǫ > 0 sufficiently small, let P, Pǫ be density matrices with
∆P = limǫ→0(Pǫ − P )/ǫ. Then

DFP [∆P ] := lim
ǫ→0

F(Pǫ)− F(P )

ǫ

=

n∑

i=1

(
P⊥ + (B[P ]−B)

†
(A+B − λi)P

⊥
)†

(∆P )viv
∗
i + h.c.

Proof. Applying Lemma 5.3 (with H = A + B[P ] and ∆H = DBP [∆P ]) and
Lemma 5.4, we have

DFP [∆P ] =

n∑

i=1

[
P⊥(λi −H)P⊥

]† [
(B −B[P ]) (∆P )(PBP )†B + h.c.

]
viv

∗
i + h.c.

For i = 1, . . . , n,
(
B − B[P ]

)
vi = 0 and (PBP )†Bvi = B−1B[P ]vi = vi, so our

expression for DFP [∆P ] simplifies to

DFP [∆P ] =

n∑

i=1

[
P⊥ (λi −A−B[P ])P⊥

]†
(B −B[P ]) (∆P )viv

∗
i + h.c.

=

n∑

i=1

[
P⊥ (B[P ]−B +A+B − λi)P

⊥
]†
(B[P ]− B) (∆P )viv

∗
i + h.c.

Now for any i = 1, . . . , n, Im(P ) is an invariant subspace for the self-adjoint operator
A+B[P ]−λi, and Im(P )⊥ is an invariant subspace as well. As an operator Im(P )⊥ →
Im(P )⊥, A+B[P ]−λi is positive definite and hence invertible. Thus the pseudoinverse
in the preceding expression is effectively taking a matrix inverse on the lower-right
block the matrix representation as in (4.6), while all other blocks are zero.

Similarly, Im(P )⊥ is invariant for B[P ]−B, which is only nonzero in its lower-right
block. By Lemma 4.6, B[P ]−B is positive definite (hence invertible) as an operator
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Im(P )⊥ → Im(P )⊥. By taking the factor of B[P ]−B inside of the pseudoinverse we
obtain the desired equality.

For i = 1, . . . , n, define

Zi :=
(
P⊥ + (B[P ]−B)† (A+B − λi)P

⊥
)†
.

then Lemma 5.5 can be equivalently expressed as

DFP [∆P ] =
n∑

i=1

Zi(∆P )viv
∗
i + h.c.

Remark 5.6. The matrix of the linear transformation Zi in Lemma 5.5 is given
by

[Zi]VN
=

(
0 0
0 Ji

)
,

where

Ji :=
[
IN−n − (S22)

−1
(Λ2 − λi)

]−1

.

Here Λ2 := diag(λn+1, . . . , λN ), and

S22 = B22 −B
∗
12B

−1
11 B12

is the Schur complement with S22 ≺ 0.
We can view the Jacobian DFP as a linear operator on the tangent space at

P of the manifold of all rank-n density matrices. We will see later that the set of
eigenvalues of DFP is the union of the set of eigenvalues of {Ji}. We find an upper
bound for all eigenvalues of {Ji} in Lemma 5.7:

Lemma 5.7. For i = 1, . . . , n, Ji is diagonalizable with σ(Ji) ⊂ (0, 1) and

γ := max
i=1,...,n

λmax(Ji) ≤
‖S22‖2

λg + ‖S22‖2
≤

‖P⊥BP⊥‖2
λg + ‖P⊥BP⊥‖2

≤
‖B‖2

λg + ‖B‖2
< 1.

Proof. We adopt the notation used in Remark 5.6. Since the eigenvalues of a
matrix are invariant under conjugation (i.e. similarity transformation), conjugating
Ji by (Λ2 − λi)1/2 yields the equality of spectra

σ (Ji) = σ

([
IN−n + (Λ2 − λi)

1/2 (−S22)
−1

(Λ2 − λi)
1/2
]−1
)
.

Here the equality is defined in the sense of sets. The matrix on the right-hand
side is positive definite, so σ(Zi) ⊂ (0, 1) as claimed. In fact, the matrix (Λ2 −

λi)
1/2 (−S22)

−1
(Λ2 − λi)1/2 is positive definite and we have

σ (Ji) =
1

1 + σ
[
(Λ2 − λi)1/2 (−S22)

−1 (Λ2 − λi)1/2
] .

Now observe

λmin

[
(Λ2 − λi)

1/2 (−S22)
−1

(Λ2 − λi)
1/2
]
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=
(
λmax

[
(Λ2 − λi)

−1/2 (−S22) (Λ2 − λi)
−1/2

])−1

≥
(
‖(Λ2 − λi)

−1/2‖22 · ‖S22‖2
)−1

≥
λg
‖S22‖2

.

This establishes the first claimed inequality. Recall that S22 � 0, but also S22 =
B22 −B∗

12B
−1
11 B12, so S22 � B22. Thus

‖S22‖2 ≤ ‖B22‖2 = ‖P⊥BP⊥‖2 ≤ ‖B‖2.

Since x 7→ x/(1 + x) is increasing for x ≥ 0, this proves the rest of the inequalities.

The diagonalizability of Ji is implied by the similarity transformation.

5.3. Dynamical systems perspective on adaptive compression. In order
to study the local convergence properties of the fixed point iteration map F, we first
note that the set of all density matrices D is not a subspace, but a smooth submanifold
of CN×N ≃ R2N2

. D can be identified with the Grassmannian Gr(n,CN ), which is
the set of all complex n-dimensional subspaces of CN . Since the fixed point iteration
map F is a map from D to itself and is smooth on a neighborhood of P , we consider the
linearization of F about the fixed point P is the tangent space TPD ⊂ CN×N ≃ R2N2

.
This tangent space can be characterized as follows.

First note that any smooth path of rank-n density matrices, denoted by γ(t) with
γ(0) = P , can be expressed as

γ(t) = VNU(t)

(
I 0
0 0

)
U(t)∗V ∗

N ,

where U(t) is a smooth path of unitary matrices with U(0) = I and VN = [v1, . . . , vN ].
Since the Lie algebra of the unitary group (i.e. the tangent space at the identity
element) is the set of skew-Hermitian matrices, we have

U ′(0) =

(
Y −X∗

X Z

)
,

where Y ∗ = −Y and Z∗ = −Z. Then

γ′(0) = VN

(
Y −X∗

X Z

)(
I 0
0 0

)
V ∗
N + h.c. = Ṽ

(
0 X∗

X 0

)
V ∗
N .

Hence the tangent space

TPD =

{
VN

(
0 X∗

X 0

)
V ∗
N : X ∈ C

(N−n)×n

}
, (5.5)

and we can make the identification TPD ≃ C(N−n)×n. Observe that the map Φ :
C(N−n)×n → D defined by

X 7→ VN

[
exp

(
0 −X∗

X 0

)](
I 0
0 0

)[
exp

(
0 −X∗

X 0

)]∗
V ∗
N (5.6)
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is a local diffeomorphism near the origin. Then for Q ∈ D sufficiently close to P , we
can identify Q with X := Φ−1(Q) ∈ C(N−n)×n. Then we can identify F with a map
H defined on a neighborhood U of the origin in C(N−n)×n

Remark 5.8. Adopting this perspective, Remark 5.6 translates to

DH0[X ] = (J1X1, . . . , JnXn),

for any X = (X1, . . . , Xn) ∈ C(N−n)×n, where DH0 is the usual Jacobian of the map
U → C(N−n)×n at the origin, naturally viewed as a tensor in C(N−n)×n×(N−n)×n.
Identifying tangent vector X with its vectorization in C(N−n)n, the matricized repre-
sentation of DH0 in C(N−n)n×(N−n)n yields

DH0 =




J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jn


 .

Near the fixed point P , we can view Algorithm 1 as a discrete-time dynamical
system on C(N−n)n. The stability of the fixed point P is then determined by the
spectrum σ(DH0) of the Jacobian DH0, which is the union of the spectra σ(Ji) over
i = 1, . . . , n.

5.4. Asymptotic convergence rate. We will make use the following Lemma
to show the local convergence.

Lemma 5.9. Let F : Rp ∩ Bδ(0) → Rp be a smooth map such that F (0) = 0,
DF (0) is diagonalizable, and the spectral radius γ := sup |σ(DF (0))| of DF (0) is
strictly less than 1. Then for any ǫ > 0 for which γ + ǫ < 1, there exist constants
C, c > 0 such that if ‖x‖2 < c, then ‖F k(x)‖2 ≤ C(γ + ǫ)k‖x‖2 for all k ≥ 0.

Proof. First note that we can assume that in fact DF (0) is diagonal by replacing
F with φ−1 ◦ F ◦ φ for a suitable change of basis φ. Then ‖DF (0)‖2 = γ, and there
exists c such that ‖y‖2 < c implies ‖DF (y)‖2 < γ + ǫ. Thus if ‖x‖2 < c, then

‖F (x)‖2 = ‖F (x)− F (0)‖2

=

∥∥∥∥
∫ 1

0

DF (tx) · x dt

∥∥∥∥
2

≤

∫ 1

0

‖DF (tx)‖2‖x‖2 dt ≤ (γ + ǫ)‖x‖2.

Repeated application of this inequality yields the result.
Remark 5.10. The reader familiar with dynamical systems should note that

Lemma 5.9 is almost a recapitulation of the stable manifold theorem in the case that
the local stable manifold has full dimension.

Now we are ready to prove Theorem 1.2, which is stated more precisely in Theo-
rem 5.11.

Theorem 5.11. Let ǫ > 0 be small enough so that γ + ǫ < 1, where γ is as in
Lemma 5.7. Then there exist constants C, c > 0 such that if ‖P (0) − P‖2 ≤ c, then

‖P (k) − P‖2 ≤ C(γ + ǫ)k‖P (0) − P‖2

for all k ≥ 0.
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Proof. Fix ǫ as in the statement of the theorem. We can identify C(N−n)n with
R2(N−n)n, and the corresponding realification of DH0 has all of its eigenvalues in
(0, γ]. (It has two copies of each of the eigenvalues of DH0 as an operator C(N−n)n →
C(N−n)n.) By Lemma 5.9, there exists a neighborhood V of 0 within U ⊂ C(N−n)n and
a constant C such that Hk(X(0)) ∈ V and moreover ‖Hk(X(0))‖2 ≤ C(γ+ ǫ)k‖X(0)‖2
for all k ≥ 0. From (5.6) we have

P (k) = Ṽ

[
exp

(
0 −(X(k))∗

X(k) 0

)](
I 0
0 0

)[
exp

(
0 −(X(k))∗

X(k) 0

)]∗
Ṽ ∗.

Since

P = Ṽ

(
I 0
0 0

)
Ṽ ∗,

it follows (for a possibly enlarged constant C) that ‖P (k)−P‖2 ≤ C(γ+ǫ)k‖P (0)−P‖2,
as was to be shown.

Remark 5.12. Recall from Lemma 5.7 that γ ≤ ‖B‖2

λg+‖B‖2
< 1, so we have a

linear rate of convergence that depends only on the ratio ‖B‖2/λg. If this ratio is
smaller, then the convergence is faster, and vice-versa.

5.5. Convergence of sub-projectors. Now we prove Theorem 1.6 regarding

the rate of convergence of the rank-m sub-projectors P
(k)
m to Pm. In this section we

use C to denote a constant that possibly changes across usages and is understood to
be sufficiently large in each context.

The important observation is that Pm can be identified with an invariant subman-
ifold for the dynamics, to which the dynamics are attracted via a (relatively) rapid
transient.

Consider

Dm := {Q ∈ D : Q|Im(Pm) = IdIm(Pm)},

which is a submanifold of D, and can be identified as the submanifold of Gr(n,CN )
consisting of the n-dimensional subspaces of CN that contain Im(Pm). This is in turn
isomorphic to Gr(n−m,CN/Im(Pm)) ≃Gr(n−m,CN−m).

We assume that λm+1 − λm > 0, and we allow this gap to be small in practice.
Then

λi{A+B[Q]} = λi{A+B[P ]}+O(‖Q− P‖22).

In particular, for each i = m + 1, . . . , N , we have λi{A + B[Q]} > λm for all Q
sufficiently close to P . If Q ∈ Dm, then (λi, vi) is an eigenpair for A + B[Q] for
i = 1, . . . ,m, and these eigenvalues are the lowest m eigenvalues of A + B[Q]. It
follows that Im(F(Q)) ⊃ Im(Pm). Hence near the fixed point P , Dm is invariant
under the fixed point iteration map F.

ForQ ∈ D, define Fm(Q) to be the rank-m projector onto the span of the lowestm
eigenvectors of A+B[Q]. The assumption λm+1−λm > 0 guarantees that this map is
canonically defined and smooth near P , and Fm(Q) = Pm for all Q ∈ Dm sufficiently
close to P . Then there is a neighborhood N of P in D such that F(Dm ∩ N ) ⊂ Dm

and such that Fm(Dm∩N ) = Pm. In particular, we have constructed a local invariant
manifold Dm for the dynamics due to the fixed point iteration.
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We would like to prove that the dynamics converge rapidly to this invariant
manifold locally, in the sense that

dist(P (k),Dm ∩ N ) ≤ Cγkm · dist(P
(0),Dm ∩ N ), (5.7)

where we can take γm := ‖B‖2/(‖B‖2 + ∆) and where ‘dist’ indicates the distance
between sets induced by the norm ‖ · ‖2. We claim that in fact Theorem 1.6 would
follow from (5.7), together with the preceding remarks. We will justify the choice of
constant γm later, but for now we map out the rest of the argument.

To see the claim, note that since Fm is smooth near P (hence in particular lo-
cally Lipschitz), there exists L such that, for all ǫ sufficiently small, if Q satisfies
dist(Q,Dm ∩N ) ≤ ǫ, then

Lǫ ≥ dist(Fm(Q),Fm(Dm ∩ N )) = dist(Fm(Q), Pm) = ‖Fm(Q)− Pm‖2.

Thus if we can establish (5.7), then substituting Q = P (k) yields

‖P (k+1)
m − Pm‖ ≤ Cγ

k
m · dist(P

(0),Dm ∩ N ) ≤ Cγkm‖P − P
(0)‖2,

establishing Theorem 1.6.
We have then reduced Theorem 1.6 to the following lemma.
Lemma 5.13. There is a neighborhood W of P in D such that if P (0) ∈ W, then

dist(P (k),Dm ∩N ) ≤ Cγkm · dist(P
(0),Dm ∩ N ).

In order to motivate the constant γm, note that TPDm, considered as a subspace
of C(N−n)n ≃ TPD, is given by

T2 := {(X1, . . . , Xn) ∈ C
(N−n)n : X1 = · · · = Xm = 0},

and we have locally the splitting TPD ≃ C(N−n)n = T1 ⊕ T2, where

T1 := {(X1, . . . , Xn) ∈ C
(N−n)n : Xm+1 = · · · = XN = 0}.

Observe that the eigenvalues ofDH0|T1 are the eigenvalues of J1, . . . , Jm. By the proof
of Lemma 5.7, all of these eigenvalues are in (0, γm), so the spectrum of DH0|T1 is
contained in (0, γm). (The eigenvalues of DH0|T2 are the eigenvalues of Jm+1, . . . , JN ,
which are all in (0, 1).) At least formally, this discussion motivates the statement of
Lemma 5.13. By considering a smooth change of coordinates near P that straightens
the invariant submanifold Dm and then diagonalizes the Jacobian, we can replace
Lemma 5.13 with the following:

Lemma 5.14. Let F : Rp ∩ Bδ(0) → Rp be a smooth map such that F (0) =
0, DF (0) is diagonal, 0 ≺ DF (0) ≺ 1, and DF (0)|E1 ≺ α < 1, where E1 :=
span {e1, . . . , er} for r ≤ p. Further suppose that E2 := E⊥

1 is invariant under F ,
i.e., F (E2 ∩Bδ(0)) ⊂ E2. Then there exists δ′ ∈ (0, δ) such that F maps Bδ′(0) into
itself and such that for any x ∈ Bδ′(0),

dist(F k(x), E2 ∩Bδ(0)) ≤ α
k · dist(x,E2 ∩Bδ(0)).

Proof. See Appendix B.
Remark 5.15. Note carefully that we do not consider a change of coordinates

that produces a linear dynamical system, i.e., we do not assume F is linear in Lemma
5.14. In general, such a change of coordinates does exist near a hyperbolic fixed point
by the Hartman-Grobman theorem (see, e.g., Theorem 10.4 of [36]), but it is only
guaranteed to be a homeomorphism (not necessarily Lipschitz). We need the change
of coordinates to be Lipschitz in order to compare distances up to a constant.
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6. Global convergence analysis. Before providing a roadmap for the proof
of the global convergence properties in Theorem 1.3, we first show that the adaptive
compression method cannot be expected to converge globally to the solution of (1.1)
for every initial guess P (0).

Consider taking N = 2, n = 1, A is a zero matrix, and

B =

(
−2 0
0 −1

)
.

Note that the true density matrix is P = e1e
∗
1, where e1 = (1, 0)T , e2 = (0, 1)T .

However e2e
∗
2 is also a fixed point of F. Thus if we take P (0) = e2e

∗
2, we get convergence

to the wrong fixed point.
A slightly more sophisticated example demonstrates that it is possible for Algo-

rithm 1 to stall on some incorrect fixed point, even if not initialized there. Take N = 3
and n = 1 with

A =




0 0 0
0 −2 0
0 0 0



 , B =




−4 0 0
0 −1 0
0 0 −1



 .

The true density matrix is P = e1e
∗
1. However, suppose that P (0) = e3e

∗
3. Then

A+B[P (0)] =




0 0 0
0 −2 0
0 0 −1


 ,

so P (1) = e2e
∗
2. Now

A+B[P (1)] =




0 0 0
0 −3 0
0 0 0


 ,

so P (1) is a fixed point, and Algorithm 1 fails to converge.
In the sequel we will see that such incorrect fixed points are unstable. Before

embarking on the global convergence analysis, we pause to provide a brief outline of
Section 6.

In Section 6.1 we introduce a key property of Algorithm 1: each of the bottom

n eigenvalues λ
(k)
1 , . . . , λ

(k)
n of A + B[P (k−1)] is monotonically non-increasing in k.

We call this property eigenvalue monotonicity. Eigenvalue monotonicity implies that∑n
i=1 λ

(k)
i is convergent in k. In particular, when k is large,

∑n
i=1 λ

(k)
i does not change

much across iterations. Lemma 6.4 shows that the change of P (k) across one iteration

can be controlled by the change of
∑n

i=1 λ
(k)
i . So when k is large, F(P (k)) ≈ P (k),

i.e., the point P (k) is almost fixed by the mapping F.
Unfortunately, this is not yet enough to directly imply that the sequence P (k) is

convergent, but one might hope that a point that is close to being fixed is close to
some fixed point! Notice that a fixed point Pf of F must satisfy the condition that
Im(Pf ) is an invariant subspace for A+ B, i.e., must satisfy Pf =

∑n
i=1 uiu

∗
i , where

ui are eigenvectors of A + B. We will show (see Lemma 6.6) that a point that is
almost fixed is indeed almost a point of this form.

Under suitable conditions that hold generically in the sense to be discussed in
Section 6.2, F always has finitely many points {Pτ} of such form. These points must
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be mutually isolated since they are only finite in number. Since (1) P (k) must be close
to at least one of these points Pτ for any k large, (2) P (k) changes by a vanishingly
small amount as k becomes large, and (3) the points Pτ are mutually isolated, it
follows that P (k) converges to one such point Pτ as k → ∞. One might expect that
such a limit point must actually be a fixed point Pf , and indeed this is true.

In summary, these arguments establish that we have global convergence to a fixed
point. We have already demonstrated with toy counterexamples that this limit point
may differ from the true density matrix P . However, the conditions of Section 6.2
also ensure that A+B[Pf ] has a positive spectral gap for any fixed point Pf , which in
turn ensures that F is smooth near each of the fixed points Pf . A linearization-based
analysis similar to that of Section 5.2 will reveal that all such pathological points are
unstable. Together with careful measure-theoretic arguments (see Lemma 6.21), we
establish Theorem 1.3.

6.1. Eigenvalue monotonicity. We now highlight a significant feature of Al-
gorithm 1, which is the key for the proof of global convergence properties.

Lemma 6.1 (Eigenvalue monotonicity). For i = 1, . . . , n,

λ
(k)
i := λi

{
A+B[P (k−1)]

}

is non-increasing in k.

Proof. Let v
(k)
i ∈ Im(P (k)) be orthonormal eigenvectors of A + B[P (k−1)] corre-

sponding to the eigenvalues λ
(k)
i for i = 1, . . . , n, and let S

(k)
i = span{v

(k)
1 , . . . , v

(k)
i }.

Then we compute, for i = 1, . . . , n,

λ
(k+1)
i = min

dimS=i
max

u∈S\{0}

u∗
(
A+B[P (k)]

)
u

u∗u

≤ max
u∈S

(k)
i

\{0}

u∗
(
A+B[P (k)]

)
u

u∗u

(i)
= max

u∈S
(k)
i

\{0}

u∗ (A+B) u

u∗u

(ii)

≤ max
u∈S

(k)
i

\{0}

u∗
(
A+B[P (k−1)]

)
u

u∗u

= λ
(k)
i ,

where (i) follows from the fact that B ≡ B[P (k)] on Im(P (k)) ⊃ S
(k)
i and (ii) follows

from Lemma 4.8. This completes the proof.
Thus we may think of Algorithm 1 as performing a descent on the bottom n

eigenvalues of A+B[Q] as Q = P (k) is updated iteratively. In order to achieve global
convergence, we would need that these eigenvalues are globally minimized at Q = P .
Indeed, this is the case:

Lemma 6.2 (Global eigenvalue minimality). For i = 1, . . . , n and all density
matrices Q,

λi = λi
{
A+B[P ]

}
≤ λi

{
A+B[Q]

}
.
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Proof. Let vQi ∈ Im(F(Q)) be orthonormal eigenvectors of A+B[Q] corresponding

to the eigenvalues λi
{
A + B[Q]

}
for i = 1, . . . , n, and let SQ

i = span{vQ1 , . . . , v
Q
i }.

Again we compute, for i = 1, . . . , n,

λi = min
dimS=i

max
u∈S\{0}

u∗ (A+ B)u

u∗u

≤ max
u∈SQ

i
\{0}

u∗ (A+B)u

u∗u

≤ max
u∈SQ

i
\{0}

u∗
(
A+B[Q]

)
u

u∗u

= λi
{
A+B[Q]

}
.

We now examine some consequences of eigenvalue monotonicity with a view to-
ward establishing a global convergence result. First, from Lemma 6.1 we have the
immediate corollary.

Corollary 6.3 (Eigenvalue convergence). limk→∞ λ
(k)
i exists for i = 1, . . . , n.

From this corollary and a refinement of earlier arguments, we derive the following
result, which will be instrumental in establishing global convergence. The main idea
of this result is that a small change in eigenvalues across one iteration is only possible
if the density matrix changes by a correspondingly small amount.

Lemma 6.4. There exists a constant C > 0 (depending only on B, n) such that

‖P (k) − P (k−1)‖2 ≤ C
√
δ(k)

for all k, where

δ(k) :=
n∑

i=1

(
λ
(k)
i − λ

(k+1)
i

)
.

It follows (by Corollary 6.3) that ‖P (k) − P (k−1)‖2 → 0 as k →∞.

Proof. As in the proof of Lemma 6.1, let v
(k)
i ∈ Im(P (k)) be orthonormal eigen-

vectors of A + B[P (k−1)] corresponding to the eigenvalues λ
(k)
i for i = 1, . . . , n, and

let S
(k)
i = span{v

(k)
1 , . . . , v

(k)
i }.

n∑

i=1

λ
(k+1)
i = inf

u1,...,un orthonormal

{
n∑

i=1

u∗i
(
A+B[P (k)]

)
ui

}

≤
n∑

i=1

(
v
(k)
i

)∗(
A+B[P (k)]

)
v
(k)
i

=

n∑

i=1

(
v
(k)
i

)∗(
A+B

)
v
(k)
i

=

n∑

i=1

(
v
(k)
i

)∗(
A+B[P (k−1)]

)
v
(k)
i −

n∑

i=1

(
v
(k)
i

)∗(
B[P (k−1)]−B

)
v
(k)
i
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=

n∑

i=1

λ
(k)
i −

N∑

i=1

(
v
(k)
i

)∗
P (k)

(
B[P (k−1)]−B

)
v
(k)
i

=
n∑

i=1

λ
(k)
i − Tr

[
P (k)

(
B[P (k−1)]−B

)]
.

We have

Tr
[
P (k)

(
B[P (k−1)]−B

)
P (k)

]
≤

n∑

i=1

(
λ
(k)
i − λ

(k+1)
i

)
= δ(k). (6.1)

At this point we should hope that the left-hand side of (6.1) provides an upper bound
for some measure of the distance between P (k) and P (k−1), and indeed this will be
the case.

We first prove the following lemma.
Lemma 6.5. There exists t > 0 depending only on B, n such that

Tr
[
R
(
B[Q]−B

)]
≥ t · Tr

[
R
(
I −Q

)]

for all density matrices Q and R.
Proof. Note that

λmin

{
Q+

(
B[Q]−B

)}
> 0,

for all density matrices Q. By the continuity of B on density matrices and λmin on
Hermitian matrices, as well as the compactness of the space of density matrices, it
follows that there exists t > 0 such that

Q+
(
B[Q]−B

)
� t

for all density matrices Q. Furthermore, we can write

B[Q]−B = (I −Q)
[
Q+

(
B[Q]−B

)]
(I −Q) � t(I −Q).

Now the trace of a product of positive semidefinite matrices is nonnegative, so

Tr
(
R
[
(B[Q]−B)− t(I −Q)

])
≥ 0,

for all density matrices Q,R, which yields the lemma.
We now resume the proof of Lemma 6.4. Let R = P (k) and Q = P (k−1) in Lemma

6.5 to obtain

Tr
[
P (k)

(
B[P (k−1)]−B

)]
≥ t · Tr

[
P (k)

(
I − P (k−1)

)]
,

and combine with (6.1) to give

Tr
[
P (k)

(
I − P (k−1)

)]
≤ αδ(k),

where α := t−1 > 0. Now

Tr
[
P (k)

(
I − P (k−1)

)]
= Tr

[
P (k) − P (k)P (k−1)

]
= n− Tr

[
P (k)P (k−1)

]
,
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so in fact we have

Tr
[
P (k)P (k−1)

]
≥ n− αδ(k). (6.2)

To conclude the proof, observe

‖P (k) − P (k−1)‖22 ≤ ‖P
(k) − P (k−1)‖2F

= Tr
[
(P (k) − P (k−1))(P (k) − P (k−1))

]

= 2n− 2 · Tr
[
P (k)P (k−1)

]

≤ 2αδ(k),

where we have used (6.2) in the last line.
Note carefully that Lemma 6.4 does not imply that the sequence P (k) is conver-

gent. In particular, we do not yet see that P (k) is Cauchy; we are only able to bound
the change in density matrix over a single iteration. However, Lemma 6.4 does estab-
lish that for k large, the density matrix P (k) is almost fixed by F. Note that any fixed
point Pf is a projector of the form Pf =

∑n
i=1 uiu

∗
i , where the ui’s are eigenvectors

of A+B. This motivates the following lemma, which implies that for k large, P (k) is
close to some point of this form.

Lemma 6.6. There exists a constant C > 0 depending only on A,B, n such that
if ‖F(Q) − Q‖2 ≤ ǫ for any density matrix Q, then Q =

∑n
i=1 uiu

∗
i +M , where the

ui’s are orthonormal eigenvectors of A+B and ‖M‖2 ≤ Cǫ.
Proof. Write F(Q) =

∑n
i=1 wiw

∗
i , where w1, . . . , wn are orthonormal eigenvectors

of A + B[Q] with corresponding eigenvalues µ1 ≤ · · · ≤ µn. Let zi = Qwi for
i = 1, . . . , n. Observe that

[(A+B) + (B[Q]−B)(F(Q)−Q)]wi = µiwi

for i = 1, . . . , n, since (B[Q]−B)Q = 0 and F(Q)wi = wi. Therefore

‖(A+B)wi − µiwi‖ = ‖(B[Q]−B)(F(Q) −Q)wi‖

≤ ‖B[Q]−B‖2‖F(Q)−Q‖2.

We assume ‖F(Q)−Q‖2 ≤ ǫ as in the statement of the theorem, and recall ‖B[Q]−
B‖2 ≤ ‖B‖2, so we have shown that

‖(A+B)wi − µiwi‖ ≤ Cǫ, (6.3)

where C = ‖B‖2. In other words, if ǫ is small, then wi nearly satisfies the condition
of being eigenvectors of A+B with the corresponding eigenvalue µi. We now aim to
show that this implies that each wi is in fact close to some eigenvector of A+B. We
remark that the discussion below is related to the “sin θ theorem” of Davis and Kahan
[6], which characterizes the relation between the error of an approximate eigenvector
and its residual.

To this end, let v1, . . . , vN be orthonormal eigenvectors of A+B with correspond-
ing eigenvalues λ1 ≤ · · · ≤ λN , and write wi =

∑N
j=1 cijvj . Then

‖(A+B)wi − µiwi‖
2 =

∥∥∥∥∥∥

N∑

j=1

cij(λj − µi)vj

∥∥∥∥∥∥

2

=

N∑

j=1

|cij |
2|λj − µi|

2.
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Combining with (6.3) yields

|cij |
2|λj − µi|

2 ≤ C2ǫ2. (6.4)

Let δ > 0 be smaller than the gap between any pair of distinct eigenvalues of A+B.
(Note carefully that this is still possible even if A+B has repeated eigenvalues.) Fix
i for the moment, and decompose

wi =
∑

{j : |λj−µi|>δ}

cijvj +
∑

{j : |λj−µi|≤δ}

cijvj

︸ ︷︷ ︸
=:ũi

.

Notice that if |λj − µi| > δ, then |cij |2 ≤ C2ǫ2/δ2 by (6.4). Thus

‖wi − ũi‖
2 =

∑

{j : |λj−µi|>δ}

|cij |
2 ≤

NC2

δ2
ǫ2.

In particular, for ǫ sufficiently small, ‖wi − ũi‖ < 1, which implies that ũi 6= 0.

By the definition of δ, there is at most one element in the set {λj : |λj−µi| ≤ δ}.
But since ũi 6= 0, there must also be at least one element. We denote this element by
λ[i]. Observe that ũi is in the λ[i]-eigenspace of A+B.

We have established (for a possibly enlarged constant C depending only on A,B)
that if ǫ is sufficiently small, then

‖wi − ũi‖ ≤ Cǫ.

Then the ũi must be linearly independent for ǫ sufficiently small. Moreoever, since
the wi are orthonormal, this implies (possibly enlarging C once again) that

∥∥∥F(Q)− Ũ(Ũ∗Ũ)−1Ũ∗
∥∥∥
2
=
∥∥∥W (W ∗W )−1W ∗ − Ũ(Ũ∗Ũ)−1Ũ∗

∥∥∥
2
≤ Cǫ

for ǫ sufficiently small, where Ũ := [ũ1, . . . , ũn], so Ũ(Ũ∗Ũ)−1Ũ∗ is the orthogonal
projector onto the span of the ũi, and likewise W := [w1, . . . , wn]. Now the ũi’s
are unnormalized eigenvectors of A + B with possibly repeated eigenvalues, hence
possibly not orthonormal or even orthogonal. However, span{ũ1, . . . , ũn} is invariant
under A + B, hence can also be endowed with an orthonormal basis of eigenvectors
u1, . . . , un of A+B. This yields the equivalent orthogonal projector

∑n
i=1 uiu

∗
i . Now

since ‖F(Q)−Q‖2 ≤ ǫ, this means that (enlarging C again)

∥∥∥∥∥Q−
n∑

i=1

uiu
∗
i

∥∥∥∥∥
2

≤ Cǫ

for ǫ sufficiently small.

This establishes the statement of the lemma under the condition that ǫ is assumed
sufficiently small. But since the space of density matrices is compact, there exists
K > 0 such that ‖Q −

∑n
i=1 viv

∗
i ‖2 ≤ K for any density matrix Q. By enlarging C

sufficiently the lemma is proved.
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6.2. Genericity assumptions. We will impose some assumptions that will en-
sure that F has finitely many fixed points and that at each fixed point Pf , A+B[Pf ]
has a spectral gap, so that F(Pf ) can be defined canonically. We will argue that
these assumptions hold generically, i.e., can be made to hold by an arbitrarily small
perturbation of the eigenvalue problem (1.1). Our genericity assumptions will allow
us (1) to prove that P (k) converges to a fixed point and (2) to perform a first-order
analysis of Pf near each fixed point.

Genericity Assumption 1. Assume that A +B has distinct eigenvalues λ1 <
· · · < λN corresponding to orthonormal eigenvectors v1, . . . , vN .

This can be guaranteed by replacing A or B with a suitable arbitrarily small
random perturbation of A or B (see, e.g., Section 1.3 of [35]).

Genericity Assumption 2. For τ : {1, . . . , n} → {1, . . . , N} increasing, let
Pτ =

∑n
i=1 vτ(i)v

∗
τ(i), and let Sτ = Im(Pτ ). Assume that for all such τ ,

λτ(n) 6= λmin

{(
A+B[Pτ ]

)∣∣
S⊥
τ

}
,

or, equivalently,

λmax

{(
A+B[Pτ ]

)∣∣
Sτ

}
6= λmin

{(
A+B[Pτ ]

)∣∣
S⊥
τ

}
.

We now provide some interpretation for Genericity Assumption 2. If

λτ(n) < λmin

{(
A+B[Pτ ]

)∣∣
S⊥
τ

}
,

then Pτ is a fixed point of F. Moreover, A + B[Pτ ] has a positive spectral gap, so
F(Pτ ) is canonically defined. Meanwhile, if

λτ(n) > λmin

{(
A+B[Pτ ]

)∣∣
S⊥
τ

}
,

then Pτ is definitely not a fixed point of F (though it does not necessarily follow that
A+B[Pτ ] has a positive spectral gap). Lastly, if

λτ(n) = λmin

{(
A+B[Pτ ]

)∣∣
S⊥
τ

}
,

then A + B[Pτ ] has zero spectral gap, and Pτ may or may not be a fixed point,
depending on the arbitrary choice made for F(Pτ ). This is precisely the scenario that
Genericity Assumption 2 rules out.

We will argue that Genericity Assumption 2 can be guaranteed by replacing (if
necessary) B with B − t for all but finitely many t ≥ 0. Note that this does not
change the eigenspaces of A+B and only affects the eigenvalues by shifting them all
downward by t. We first provide a characterization of fixed points of F.

Lemma 6.7 (Characterization of fixed points). Suppose that Pf is a fixed point
of F. Then we can write

A+B[Pf ] =

N∑

i=1

µiziz
∗
i , (6.5)

where z1, . . . , zN are orthonormal eigenvectors of A+B[Pf ] with corresponding eigen-
values µ1 ≤ · · · ≤ µN . Moreover z1, . . . , zn are eigenvectors of A + B forming an
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orthonormal basis of Im(Pf ). Consequently µi = λτ(i), where τ : {1, . . . , n} →
{1, . . . , N} is increasing, and Pf = P if and only if µi = λi for i = 1, . . . , n. Otherwise
µn ≥ λn + λg.

Proof. Let Pf be a fixed point of F. Referring to Definition 5.1, we see that
then A + B[Pf ] maps Im(Pf ) into itself. But A + B[Q] ≡ A + B on Im(Pf ), so
A + B maps Im(Pf ) into itself. A + B can then be considered (via restriction) as
a self-adjoint operator Im(Pf ) → Im(Pf ), so Im(Pf ) has an orthonormal basis of
eigenvectors z1, . . . , zn of A+B with corresponding eigenvalues µ1 ≤ . . . ≤ µn.

Since A+B[Pf ] is self-adjoint, we also have that A+ B[Pf ] maps Im(Pf )
⊥ into

itself, so Im(Pf )
⊥ has an orthonormal basis zn+1, . . . , zN of eigenvectors of A+B[Pf ]

with corresponding eigenvalues µn+1 ≤ . . . ≤ µN . The decomposition of (6.5) follows,
provided we can show that µn ≤ µn+1.

We will establish this now. First observe the general fact that for any density
matrix Q, if u ∈ Im(F(Q)) is a unit vector and

u∗
(
A+B[Q]

)
u > û∗

(
A+B[Q]

)
û

for some unit vector û, then û ∈ Im(F(Q)) as well. Now suppose for contradiction
that µn > µn+1. Then considering zn, zn+1, and Pf in the places of u, û, and Q,
respectively, we conclude that zn+1 ∈ Im(F(Pf )). But since Pf is a fixed point of F,
this means that zn+1 ∈ Im(Pf ), which is impossible since 0 6= zn+1 ∈ Im(Pf )

⊥.

Now if µi 6= λi for some i ∈ {1, . . . , n}, we must have µn = λm for some m > n,
so µn ≥ λn+1 = λn + λg. In this case, we cannot have Pf = P , for if this were true
then Im(P ) would contain an eigenvector of A+B with eigenvalue greater than λn.

Lastly, suppose that µi = λi for i = 1, . . . , n. Then (A+B)|Im(Pf )
� λn. Since

A+B has a spectral gap, we must have that Im(Pf ) = Im(P ), i.e., Pf = P .
Recall that we would like to establish that Genericity Assumption 2 holds gener-

ically by replacing B with B − t.
By Genericity Assumption 1, A+ B has only finitely many distinct eigenvectors

(up to scaling). Then by Lemma 6.7, F can only have finitely many fixed points.
More precisely, this is the case because by Lemma 6.7 the candidates for fixed points
are limited to projectors of the form Pτ =

∑n
i=1 vτ(i)v

∗
τ(i), where τ : {1, . . . , n} →

{1, . . . , N} is increasing.
For such τ , note that Sτ = span {vτ(1), . . . , vτ(n)} is an invariant subspace for

A+B[Pτ ], and hence so is S⊥
τ . Let

µτ := λmin

{(
A+B[Pτ ]

)∣∣
S⊥
τ

}
.

If µτ < λτ(n), then by Lemma 6.7, Pτ is not a fixed point. If µτ > λτ(n), then
evidently Pτ is a fixed point. If µτ > λτ(n), then Pτ may or may not be a fixed point,
since the spectral gap of A + B[Pτ ] is zero and the choice of F(Pτ ) is not canonical.
This last event is precisely what we would like to rule out.

More precisely, we would like to guarantee that for all of the (finitely many)
increasing functions τ : {1, . . . , n} → {1, . . . , N}, we have that µτ 6= λτ(n).

Define Bt := B − t for t ≥ 0, and consider replacing B with Bt in the eigenvalue
problem (1.1). Accordingly, define λi(t) and µτ (t) now as functions of t ≥ 0. Evidently
λi(t) = λi − t.

We would like to get a handle on µτ (t). Extend τ to a permutation on all of
{1, . . . , N} (so vτ(n+1), . . . , vτ(N) forms a basis for S⊥

τ ), and recall from (4.7) that we



26

can write

[
Bt[Pτ ]

]
Vτ

=

(
B11 − t B12

B∗
12 B∗

12(B11 − t)−1B12

)
,

for suitable blocks Bij , where Vτ := [vτ(1), . . . , vτ(N)]. Since B11 is negative definite,
we have that

B∗
12(B11 − t)

−1B12 � B
∗
12B

−1
11 B12

for all t ≥ 0. It follows that µτ (t) ≥ µτ .
Thus for every τ , fτ (t) := µτ (t) − λτ(n)(t) is a strictly increasing function on

t ≥ 0, so fτ can have at most one zero. Since there are only finitely many τ of
interest, there can only be finitely many points at which µτ (t) = λτ(n)(t) for some
τ . This means that by replacing B with B − t for any t ≥ 0 outside of a finite set,
Genericity Assumption 2 holds.

Remark 6.8. In summary, Genericity Assumptions 1 and 2 can be made to
hold by perturbing A+ B to have distinct eigenvalues, then in turn replacing B with
B − t for any t ≥ 0 outside of a finite set (the latter step yielding an equivalent
eigenproblem). We have shown in particular that these assumptions imply that F has
only finitely many fixed points and that, for any fixed point Pf of F, A+B[Pf ] has a
spectral gap. We keep these assumptions for the remainder of Section 6.

In particular—recalling that HN and SN denote the sets of N × N Hermitian
and N ×N real-symmetric matrices, respectively—we have the following:

Lemma 6.9. Fix any A ∈ HN . Then Genericity Assumptions 1 and 2 hold both
(1) for all B ∈ HN outside of a set of zero measure with respect to the Lebesgue
measure on HN and (2) for all B ∈ SN outside of a set of zero measure with respect
to the Lebesgue measure on SN .

Remark 6.10. Note that statement (1) does not imply statement (2). It is
desirable to have both of these statements at our disposal for the following reason. If
we are solving an eigenvalue problem where B is real-symmetric, we would like to be
able to guarantee that a small random real-symmetric perturbation of B will satisfy
the Genericity Assumptions. With only the first statement, we could only guarantee
that this would work for a random Hermitian perturbation, which would almost surely
introduce imaginary parts to all the entries of B. This would not be desirable from a
computational perspective.

Proof. To see that the statements (1) and (2) hold for Genericity Assumption
1 alone, refer to Section 1.3 of [35]. Now the set Sc := {t · IN : t ∈ R} of scalar
matrices is a one-dimensional subspace of the both of the real vector spaces HN and
SN . We have already argued in the preceding discussion that for any X ∈ HN (hence
also for any X ∈ SN ), Genericity Assumption 2 holds for a.e. choice of B in the one-
dimensional space X + Sc (with respect to the one-dimensional Lebesgue measure).
By Fubini’s theorem (considering the product decompositions HN = Sc + Sc⊥ and
SN = Sc + Sc⊥, where the orthogonal complements are taken within HN and SN ,
respectively), Genericity Assumption 2 holds for a.e. choice of B in HN with respect
to the Lebesgue measure on HN and a.e. choice of B in SN with respect to the
Lebesgue measure on SN .

Corollary 6.11. Genericity Assumptions 1 and 2 hold for almost every pair
(A,B) in HN×HN (with respect to the Lebesgue measure on HN×HN) and for almost
every pair (A,B) in SN × SN (with respect to the Lebesgue measure on SN × SN ).

Proof. This follows from Lemma 6.9 and Fubini’s theorem.
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6.3. Global convergence to a fixed point, local convergence revisited.

We are now ready to prove that the adaptive compression method converges globally
to a fixed point (though we do not yet address whether the fixed point is the true
density matrix P ).

Proposition 6.12. P (k) → Pf as k →∞ for some fixed point Pf of F.

Proof. As above let v1, . . . , vN be an orthonormal basis of eigenvectors of A+ B
with corresponding eigenvalues λ1 ≤ · · · ≤ λN . Let T be the set of all density matrices
Pτ :=

∑n
i=1 vτ(i)v

∗
τ(i) where τ : {1, . . . , n} → {1, . . . , N} is increasing. Then Lemma

6.4 and Lemma 6.6 together imply that dist
(
P (k), T

)
→ 0 as k →∞. However, since

(by Lemma 6.4) ‖P (k) − P (k−1)‖ → 0, and since T consists of only finitely many
(hence mutually isolated) points, it must be the case that P (k) → Pτ for some τ .
Below we show that Pτ must also be a fixed point of F.

Observe that, for all k,

λmax

{(
A+B[P (k−1)]

)∣∣
Im(P (k))

}
≤ λmin

{(
A+B[P (k−1)]

)∣∣
Im(P (k))⊥

}
. (6.6)

We will rewrite this inequality in a way that makes it clear that we can take a limit
as k →∞. To this end, let C ≫ ‖A‖2 + ‖B‖2, noting that ‖A‖2 + ‖B‖2 provides an
upper bound on ‖A+ B[Q]‖2 for all density matrices Q, hence also an upper bound
on the absolute value of the eigenvalues of A+B[Q]. Then (6.6) is the same as

λmax

{
P (k)

(
A+B[P (k−1)]

)
P (k) − C ·

(
I − P (k)

)}

≤ λmin

{(
I − P (k)

)(
A+B[P (k−1)]

)(
I − P (k)

)
+ C · P (k)

}
.

Then by continuity and the convergence P (k) → Pτ we have

λmax

{
Pτ

(
A+B[Pτ ]

)
Pτ − C ·

(
I − Pτ

)}

≤ λmin

{(
I − Pτ

)(
A+B[Pτ ]

)(
I − Pτ

)
+ C · Pτ

}
,

i.e.,

λτ(n) = λmax

{(
A+B[Pτ ]

)∣∣
Im(Pτ )

}
≤ λmin

{(
A+B[Pτ ]

)∣∣
Im(Pτ )⊥

}
.

We have successfully passed (6.6) to the limit as k →∞.
If Pτ is not a fixed point, then Genericity Assumption 2 implies that

λτ(n) > λmin

{(
A+B[Pτ ]

)∣∣
Im(Pτ )⊥

}
,

yielding a contradiction.

Next we see how the preceding results imply local convergence. Though we have
already provided a more refined local convergence result (complete with a linear
rate of convergence), it is noteworthy that local convergence can be proved “non-
perturbatively”. For this proof, we will not consider a linearization of F about P ,
instead relying only on eigenvalue monotonicity as the tool.

Proposition 6.13 (Local convergence via eigenvalue monotonicity). If P (0) is
sufficiently close (in the sense of any given norm on CN×N) to the true density matrix
P , then P = limk→∞ P (k).
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Proof. By the continuity of λi{ · } and B, for all choices of P (0) sufficiently close
to P we have that

λi
{
A+B[P (0)]

}
≤ λi + λg/2,

for all i = 1, . . . , n. Then for such P (0), eigenvalue monotonicity (Lemma 6.1) implies
that

λi
{
A+B[P (k)]

}
≤ λi + λg/2,

for all k, i = 1, . . . , n.
At a fixed point Pf , the bottom n eigenvalues of A+B[Pf ] are eigenvalues of A+B.

If Pf 6= P , then one of these eigenvalues must be at least as large as λn+1 = λn + λg.
But Proposition 6.12 says that P (k) → Pf for some fixed point Pf . By continuity,

this is impossible if P (0) is taken as above, unless Pf = P .

6.4. Linearization around fixed points. In this section we repeat the first-
order analysis of Section 5.2 about an arbitrary fixed point of F. We will see that all
fixed points except the true density matrix are repulsive in a certain sense.

Let Pf be a fixed point of F. Then we can write A+B =
∑N

i=1 µiuiu
∗
i , where ui

are orthonormal eigenvectors of A+B with eigenvalues µi, and Pf =
∑n

i=1 uiu
∗
i . The

picture is almost exactly the same as in Section 5.2, with the important difference that
{µ1, . . . , µn} might not be the same as {λ1, . . . , λn}. Though µ1, . . . , µn may not be
the bottom eigenvalues of A+B, they are the bottom eigenvalues of A+B[Pf ], and
in fact our genericity assumptions have guaranteed that A +B[Pf ] enjoys a spectral
gap. Thus F is smooth near Pf , and the same reasoning that yielded 5.5 also yields
the following.

Lemma 6.14. With notation as in the preceding discussion, for ǫ > 0 sufficiently
small, let Pf (ǫ) be density matrices with ∆P = limǫ→0(Pf (ǫ)− Pf )/ǫ. Then

DFPf
[∆P ] := lim

ǫ→0

F(Pf (ǫ))− F(Pf )

ǫ

=

n∑

i=1

(
P⊥
f + (B[Pf ]−B)

†
(A+B − µi)P

⊥
f

)†
(∆P )uiu

∗
i + h.c.

Remark 6.15. Write B in the UN := [u1, . . . , uN ] basis as

[B]UN
=

(
B

Pf

11 B
Pf

12(
B

Pf

11

)∗
B

Pf

22

)
.

Then in this basis, the matrix of the linear transformation

Z
Pf

i :=
(
P⊥
f + (B[Pf ]−B)

†
(A+B − µi)P

⊥
f

)†

appearing in Lemma 6.14 is given by

[
Z

Pf

i

]

UN

=

(
0 0

0 J
Pf

i

)
,

where

J
Pf

i :=

[
IN−n +

(
−S

Pf

22

)−1

(M2 − µi)

]−1

(6.7)
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and S
Pf

22 is shorthand for the Schur complement and is negative definite, and M2 :=
diag(µn+1, . . . , µN). Note that if Pf 6= P , then for some i ∈ {1, . . . , n}, M2 − µi is
diagonal with a strictly negative entry.

We have, in contrast with Lemma 5.7:

Lemma 6.16. For i = 1, . . . , n, J
Pf

i is diagonalizable with σ
(
J
Pf

i

)
⊂ (0,∞)\{1}.

Moreover, if Pf 6= P , then λmax

(
J
Pf

i

)
> 1 for some i ∈ {1, . . . , n}.

Proof. In the proof we adopt notation from Remark 6.15. Note that
(
− S

Pf

22

)
=

(B[Pf ]−B)22 and we can alternatively write

Z
Pf

i =
[
(A+B[Pf ])22 − µi)

]−1
(B[Pf ]−B)22, (6.8)

where ( · )22 denotes the lower-right block in the ui basis. As the product of two

positive definite matrices, Z
Pf

i has positive eigenvalues. This can be verified by con-

jugating by (B[Pf ]−B)
1/2
22 .

By (6.7), we have the set equality

σ
(
Z

Pf

i

)
=

1

1 + σ
[
(B[Pf ]−B)−1

22 (M2 − µi)
]

=
1

1 + σ
[
(B[Pf ]−B)

−1/2
22 (M2 − µi)(B[Pf ]−B)

−1/2
22

] . (6.9)

Now the signs of the eigenvalues of

(B[Pf ]−B)
−1/2
22 (M2 − µi)(B[Pf ]−B)

−1/2
22

are the same as those of M2 − µi. Since we have assumed (Genericity Assumption 1)
that the eigenvalues of A+B are distinct,M2−µi is diagonal with nonzero eigenvalues.

Thus 1 /∈ σ
(
Z

Pf

i

)
. This establishes the first statement of the lemma.

Now assume that Pf 6= P , and choose i ∈ {1, . . . , n} such that M2 − µi has a

strictly negative entry. By (6.9), Z
Pf

i must then have an eigenvalue that is either

negative or larger than 1, but we have already established that σ(Z
Pf

i ) ⊂ (0,∞), so
the latter possibility must be true.

Let us identify the tangent space TPf
D of the space of density matrices at Pf with

C(N−n)n as we did in Section 5.2 at the fixed point P . Furthermore, let us identify F

with a map HPf into C(N−n)n defined on a neighborhood U of the origin in C(N−n)n

via a local diffeomorphism Φ : U → D, defined as in (5.6) but with the ui now in the
places of the vi. Then like before we have that

DH
Pf

0 =




J
Pf

1 0 · · · 0

0 J
Pf

2 · · · 0
...

...
. . .

...

0 0 · · · J
Pf
n



.

By Lemma 6.16, DH
Pf

0 is invertible and has no eigenvalues of modulus 1. Thus in the
language of dynamical systems, 0 is a hyperbolic fixed point of the dynamical system
defined locally by H near the origin of C(N−n)n.

Assume that Pf 6= P , then DH
Pf

0 has at least one eigenvalue larger than 1. If

we identify C(N−n)n with R2(N−n)n, then the corresponding realification of DH
Pf

0 (an



30

operator R2(N−n)n → R2(N−n)n) has the same eigenvalues (though now two copies
of each), hence two eigenvalues larger than 1. By the stable manifold theorem, the
local stable manifold near the origin has real codimension at least 2, and there exists
a neighborhood V ⊂ U of the origin such that if X ∈ V is not in the local stable
manifold, then

(
HPf

)m
(X) /∈ V for some m ≥ 1 (refer to Theorems 10.6 and 10.7 of

[36]). In particular, this implies the following.

Proposition 6.17. For any fixed point Pf 6= P , there is a neighborhood Pf of

Pf in the space D of density matrices and a subset P̃f ⊂ Pf such that Pf\P̃f has

measure zero in D. If P (k) ∈ P̃f for some k, then P (m) /∈ Pf for some m > k.

Remark 6.18. Note that a notion of measure zero can be defined on any smooth
manifold without actually choosing a measure or a Riemannian structure. One way
to produce such a notion is to pick any Riemannian metric on D and consider the
corresponding volume measure. The measure zero sets with respect to this volume
measure will be the same regardless of the choice of metric.

Proposition 6.17 is roughly saying that generically near a fixed point Pf 6= P ,
points are repelled from Pf . However, in the important special case that we are
considering A,B to be real-symmetric, note that F can be interpreted as a map from
DR into itself. If we initialize with a real-symmetric guess, then we never leave the
submanifold of real-symmetric projectors. The notion of full measure does not project
from D to the submanifold DR of real-symmetric orthogonal projectors, so Proposition
6.17 does not imply that generically (within DR) points are repelled from Pf , and we
must state this result separately.

Proposition 6.19. Suppose that A and B are real-symmetric, so F maps DR

into itself. For any fixed point Pf 6= P in DR, there is a neighborhood Pf of Pf in the

space DR a subset P̃f ⊂ Pf such that Pf\P̃f has measure zero in DR. If P (k) ∈ P̃f

for some k, then P (m) /∈ Pf for some m > k.

Proof. By exactly the same proof is above (with R in place of C), the restriction
of the dynamical system defined by F to the submanifold DR has a hyperbolic fixed
point at Pf with invertible Jacobian and the same eigenvalues as before (though only
one copy of each now, instead of two). In particular, the stable manifold within DR

has real codimension at least one, and by the same reasoning as before, this implies
the statement.

Propositions 6.17 and 6.19 formalize the notion that any fixed point Pf 6= P
is repulsive. More quantitatively speaking, based on Lemma 6.16 we expect to see

“linear divergence” from any fixed point Pf 6= P with rate maxi=1,...,n λmax

(
Z

Pf

i

)
> 1,

but we do not formalize this notion.

6.5. Fixed points are saddle points. Consider the functional

F (Q) = Tr
[
F(Q) (A+B[Q])F(Q)

]
=

n∑

i=1

λi {A+B[Q]} . (6.10)

By eigenvalue monotonicity, F (P (k)) is non-increasing in k. We claim that fixed points
of F are critical points of F and that a fixed point Pf 6= P is not a local minimum.
In fact, a fixed point Pf 6= P is a strict saddle point of F in that it is a strict local
maximum of F along some direction.

We state a more detailed version this fact formally in Proposition 6.20 below. This
result informs our understanding of the behavior of the iteration near fixed points (see
the discussion at the beginning of Section 6.6). However, we will not use it directly
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to establish global convergence, and its proof is largely computational, so we relegate
this proof to an appendix.

Proposition 6.20. Let Q = Q(t) be a twice-differentiable density matrix-valued
function of a single variable with Q(0) = Pf a fixed point. Then (F (Q))′(0) = 0.
Moreover, if Pf 6= P , then there exists such a function Q(t) which additionally sat-
isfies (F (Q))′′(0) < 0. In fact, if we take Q(t) = Φ(tX), where X ∈ C(N−n)n is

an eigenvector of DH
Pf

0 with eigenvalue larger than [resp., smaller than] 1, then
(F (Q))′′(0) < 0 [resp., > 0].

Proof. See Appendix C.

6.6. Global convergence. We already have a fairly complete picture of the
global behavior of Algorithm 1. In summary, we know that the fixed point iteration
converges to a fixed point, and we know that fixed points Pf 6= P are repulsive in
the sense of Proposition 6.17. We also know that such fixed points are strict saddle
points of the functional F in Eq. (6.10). Moreover, along the repulsive directions at
Pf this functional has a strict local maximum. With a bit more work, it is possible
to show that for almost all Q in a sufficiently small neighborhood of Pf , there exists
m = m(Q) such that F (Fm(Q)) < F (Pf ). (We already know that generically such
Q must escape the neighborhood, but when they do so, they should align with the
repulsive directions, so the value of F must fall below F (Pf ). We omit a formal proof
of this fact.) Thus by eigenvalue monotonicity, if we have converged sufficiently close
to a fixed point Pf 6= P , and if we apply a small random perturbation and then

restart Algorithm 1 from this point, then we will converge to another fixed point P̃f

with F (P̃f ) < F (Pf ). Repeating this process finitely many times will bring us to the
desired fixed point P . This suggests a satisfactory notion of the global convergence
up to perturbation.

Nonetheless, it is still desirable to show that for almost every choice of initial-
ization P (0) ∈ D, Algorithm 1 converges to P . (Similarly in the special case of
real-symmetric A and B, Algorithm 1 converges to P for a.e. choice P (0) ∈ DR.) To
use an analogy, a fixed point Pf 6= P is like an egg resting on top of a barn. We know
that if we apply a slight random perturbation to the egg, it will fall off the barn and
never return to the top. But we would like to show that it is impossible for the egg
to get stuck on top of the barn in the first place!

This is indeed true, and the key lemma is the following.
Lemma 6.21 (Egg on barn lemma). If we fix B ∈ HN , then for almost any

A ∈ HN (with respect to the Lebesgue measure on HN ), we have the following: if
S has zero measure in the space D of density matrices, then F−1(S) also has zero
measure in D, where F is considered as a map D → D.

Similarly, if we fix any B ∈ SN , then for almost any A ∈ SN (with respect to
the Lebesgue measure on SN ), we have the following: if S has zero measure in the
space DR of density matrices, then F−1(S) also has zero measure in DR, where F is
considered as a map DR → DR.

The proof of Lemma 6.21 is technical. The main difficulty is that F is not a
diffeomorphism, and indeed is not even continuous. However, it is real-analytic on an
open, connected subset of full measure, and this characterization allows us to rule out
pathological behavior. We postpone the proof of Lemma 6.21 to Appendix D. Let us
now use this lemma to prove the global convergence property.

Fix K ∈ {C,R}, and assume that B is such that Lemma 6.21 applies. For a fixed
point Pf , let SPf

= {Q ∈ DK : Fk(Q) → Pf}, so DK =
⋃

Pf fixed SPf
. If Pf 6= P ,

then by Proposition 6.17 or Proposition 6.19, for any Q ∈ SPf
, we must have that
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Fk(Q) ∈ Pf\P̃f for some k = k(Q) ≥ 0. This implies that SPf
⊂
⋃

k≥0 F
−k(Pf\P̃f ).

But by Proposition 6.17, Pf\P̃f has measure zero. By Lemma 6.21 (and induction),

F−k(Pf\P̃f) has measure zero for all k ≥ 0. Consequently, SPf
has measure zero

for all Pf 6= P . Hence SP has full measure, as desired. This completes the proof of
Theorem 1.3.
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Appendix A. Derivative calculations in linearization.

Proof of Lemma 5.3. The assumption of the positive spectral gap guarantees the
existence of a simple contour C in the complex plane surrounding only the lowest n
eigenvalues of H . Using the contour integral representation of the density matrix P ,
we have

P =
1

2πı

∮

C

(z −H)−1 dz. (A.1)

Assume that ǫ is small enough so that the contour C only surrounds the lowest n
eigenvalues of H + ǫ∆H as well. Then

Pǫ =
1

2πı

∮

C

(z −H − ǫ∆H)−1 dz.

Since

(z −H − ǫ∆H)−1 = (z −H)−1 + ǫ(z −H)−1∆H(z −H)−1 +O(ǫ2),

we have

lim
ǫ→0

Pǫ − P

ǫ
=

1

2πı

∮

C

(z −H)−1∆H(z −H)−1 dz. (A.2)

Next, apply the spectral decomposition of H to (A.2) to obtain

DPH [∆H ] =
1

2πı

∮

C

(z −H)−1∆H(z −H)−1 dz

=

N∑

i,a=1

1

2πı

∮

C

(z − µa)
−1ua(u

∗
a∆Hui)u

∗
i (z − µi)

−1 dz

=

N∑

i,a=1

1

µi − µa

[
1

2πı

∮

C

(
1

z − µi
−

1

z − µa

)
dz

]
ua(u

∗
a∆Hui)u

∗
i

=

n∑

i=1

N∑

a=n+1

1

µi − µa
ua(u

∗
a∆Hui)u

∗
i + h.c.

(A.3)

In the last equation of (A.3), we have used the Cauchy integral formula. This estab-
lishes the first desired equality. For the second equality, simply collapse the inner sum
over a. �
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Proof of Lemma 5.4. Recall that B[Pǫ] = B(PǫBPǫ)
†B = BG(ǫ)B, where G(ǫ) :=

(PǫBPǫ)
†. We want to evaluate the derivative in ǫ of G(ǫ) at ǫ = 0. To do so, we

treat the pseudoinverse as follows. Note that we can alternatively write

G(ǫ) = [PǫBPǫ + λ(I − Pǫ)]
−1 − λ−1(I − Pǫ)

for any λ > 0. Then

G′(0) = − [PBP + λ(I − P )]−1
[(∆P )BP + PB(∆P )− λ∆P ] [PBP + λ(I − P )]−1

+λ−1(∆P )

= −
[
(PBP )† + λ−1(I − P )

]
[PB(∆P ) + h.c.]

[
(PBP )† + λ−1(I − P )

]

+λ
[
(PBP )† + λ−1(I − P )

]
[∆P ]

[
(PBP )† + λ−1(I − P )

]
(A.4)

+λ−1(∆P ).

Note that (Pǫ)
2 = Pǫ, and evaluating the derivative of this equality at ǫ = 0 yields

P (∆P )+(∆P )P = (∆P ). Then left- and right-multiplying both sides of this equality
by P yields 2P (∆P )P = P (∆P )P , so

P (∆P )P = 0.

Observe that (PBP )† = P (PBP )†P , so there is significant cancellation in the second
term of (A.4), which becomes

(∆P )(PBP )† + h.c.

Then substituting into (A.4), we obtain

G′(0) = −
[
(PBP )† + λ−1(I − P )

]
[PB(∆P ) + h.c.]

[
(PBP )† + λ−1(I − P )

]

+[(∆P )(PBP )† + h.c.] + λ−1(∆P ).

Now the preceding equality holds for any λ > 0. Thus taking the limit as λ → ∞
establishes

G′(0) =
[
−(PBP )†PB(∆P )(PBP )† + (∆P )(PBP )†

]
+ h.c.

=
(
I − (PBP )†B

)
(∆P )(PBP )† + h.c.

Then

DBP [∆P ] = BG′(0)B = (B −B[P ]) (∆P )(PBP )†B + h.c.,

as was to be shown. �

Appendix B. Proof of Lemma 5.14.

Proof of Lemma 5.14. To ease the notation, let Bδ = Bδ(0) and T = DF (0) ∈
Rk×k. Let Qi be the orthogonal projector onto Ei, and define ρ(x) = ‖Q1x‖2.
Throughout the proof we will use the shorthand notation x = (x1, x2), e.g. Q1x =
(x1, 0) and ρ(x) = ‖x1‖2.

Fix ǫ > 0 small enough such that 0 ≺ T + ǫ ≺ 1 and 0 ≺ T |E1 + ǫ ≺ α. Choose
δ′ ∈ (0, δ) small enough so that ‖DF − T ‖2 ≤ ǫ on Bδ′ . Then ‖DF‖2 ≤ 1 on Bδ′ ,
from which it follows that F is non-expansive on Bδ′ , hence maps Bδ′ into itself.
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Then for the proof, we want to show that ρ(F k(x)) ≤ αkρ(x) for all x ∈ Bδ′ . For
this it suffices to show that ρ(F (x)) ≤ αρ(x) for all x ∈ Bδ′ .

Define F1 : Bδ → Rr and F2 : Bδ → Rp−r by F = (F1, F2). Define T1, T2
similarly. Our choice of δ′ guarantees that ‖DF1 − T1‖2 ≤ ǫ on Bδ′ . Now since T is
diagonal, ‖T1‖2 = ‖Q1TQ1‖2 ≤ α− ǫ, so in fact we have ‖DF1‖2 ≤ α on Bδ′ .

Next observe that since E2 is invariant, we have that F1(E2 ∩Bδ) = 0. Then for
x ∈ Bδ′ ,

ρ(F (x)) = ‖F1(x)‖2 = ‖F1(x1, x2)− F1(0, x2)‖2

=

∥∥∥∥
∫ 1

0

DF1(tx1, x2) · x1 dt

∥∥∥∥
2

≤

∫ 1

0

‖DF1(tx1, x2)‖2‖x1‖2 dt ≤ αρ(x),

as desired. �

Appendix C. Proof of Proposition 6.20.

First we state a helpful lemma.

Lemma C.1. Let Q = Q(t) be a differentiable density matrix-valued function of
a single variable. Then (omitting dependence on t from the notation)

(B[Q])′ = (B −B[Q])Q′B−1B[Q] + h.c.

Proof. The proof is just a recapitulation of the argument in Lemma 5.4.

Now we prove Proposition 6.20.
Proof of Proposition 6.20. Compute (omitting dependence on t from the nota-

tion):

(F (Q))′ = Tr
[
(F(Q))′ (A+B[Q])F(Q) + h.c.

]
+Tr

[
F(Q) (B[Q])′ F(Q)

]

= 2 · Tr
[
(F(Q))′ (A+B[Q])F(Q)

]
+ 2 · Tr

[
F(Q)(B −B[Q])Q′F(Q)

]
.

We have used Lemma C.1, together with the fact that B[Q] agrees with B on
Im(F(Q)). The first term in the last expression turns out to be zero. (This is es-
sentially the content of the Hellmann-Feynman theorem.) We verify this presently.

For i = 1, . . . , N , let ui = ui(t) be orthonormal such that u1, . . . , un forms a basis
for Im(Q(t)). Then

Tr
[
(F(Q))′ (A+B[Q])F(Q)

]
=

N∑

i=1

u∗i (F(Q))′ (A+B[Q])F(Q)ui

=

n∑

i=1

u∗i (F(Q))′ (A+B[Q])ui.

Now Im(F(Q)) is an invariant subspace for (A+B[Q]), so for i = 1, . . . , n, (A+B[Q])ui
is an element of Im(F(Q)). Therefore

Tr
[
(F(Q))′ (A+B[Q])F(Q)

]
=

n∑

i=1

u∗i F(Q)(F(Q))′F(Q) (A+B[Q])ui.
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Note that

(F(Q))′ = (F(Q)F(Q))′ = F(Q)(F(Q))′ + (F(Q))′F(Q).

Multiply both sides by F(Q) and rearrange the terms, we have

F(Q)(F(Q))′F(Q) = 0.

Therefore

Tr
[
(F(Q))′ (A+B[Q])F(Q)

]
= 0

as claimed and

(F (Q))′ = 2 · Tr
[
F(Q) (B −B[Q])Q′ F(Q)

]
. (C.1)

Define ∆P := Q′(0) and evaluate at t = 0. Note that F(Q(0)) = Pf , we obtain

(F (Q))′(0) = 2 · Tr
[
Pf (B −B[Pf ]) (∆P )Pf

]
.

But Pf (B −B[Pf ]) = 0, so (F (Q))′(0) = 0, as desired.
Next take another derivative of (C.1) and evaluate at t = 0 to find

(F (Q))′′(0) = 2 · Tr
[
DFPf

[∆P ] (B −B[Pf ]) (∆P )Pf

]

+ 2 · Tr
[
Pf (B −B[Pf ]) (∆P )DFPf

[∆P ]
]

− 2 · Tr
[
Pf (B[Q])′(0) (∆P )Pf

]
+ 2 · Tr

[
Pf (B −B[Pf ])Q

′′(0)Pf

]
.

Since Pf (B − B[Pf ]) = 0, the second and final terms vanish. Substituting in for
(B[Q])′(0) via Lemma C.1 (and again using the facts Pf (B−B[Pf ]) = 0 andB−1B[Pf ]Pf =
Pf ), we obtain

(F (Q))′′(0) = 2 · Tr
[
DFPf

[∆P ] (B −B[Pf ]) (∆P )Pf

]

+ 2 · Tr
[
Pf (∆P ) (B[Pf ]−B) (∆P )Pf

]
.

For the rest of the proof, ui will always indicate ui(0). Now we substitute in for
DFPf

[∆P ] via Lemma 6.14. Since (B−B[Pf ])ui = 0 for i = 1, . . . , n, only the “h.c.”
term survives, yielding

(F (Q))′′(0) (C.2)

= 2

n∑

i=1

Tr
[
uiu

∗
i (∆P )

(
Z

Pf

i

)∗
(B −B[Pf ]) (∆P )Pf

]

+ 2 · Tr
[
Pf (∆P ) (B[Pf ]−B) (∆P )Pf

]

= 2

n∑

i=1

u∗i (∆P ) (B[Pf ]−B)
[
P⊥
f (A+ B[Pf ]− µi)P

⊥
f

]†
(B −B[Pf ]) (∆P )ui

+ 2

n∑

i=1

u∗i (∆P ) (B[Pf ]−B) (∆P )ui.

Let X be an eigenvector of DH
Pf

0 with corresponding eigenvalue σ, viewed as an
element of C(N−n)×n, so X = (0, . . . , 0, Xj, 0, . . . , 0), where Xj is an eigenvector of

J
Pf

j . Fix the path Q(t) = Φ(tX), then

(∆P )ui = δij

(
0
Xj

)
,
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and

(F (Q))′′(0) = −2X∗
j (B[Pf ]−B)22 J

Pf

j Xj + 2X∗
j (B[Pf ]− B)22Xj

= 2(1− σ)X∗
j (B[Pf ]−B)22Xj .

Since (B[Pf ]−B)22 ≻ 0, we have X∗
j (B[Pf ]−B)22Xj > 0, and therefore the sign of

(F (Q))′′(0) is the sign of 1− σ. The proposition is proved by recalling Lemma 6.16.
�

Appendix D. Proof of the egg on barn lemma.

This section is devoted to the proof of Lemma 6.21, which we break into several
pieces.

First we outline some notation that will allow us to treat the Hermitian and real-
symmetric cases jointly. Fix K ∈ {C,R}. Let KN denote HN if K = C and SN if
K = R. Let EN ⊂ KN denote the elements of KN with no repeated eigenvalues.

Fix some B ∈ KN for the remainder of the section. We equip KN with the
Lebesgue measure, so statements about, e.g., ‘almost every’ A in KN should be un-
derstood with respect to this measure. Meanwhile, we equip DK with the natural
notion of ‘measure zero’ inherited from the Lebesgue measure on charts, which coin-
cides with that of its volume measure induced by any choice Riemannian metric.

Let Φ : DK → KN denote the map Q 7→ A+B[Q], and let Ψ : EN → DK denote
the map that sends a matrix in EN to its density matrix in DK . (Note that the
choice of density matrix is unambiguous when there are no repeated eigenvalues.) We
would like to say that Φ−1(EN ) is a large (i.e., full-measure) subset of DK , so that
we can define Ψ ◦ Φ (which coincides with F) on this set. This is quite essential to
the argument. Indeed, if this were not the case, then there would be a set of positive
measure in DK on which the behavior of F was not canonically determined, much less
differentiable. Fortunately, we have the following lemma, which says even more.

Lemma D.1. For almost every choice of A in KN , W := Φ−1(EN ) is a connected
open subset of full measure in DK .

Proof. The openness of W follows from the fact that Φ is a continuous map
DK → KN and that EN is open in KN .

Next note that a Hermitian (in particular, real-symmetric) matrix X has repeated
eigenvalues if and only if the discriminant of the characteristic polynomial ofX is zero.
This is a real-algebraic condition on the entries of X (with the real and complex parts
treated separately in the case K = C), so KN\EN is a real algebraic subset of the
real vector space KN . In fact (see Section 1.3 of [35]), KN\EN has real codimension
3 in KN if K = C and real codimension 2 in KN if K = R. Thus (since KN\EN is
a real algebraic set), in either case KN\EN can be written as a (disjoint) union of
finitely many smooth submanifolds M1, . . . ,Mk of KN , each of real codimension at
least 2 in KN .

Ideally, this should indicate that Φ−1(KN\EN) is a union of finitely many smooth
submanifolds of DK , each of real codimension at least 2. Indeed, we have by the
Transversality Theorem (see, e.g., Section 2.3 of [13]) that for almost every A ∈ KN ,
the map Φ is transversal to Mi for each i = 1, . . . , k. Then by the preimage theorem
for transversal maps (see, e.g., Section 1.4 of [13]), Φ−1(Mi) is a submanifold of DK

with (real) codimension in DK equal to the codimension of Mi in KN , which is at
least 2.

Thus W = Φ−1(EN ) is equal to DK minus a finite number of submanifolds of
codimension at least 2. These submanifolds have zero measure in DK (this follows
from Sard’s theorem; refer, e.g., to [13]), so W has full measure in DK .
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It only remains to show that W is connected. Since DK is connected, this follows
from the general fact that if Y is a connected (hence smoothly path-connected) man-
ifold and Y1, . . . , Yk are submanifolds with codimension at least 2 in Y , then Y \

⋃
i Yi

is connected.
This general fact also follows from a transversality argument, which we now pro-

vide for completeness. Let x, y ∈ Y , and let γ : [0, 1] → Y be a smooth path with
γ(0) = x and γ(1) = y. But there is a homotopy of maps γǫ (with γ0 = γ) such that
γǫ is transversal to each of the Yi for a.e. ǫ (see, e.g., the proof of the “transversality
homotopy theorem” of Section 2.3 of [13]). Since the Yi have codimension 2, this
implies that γǫ does not intersect any of the Yi (for a.e. ǫ). Taking ǫ sufficiently small
so that x = γ(0) and y = γ(1) are connected to γǫ(0) and γǫ(1), respectively, by paths
within Y \

⋃
i Yi, we see that x and y are connected by a path within Y \

⋃
i Yi.) Also,

we know that Φ−1(EN ) is open in DK because EN is open in KN .
We now outline the main pieces remaining in the proof of Lemma 6.21. Recall that

DK is a real-analytic submanifold2 of Rm for somem. We claim that Φ is real-analytic
on DK and that Ψ is real-analytic on EN . This would imply that F is a real-analytic
map W → DK . In particular, by an analytic continuation argument (Lemma D.3),
the setW ′ of points in W at which the Jacobian of F fails to be invertible must either
be all of W or have zero measure in DK . The former possibility can be ruled out.

Then in words, F is a local diffeomorphism on an open set of full measure in
DK . Diffeomorphisms preserve measure zero sets, and by coveringW ′ with countably
many small open sets on which F is a diffeomorphism, we will see that the preimage
of a measure zero set under F must have measure zero.

First we turn to establishing the claimed real-analyticity.
Lemma D.2. F|W :W → DK is a real-analytic map between real-analytic mani-

folds.
Proof. For Q ∈ DK (so in particular Q = Q∗), we can write

Φ(Q) = A+B(QBQ)†B

= A+
1

2
B
[[
QBQ+ (I −Q)

]−1
− (I −Q)

]
B

+
1

2
B
[[
Q∗BQ∗ + (I −Q∗)

]−1
− (I −Q∗)

]
B.

Written in the latter form, it is clear that Φ extends to a real-analytic map to EN ,
defined on a neighborhood of DK in KN×N (considered, in either case for K, as a
real coordinate space Rq for some q).

Consider X0 ∈ EN , and let C be a simple contour in the complex plane sur-
rounding only the lowest n eigenvalues of X . The for all X in a sufficiently small
neighborhood of X0 in EN , we have

Ψ(X) =
1

2πı

∮

C

(z −X)−1 dz,

where C is a simple contour in the complex plane surrounding only the lowest n
eigenvalues of X . In particular, we can choose C to be a circle of some radius R > 0,

2DK can be identified with the Grassmannian Gr(n,KN ), i.e., the set of all n-dimensional
subspaces of KN , which is an algebraic variety of K-dimension (N −n)n. The space DK itself is cut
out by the conditions Q2 = Q, Q∗ = Q, and Tr(Q) = n on Q ∈ KN×N . These are real algebraic
conditions on KN×N ≃ Rm (for some m), so DK is a (smooth) real algebraic subvariety of Rm. In
particular, DK has the structure of a real-analytic manifold.
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so taking the parametrization z(t) = R cos(t) + iR sin(t) yields

Ψ(X) =

∫ 2π

0

R

2πı
(R cos(t) + i sin(t)−X)−1

︸ ︷︷ ︸
=:G(X,t)

dt.

Identifying the real vector space KN with Rp for some p, we have that G(X, t) is a
rational function R

m+1 → C
N×N , well-defined for all X in a neighborhood of X0,

hence real-analytic (if we identify the target space with R2N2

). Since an integral
of a real-analytic function with respect to one of its arguments is real-analytic (see
Proposition 2.2.3 of [21]), we have established that Ψ is a real-analytic function EN →
DK , where we can interpret the domain as sitting inside some Rp and the target as
sitting inside of Rm, as mentioned above.

Since the composition of real-analytic functions is real-analytic (see Proposition
2.2.8 of [21]), we have established that F = Ψ◦Φ is real-analytic on a neighborhood of
W ⊂ DK in KN×N . Since W is open in DK , W is a real-analytic submanifold of DK ,
and we can view F :W → DK as a real-analytic map between real-analytic manifolds
(without thinking of their ambient spaces).

Next we prove a general fact about real-analytic maps between real-analytic man-
ifolds. This is essentially an analytic continuation result.

Lemma D.3. Suppose that F : M → N is a real-analytic map between real-
analytic manifolds of equal dimension k, and M is connected. Let M′ be the closed
subset of points x ∈ M at which the Jacobian DFx : TxM → TF (x)N is singular.
Then either M =M′ or M′ has zero measure in M.

Proof. In a local coordinate chart, the defining condition forM′ is precisely that
the determinant of the k × k Jacobian matrix in local coordinates (whose entries are
real-analytic functions of the local coordinates) is zero. This set is a real-analytic
function of local coordinates. The zero set of a real-analytic function on a connected
open subset of Rk is either the whole set or a set of measure zero (in fact, by a much
deeper result of Lojasiewicz, a finite union of analytic submanifolds of codimension
at least 1—see Theorem 6.3.3 of [21]).

Suppose that the measure ofM′ is not zero, soM′ must have positive measure in
some coordinate chart, and by the precedingM′ must contain some open set in this
chart. Note that the set A := {x ∈ M : DFx is singular on a neighborhood of x} is
both open and closed in M. The openness follows immediately from the definition,
while the closedness follows from the real-analyticity of F . To see the latter point, let
y be a limit point of A, and let (U , ϕ) be a coordinate chart near y with ϕ(y) = 0.
Let the determinant of the k×k Jacobian matrix DF in local coordinates be denoted
by f , so f is real-analytic, and moreover f ≡ 0 on ϕ(U). Then all of the derivatives
of f are uniformly zero on ϕ(U), hence also at the limit point 0 = ϕ(y). Since f is
real-analytic at 0, this implies that f ≡ 0 on a neighborhood of 0, so DFx is singular
on a neighborhood of y, i.e., y ∈ A. This establishes that A is closed, as desired.

SinceM is connected and A is both open and closed inM, we must have either
A = ∅ or A =M. SinceM′ contains an open set, A cannot be empty. Consequently
when the measure ofM′ is not zero, A =M and DFx is singular for all x.

In particular, Lemma D.3 implies (together with Lemma D.1) that

W ′ := {Q ∈ W : DFQ is singular}

is either equal to W or has zero measure in W . The next lemma says that we can
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rule out the former possibility.
Lemma D.4. For almost every choice of A in KN , W ′ has zero measure in W,

hence also (by Lemma D.1) zero measure in DK . It follows that W\W ′ is an open
subset of full measure in DK .

Proof. We only need to rule out the possibility that W ′ = W . We will do so by
considering a point near the true density matrix P .

Recall from our proof of local convergence thatDFP has positive eigenvalues (with
F considered, depending on the case for K, as either a map DC → DC or DR → DR),
hence is nonsingular. This means that P /∈ W ′.

If P ∈ W , thenW ′ 6=W , and we are done. More generally, even if P /∈ W , observe
that since W is of full measure in DK (hence dense in DK), there is a sequence of
density matrices Qj → P with Qj ∈ W . Since DFP is nonsingular, it follows that
DFQj

is nonsingular for j sufficiently large. But then Qj ∈ W and Qj /∈ W ′, so
W ′ 6=W , as desired.

Now we finish the proof of Lemma 6.21 by the lemma below.
Lemma D.5. Let F : M → N be a map between smooth manifolds of equal

dimension, and let V be an open subset of full measure in M on which F is smooth
and DF is nonsingular. Then for any set S of measure zero in N , F−1(S) has
measure zero in M.

Proof. Now for every point in x ∈ V , by the inverse function theorem we can find a
neighborhood Ux ∋ x inM such that F : Ux → N is a diffeomorphism onto its image.
Moreover, the size of the neighborhood can be taken to depend only on the derivatives
of F near x. In particular, we can assume that the size of the neighborhood Ux is
locally bounded away from zero. (By this we mean, fixing some arbitrary Riemannian
metric, that for every x ∈ V , we can take Ux to contain a Riemannian ball of radius
r(x) about x, where x 7→ r(x) is bounded away from zero on every compact subset
of V). By fixing a set of coordinate charts on the submanifold V and taking X to
consist of all the x that are rational points in any of these coordinate charts, we see
that {Ux : x ∈ X} forms a countable open cover of V . We remark that the details
of this construction are made quite explicit in order to avoid invoking the axiom of
choice.

Let S be a set with measure zero in N . We can write

F−1(S) ⊂ (M\V) ∪
(
F−1(S) ∩ V

)

= (M\V) ∪
⋃

x∈X

(
F−1(S) ∩ Ux

)

= (M\V) ∪
⋃

x∈X

F−1 (S ∩ F (Ux)) .

Now the restriction of F−1 to F (Ux) is a diffeomorphism, so F−1 (S ∩ F (Ux)) is the
diffeomorphic image of a measure zero set, hence has measure zero. As a countable
union of measure zero sets, F−1(S) has measure zero.
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