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ABSTRACT:We describe a novel iterative strategy forSKohme
Sham density functional theory calculations aimed at large
systems (>1,000 electrons), applicable to metals and iNSUIATOrS o o
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obtain those states in anceent, scalable manner via an inner & & o & o & £ Lo o &
Chebyshenter iteration. By reducing the necessary computation® N s i s N
to just partially occupied states and obtaining these through an g y
inner Chebyshev iteration, our approach reduces the cost of large
metallic calculations sigaintly, while eliminating subspace
diagonalization for insulating systems altogether. We describe the implementation of the method within the framework of
the discontinuous Galerkin (DG) electronic structure method and show that this results in a computational scheme that can
e ectively tackle bulk and nano systems containing tens of thousands of electrons, with chemical accuracy, within a few minut
or less of wall clock time per SCF iteration on large-scale computing platforms. We anticipate that our method will be
instrumental in pushing the envelope of large-scale ab initio molecular dynamics. As a demonstration of this, we simulate a bu
silicon system containing 8,000 atomsite temperature, and obtain an average SCF step wall time of 51 s on 34,560
processors; thus allowing us to carry out 1.0 ps of ab initio molecular dynamics in approximately 28 h (of wall time).

andard CheFS1) or

1. INTRODUCTION thousand electronic states. This has led to the development of

Kohr&Sham density functional theory (KS-BEE among computational techniques which scale more favorably with
the most widely used approaches in the computatiofgSPeCt 0 the number of electronic states in the system, by
chemistry, condensed matter, and materials research comrRyRiding explicit diagonalization of the &8ham Hamil-

ities. Over the years, KS-DFT has provided unparalle/ian-— " However, thes; work best on insulating systems
insights and robust predictions for the gamut of materialdth substantial band g s, metallic systems with low
propertiesS® as a result of which, much research has bedfimension (such as in the case of the pole expansion and

devoted to enable calculations of ever larger and more comigiected inversion (PEXSI) metH6).or systems at high
system&10 electronic temperatufé! Consequently, while impressive

Conventionally, KofiSham equations are solved self-large-scale KoBham calculations of various 6ivnsulating
consistently, wherein the linear eigenvalue problem arisf¥ftems have been demonstrated by several ?j;r%fups.,
from discretization in a chosen basis is solved on each d@f@e-scale, well converged, chemically accurate calculations of
consistenteld (SCF) iteration until aed point is reached in reallstgtslggrzr];conductlng or metallic systems have appeared only
the electronic density or potential, whereupon energies, ford@&ely-" -~ Many of the aforementioned methods rely on
and other quantities of interest are comp®etilition of this ~ the nearsightedness _prinéfplier obtaining the electron
eigenvalue problem via direct or iterative diagonalizatiégnsity from the Koli$ham Hamiltonian in an @ent
methods scales cubically with the number of electronic staffl@@nner. This presents practical issues while dealing with bulk
in the system (and hence, also cubically with the number -af
atoms). The computational cost of this procedure can becomeceived: December 12, 2017
prohibitive, however, as the system size grows beyond a fewlished: April 16, 2018
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metallic systems at moderate electronic temperatures (up tdree Ritz values and vectors so obtained then provide
few thousand kelvins). The relatively slow decay of the densipproximate eigenvalues and vectors of the DG Hamiltonian
matrix associated with such systems (even for the case of sinmpleach SCF iteration of the K8&mam solution. In the
metals such as aluminum) often results in a computatiodallowing, we focus mainly on steps 4 and 5 of the process,
method having a favorable algorithmic scaling but relativalitich we shall refer tosaagspace diagonalizatnoisubspace
large prefactdr.In practical treatments of large bulk metallicrotation respectively. In the absence of fractionally occupied
systems containing several thousands of atoms, this is likelgtabes (i.e., for insulating systems), these steps can be avoided
resultin a larger computational wall time per SCF iteration witfitogether (segection 2.1)land, in that case, the computa-
the use of these meth@ithan with the use of diagonalization tional bottleneck arises from the orthonormalization of the
based methods. basis that spans the occupied subspace. Indeed, due to their

In this work, we take a dient approach to make K8hn focus on_ insulating systems, a number of previous
Sham calculations of large, metallic systems more compatahors*>=** have focused on reducing or eliminating this
tionally feasible. Our approach is to revert to the use ofthonormalization cost, instead of the cost associated with the
(cubically scaling) partial diagonalization of theSiSblam aforementioned projected Hamiltonian eigenvalue problem.
Hamiltonian via iterative methods, but to ensure that thieor noninsulating (e.g., metallic and semiconducting) systems,
resulting computational strategy has a low prefactor (in thewever, fractional occupation numbers have to be computed
sense of computational complexity estimates) and good paralfel the projected Hamiltonian eigenvalue problem cannot be
scaling eciency. In practice, with the use of aismtly large  directly avoided.In this situation, detailed wall time studies
number of processors, this then enables larger systems gzes,section 3)2reveal that the most sigrant hindrance to
and/or shorter simulation wall times than attainable heretofopshing the computationalogency of the DGDFT-CheFSI

With the aforementioned goal in mind, we have focused approach lies in the subspace diagonalization and subspace
two principal strategies for achieving it. Téteof these has rotation steps of the Rayl&®itz process. While the
been to ensure that we use a discretization scheme that is highlyonormalization cost can become s@mi for large
e cient. Spectally, we utilize basis functions which carproblems, its contribution to the simulation wall time is less
produce systematically improvable, high quality numerithén that of the above steps, and its parallel scalability is
results while keeping the number of basis functions per atapreciably better. This provides the incentive to devise a
required for doing so, small. To this end, we employ so-calle@mputational strategy that reduces or eliminates the computa-
adaptive local basis (ALB) funcfibiimt are generated on the tional cost incurred due to the subspace diagonalization and
y on every SCF step during the course of 3Qiam subspace rotation steps in the DGDFT-CheFSI approach.
calculations. These basis functions are able to capture the lodal this work, we formulate and implement a two-level
materials physics in electronic structure calculations, and widebyshev polynomidter based complementary subspace
used in conjunction with the interior penalty discontinuoustrategy to address the above issues. In this methodology, only
Galerkin (DG) formalism for the K&@8ham equations, they the relatively few fractionally occupied states of the projected
allow high quality energies and HelBRagnman forces to be Hamiltonian, and not those fully occupied or empty, are
computed with only a few tens of basis functions pértom. calculated, thus reducing the computational cost of the
The DG approach for solving the KeBham equations using subspace diagonalization and subspace rotation steps signi
ALB functions has been incorporated into a massively paradhtly. Moreover, exploiting the spectral properties of the
software package, DGD¥Y. The second strategy has been projected Hamiltonian, we employ CheFSI iterations to obtain
to employ a well suited iterative diagonalization strategy for the fractionally occupied states, thereby yielding a highly
discretized Koldsham Hamiltonian. To this end, we havee cient iterative scheme that uses Chebyshev polynomial
made use of Chebyshev polynorttded subspace iteration Itering on two levels. We refer to the resulting computational
(CheFSIy? For a number of reasdfighis technique works methodology as CS2CF, icemplementary subspace strategy
particularly well within the framework of DGDKTterms of with two levels of Chebyshev Filtering
both computational wall times and overall parallel scalingThe idea of exploiting completeness to reduce subspace
e ciency. We have recently demonstrated that the CheR§mputations to just fractionally occupied states was presented
technique sigriantly outperforms existing alternatives inrecently by Michaud-Rioux et’ah their partial Rayletgh
carrying out SCF iterations in DGDFT, particularly in theRitz method for large-scale K®®ham calculations, as
context of large bulk systéms. implemented in the RESCU Matlab electronic structure

Our experiences with the DGDFT-CheFSI strategy hawede’® The idea has also been exploited previously in
revealed that the principal computational bottleneck in treatipgrtici&hole duality formulations to accelerate density matrix
large, metallic systems occurs in the R&Réizprocessto computations iD(N) electronic structure meth8d&' In
obtain approximate eigenvalues and vectors in each S&E& context of subspace diagonalization, in line with the key
iteration. In the context of the DGDFT-CheFSI methOdO'Ogijea of obtaining a |arge subspace from its much smaller

this process is generally as foftdws: complement, we refer to the approach asothplementary
1. Compute a basis spanning the occupied subspace usifighspa¢ES) strategy here.
Chebyshev polynomidier. Once the subspace computation has been reduced to just

fractionally occupied states, it is then crucial to obtain these as

2. Orthonormalize the basis. e ciently as possible. As we detailséntion 2.2,2to
3. Project the DG Hamiltonian matrix onto the SUbSpaceaccomplish this, we exploit key characteristics of the subspace

4. Diagonalize the projected Hamiltonian to obtain Ritgigenyalue problem to obtain the fractionally occupied states

values and projected vectors. both e ciently and scalably via low order CheFSlI iterations.
5. Rotate the basis according to projected vectors to obtgihis strategy is particularly well suited to large-scale parallel
Ritz vectors. implementation and, as we show, integrates particularly well
2931 DOI:10.1021/acs.jctc.7b01243
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within the framework of the massively parallel DGDFT codsu ces to také\, to be about $10% ofNJ2 while dealing
Consequently, it allows us to attack metallic systems containwith electronic temperatures up to a few thousand kelvins. In
tens of thousands of electrons in a few minutes or less of whit case, the occupation numbers associated with the states
time per SCF iteration. Finally, all results reported here dyng beyond the lowddican be conveniently set to O without
computed to chemical accuracy (i.e., energy and force ermwmpromising the accuracy of the solution (ground-state
below 18 Ha/atom and 13 Ha/Bohr, respectively), as energies and forces, for example) or aggravating SCF
typical in production simulations. This has allowed us to caggnvergence.

out accurate, energy-conserving ab initio molecular dynamickhe computation of the lowdkteigenvalues I and the
simulations of systems with many thousands of atoms in a fewresponding eigenvectom}{!{l of H can be carried out
minutes per MD step. Without the use of the CS2CF stratedgirough the use of direct or iterative eigensolvers. Subsequent
the advantagesomded by the ALB discretization, and theto the computation of the eigenstates, the occupation fractions
highly e cient, massively parallel DGDFT code, this would nc{tfi}i“isl (with 0 f; 1) can be computed from the F&mi

be possible. Dirac functiotf
It is important to note that the utility of the complementary 1
subspace strategy (and in particular, the CS2CF methodology)f = f-( ), withf_( )= — T\
is not restricted to the DGDFT codayother KohsSham 1+ ex;(f) B

code can benefrom this methodology as well, although as
mentioned above (also seetion 2)3the CS2CF strategy where . is the electronic temperatukg, denotes the
integrates well and performs particularigieatly within  Boltzmann constant, and the Fermi lgwen be determined
DGDFT. Overall, we view this work as the development oft® solving the constraint equation
KohrsSham equation solution strategy that has been well
tuned to minimize wall times in practical simulation scenarios f=N
of large systems. In our view, it is an important step toward a1 @)
robust and ecient methodology for carrying out ab initio =1
molecular dynamics of large metallic and semiconductifibe use of fractional occupation (also known as smear-
systems. ing)*#*>*® allows us to overcome numericalcdities

The remainder of this work is organized as follesestion associated with possible degeneracy of eigenstates near
2, we outline the mathematical formulation of the comple- Using the results from the above computations, the
mentary subspace strateggjent two-level Chebyshdter (discretized) density matrix (also referred to as the Fermi
based solution, and large-scale parallel implementation in mhairix at nite electronic temperature) of the system can be
context of the discontinuous Galerkin electronic structug@lculated. Thi¥, x N, sized matrix is deed as
method. Irsection 3we present results for a range of systems,  _
from insulating to semiconducting to metallic, and comparisonsp = (H) @)
with existing methods. We conclude and comment on futug@d using the fact tHét;) = 0 fori > N, it can be rewritten

research directionsdaction 4 using the eigenvectorstbs
2. METHODOLOGY b= st T
We describe the formulation of the complementary subspace izq P (4)

strategy as well as its implementation within the adaptive local . ) )

basis set based discontinuous Galerkin electronic structBghoting the collection of the.elgenvecto}%l{as theN, x -
method (spectally, the DGDFT codf in this section. For ~ Ns matrixX, and theNs x N diagonal matrix of occupation
simplicity, we consider-point calculations of non-spin- humbers as (i.e.,-;; = f fori =1, ...Ng, a more compact
polarized periodic systems, as is typical in large-scale ab ini@rix form of the above expression€ie), is

molecular dynamics simulations, although this assumption is T
not required in what follows. P=X-X )

2.1. Formulation of Complementary Subspace Strat-  The matrixP contains all the information required for
egy. 2.1.1. Density Matrix and Projected Density Matvix. progressing with the SCF iteratiomsparticular, if the basis
consider a system with a discretized¥&imm Hamiltonian  functions used for the discretization are denot ﬁﬁ*’{,
matrixH of sizeN, x N, withN, denoting the total number of then the real-space electron density can be expresised
(orthonormal) basis functions used for the discretization. Thige matrix entries &fas
Hamiltonian is a function of the real-space electron density NN

(x), that must be determined iteratively in a self-consistent () =2 © R, X €)X
eld iteration. 1 !

The conventional procedure for achieving this is through the ! )
intermediate computation of the (discretized) $®ham In the process of computing the density nititxis often
orbitals, i.e., the eigenvectok$. @ Within the above setting, simBIer to compute an alternate set of orthonormal vectors
each Koh&Sham orbital isfd, x 1 sized real valued vector. { };= that span the same subspace as the eigenvectors (i.e., the
For a system containiNgelectrons (per unit cell), the lowest occupied subspace). If the collection of these alternate vectors
Nseigenstates Bfneed to be computed in each SCF step. Fois expressed as hg x N, matrix Y, there must exist an
an insulator, each orbital is doubly occupiedJarah be orthogonaN, x Ng matrixQ such thaX = YQ andeq 5then
taken adld2. In contrast, for a metallic system, it is customaryakes the form
to useN; = NJ2 + N,, whereN, denotes extra states that are
used to accommodate fractional occupatfofiSlt usually P=Y(Q-Q) Y @)

j=1i=

2932 DOI:10.1021/acs.jctc. 7b01243
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The Ng x Ng matrixP = Q -Q" will be referred to as the consume more and more computation time, thus making it
projected density maixuation 7ndicates that the density infeasible to directly compute the projected density matrix as

matrixP may be computed using alternative vectdps {f described above. Instead, a complementary subspace strategy
the projected density matrix is available along with the vect6t3Y be formulated to mitigate these issues, as we now describe.
{ 2. 2.1.3. Complementary Subspace Computation of the

A straightforward way of computing such a set of alterndtéojected Density Matrikn light of the above discussion, it
orthonormal vectors is through the use of Chebysheippears that, for a generic system (i.e., one with some degree of
polynomial Itering followed by explicit orthonormalization. fractional occupation), we require alNtfegenstates bfto _
Specically, we may start withNg x N block of linearly be compL_Jted on every SCF iteration in order to progress with
independent vectod and apply a Chebyshev polynomial the SCF_ iterations. A crumal observation, however, is that for

lter matrixp,(H) to Y,. The Iter p,(...) can be specally electronic temperatures typ!ca_lly encountered in practice (e.g.,
scaled and a saiently high Iter orderm can be chosen so e, 3,000 K), a large majority of the occupation numbers
that the eigenvectors i}ﬂ% are amplied in the resulting {fi}i=1 are equal to 1. We denote states 1 thilygk those

ltered vectorsY; = py(H) Y,.°®°? To avoid linear with occupation numbers equal to 1. The remaining states,
dependencies, we may then orthonormalize the vector bigtRMN; + 1 througiNs have occupation numbers less than 1.
Y,. The resulting set of orthonormal vectors will (approxt€tN¢ be the number_of these f_ractlonally occupied states, i.e.,
imately) span the occupied subspace. This strategy has Hdef Ns S Ni. Denoting the eigenvectors of the projected
combined with subspace iteration techniques for use in vari§g§sity matrix as ;= (the columns of the mat@, we may
electronic structure cod&§>°5%% and it can successfully rewrite the expression for the projected density matrix as

deal with metallic as well as insulating systems. N
We note that a special situation arises when the system inP= f T
guestion is an insulator. In this case, the matrix of occupation =t
numbers- is the identity matrix, $u 7reduces to _M g . N P
P=YY (8) =1 Enpr
asQ is an orthogonal matrix. Thus, for an insulating system, we - " L * T3 " L v £ .7
only need a way of computing a set of orthonormal vectors that =1 = =ng1  Fng 1 i1
span the occupied subspace in order to compute the density Ns N
matrixP. For a metallic system, additional work is needed to = S Dt fol (11)
compute the projected density matrix. i=1 =N 1 FNpL
2.1.2. Direct Computation of the Projected Density Matrix. N 3 .
Considering the expression for the projected density matrix = ©° @sf) i, 12)

. ) i i=Np+ 1
P=Q-Q', we see that the evaluation of this expression o

requires the computation of the occupation numbers { In eq 12 C denotes the identity matrix of dimenslgr Ng
fe( i)}:\isl as well as the mat@x These quantities can be That the rst term ofeq 11is the identity matrix follows from
computed by carrying out an eigenvalue decomposition of the fact that the vectors){ are the eigenvectorstf a
projected Hamiltonian maisx, thégx NgmatrixH = YTHY. symmetric matrix, and so form a resolution of the identity.
The occupation numbersan be computed using the The above expression suggests thai\f tine eigenvectors
eigenvalues ¢f since these are the same as the Idlyest ; and corresponding occupation numbere known, the
eigenvalues bif(i.e., {i}i’\:'ﬁ). Furthermore, the eigenvectors of projected density matBxmay be computed. Thus, instead of
H are the columns of the mafpix determining the fulNs x Ng set of vectors, we need to
To verify this, werst write down the eigendecomposition of determine only an extremal block of vectors (of diméhsion
H (for the lowesh states) aslX = X . Next, using =YQ x Ny, corresponding to the staitesN; + 1 toNg

we get To compute the corresponding occupation numbers, we
HYQ= YQ ©) rewrite the equation 24f, = N, as
Premultiplying witty’ and using the orthonormality of the N N _ Ns <
column vectors i, we get 2 f+ =N £ N3 N
i=1 i=Ng 1 FNg L (13)

T —

(Y'H) Q= HQ= Q (10) The above algebraic equation may be solved for the Fermi level
Additionally, the expressifns Q -Q" andH=Q Q" allow ¢ and occupation numbefg ...
us to interpret the projected density matrix in terms of the Once the projected density ma@rhas been obtained, the
projected Hamiltonian matrixRas f-(H). full (i.e.Np x Ny) density matrix can be obtaine® asyPr.

In the context of Krylov subspace projection mettids, To simplify this further, let us denot€bytheN, x N, matrix

the steps involving the construction of the projected . . N g
Hamiltonian matrix, computation of its eigendecompositioﬁ?nSIStIng of the vectc{r\$1 ST k21 (i.e., each of the top

and computation of (approximate) eigenvectbrsiging the eigenvectors bf scaled by the quant'ml S f). Theneq 12
expressiorX = YQ constitute the Raylef§Ritz process,

wherein the last step corresponds to subspace rotation. AsGB be written in terms ©f as

system size grows, the dimension of the Hamilbgnand p=18c c’ (14)
number of statedl; grow as well. Correspondingly, the i
eigendecomposition and subspace rotation steps beginwioereupon we obtain
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P=YPY= Yv$ Yc ¢y The above properties suggest that iterative solution methods
T stand to be ecient at obtaining the desired states. We explored
=YY S (YC) YQT ) (15) two such approaches: (1) the LOBPCG méfhiod as

employed in reg7, and (2) CheFSl.

As we explain later, this expression is particularly easy t@.2.1. Use of LOBPC®@We rst implemented an un-
evaluate in a localized basis set. In particular, within theeconditioned version of the LOBPCG metidd® The
DGDFT code, evaluation of the diagonal portions of the abot@pmostN; states ofH were obtained by computing the
expression can be carried out in a manner that avoidsttommostN, states ofSH. The initial vectors for the
interprocess communication. This isciemt for evaluating LOBPCG iterations were obtained from the results of a direct
the real-space electron density and proceeding with S@iagonalization df (using LAPACK/ScaLAPACK) from a
iterations. previous SCF step. Computation of rateitor products

Ground-state KS-DFT calculations also require computatisias carried out directly by the use of dense linear algebra
of the band enerdy, = [ f, ;. Since only the fractionally (BLAS) routines.
occupied states are in the complementary subspace scheme, @eerall, this strategy works reasonably well in practice. When

rewrite this as compared against results from the direct diagonalizétian of
few iterations of LOBPCG are typically enough to obtain the
E =2 N i = o M f Ns ‘ top eigenstates to desired accuracy at a fraction of the cost.
- Vi P i

However, as the system size increases, so does the total number
of statesNg and number of top statd§. Under these
M N Ns Ns Ns circumstances, the well-known computational bottlenecks of
1 e b1 et a1 the LOBPCG algorithm associated with dense linear algebra
operations begin to become apparent. Replacing serial dense
linear algebra operations in LOBPCG with the corresponding
parallel versions (i.e., PBLAS and ScaLAPACK rGtftihes
(16) did not signicantly improve performance since the computa-
tional bottlenecks of LOBPCG alsoesufrom scalability
Thus, the trace of the projected Hamiltonian matrix, the toigsues. We therefore turned to ardnt strategy, as we
eigenvalues, and their corresponding occupation numbers dagcribe below.
su cient to compute the band energy. 2.2.2. Use of CheFSl: Two-Level Polynomial Filtering
The electronic entropy can be obtained from just th&trategy.To mitigate the aforementioned issues, we replaced
fractionally occupied states as well. The electronic entropythie LOBPCG algorithm with Chebyshev polynottéaéd

~ Ns ~
=2 Tr(H) @ash,
i=Ng+ 1

given by subspace iteration. This turns the overall iterative strategy into
" one that employs two levels of Chebyshev polyntietiat
 « - - on every SCF step. Thest (or outer) level allows the
S= S _ flogf + (1S f)log(: f) computation of a set of orthonormal vectors that (approx-
i=1 a7) imately) span the occupied subspadé dhe second (or

By inspection, we see that the contribution of & taaiee ~ "N€r) level uses CheFSI to computé\ftepmost states of
' or equivalently, thé lowest states &H.

electronic entropy goes to zero as the occupation number %[I'his turns out to be a much moreive strategy for a

that statd; goes to 0 or 1. Hence, within the complementary ber of First. by vi fthe limited | width
subspace scheme, only the contribution of the fractionaﬂ?mh ero _reasgna. 'r.f't' Yy V'””‘TO t edlmltel Spm? widt
occupied states is considered. This allows thecsitigniof ~ ©! th€ projected Hamiltonian, a low order polyno

su ces for the inner CheFSl iterations. In fact, for all

eq 17t calculations reported here, we foundtea order of 4 or
N lower to be sucient. Second, as explained in previousawork,
S=S2g f logf + (1S f) log(1S f) depending on the initial guess provided, as well as the spectral
=gt 1 (18) width of the matrix, the use of CheFSI to determine eigenstates
of su cient accuracy often requires the application of multiple
which can be readily computed. CheFSI cycles. These factors appear to work in our favor, and

2.2. Computation of Top States. We now discuss we found that 5 or fewer CheFSI cycles wergesu in all
strategies for computing tNe topmost occupied states of cases considered, provided that the starting vectors for the
the projected Hamiltonian mahiixThis is the key step in the inner CheFSlI iteration were obtained using results from the
CS2CF methodology. To the extent that the top states of thevious SCF step. Finally, a signi fraction of the time
projected Hamiltonian can be obtained more quickly than @livolved in the inner CheFSl iteration is spent on evaluation of
states, the methodology will outperform standard dense ahe Chebyshev polynomikér p,(SH) as applied to aKs x
sparse-direct solvers which obtain all states. N, block of vectors. This operation is based on Smadtibix

To obtain the top states asceéently as possible, we exploit multiplications (i.e., GEMM operations in BLAS), and it
two key properties of the projected Hamiltonian. First, bgarallelizes quite eiently when PBLAS routifieare used.
construction (i.e., projection onto the occupied subspace) thence, the scalability of the inner CheFSI operation turns out
projected Hamiltonian has quite limited spectral width, witto be more favorable as compared to LOBPCG.
maximum eigenvalue limited to that of the highest occupiedlt is worthwhile to discuss the computational complexity of
state. Second, since we seek only the top few (tydio&y  the above procedure for determining the top statedf@in
states, we have an extremal eigenvalue problem for a relatinelgr Chebyshevter of ordem is employed, the computa-
small fraction of the spectrum. tional cost of applying the Chebystiev isO(mN2N,). The

2934 DOI:10.1021/acs.jctc. 7b01243
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subsequent orthonormalization and projection, diagonalizationities occurring at the element boundaries. Subsequent to the
and rotation steps associated with the inner problem incur cogtseration of the ALBs, the interior penalty discontinuous
of O(NNZN), O(N), andO(NN;?), respectively, leading to Galerkin approathis used for constructing the Hamiltonian
an overall cost G(MNZNA+NN>N,’) for each inner CheFSI matrix. This formulation ensures that the global continuity of
cycle. This estimate makes clear that it is advantageoushi® relevant Kol8Sham eigenstates and related quantities
reduceN; as much as possible in practical calculations using theh as the electron density iscintly maintained.
CS2CF strategy, as long as this reduction does not adversefs the number of ALBs is increased, the solution obtained by
a ect the accuracy or convergence of the calculation. th& above procedure converges systematically tonttee in
described later, this can be done in some cases basedbasis set limit. Since the ALBs incorporate local materials
numerical arguments (e.g., there is no need to account fitysics into the basis, arcient discretization of the K&hn
fractionally occupied states which do resttanergies and Sham equations can be obtained in which chemical accuracy in
forces appreciably) or physical ones (certain systems mightdial energies and forces can be attained with a few tens of basis
expected to have only a few fractionally occupied states, bdsadtions per atoft?® Additionally, the rigorous mathematical
on symmetry arguments, for example). foundations of the discontinuous Galerkin method allow the

If mis small (as in practical calculations), the above estimat@ors in the above approach to be systematically gauged by
appears to be of lower complexity thanQf>) cost means of a posteriori error estimafo?s.Thus, DGDFT
associated with the direct diagonalization of the projectedmbines the key advantage of planewave basis sets in terms of
Hamiltonian matrix. However, noting Mjas a small fraction  systematic improvability with that of localized basis sets in
of N (typically less than 10%), we see that the asymptotieducing basis set size. The DG framework for solution of the
complexity associated with the inner CheFSI procedure is kehrSSham equations (as implemented in the DGDFT code)

same as that of direct diagonalizatidh @&., O(NJ)) but has been successfully used to study complex materials problems
with a lower prefactor. As we showeiction 3this lower  involving many thousands of a 0

prefactor does indeed result in sigmitly lower computa- Despite the many successes of DGDFT in studying a wide
tional wall times when the inner CheFSI technique is usedvariety of large-scale materials problems, a persistent issue has
lieu of explicit diagonalizatiorHof been to obtain the electron density from the discretize8l Kohn

2.3. Implementation. Equation 1%uggests that, for the Sham Hamiltonian in an &@ent and scalable manner for large
success of the complementary subspace strategy, it is essepigims (i.e., systems containing a thousand or more atoms).
to be able to compute the full density mRtiixan e cient ~ To address this issue, we have recently investigated the use of
manner once the vector blodkandC_ are available. As Chebyshev pol;/nomidtered subspace iteration (CheFSl)
described above, in the two-level CheFSI scheme, the owtéthin DGDFT-° While this technique has the same
Chebyshev polynomidtering iterations allow us to compute asymptotic computational complexity as traditional diagonaliza-
the vector block (usingH) while the inner CheFSl iterations tion based methods (i®(NS), with Ny denoting the number
allow us to compute the vector blGck (usingH). Using of Kohr5Sham states), it has a substantially lower prefactor
these computed quantities, evaluatirignaively would incur  compared to the existing alternatives (based on direct
a computational cost@fN,2Ng+N,NN+N2N,). However, if ~ diagonalization using ScalLAPACK, for instance) within
the basis set used for the discretization is strictly localized, BféDFT. This stems from several favorable properties of the
computation of certain entries of the density rRatdk be  discretized Hamiltonian matrix in DGDFT. These include the
avoided during the SCF iterations, thus resulting iaigni  following: a small dimension (e.g., a few tens times the number
reductions in computational cost. Spalty, according t of atoms) which leads to lower linear algebra operation costs, a
6, if the basis functioe$x) and g (x) have nonoverlapping relatively low spectral width which ensures Chebyshev
support, then it is redundant to compute the density matrppolynomials of relatively low order can be employed, and
entryP; since this term does not contribute to the real-spacenally, an underlying block sparse structure which ensures that
electron density. With this observation and a few additiomaitrix vector products can be carried out with high
factors (as detailed below) in mind, we have implemented tbemputational eciency. These features, along with the
two-level CheFSl| based complementary subspace strafeyprable parallel scalability of the DG-CheFSI approach,
within the framework of the discontinuuos Galerkin electronf@ve allowed us to tackle systems containing several thousands
structure method (specilly, the DGDFT code), as we now of atoms in minutes of wall time per SCF step on large-scale
describe. computational platforris.

2.3.1. Background on Discontinuous Galerkin Electronic Our experience has shown that the limiting computational
Structure Method and DGDFT Codde DG electronic  bottleneck in such large-scale calculations using the DG-
structure method employs an adaptive local basis set to s€WeFSI approach turns out to be associated with the subspace
the equations of KS-DFT in a discontinuous Galerkidiagonalization and subspace rotation steps of the Rayleigh
framework’?® The methodology has been implemented inRitz process.In light of this observation, we view the current
the discontinuous Galerkin density functional theorgontribution as one which directly confronts the computational
(DGDFT) code for large-scale parallel electronic structuleottlenecks associated with the above steps and replaces them
calculation$¥?° The DGDFT approach to solving the KS-DFT with the complementary subspace strategy based on an inner
equations involves partitioning the global simulation domdewvel of Chebysheltering. In particular, the factors which lead
into a set of subdomains (or elements). The $Qiam to the success of the DG-CheFSI approach (i.e., favorable
equations are then solved locally in and around each elempntperties of the discretized Hamiltonian matrix, good parallel
These local calculations are used to generate the ALBs (in esalability of various operations, and so on) also ensure that the
element), and the KofiBham equations in the global two-level CheFSI based complementary subspace strategy
simulation domain are then discretized using them. Thmerforms with great eiency when implemented within the
ALBs form a discontinuous basis set globally with discorBGDFT framework. We now outline some speniple-
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mentation details of the above strategy within the DGDFT The DGDFT code uses a two-level parallelization strategy
code. implemented via message passing interface (MPI) to handle
2.3.2. Implementation Detail3Ve highlight a few interprocess communicatidAt the coarse grained level, the
important details of the implementation of the two-levgbarallelism is based on domain decomposition and work is
CheFSl based complementary subspace strategy wittistributed among processors by DG elements. Further,
DGDFT. The rst concerns the manner in which the codemultiple processors are assigned to each element to achieve
transitions from regular CheFSI based SCF iterations to the tise second,ner level of parallelism. The observations made
of the complementary subspace strategy. As discussed abave imply that computation of the diagonal blocks of the
previous section, the use of iterative solvers to evaluate demsity matrix incurs no communication between processors
topmost states of the projected HamiltoHiaequires good  associated with @rent elements as long as the n@triis
initial approximations in order to avoid excessive iteratioRgsjlable locally on the processors working on a given element.
Consequently, in static (i.exed atomic_positions) Kdhn  oyr implementation makes use of this observation to achieve a
Sham calculations, wet carry out aboutsd SCF iterations  good balance of memory storage requirements and parallel
using the conventional CheFSI technique. The eigenstates Ogcalability of linear algebra operations while working with the
are computed directly by use of LAPACK or ScaLAPACKatrixC . Once SCF convergence has been achieved, the full
routines during these iterations. Nintop eigenvectors from aensity matrix (or, more precisely, all the nonzero blocks)
the last conventional CheFSl iteration are subsequently usedas4s” 1o pe computed. The two-level parallelization strategy

the initial guess for the iterative solvers in tse irrEglemented in DGDFT ensures that this computation can be
complementary subspace based SCF iteration. Furthermgese o ciently in parallel with a small contribution to the

in case of the two-level CheFSlI strategy, the bounds for rall wall time.

inner-level Chebyshev polynoniiak (i.e., the one used 1o ig,re 1depicts the various steps of the CS2CF strategy
compute the topmost statesH)fare computed using the yimin DGDFT for a static ground-state calculatidie 1

eigenvalues evaluated in the previous (conventional Chekglmarizes the values of the various parameters used within
based) SCF step. Following this transition, the topmogte strategy for such calculations.

eigenvalues and eigenvectots$ afe always stored between
SCF iterations for use by the iterative solvers in subsequent
SCF steps. During molecular dynamics or geometry opti- RESULTS AND DISCUSSION
mization runs, we have used the above methodology oflly demonstrate the accuracyiency, and parallel scaling of
during the rst ionic step. For subsequent ionic steps, ththe CS2CF methodology, we apply it te prototypical
complementary subspace strategy is used exclusively in essgtems encompassing metals, semimetals, semiconductors, and
SCF iteration. insulators, ranging in size from a few hundred atoms to over
The second detail pertains to the parallelization aspects2@000. The fundamental unit cells (i.e., atomigurations
the two-level CheFSI based complementary subspace strategyicated to generate the various large systems examined
The parallelization strategies involved inrgiidevel Cheby-  subsequently) of these systems are summafizétei@d The
shev polynomialter computation (i.e., the one associated with rst system, referred to Electrolyte3@onsists of a three-
H) are described in earlier wotRarallelization of the various dimensional bulk lithium-ion electrolyte system originating
linear algebra operations associated with the second levefrah the design of energy storage devices. Atoms of hydrogen,
CheFsSl iterations are carried out with the use of PBLAS alithium, carbon, phosphorus, oxygen, aoiine, numbering
ScalLAPACK routing§®* Accordingly, the various matrices 318 in total, are present in a single unit cell of this system. It
involved in these computations are redistributed over twserves as a protoypical bulk disordered insulating system. The
dimensional block cyclic process grids. The various rediseond, referred to &Diamond3Dconsists of atoms of
tribution and parallel storage format interconversion routinegystalline silicon in the diamond structure, with 8 atoms in the
(employing ScaLAPAGKdgemr2d routine or otherwise) unit cell. Silicon is a well known semiconductor and, in its
did not consume more than 1% of the total time spent in therystalline form, has an LDA band gapOd eV. Thus, it
complementary subspace strategy, even for the largest systenus to have a small number of fractionally occupied states in
considered here. KohrSSham calculations at room temperature. The third
Finally, the third detail pertains to the computation of theystem, referred to & aphene2Dlconsists of a sheet of
density matrix in DGDFT by usamg15 Since the supports of graphene for which the unit cell contains 180 carbon atoms.
the ALBs are coned to individual DG elements, the This serves as a prototype for a two-dimensional semimetallic
Hamiltonian matrix in DGDFT enjoys a block-sparse structusystem. The fourth system consists of atoms of lithium in a
in which nonzero contributions arise due to an element amaddy centered cubic cgaration with 16 atoms in the unit
only its nearest neighb@ts’ The (full) density matrix enjoys cell. We will refer to this systenhi@&CC3D Finally, thefth
this structure as l[As noted above, the real-space electrosystem consists of atoms of copper in a face centered cubic
density that must be updated in each SCF iteration ongon guration with 4 atoms in the unit cell. We will refer to this
accumulates contributions from density matrix entries that agestem a€uFCC3DThe LIBCC3D and CuFCC3D systems
associated with basis functions with overlapping support. Thesese as prototypical examples of simple and more complex
factors combined imply thatly the diagonal blookghe bulk metallic systems, respectively. To remove periodicities in
density matrix are required in DGDFT when the compldarger cells produced by replication, we added mild random
mentary subspace strategy is used to update the density in @&cturbations to the atomic positions for all the crystalline/
SCEF iteration. This is a sigmint reduction in the number of periodic systems mentioned above, before using them in
operations relative to what a naive inspectin would calculations.
suggest, and it is one of the primary reasons for the success ©bgether, theseve systems were chosen for their
the present strategy within DGDFT. technological relevance as well as the fact that KS-DFT
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(Tnitialize p, Ve, ctc. ) Table 1. Values of Various Parameters Used for the CS2CF
Set Tandom ini- Strategy in Ground-State Calculations at Typical Electronic
tial guess for Y.

Temperatures
Compute ALBs value
locally on each commonly
DG element. used in this
parameter criteria used for selecting parameter valuesork
Construct Hamilto- . .
¥k et RS total no. of electronicno. of electrons\f) in system, 1.05x NJ2
states Iy type of system (metal/insulator, etc.)
e — no. of top states\) type of sys_tem (metal/_msu.lator, etc.) V>Ol\]3
dard CheFSI cycles outer Chebyshev  spectral width of Hamiltonigh 30550
on' Y using HDS, polynomial Ilter (depends on type of atoms in system)
order
inner Chebyshev  spectral width of projected 4
Align Y with current polynomial Iter density of fractionally occupied states
basis (see ref”®). order
no. of inner CheFSI spectral width of projecteid 4
Perform Chebyshev cycles (usindf) density of fractionally occupied states
polynomial filtering no. of initial SCF  type of system (metal/insulator, etc.), 455
on Y using HP¢, steps using regular nature of SCF convergence
Orthonormalize CheFsl

columns of Y.

3Note that, as suggested in previousittrthe rst SCF step of a
ground-state calculation employs multliple (regular) CheFSlI cycles

Compute pro-

jected Hamiltonian (typically, $4) while starting from randomly initialized wave-
H = YT"HPCY. functions.
Perform subspace
diagonalization
‘ ngé t;)pmoslt v without any computational dulties arising from the physical
cigenvectors of . nature of the system.
l In order to work with larger system sizes, we have employed
N : multiple unit cells of the aforementionexisystems replicated
using second-level 1ev§10$%ugecff;$on along the coordinate axes. Thus, Electrolyse3Dfor
v CheFdSItSChetmj numbers for all example, refers to a system in which the 318-atom unit cell
SR e G i, cigenstates, Form has been replicated alongnd Z directions to produce a
. lagona. OCKS 0! . . .
7 density matrix P. 1,272-atom bulk system; and similarly, Grapheeders to
Compute Fermi level a graphene sheet containing 720 atoms.
using Hq. 13. Compute We have used the local density approximation (LDA) for the
top occupation numbers. >, . . . . .
Compute scaled top exchangdscorrelation functional with a rational function
eigenvectors C of . parametrizati6h of the correlation energy calculated by
o ilgons s Ceperley and Ald&t. Hartwigse8Goedeck&Hutte%®
>11ST atrix . . . .
PusmgyEqv 15, and optimized norm-conserving Vanderbilt (ONCV) pseudo-
) potential$*’® are employed to remove inert core electrons
Compute real-space from the computations. Whenever required, SCF convergence
elctron density () was accelerated by means of 'Butmhenie’” and an
prm e electronic temperature of 300 K was used forSRérad

occupation. Additionally, a Kerker precondittdfiewas
employed to minimize charge sloshing while treating metallic
systems. The various discretization related parameters in
DGDFT (specically, the number of ALBs per atom, DG
Compute full density penalty parameter, ameness of real-space grid) were chosen
matrix. Evaluate such that chemical accuracy could be attafh@e., error in
eti"%i‘f;f‘ﬁ;ejt& total energies and forces less tharHeIatom and 16 Ha/
Bohr, respectively, relative to reference planewave results). This
Figure 1 Flowchart depicting the various steps of the CS2CF strategisures that the calculations presented here are carried out at
within DGDFT for a ground-state K&&ham calculation. Note that accuracies typical in practice.
Yis anN, x Nsblock of orthonormal vectors that spans the occupied We have typically employed 5% of extra states to

subspace of the Kd&ham HamiltoniaH as shown ieq 7 H>® accommodate fractional occupations Ni.es, 5% 0fNy2,
denotes the Hamiltonian matrix in the adpative local basis set usegjn equivalentlyN, = 1.05 x NJ2). Unless specid

DGDFT. otherwisé? the complementary subspace calculations used

the topmost 10% of states; Ne= 0.1x Ny For calculations
where LOBPCG was used to compute top states5 10
calculations on large supercells based on these can L@BPCG iterations per SCF step were used. For calculations
challenging. Additionally, the electronic properties of theasing the CS2CF strategy, the order of the inner Chebyshev
systems cover a broad spectrtims has helped us ensure Iter and number of inner CheFSI cycles were both set to 4.
that the computational strategy presented in this work is ableQther parameters relevant to the CS2CF strategy were chosen
deal successfully with eent kinds of materials systems, according to the values showmahle 1

Is SCF converged ?
no
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Table 2. Unit Cells of the Systems Considered in This Work

#The simulation results presenteskiction dise supercells constructed by replicating these cells along coordinate axes to produce larger cells.

All calculations described here were performed on the Edismmverged to % 10°° Ha), the energy per atom and the
platform at the National Energy Research Sci€othputing atomic forces obtained by the complementary subspace strategy
(NERSC) center. Edison has 5462 Cray XC30 nodes. Eeate in agreement with the results obtained from the standard
node has 64 GB of memory and 24 cores partitioned amoBheFS| approach to well below discretization ert6r3(
two Intel Ivy Bridge processors, running at 2.4 GHz. Ediséta/atom). Table 3shows that, for the above systems, the
employs a Cray Aries high speed interconnect with Qragorenergy per atom dirence is on the order of36la or less
topology for internode communication. while the maximum dirence in force components is on the

3.1. SCF Convergence and Accuracks a rsttest ofthe  order of 18* Ha/Bohr or less, an order of magnitude or more
CS2CF methodology west veried that it reproduces the below discretization error.
results of the standard CheFSl methodology (with full It is worth pointing out a dirence between the scenario
diagonalization of the subspace Hamiltonian) with comparabkepicted ifFigure a2 and the other cases showFidgnre 2As
SCF convergence. Accordingly, e compared the SCF discussed igection 2.1,1t is not necessary to carry out the
convergence behavior of the complementary subspace strasebgpace diagonalization step or its complementary subspace
against the corresponding behavior of standard CheFSI ¢asinterpart while treating insulating systems (such as the
implemented in DGDFT) for a range of systems containinglectrolyte considered [kigure a). Hence, there is no
from 500 to 1,272 atonmiSgure Zhows that, for all systems distinction between the LOBPCG and CheFSl based
considered, the overall convergence behavior of the compglemplementary subspace strategies in the déagarefa,
mentary subspace strategy is comparable to that of standhtd leading to the single curve for the complementary
CheFSl, as should be the case since the methods are equivaldrgpace strategy.
if eigenvectors are computed exactly. Also, convergence of tWe note also the case of graphene shoWwigune 2.
complementary subspace strategy is comparable whetBemimetallic systems such as this tend to have relatively few
LOBPCG or CheFSl is used for computing the top states bhctionally occupied states near the Fermi level at moderate
the projected Hamiltonian. electronic temperatureHence, it is possible to applpite

Next, we vered that when SCF convergence is reached (i.electronic temperature) smearing to such systems with fewer
when the relative norm of the electron density residuaktra states in the calculation, thus redigikgirthermore,

louS il 1l ll < 106 and the energy per atom has the complementary subspace strategy can be made to use fewer
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Figure 2.SCF convergence of the complementary subspace (CS) strategy and standard CheFSI method for systems considered in this work:
Electrolyte3R,., system (1,272 atoms); (b) SiDiamong3B (1,000 atoms); (c) GrapheneDsystem (720 atoms); (d) CuFCG3hs

system (500 atoms); (e) LIBCC3R, system (1,024 atoms). The top states of the projected Hantiltoaiabhe computed using LOBPCG as

well as CheFSl (the CS2CF strategy), and results for both are shown.

Table 3. Accuracy of Complementary Subspace (CS) top states, thus reducMg This reduces computationaire
Strategy Using LOBPCG and CheFSI (CS2CF) Methods Towithout signicantly impacting accuracy or SCF convergence.
Compute Top Statés AsFigure 2 shows, even with fewer extra and top states in the

, computation (spedially, the CS2CF strategy usgd 1.025

CS strategy with - for ey st > x NJ2 rather than the usudl= 1.05x N¢2, andN, = 5% of

LOBPCG for top states  (CS2CF strategy) NgJ, SCF convergence is not sicanitly aected. We also
energy per_max force energy per_max force veried that the converged energies and forces agreed with
atom  component atom  component reference CheFSlI results to well below discretization error. As
system dl(ﬁf)nce (ﬂa?é%ﬁ)e d'(ﬁf)nce (ﬁ: a?é%rlfrf demonstrated in the next section, however, the computational
. . 3 - gains from using fewer states can be quite noticeable, especially
Electrolyte3R,., 5x 10° 2x 10° 5x 10  2x 10° for large systems
iNi 56 S5 56 S5 .
z‘D'a:O”fQS*S ‘;i ig; g: 18:5 5: igﬁ ;i 18; 3.2. Computational E ciency and Parallel ScalingWe
CL?:F’CSQE Doz 6x 105 o 165  ax 165 7 165 now carry out a systematic comparison of the computational
X 5x 5 . .
g g « g e ciency and parallel scaling of the new CS2CF and standard
LiBCC3Dy x4 7x10°%  9x10° 5x10° 8x 10® y P 9

) CheFSI methodologies.
atSh%W” d"’gﬁ anSeIrgy pﬁr gégm and force”(goTpo(ij_emmt:_es tfrom In order to carry out the comparison, we investigate the wall
isna;h g;ses erslresults.anences are well below discretization ermor e for the construction and solution of the subspace problem

for a number of large systems. Within the context of the
CheFSI or CS2CF strategies, this is the time spent in the
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Figure 3.Wall times associated with solution of the subspace problem using standard CheFSI (subspace diagonalization, subspace rotation.
miscellaneous calculations) and new CS2CF (computation of top states and miscellaneous calculations) strategies for a few large systems.

sequence of computational steps that lead to the diagoeapectation turns out to be correct. Framare 4we see that
blocks of the (full) density matrix, after the Chebyshethe overall subspace problem construction and solution wall
polynomial Itered vectors given by the column¥ bave time is brought down by a factor 0f.7/52.2. These
been computed using. Therefore, this time includes computational wall time savings are particularlycangrin
contributions from steps that are common to both standafidjht of the fact that they occur on every SCF step. From the
CheFSI and CS2CF strategies, such as orthonormalization gifre, it is also evident that the overall savings due to the
the Chebyshev polynomiliered vectors (i.e., column¥/)of replacement of the subspace diagonalization and subspace
and formation of the projected HamiltoklanY'(HY) from rotation steps by the corresponding CS2CF steps are most
the vector blockéandZ = HY. Additionally, for the standard signicant for systems in which these steps are the largest
CheFSIl method, it includes the time spent on subspacentributors to the subspace problem wall time. For the largest
diagonalization and subspace rotation steps. In contrast, fordpgtem considered here, i.e., LIBE£30D, (27,648 atoms,
CSF2CF strategy, it includes the time spent on computing tB2,944 electrons), the orthonormalization cost contributes to
top states of the projected Hamiltonian (using the inner level thfe subspace problem construction wall time in aagni
CheFSlI orH), and any additional computation required formanner so the overall savings due to the CS2CF strategy, while
evaluating the diagonal blocks of the density matey (ske substantial (5.7 reduction in the time spent on the subspace
Thus, within the context of the standard CheFSI or CS2Cdiagonalization and subspace rotation steps, as ghgwrein
strategies, the subspace problem construction and solution ®allare somewhat smaller (i.el. 7 reduction in overall
time provides an estimate of the total wall time spent on evesybspace problem wall time) compared to other cagsgsén
SCF step in (distributed) dense linear algebra operations. 4.

The systems considered for this comparison contain between light of earlier comments (seetions 2.2&hd3.]), it is
4,000 and 27,648 atoms and between 23,040 and 82,9¢tth pointing out the computational benef using fewer
electrons. In each case, an identical number of computaticgeta and top states in the CS2CF strategy. As can be seen in
cores were allocated to both methods and the ScaLAPAEKures &and4b, on reducing the number of extra states (i.e.,
process grids used were kept as close to square geometridg)asand, consequently, the total number of dihtethe
possiblé® The results are shownFigures Znd4. variations in wall times for the steps of the standard CheFSI

From Figure 3we see that for the large noninsulatingstrategy are not particularly sigant. However, lowerihyy
systems considered here, the CS2CF strategy is able to batsg allows us to lower the number of top stateld Jiie the
down the wall time for the subspace diagonalization a@52CF strategy, and this leads to a cigmi savings.
subspace rotation steps in the standard CheFSI method Specically, as-igure 3shows, the total wall time spent in
factors of 357.8. Additionally, for the particular case of thehe routines associated with the CS2CF strategy decreases by
Electrolyte3R4; insulating system, the CS2CF strategymore than a factor of 2 due to the valué¢, being halved.
eliminates these steps altogether and brings down the wallve also remark that while the above results demonstrate the
time by a factor exceeding 60. This dramatic reduction of tbemputational advantages of the CS2CF strategy for large
wall times of key steps of the standard CheFSI method leadsystems, the strategy works equally well (i.e., in terms of lower
to expect that the overall subspace construction and solut@mmputational wall times) for smaller systems. For example, for
time for these systems will be reducedcagitly as well. This a SiDiamond3[,., system (32 atoms, 64 electrons) we found
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Figure 4 Wall times associated with construction and solution of the subspace problem for large systems using standard CheFSI and new CS
methods (a) ElectrolytegR.; system (8,586 atoms, 29,808 electrons, left two plots) and SiDiggngnd3fstem (8,000 atoms, 32,000
electrons, right two plots) [1,728 processes used in all cases]; (b) GraplsyseaD (11,520 atoms, 23,040 electrons) [righgtwes use

fewer extra and top states; 2,304 MPI processes used in all cases]; (c),6&ukgG®Rem (4,000 atoms, 44000 electrons, 1,000 MPI
processes, left two plots) and LiBCG3R;, system (27,648 atoms, 82,944 electrons, 6,480 MPI processes, right two plots). Total wall times and
contributions of key steps are shown.

that the CS2CF strategy was able to reduce the (combined)
subspace diagonalization and subspace rotation wall time to less
than 0.001 s, from0.003 s. The dense linear algebra
operations for both strategies were carried out serially in this
particular case. Hence, the CS2CF strategy appears to be a
computationally advantageous replacement for the standard
CheFSlI strategy for a wide range of system sizes commonly
encountered in KoBi$ham calculations, as well as for sizes
much larger.

Next, we examine the strong parallel scaling properties of the
CS2CF strategy and contrast it with the standard CheF

strat_egy_. The parallel sc_allng properties of the pol_yritmmml CheFSl and new CSF2CF strategies for the LIBEG3Dsystem.
application step associated wth(that appears n .bOth .While the steps associated with CS2CF scale less well than those
Standgard CheFSl and CS2CF) have been detailed in previgdsyciated with standard CheFSI, they yield assiyilower wall
work? and are identical for both strategies. Thus, we focus ffe (by a factor of 5.4 for the case of 12,960 processors shown
the subspace problem construction and solution steps heiiove). The steps common to both strategies scale somewhat better,
Taking the LIBCC3[.1x12 System as an example, we plot thereaching approximately 40% strong scalingney at 12,960
strong scaling eiency of the principal steps involved inprocessors in this case. The parallel scaling property of the polynomial
constructing and solving the subspace problem via the standdfdl application step associated Witifwhich appears in both
CheFSI and CSF2CF strategiéggnre 5We have used the standard CheFSl and QSZCF) is |dent.|cal for both strategies and is not
data points corresponding to 810 computational cores as f{@Wn here (see previous Woktr details).
reference in this plot.

From the plot, we see that the strong scalicigrecy of the  worse than that of the steps associated with the standard
steps strictly associated with the CS2CF strategy is somev@lag¢FSI strategy, though not markedly so. This is attributed to

I
I§igure 5.Strong scaling eiencies of key steps in the standard

2941 DOI:10.1021/acs.jctc. 7b01243
J. Chem. Theory Comp@018, 14, 29382946


http://dx.doi.org/10.1021/acs.jctc.7b01243

Journal of Chemical Theory and Computation

Table 4. SCF lIteration Wall Times (in Seconds, Rounded to the Nearest Whole Number) for Large Systems Using the CS2CF
Strategy in DGDFT

total computational CS2CF strategytotal SCF wall total SCF
cores (cores used in  ALB (subspace time via direct wall time
no. of atoms  subspace problem) generation Hamiltonian problem time) CS2CF diagonalization via ELPA
system (no. of electrons) (s) (s) update (s) (s) strategy (s) via ELPA (s) (s)
Electrolyte3R .3 8,586 (29,808) 34,560 (3,456) 12 4 34 (19) 50 647 663
SiDiamond3B.;x10 8,000 (32,000) 34,560 (3,456) 9 2 40 (24) 51 648 659
Graphene2f), 11,520 (23,040) 27,648 (4,608) 4 2 35 (27) 41 262 268
CUuFCC3Dx10:10 4,000 (44,000) 30,000 (3,000) 20 9 75 (46) 104 199 228
LIBCC3D 1212 27,648 (82,944) 38,880 (12,960) 22 13 180 (165) 215 5844 5879

2The contributions of key computational steps are also shown. In the third and sixth columns, numbers in parentheses indicate the number
processors used for subspace problem construction and solution, and wall times for those operations, respectively. For comparison, correspc
wall times associated with direct diagonalization of the DG Hamiltonian using the E¥PAdiralgo shown in the last two columns. ELPA

was made to use the same total number of computational cores as the CS2CF strategy.

Figure 6.Results from 1.0 ps NVE ab initio molecular dynamics simulation of the SiDjgmond3Btem (8,000 atoms, 16,000 electrons)
using the CS2CF strategy in DGDFT: (a) total energy (per atom) variation; (b) temperature variation. Total energy is well conserved, with a drift
less than 8 Ha/atom over the course of the simulation.

the fact that the sizes of the matrices in the parallel dense lirgtgrnatives based on direct diagonalization (using ScalA-
algebra operations in the CS2CF approach areasitpi PACK]I) and certain sparse-direct solution strategies (namely,
smaller than those arising in the standard CheFSI| approa@EXSI*'>?%). Since the CS2CF strategy is successful in
Thus, the PBLAS/ScaLAPACK routines do not parallelize Benging down the wall times of the standard CheFSI approach,
e ciently for the case of the CS2CF strategy. However, thieis the method of choice for large-scale calculations in
steps associated with the CS2CF strategy executargigni DGDFT. To demonstrate this, we displayaine 4the wall
faster than their standard CheFSI counterparen for the  time per SCF iteration for the large materials systems
case of 12,960 computational cores, the wall time associateasidered above, when the CS2CF strategy is efifployed.
with the CS2CF strategy turns out to be lower than that of tHeor comparison, we also show the corresponding wall times
standard CheFSI strategy by a factor of 5.4. Thus, we nasgociated with direct diagonalization of the DG Hamiltonian
conclude that it is preferable to use the CS2CF strategging ELPE®® a state-of-the-art massively parallel eigensolv-
regardless of the number of computational cores allocatedetdibrary’* The ELPA eigensolver was made to use the same
the subspace problem. total number of computational cores as the CS2CF strategy for
It is also worth noting that the orthonormalization andall cases considered.
projected Hamiltonian construction steps common to both From the table we see that, with the ability to leverage large-
strategies fare somewhat better in terms of strong scalswale computational resources, the CS2CF strategy within
performance (reaching approximately 40% strong scalb@DFT is able to tackle several bulk and nano systems
e ciency at 12,960 computational cores in this case). Thisntaining tens of thousands of electrons in less than a minute
suggests that it is worthwhile to allocate more computatiorlwall time per SCF step. In terms of the number of electrons
cores to these parts of the calculation since the wall time fothe system, the LIBCC30..1, case is the largest, and even
these steps can be reduced sgmily. We employ this in this case, the DGDFT-CS2CF methodology is able to
strategy in the large benchmark calculations presented in toenplete each SCF iteration in a little over 3.5 min of wall
next section. time. In contrast, the wall times required for direct
3.3. Benchmark Calculations on Large System&rom diagonalization of the DG Hamiltonian for these systems (via
the results presented above, it is clear that the CS2CF stratéfipA) are signiantly longer, with the reductions achieved by
is well suited for bringing down the computational wall times tife CS2CF strategy exceeding a factor of 15 in some cases. The
large-scale KoBBham calculations. We have already demoulirect diagonalization wall time appears to be the closest to that
strated’ the superior computationalogency of the standard of the CS2CF strategy for the CuFCG3R);, system (likely
CheFSlI strategy within DGDFT compared to existindgpecause the overall size of the DG Hamiltonian is smallest in
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this case); however, even in this situation, the CS2CF stratefiywall time per SCF iteration on large-scale computing

appears to be faster by a factor2o6. A comparison of the platforms. We found that the CS2CF strategy csigthy

total SCF wall times between the CS2CF and diredutperforms alternatives based on direct diagonalization of the

diagonalization strategies also highlightscaigngains, with  Hamiltonian. In particular, the strategy makes possible ab initio

an overall reduction factor df3 or higher in some cases.  molecular dynamics simulations of complex systems containing
We reiterate that the wall times presented above pertainrt@any thousands of atoms within a few minutes per MD step, as

discretization parameter choices within DGDFT that lead tee demonstrate for bulk silicon.

well converged (chemically accurate) energies and forces. With the use of the CS2CF strategy, the subspace

our opinion, this is one of the keyedénces with earlier diagonalization and subspace rotation steps cease to be the

attempts at simulating such large scale metallic or seominant parts of the calculation. For the largest systems

conducting systems fromst principles. To further highlight considered here, the time for carrying out orthonormalization

this point, we employed the DGDFT-CS2CF methodology tand forming the projected Hamiltonian then start to contribute

carry out a 1.0 ps ab initio molecular dynamics simulation sifjni cantly. We aim to confront these next. Once again, our

the SiDiamond3[Qo19 System initialized at 300 K ionic focus will not necessarily be on lowering the computational

temperature. We used M¢éEensemble and a time step of 2.5 complexity of these steps. Rather, any procedure that can lower

fs for integrating the equations of motion using the \locitythe prefactor and/or improve the parallel scalability of these

Verlet schenfé™ We initialized the system by randomly steps is likely be moresetive in bringing down wall times in

perturbing the positions of the silicon atoms in thepractice, without sa@ing accuracy, thus pushing the envelope

SiDiamond3B.10<10 CON guration and assigning the atoms of ab initio calculations to larger, more complex, and more

random velocities consistent with the initial temperature. Wealistic systems than feasible today.

then let the system evolve and equilibrate for 50 fs before

collecting data for 400 ionic time steps (i.e., 1 ps). To accelerate o yTHOR INFORMATION

SCF convergence at each ionic step, we employed linear i

extrapolation of the real-space electron density and S€prresponding Authors

converged wave functions from one ionic step were used as*tfeS.B.) E-maiksb@Ibl.gov

starting point for the SCF iterations on the next ionic stef(L.L.) E-maillinlin@math.berkeley.edu

Results from the simulation are showiginre 6 The mean  *(P.S.) E-maiphanish.suryanarayana@ce.gatech.edu

and standard deviation of the total energy (i.e., kinetic energy ¢€.Y.) E-mailcyang@Ibl.gov

the ionst potential energy) ag8.96329 Ha per atom and 4.8 *(J.E.P.) E-maihask1@lInl.gov

x 10°® Ha per atom, respectively. Additiona%%/, the drift in totabrcio

energy (obtained using a lindggrs less than TOHa/(atom- .

ps). Thus, the scheme consistently produces high qua@%iﬁgiosoé E;qegg 2'50521'5916'9167

atomic forces and, consequently, excellent energy conserva-— ) i )

tion® The mean ionic temperature during the course of thBunding

simulatiof comes out to be about 274 K. This work was performed, in part, under the auspices of the
With the aid of the CS2CF strategy, the 1.0 ps ab initio MD.S. Department of Energy by Lawrence Livermore National

simulation of the above 8,000-atom system can be carried loaboratory under Contract DE-AC52-07NA27344 (J.E.P.).

in 4.2 min per MD step, for a total &8 h of wall time on ~ Support for this work was provided through the Scienti

34,560 computational cores. From the earlier discussionDiscovery through Advanced Computing (SciDAC) program

section 3,4t is clear that doing a similar simulation without théunded by U.S. Department of EnergyceDof Science,
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computationally, if not infeasible due to resource constraintSciences (A.S.B., L.L., P.S., C.Y., and J.E.P.), by the Center for

Applied Mathematics for Energy Research Applications
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