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ABSTRACT:We describe a novel iterative strategy for KohnŠ
Sham density functional theory calculations aimed at large
systems (>1,000 electrons), applicable to metals and insulators
alike. In lieu of explicit diagonalization of the KohnŠSham
Hamiltonian on every self-consistent� eld (SCF) iteration, we
employ a two-level Chebyshev polynomial� lter based comple-
mentary subspace strategy to (1) compute a set of vectors that
span the occupied subspace of the Hamiltonian; (2) reduce
subspace diagonalization to just partially occupied states; and (3)
obtain those states in an e� cient, scalable manner via an inner
Chebyshev� lter iteration. By reducing the necessary computation
to just partially occupied states and obtaining these through an
inner Chebyshev iteration, our approach reduces the cost of large
metallic calculations signi� cantly, while eliminating subspace
diagonalization for insulating systems altogether. We describe the implementation of the method within the framework of
the discontinuous Galerkin (DG) electronic structure method and show that this results in a computational scheme that can
e� ectively tackle bulk and nano systems containing tens of thousands of electrons, with chemical accuracy, within a few minutes
or less of wall clock time per SCF iteration on large-scale computing platforms. We anticipate that our method will be
instrumental in pushing the envelope of large-scale ab initio molecular dynamics. As a demonstration of this, we simulate a bulk
silicon system containing 8,000 atoms at� nite temperature, and obtain an average SCF step wall time of 51 s on 34,560
processors; thus allowing us to carry out 1.0 ps of ab initio molecular dynamics in approximately 28 h (of wall time).

1. INTRODUCTION

KohnŠSham density functional theory (KS-DFT)1,2 is among
the most widely used approaches in the computational
chemistry, condensed matter, and materials research commun-
ities. Over the years, KS-DFT has provided unparalleled
insights and robust predictions for the gamut of materials
properties;3Š5 as a result of which, much research has been
devoted to enable calculations of ever larger and more complex
systems.6Š10

Conventionally, KohnŠSham equations are solved self-
consistently, wherein the linear eigenvalue problem arising
from discretization in a chosen basis is solved on each self-
consistent� eld (SCF) iteration until a� xed point is reached in
the electronic density or potential, whereupon energies, forces,
and other quantities of interest are computed.2 Solution of this
eigenvalue problem via direct or iterative diagonalization
methods scales cubically with the number of electronic states
in the system (and hence, also cubically with the number of
atoms). The computational cost of this procedure can become
prohibitive, however, as the system size grows beyond a few

thousand electronic states. This has led to the development of
computational techniques which scale more favorably with
respect to the number of electronic states in the system, by
avoiding explicit diagonalization of the KohnŠSham Hamil-
tonian.11Š18 However, these work best on insulating systems
with substantial band gaps,18,19 metallic systems with low
dimension (such as in the case of the pole expansion and
selected inversion (PEXSI) method),20,21 or systems at high
electronic temperature.16,17 Consequently, while impressive
large-scale KohnŠSham calculations of various insulating
systems have been demonstrated by several groups,6Š8,22

large-scale, well converged, chemically accurate calculations of
realistic semiconducting or metallic systems have appeared only
rarely.16,18,19,23 Many of the aforementioned methods rely on
the nearsightedness principle24 for obtaining the electron
density from the KohnŠSham Hamiltonian in an e� cient
manner. This presents practical issues while dealing with bulk
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metallic systems at moderate electronic temperatures (up to a
few thousand kelvins). The relatively slow decay of the density
matrix associated with such systems (even for the case of simple
metals such as aluminum) often results in a computational
method having a favorable algorithmic scaling but relatively
large prefactor.25 In practical treatments of large bulk metallic
systems containing several thousands of atoms, this is likely to
result in a larger computational wall time per SCF iteration with
the use of these methods26 than with the use of diagonalization
based methods.25

In this work, we take a di� erent approach to make KohnŠ
Sham calculations of large, metallic systems more computa-
tionally feasible. Our approach is to revert to the use of
(cubically scaling) partial diagonalization of the KohnŠSham
Hamiltonian via iterative methods, but to ensure that the
resulting computational strategy has a low prefactor (in the
sense of computational complexity estimates) and good parallel
scaling e� ciency. In practice, with the use of a su� ciently large
number of processors, this then enables larger systems sizes
and/or shorter simulation wall times than attainable heretofore.

With the aforementioned goal in mind, we have focused on
two principal strategies for achieving it. The� rst of these has
been to ensure that we use a discretization scheme that is highly
e� cient. Speci� cally, we utilize basis functions which can
produce systematically improvable, high quality numerical
results while keeping the number of basis functions per atom
required for doing so, small. To this end, we employ so-called
adaptive local basis (ALB) functions27that are generated on the
� y on every SCF step during the course of KohnŠSham
calculations. These basis functions are able to capture the local
materials physics in electronic structure calculations, and when
used in conjunction with the interior penalty discontinuous
Galerkin (DG) formalism for the KohnŠSham equations, they
allow high quality energies and HellmanŠFeynman forces to be
computed with only a few tens of basis functions per atom.27Š29

The DG approach for solving the KohnŠSham equations using
ALB functions has been incorporated into a massively parallel
software package, DGDFT.20,30 The second strategy has been
to employ a well suited iterative diagonalization strategy for the
discretized KohnŠSham Hamiltonian. To this end, we have
made use of Chebyshev polynomial� ltered subspace iteration
(CheFSI).29 For a number of reasons,29 this technique works
particularly well within the framework of DGDFT� in terms of
both computational wall times and overall parallel scaling
e� ciency. We have recently demonstrated that the CheFSI
technique signi� cantly outperforms existing alternatives in
carrying out SCF iterations in DGDFT, particularly in the
context of large bulk systems.29

Our experiences with the DGDFT-CheFSI strategy have
revealed that the principal computational bottleneck in treating
large, metallic systems occurs in the RayleighŠRitz process31 to
obtain approximate eigenvalues and vectors in each SCF
iteration. In the context of the DGDFT-CheFSI methodology,
this process is generally as follows:29

1. Compute a basis spanning the occupied subspace using a
Chebyshev polynomial� lter.

2. Orthonormalize the basis.
3. Project the DG Hamiltonian matrix onto the subspace.
4. Diagonalize the projected Hamiltonian to obtain Ritz

values and projected vectors.
5. Rotate the basis according to projected vectors to obtain

Ritz vectors.

The Ritz values and vectors so obtained then provide
approximate eigenvalues and vectors of the DG Hamiltonian
in each SCF iteration of the KohnŠSham solution. In the
following, we focus mainly on steps 4 and 5 of the process,
which we shall refer to assubspace diagonalizationandsubspace
rotation, respectively. In the absence of fractionally occupied
states (i.e., for insulating systems), these steps can be avoided
altogether (seesection 2.1.1) and, in that case, the computa-
tional bottleneck arises from the orthonormalization of the
basis that spans the occupied subspace. Indeed, due to their
focus on insulating systems, a number of previous
authors12,32Š34 have focused on reducing or eliminating this
orthonormalization cost, instead of the cost associated with the
aforementioned projected Hamiltonian eigenvalue problem.
For noninsulating (e.g., metallic and semiconducting) systems,
however, fractional occupation numbers have to be computed
and the projected Hamiltonian eigenvalue problem cannot be
directly avoided.87 In this situation, detailed wall time studies
(e.g.,section 3.2) reveal that the most signi� cant hindrance to
pushing the computational e� ciency of the DGDFT-CheFSI
approach lies in the subspace diagonalization and subspace
rotation steps of the RayleighŠRitz process. While the
orthonormalization cost can become signi� cant for large
problems, its contribution to the simulation wall time is less
than that of the above steps, and its parallel scalability is
appreciably better. This provides the incentive to devise a
computational strategy that reduces or eliminates the computa-
tional cost incurred due to the subspace diagonalization and
subspace rotation steps in the DGDFT-CheFSI approach.

In this work, we formulate and implement a two-level
Chebyshev polynomial� lter based complementary subspace
strategy to address the above issues. In this methodology, only
the relatively few fractionally occupied states of the projected
Hamiltonian, and not those fully occupied or empty, are
calculated, thus reducing the computational cost of the
subspace diagonalization and subspace rotation steps signi� -
cantly. Moreover, exploiting the spectral properties of the
projected Hamiltonian, we employ CheFSI iterations to obtain
the fractionally occupied states, thereby yielding a highly
e� cient iterative scheme that uses Chebyshev polynomial
� ltering on two levels. We refer to the resulting computational
methodology as CS2CF, i.e.,complementary subspace strategy
with two levels of Chebyshev Filtering.

The idea of exploiting completeness to reduce subspace
computations to just fractionally occupied states was presented
recently by Michaud-Rioux et al.37 in their partial RayleighŠ
Ritz method for large-scale KohnŠSham calculations, as
implemented in the RESCU Matlab electronic structure
code.38 The idea has also been exploited previously in
particleŠhole duality formulations to accelerate density matrix
computations inO(N) electronic structure methods.41Š43 In
the context of subspace diagonalization, in line with the key
idea of obtaining a large subspace from its much smaller
complement, we refer to the approach as thecomplementary
subspace(CS) strategy here.

Once the subspace computation has been reduced to just
fractionally occupied states, it is then crucial to obtain these as
e� ciently as possible. As we detail insection 2.2.2, to
accomplish this, we exploit key characteristics of the subspace
eigenvalue problem to obtain the fractionally occupied states
both e� ciently and scalably via low order CheFSI iterations.
This strategy is particularly well suited to large-scale parallel
implementation and, as we show, integrates particularly well
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within the framework of the massively parallel DGDFT code.
Consequently, it allows us to attack metallic systems containing
tens of thousands of electrons in a few minutes or less of wall
time per SCF iteration. Finally, all results reported here are
computed to chemical accuracy (i.e., energy and force errors
below 10Š3 Ha/atom and 10Š3 Ha/Bohr, respectively), as
typical in production simulations. This has allowed us to carry
out accurate, energy-conserving ab initio molecular dynamics
simulations of systems with many thousands of atoms in a few
minutes per MD step. Without the use of the CS2CF strategy,
the advantages a� orded by the ALB discretization, and the
highly e� cient, massively parallel DGDFT code, this would not
be possible.

It is important to note that the utility of the complementary
subspace strategy (and in particular, the CS2CF methodology)
is not restricted to the DGDFT code.Anyother KohnŠSham
code can bene� t from this methodology as well, although as
mentioned above (also seesection 2.3) the CS2CF strategy
integrates well and performs particularly e� ciently within
DGDFT. Overall, we view this work as the development of a
KohnŠSham equation solution strategy that has been well
tuned to minimize wall times in practical simulation scenarios
of large systems. In our view, it is an important step toward a
robust and e� cient methodology for carrying out ab initio
molecular dynamics of large metallic and semiconducting
systems.

The remainder of this work is organized as follows. Insection
2, we outline the mathematical formulation of the comple-
mentary subspace strategy, e� cient two-level Chebyshev� lter
based solution, and large-scale parallel implementation in the
context of the discontinuous Galerkin electronic structure
method. Insection 3, we present results for a range of systems,
from insulating to semiconducting to metallic, and comparisons
with existing methods. We conclude and comment on future
research directions insection 4.

2. METHODOLOGY
We describe the formulation of the complementary subspace
strategy as well as its implementation within the adaptive local
basis set based discontinuous Galerkin electronic structure
method (speci� cally, the DGDFT code20) in this section. For
simplicity, we consider� -point calculations of non-spin-
polarized periodic systems, as is typical in large-scale ab initio
molecular dynamics simulations, although this assumption is
not required in what follows.

2.1. Formulation of Complementary Subspace Strat-
egy. 2.1.1. Density Matrix and Projected Density Matrix.We
consider a system with a discretized KohnŠSham Hamiltonian
matrixH of sizeNb × Nb, withNb denoting the total number of
(orthonormal) basis functions used for the discretization. The
Hamiltonian is a function of the real-space electron density
� (x), that must be determined iteratively in a self-consistent
� eld iteration.

The conventional procedure for achieving this is through the
intermediate computation of the (discretized) KohnŠSham
orbitals, i.e., the eigenvectors ofH.2,44 Within the above setting,
each KohnŠSham orbital is aNb × 1 sized real valued vector.
For a system containingNe electrons (per unit cell), the lowest
Nseigenstates ofH need to be computed in each SCF step. For
an insulator, each orbital is doubly occupied, andNs can be
taken asNe/2. In contrast, for a metallic system, it is customary
to useNs = Ne/2 + Nx, whereNx denotes extra states that are
used to accommodate fractional occupations.37,45,46 It usually

su� ces to takeNx to be about 5Š10% ofNe/2 while dealing
with electronic temperatures up to a few thousand kelvins. In
this case, the occupation numbers associated with the states
lying beyond the lowestNscan be conveniently set to 0 without
compromising the accuracy of the solution (ground-state
energies and forces, for example) or aggravating SCF
convergence.

The computation of the lowestNs eigenvalues {� i} i=1
Ns and the

corresponding eigenvectors {� i} i=1
Ns of H can be carried out

through the use of direct or iterative eigensolvers. Subsequent
to the computation of the eigenstates, the occupation fractions
{fi} i=1

Ns (with 0 � fi � 1) can be computed from the FermiŠ
Dirac function47

= � � =
+ � Š �

�( )
f f f( ), with ( )

1

1 exp
i F i F

k
F

eB (1)

where � e is the electronic temperature,kB denotes the
Boltzmann constant, and the Fermi level� F can be determined
by solving the constraint equation

� =
=

f N2
i

N

i e
1

s

(2)

The use of fractional occupation (also known as smear-
ing)18,45,46 allows us to overcome numerical di� culties
associated with possible degeneracy of eigenstates near� F.

Using the results from the above computations, the
(discretized) density matrix (also referred to as the Fermi
matrix at� nite electronic temperature) of the system can be
calculated. ThisNb × Nb sized matrix is de� ned as

=P f H( )F (3)

and using the fact thatf(� i) = 0 for i > Ns, it can be rewritten
using the eigenvectors ofH as

� ��=
=

P f
i

N

i i i
T

1

s

(4)

Denoting the collection of the eigenvectors {� i} i=1
Ns as theNb ×

Ns matrixX, and theNs × Ns diagonal matrix of occupation
numbers as�- (i.e., = fi i i,�- for i = 1, ...,Ns), a more compact
matrix form of the above expression (i.e.,eq 4) is

=P X XT�- (5)

The matrix P contains all the information required for
progressing with the SCF iterations� in particular, if the basis
functions used for the discretization are denoted as {ej(x)} j=1

Nb ,
then the real-space electron density can be expressed48 using
the matrix entries ofP as

� �� =
= �=

� �x P e x e x( ) 2 ( ) ( )
j

N

j

N

j j j j
1 1

,

b b

(6)

In the process of computing the density matrixP, it is often
simpler to compute an alternate set of orthonormal vectors
{� i} i=1

Ns that span the same subspace as the eigenvectors (i.e., the
occupied subspace). If the collection of these alternate vectors
is expressed as anNb × Ns matrix Y, there must exist an
orthogonalNs × Ns matrixQ such thatX = YQ, andeq 5then
takes the form

=P Y Q Q Y( )T T�- (7)
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The Ns × Ns matrix �=P Q QT�- will be referred to as the
projected density matrix. Equation 7indicates that the density
matrixP may be computed using alternative vectors {� i} i=1

Ns if
the projected density matrix is available along with the vectors
{� i} i=1

Ns .
A straightforward way of computing such a set of alternate

orthonormal vectors is through the use of Chebyshev
polynomial� ltering followed by explicit orthonormalization.31

Speci� cally, we may start with aNb × Ns block of linearly
independent vectorsY0 and apply a Chebyshev polynomial
� lter matrixpm(H) to Y0. The� lter pm(...) can be speci� cally
scaled and a su� ciently high� lter orderm can be chosen so
that the eigenvectors {� i} i=1

Ns are ampli� ed in the resulting
� ltered vectorsY1 = pm(H) Y0.

50Š52 To avoid linear
dependencies, we may then orthonormalize the vector block
Y1. The resulting set of orthonormal vectors will (approx-
imately) span the occupied subspace. This strategy has been
combined with subspace iteration techniques for use in various
electronic structure codes,29,49Š51,53Š55 and it can successfully
deal with metallic as well as insulating systems.

We note that a special situation arises when the system in
question is an insulator. In this case, the matrix of occupation
numbers�- is the identity matrix, soeq 7reduces to

=P YYT (8)

asQ is an orthogonal matrix. Thus, for an insulating system, we
only need a way of computing a set of orthonormal vectors that
span the occupied subspace in order to compute the density
matrixP. For a metallic system, additional work is needed to
compute the projected density matrix.

2.1.2. Direct Computation of the Projected Density Matrix.
Considering the expression for the projected density matrix

�=P Q QT�- , we see that the evaluation of this expression
requires the computation of the occupation numbers {fi =
fF(� i)} i=1

Ns as well as the matrixQ. These quantities can be
computed by carrying out an eigenvalue decomposition of the
projected Hamiltonian matrix, i.e., theNs× NsmatrixH�= YTHY.
The occupation numberscan be computed using the
eigenvalues ofH� since these are the same as the lowestNs
eigenvalues ofH (i.e., {� i} i=1

Ns ). Furthermore, the eigenvectors of
H� are the columns of the matrixQ.

To verify this, we� rst write down the eigendecomposition of
H (for the lowestNs states) asHX = X � . Next, usingX = YQ,
we get

= �HYQ YQ (9)

Premultiplying withYT and using the orthonormality of the
column vectors inY, we get

= � = �Y HY Q HQ Q( )T (10)

Additionally, the expressions�=P Q QT�- andH�= Q� QT allow
us to interpret the projected density matrix in terms of the
projected Hamiltonian matrix asP�= fF(H�).

In the context of Krylov subspace projection methods,31,56

the steps involving the construction of the projected
Hamiltonian matrix, computation of its eigendecomposition,
and computation of (approximate) eigenvectors ofH using the
expressionX = YQ constitute the RayleighŠRitz process,
wherein the last step corresponds to subspace rotation. As the
system size grows, the dimension of the HamiltonianNb and
number of statesNs grow as well. Correspondingly, the
eigendecomposition and subspace rotation steps begin to

consume more and more computation time, thus making it
infeasible to directly compute the projected density matrix as
described above. Instead, a complementary subspace strategy
may be formulated to mitigate these issues, as we now describe.

2.1.3. Complementary Subspace Computation of the
Projected Density Matrix.In light of the above discussion, it
appears that, for a generic system (i.e., one with some degree of
fractional occupation), we require all theNs eigenstates ofH� to
be computed on every SCF iteration in order to progress with
the SCF iterations. A crucial observation, however, is that for
electronic temperatures typically encountered in practice (e.g.,
� e � 3,000 K), a large majority of the occupation numbers
{fi} i=1

Ns are equal to 1. We denote states 1 throughN1 as those
with occupation numbers equal to 1. The remaining states,
fromN1 + 1 throughNs, have occupation numbers less than 1.
Let Nt be the number of these fractionally occupied states, i.e.,
Nt = Ns Š N1. Denoting the eigenvectors of the projected
density matrix as {� �i} i=1

Ns (the columns of the matrixQ), we may
rewrite the expression for the projected density matrix as

�

� �

� � � �

� � �

�

��

� � � �

� � � � � � � �

� � � � � �

� �

�= � �

= � � + � �

= � � + � � Š � � + � �

= � � Š � � + � �

= � Š Š � �

=

= = +

= = + = + = +

= = + = +

= +

P f

f

f

f

f

(11)

(1 ) (12)

i

N

i i i
T

i

N

i i
T

i N

N

i i i
T

i

N

i i
T

i N

N

i i
T

i N

N

i i
T

i N

N

i i i
T

i

N

i i
T

i N

N

i i
T

i N

N

i i i
T

i N

N

i i i
T

1

1 1

1 1 1 1

1 1 1

1

s

s

s s s

s s s

s

1

1

1

1 1 1

1 1

1

�0

In eq 12, ��0 denotes the identity matrix of dimensionNs × Ns.
That the� rst term ofeq 11is the identity matrix follows from
the fact that the vectors {� i �} i=1

Ns are the eigenvectors ofH�, a
symmetric matrix, and so form a resolution of the identity.

The above expression suggests that if theNt top eigenvectors
� i �and corresponding occupation numbersfi are known, the
projected density matrixP�may be computed. Thus, instead of
determining the fullNs × Ns set of vectors, we need to
determine only an extremal block of vectors (of dimensionNs
× Nt), corresponding to the statesi = N1 + 1 to Ns.

To compute the corresponding occupation numbers, we
rewrite the equation 2� i=1

Ns fi = Ne as

� � �+ = � = Š
= = + = +

�

�
�
�

�

�
�
�f f N f N N2 /2

i

N

i
i N

N

i e
i N

N

i e
1 1 1

1

s s1

1 1 (13)

The above algebraic equation may be solved for the Fermi level
� F and occupation numbers {fi} i=N1+1

Ns .
Once the projected density matrixP�has been obtained, the

full (i.e.,Nb × Nb) density matrix can be obtained asP= YP�YT.
To simplify this further, let us denote by�C�- theNs× Nt matrix

consisting of the vectors �Š � =f{ 1 }i i i
N

1
t (i.e., each of the top

eigenvectors ofH� scaled by the quantity Š f1 i ). Theneq 12

can be written in terms of�C�- as

�= �Š � �P I C CT
� - � - (14)

whereupon we obtain
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= � = Š � �

= Š � �

P YPY YY YC C Y

YY YC YC( )( )

T T T T

T T

� - � -

� - � - (15)

As we explain later, this expression is particularly easy to
evaluate in a localized basis set. In particular, within the
DGDFT code, evaluation of the diagonal portions of the above
expression can be carried out in a manner that avoids
interprocess communication. This is su� cient for evaluating
the real-space electron density and proceeding with SCF
iterations.

Ground-state KS-DFT calculations also require computation
of the band energyEb = � i=1

Ns fi� i. Since only the fractionally
occupied states are in the complementary subspace scheme, we
rewrite this as

� � �

� � � � �

�

= � = � + �

= � + � = � + � Š �

= � Š Š �

= = = +

= = + = = + = +

= +

�

�
��

�

�
��

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

�
�

E f f f

f f

H f

2 2

2 2

2 Tr( ) (1 )

b
i

N

i i
i

N

i i
i N

N

i i

i

N

i
i N

N

i i
i

N

i
i N

N

i i
i N

N

i

i N

N

i i

1 1 1

1 1 1 1 1

1

s s

s s s s

s

1

1

1

1 1 1

1

(16)

Thus, the trace of the projected Hamiltonian matrix, the top
eigenvalues, and their corresponding occupation numbers are
su� cient to compute the band energy.

The electronic entropy can be obtained from just the
fractionally occupied states as well. The electronic entropy is
given by

�= Š + Š Š
=

�

�
��

�

�
��S k f f f f2 log (1 ) log(1 )

i

N

i i i iB
1

s

(17)

By inspection, we see that the contribution of a statei to the
electronic entropy goes to zero as the occupation number for
that statefi goes to 0 or 1. Hence, within the complementary
subspace scheme, only the contribution of the fractionally
occupied states is considered. This allows the simpli� cation of
eq 17to

�= Š + Š Š
= +

�

�
�
�

�

�
�
�S k f f f f2 log (1 ) log(1 )

i N

N

i i i iB
1

s

1 (18)

which can be readily computed.
2.2. Computation of Top States. We now discuss

strategies for computing theNt topmost occupied states of
the projected Hamiltonian matrixH�. This is the key step in the
CS2CF methodology. To the extent that the top states of the
projected Hamiltonian can be obtained more quickly than all
states, the methodology will outperform standard dense and
sparse-direct solvers which obtain all states.

To obtain the top states as e� ciently as possible, we exploit
two key properties of the projected Hamiltonian. First, by
construction (i.e., projection onto the occupied subspace) the
projected Hamiltonian has quite limited spectral width, with
maximum eigenvalue limited to that of the highest occupied
state. Second, since we seek only the top few (typically� 10%)
states, we have an extremal eigenvalue problem for a relatively
small fraction of the spectrum.

The above properties suggest that iterative solution methods
stand to be e� cient at obtaining the desired states. We explored
two such approaches: (1) the LOBPCG method,39,57,58 as
employed in ref37, and (2) CheFSI.

2.2.1. Use of LOBPCG.We � rst implemented an un-
preconditioned version of the LOBPCG method.39,57,58 The
topmost Nt states ofH� were obtained by computing the
bottommostNt states ofŠH�. The initial vectors for the
LOBPCG iterations were obtained from the results of a direct
diagonalization ofH� (using LAPACK/ScaLAPACK) from a
previous SCF step. Computation of matrixŠvector products
was carried out directly by the use of dense linear algebra
(BLAS) routines.

Overall, this strategy works reasonably well in practice. When
compared against results from the direct diagonalization ofH�, a
few iterations of LOBPCG are typically enough to obtain the
top eigenstates to desired accuracy at a fraction of the cost.
However, as the system size increases, so does the total number
of statesNs and number of top statesNt. Under these
circumstances, the well-known computational bottlenecks of
the LOBPCG algorithm associated with dense linear algebra
operations begin to become apparent. Replacing serial dense
linear algebra operations in LOBPCG with the corresponding
parallel versions (i.e., PBLAS and ScaLAPACK routines59Š61)
did not signi� cantly improve performance since the computa-
tional bottlenecks of LOBPCG also su� er from scalability
issues. We therefore turned to a di� erent strategy, as we
describe below.

2.2.2. Use of CheFSI: Two-Level Polynomial Filtering
Strategy.To mitigate the aforementioned issues, we replaced
the LOBPCG algorithm with Chebyshev polynomial� ltered
subspace iteration. This turns the overall iterative strategy into
one that employs two levels of Chebyshev polynomial� ltering
on every SCF step. The� rst (or outer) level allows the
computation of a set of orthonormal vectors that (approx-
imately) span the occupied subspace ofH. The second (or
inner) level uses CheFSI to compute theNt topmost states of
H�, or equivalently, theNt lowest states ofŠH�.

This turns out to be a much more e� ective strategy for a
number of reasons. First, by virtue of the limited spectral width
of the projected Hamiltonian, a low order polynomial� lter
su� ces for the inner CheFSI iterations. In fact, for all
calculations reported here, we found a� lter order of 4 or
lower to be su� cient. Second, as explained in previous work,52

depending on the initial guess provided, as well as the spectral
width of the matrix, the use of CheFSI to determine eigenstates
of su� cient accuracy often requires the application of multiple
CheFSI cycles. These factors appear to work in our favor, and
we found that 5 or fewer CheFSI cycles were su� cient in all
cases considered, provided that the starting vectors for the
inner CheFSI iteration were obtained using results from the
previous SCF step. Finally, a signi� cant fraction of the time
involved in the inner CheFSI iteration is spent on evaluation of
the Chebyshev polynomial� lter pm�(ŠH�) as applied to anNs ×
Nt block of vectors. This operation is based on matrixŠmatrix
multiplications (i.e., GEMM operations in BLAS), and it
parallelizes quite e� ciently when PBLAS routines59 are used.
Hence, the scalability of the inner CheFSI operation turns out
to be more favorable as compared to LOBPCG.

It is worthwhile to discuss the computational complexity of
the above procedure for determining the top states ofH�. If an
inner Chebyshev� lter of orderm� is employed, the computa-
tional cost of applying the Chebyshev� lter isO(m�Ns

2Nt). The
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subsequent orthonormalization and projection, diagonalization,
and rotation steps associated with the inner problem incur costs
of O(NsNt

2+Nt
3), O(Nt

3), andO(NsNt
2), respectively, leading to

an overall cost ofO(m�Ns
2Nt+NsNt

2+Nt
3) for each inner CheFSI

cycle. This estimate makes clear that it is advantageous to
reduceNt as much as possible in practical calculations using the
CS2CF strategy, as long as this reduction does not adversely
a� ect the accuracy or convergence of the calculation. As
described later, this can be done in some cases based on
numerical arguments (e.g., there is no need to account for
fractionally occupied states which do not a� ect energies and
forces appreciably) or physical ones (certain systems might be
expected to have only a few fractionally occupied states, based
on symmetry arguments, for example).

If m� is small (as in practical calculations), the above estimate
appears to be of lower complexity than theO(Ns

3) cost
associated with the direct diagonalization of the projected
Hamiltonian matrix. However, noting thatNt is a small fraction
of Ns (typically less than 10%), we see that the asymptotic
complexity associated with the inner CheFSI procedure is the
same as that of direct diagonalization ofH� (i.e.,O(Ns

3)) but
with a lower prefactor. As we show insection 3, this lower
prefactor does indeed result in signi� cantly lower computa-
tional wall times when the inner CheFSI technique is used in
lieu of explicit diagonalization ofH�.

2.3. Implementation. Equation 15suggests that, for the
success of the complementary subspace strategy, it is essential
to be able to compute the full density matrixP in an e� cient
manner once the vector blocksY andC�- are available. As
described above, in the two-level CheFSI scheme, the outer
Chebyshev polynomial� ltering iterations allow us to compute
the vector blockY(usingH) while the inner CheFSI iterations
allow us to compute the vector blockC�- (usingH�). Using
these computed quantities, evaluatingeq 15naively would incur
a computational cost ofO(Nb

2Ns+NbNsNt+Nb
2Nt). However, if

the basis set used for the discretization is strictly localized, the
computation of certain entries of the density matrixP can be
avoided during the SCF iterations, thus resulting in signi� cant
reductions in computational cost. Speci� cally, according toeq
6, if the basis functionsej(x) and ej�(x) have nonoverlapping
support, then it is redundant to compute the density matrix
entryPj,j� since this term does not contribute to the real-space
electron density. With this observation and a few additional
factors (as detailed below) in mind, we have implemented the
two-level CheFSI based complementary subspace strategy
within the framework of the discontinuuos Galerkin electronic
structure method (speci� cally, the DGDFT code), as we now
describe.

2.3.1. Background on Discontinuous Galerkin Electronic
Structure Method and DGDFT Code.The DG electronic
structure method employs an adaptive local basis set to solve
the equations of KS-DFT in a discontinuous Galerkin
framework.27,28 The methodology has been implemented in
the discontinuous Galerkin density functional theory
(DGDFT) code for large-scale parallel electronic structure
calculations.20,29The DGDFT approach to solving the KS-DFT
equations involves partitioning the global simulation domain
into a set of subdomains (or elements). The KohnŠSham
equations are then solved locally in and around each element.
These local calculations are used to generate the ALBs (in each
element), and the KohnŠSham equations in the global
simulation domain are then discretized using them. The
ALBs form a discontinuous basis set globally with disconti-

nuities occurring at the element boundaries. Subsequent to the
generation of the ALBs, the interior penalty discontinuous
Galerkin approach62 is used for constructing the Hamiltonian
matrix. This formulation ensures that the global continuity of
the relevant KohnŠSham eigenstates and related quantities
such as the electron density is su� ciently maintained.

As the number of ALBs is increased, the solution obtained by
the above procedure converges systematically to the in� nite
basis set limit. Since the ALBs incorporate local materials
physics into the basis, an e� cient discretization of the KohnŠ
Sham equations can be obtained in which chemical accuracy in
total energies and forces can be attained with a few tens of basis
functions per atom.27,28Additionally, the rigorous mathematical
foundations of the discontinuous Galerkin method allow the
errors in the above approach to be systematically gauged by
means of a posteriori error estimators.63Š65 Thus, DGDFT
combines the key advantage of planewave basis sets in terms of
systematic improvability with that of localized basis sets in
reducing basis set size. The DG framework for solution of the
KohnŠSham equations (as implemented in the DGDFT code)
has been successfully used to study complex materials problems
involving many thousands of atoms.20,29,30

Despite the many successes of DGDFT in studying a wide
variety of large-scale materials problems, a persistent issue has
been to obtain the electron density from the discretized KohnŠ
Sham Hamiltonian in an e� cient and scalable manner for large
systems (i.e., systems containing a thousand or more atoms).
To address this issue, we have recently investigated the use of
Chebyshev polynomial� ltered subspace iteration (CheFSI)
within DGDFT.29 While this technique has the same
asymptotic computational complexity as traditional diagonaliza-
tion based methods (i.e.,O(Ns

3), withNs denoting the number
of KohnŠSham states), it has a substantially lower prefactor
compared to the existing alternatives (based on direct
diagonalization using ScaLAPACK, for instance) within
DGDFT. This stems from several favorable properties of the
discretized Hamiltonian matrix in DGDFT. These include the
following: a small dimension (e.g., a few tens times the number
of atoms) which leads to lower linear algebra operation costs, a
relatively low spectral width which ensures Chebyshev
polynomials of relatively low order can be employed, and
� nally, an underlying block sparse structure which ensures that
matrix vector products can be carried out with high
computational e� ciency. These features, along with the
favorable parallel scalability of the DG-CheFSI approach,
have allowed us to tackle systems containing several thousands
of atoms in minutes of wall time per SCF step on large-scale
computational platforms.29

Our experience has shown that the limiting computational
bottleneck in such large-scale calculations using the DG-
CheFSI approach turns out to be associated with the subspace
diagonalization and subspace rotation steps of the RayleighŠ
Ritz process.29 In light of this observation, we view the current
contribution as one which directly confronts the computational
bottlenecks associated with the above steps and replaces them
with the complementary subspace strategy based on an inner
level of Chebyshev� ltering. In particular, the factors which lead
to the success of the DG-CheFSI approach (i.e., favorable
properties of the discretized Hamiltonian matrix, good parallel
scalability of various operations, and so on) also ensure that the
two-level CheFSI based complementary subspace strategy
performs with great e� ciency when implemented within the
DGDFT framework. We now outline some speci� c imple-
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mentation details of the above strategy within the DGDFT
code.

2.3.2. Implementation Details.We highlight a few
important details of the implementation of the two-level
CheFSI based complementary subspace strategy within
DGDFT. The� rst concerns the manner in which the code
transitions from regular CheFSI based SCF iterations to the use
of the complementary subspace strategy. As discussed in a
previous section, the use of iterative solvers to evaluate the
topmost states of the projected HamiltonianH� requires good
initial approximations in order to avoid excessive iterations.
Consequently, in static (i.e.,� xed atomic positions) KohnŠ
Sham calculations, we� rst carry out about 4Š5 SCF iterations
using the conventional CheFSI technique. The eigenstates ofH�
are computed directly by use of LAPACK or ScaLAPACK
routines during these iterations. TheNt top eigenvectors from
the last conventional CheFSI iteration are subsequently used as
the initial guess for the iterative solvers in the� rst
complementary subspace based SCF iteration. Furthermore,
in case of the two-level CheFSI strategy, the bounds for the
inner-level Chebyshev polynomial� lter (i.e., the one used to
compute the topmost states ofH�) are computed using the
eigenvalues evaluated in the previous (conventional CheFSI
based) SCF step. Following this transition, the topmost
eigenvalues and eigenvectors ofH� are always stored between
SCF iterations for use by the iterative solvers in subsequent
SCF steps. During molecular dynamics or geometry opti-
mization runs, we have used the above methodology only
during the� rst ionic step. For subsequent ionic steps, the
complementary subspace strategy is used exclusively in every
SCF iteration.

The second detail pertains to the parallelization aspects of
the two-level CheFSI based complementary subspace strategy.
The parallelization strategies involved in the� rst-level Cheby-
shev polynomial� lter computation (i.e., the one associated with
H) are described in earlier work.29 Parallelization of the various
linear algebra operations associated with the second level of
CheFSI iterations are carried out with the use of PBLAS and
ScaLAPACK routines.59Š61 Accordingly, the various matrices
involved in these computations are redistributed over two-
dimensional block cyclic process grids. The various redis-
tribution and parallel storage format interconversion routines
(employing ScaLAPACK’s pdgemr2d routine or otherwise)
did not consume more than 1% of the total time spent in the
complementary subspace strategy, even for the largest systems
considered here.

Finally, the third detail pertains to the computation of the
density matrix in DGDFT by usingeq 15. Since the supports of
the ALBs are con� ned to individual DG elements, the
Hamiltonian matrix in DGDFT enjoys a block-sparse structure
in which nonzero contributions arise due to an element and
only its nearest neighbors.20,29 The (full) density matrix enjoys
this structure as well.20 As noted above, the real-space electron
density that must be updated in each SCF iteration only
accumulates contributions from density matrix entries that are
associated with basis functions with overlapping support. These
factors combined imply thatonly the diagonal blocksof the
density matrix are required in DGDFT when the comple-
mentary subspace strategy is used to update the density in each
SCF iteration. This is a signi� cant reduction in the number of
operations relative to what a naive inspection ofeq 15would
suggest, and it is one of the primary reasons for the success of
the present strategy within DGDFT.

The DGDFT code uses a two-level parallelization strategy
implemented via message passing interface (MPI) to handle
interprocess communication.20 At the coarse grained level, the
parallelism is based on domain decomposition and work is
distributed among processors by DG elements. Further,
multiple processors are assigned to each element to achieve
the second,� ner level of parallelism. The observations made
above imply that computation of the diagonal blocks of the
density matrix incurs no communication between processors
associated with di� erent elements as long as the matrix�C�- is
available locally on the processors working on a given element.
Our implementation makes use of this observation to achieve a
good balance of memory storage requirements and parallel
scalability of linear algebra operations while working with the
matrixC�- . Once SCF convergence has been achieved, the full
density matrix (or, more precisely, all the nonzero blocks)
needs to be computed. The two-level parallelization strategy
implemented in DGDFT ensures that this computation can be
done e� ciently in parallel with a small contribution to the
overall wall time.

Figure 1depicts the various steps of the CS2CF strategy
within DGDFT for a static ground-state calculation.Table 1
summarizes the values of the various parameters used within
the strategy for such calculations.

3. RESULTS AND DISCUSSION

To demonstrate the accuracy, e� ciency, and parallel scaling of
the CS2CF methodology, we apply it to� ve prototypical
systems encompassing metals, semimetals, semiconductors, and
insulators, ranging in size from a few hundred atoms to over
27,000. The fundamental unit cells (i.e., atomic con� gurations
replicated to generate the various large systems examined
subsequently) of these systems are summarized inTable 2. The
� rst system, referred to asElectrolyte3D, consists of a three-
dimensional bulk lithium-ion electrolyte system originating
from the design of energy storage devices. Atoms of hydrogen,
lithium, carbon, phosphorus, oxygen, and� uorine, numbering
318 in total, are present in a single unit cell of this system. It
serves as a protoypical bulk disordered insulating system. The
second, referred to asSiDiamond3D, consists of atoms of
crystalline silicon in the diamond structure, with 8 atoms in the
unit cell. Silicon is a well known semiconductor and, in its
crystalline form, has an LDA band gap of� 0.6 eV. Thus, it
tends to have a small number of fractionally occupied states in
KohnŠSham calculations at room temperature. The third
system, referred to asGraphene2D, consists of a sheet of
graphene for which the unit cell contains 180 carbon atoms.
This serves as a prototype for a two-dimensional semimetallic
system. The fourth system consists of atoms of lithium in a
body centered cubic con� guration with 16 atoms in the unit
cell. We will refer to this system asLiBCC3D. Finally, the� fth
system consists of atoms of copper in a face centered cubic
con� guration with 4 atoms in the unit cell. We will refer to this
system asCuFCC3D. The LiBCC3D and CuFCC3D systems
serve as prototypical examples of simple and more complex
bulk metallic systems, respectively. To remove periodicities in
larger cells produced by replication, we added mild random
perturbations to the atomic positions for all the crystalline/
periodic systems mentioned above, before using them in
calculations.

Together, these� ve systems were chosen for their
technological relevance as well as the fact that KS-DFT
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calculations on large supercells based on these can be
challenging. Additionally, the electronic properties of these
systems cover a broad spectrum� this has helped us ensure
that the computational strategy presented in this work is able to
deal successfully with di� erent kinds of materials systems,

without any computational di� culties arising from the physical
nature of the system.

In order to work with larger system sizes, we have employed
multiple unit cells of the aforementioned� ve systems replicated
along the coordinate axes. Thus, Electrolyte3D1×2×2, for
example, refers to a system in which the 318-atom unit cell
has been replicated alongY and Z directions to produce a
1,272-atom bulk system; and similarly, Graphene2D2×2 refers to
a graphene sheet containing 720 atoms.

We have used the local density approximation (LDA) for the
exchangeŠcorrelation functional with a rational function
parametrization66 of the correlation energy calculated by
Ceperley and Alder.67 HartwigsenŠGoedeckerŠHutter66,68

and optimized norm-conserving Vanderbilt (ONCV) pseudo-
potentials69,70 are employed to remove inert core electrons
from the computations. Whenever required, SCF convergence
was accelerated by means of Pulay’s scheme71,72 and an
electronic temperature of 300 K was used for FermiŠDirac
occupation. Additionally, a Kerker preconditioner46,73 was
employed to minimize charge sloshing while treating metallic
systems. The various discretization related parameters in
DGDFT (speci� cally, the number of ALBs per atom, DG
penalty parameter, and� neness of real-space grid) were chosen
such that chemical accuracy could be attained27,28 (i.e., error in
total energies and forces less than 10Š3 Ha/atom and 10Š3 Ha/
Bohr, respectively, relative to reference planewave results). This
ensures that the calculations presented here are carried out at
accuracies typical in practice.

We have typically employed 5% of extra states to
accommodate fractional occupations (i.e.,Nx = 5% ofNe/2,
or equivalently,Ns = 1.05 × Ne/2). Unless speci� ed
otherwise,74 the complementary subspace calculations used
the topmost 10% of states; i.e.,Nt = 0.1× Ns. For calculations
where LOBPCG was used to compute top states, 10Š15
LOBPCG iterations per SCF step were used. For calculations
using the CS2CF strategy, the order of the inner Chebyshev
� lter and number of inner CheFSI cycles were both set to 4.
Other parameters relevant to the CS2CF strategy were chosen
according to the values shown inTable 1.

Figure 1.Flowchart depicting the various steps of the CS2CF strategy
within DGDFT for a ground-state KohnŠSham calculation. Note that
Y is anNb × Ns block of orthonormal vectors that spans the occupied
subspace of the KohnŠSham HamiltonianH as shown ineq 7. HDG

denotes the Hamiltonian matrix in the adpative local basis set used in
DGDFT.

Table 1. Values of Various Parameters Used for the CS2CF
Strategy in Ground-State Calculations at Typical Electronic
Temperaturesa

parameter criteria used for selecting parameter value

value
commonly
used in this

work

total no. of electronic
states (Ns)

no. of electrons (Ne) in system,
type of system (metal/insulator, etc.)

1.05× Ne/2

no. of top states (Nt) type of system (metal/insulator, etc.) 0.1× Ns

outer Chebyshev
polynomial� lter
order

spectral width of HamiltonianH
(depends on type of atoms in system)

30Š50

inner Chebyshev
polynomial� lter
order

spectral width of projectedH�,
density of fractionally occupied states

4

no. of inner CheFSI
cycles (usingH�)

spectral width of projectedH�,
density of fractionally occupied states

4

no. of initial SCF
steps using regular
CheFSI

type of system (metal/insulator, etc.),
nature of SCF convergence

4Š5

aNote that, as suggested in previous work,29,52 the � rst SCF step of a
ground-state calculation employs multliple (regular) CheFSI cycles
(typically, 3Š4) while starting from randomly initialized wave-
functions.
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All calculations described here were performed on the Edison
platform at the National Energy Research Scienti� c Computing
(NERSC) center. Edison has 5462 Cray XC30 nodes. Each
node has 64 GB of memory and 24 cores partitioned among
two Intel Ivy Bridge processors, running at 2.4 GHz. Edison
employs a Cray Aries high speed interconnect with Dragon� y
topology for internode communication.

3.1. SCF Convergence and Accuracy.As a� rst test of the
CS2CF methodology we� rst veri� ed that it reproduces the
results of the standard CheFSI methodology (with full
diagonalization of the subspace Hamiltonian) with comparable
SCF convergence. Accordingly, we� rst compared the SCF
convergence behavior of the complementary subspace strategy
against the corresponding behavior of standard CheFSI (as
implemented in DGDFT) for a range of systems containing
from 500 to 1,272 atoms.Figure 2shows that, for all systems
considered, the overall convergence behavior of the comple-
mentary subspace strategy is comparable to that of standard
CheFSI, as should be the case since the methods are equivalent
if eigenvectors are computed exactly. Also, convergence of the
complementary subspace strategy is comparable whether
LOBPCG or CheFSI is used for computing the top states of
the projected Hamiltonian.

Next, we veri� ed that when SCF convergence is reached (i.e.,
when the relative norm of the electron density residual
� � �Š /out in in < 10Š6 and the energy per atom has

converged to 5× 10Š6 Ha), the energy per atom and the
atomic forces obtained by the complementary subspace strategy
are in agreement with the results obtained from the standard
CheFSI approach to well below discretization error (� 10Š3

Ha/atom). Table 3shows that, for the above systems, the
energy per atom di� erence is on the order of 10Š5 Ha or less
while the maximum di� erence in force components is on the
order of 10Š4 Ha/Bohr or less, an order of magnitude or more
below discretization error.

It is worth pointing out a di� erence between the scenario
depicted inFigure 2a and the other cases shown inFigure 2. As
discussed insection 2.1.1, it is not necessary to carry out the
subspace diagonalization step or its complementary subspace
counterpart while treating insulating systems (such as the
electrolyte considered inFigure 2a). Hence, there is no
distinction between the LOBPCG and CheFSI based
complementary subspace strategies in the case ofFigure 2a,
thus leading to the single curve for the complementary
subspace strategy.

We note also the case of graphene shown inFigure 2c.
Semimetallic systems such as this tend to have relatively few
fractionally occupied states near the Fermi level at moderate
electronic temperature.75 Hence, it is possible to apply (� nite
electronic temperature) smearing to such systems with fewer
extra states in the calculation, thus reducingNs. Furthermore,
the complementary subspace strategy can be made to use fewer

Table 2. Unit Cells of the Systems Considered in This Worka

aThe simulation results presented insection 3use supercells constructed by replicating these cells along coordinate axes to produce larger cells.
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top states, thus reducingNt. This reduces computational e� ort
without signi� cantly impacting accuracy or SCF convergence.
AsFigure 2c shows, even with fewer extra and top states in the
computation (speci� cally, the CS2CF strategy usedNs = 1.025
× Ne/2 rather than the usualNs = 1.05× Ne/2, andNt = 5% of
Ns), SCF convergence is not signi� cantly a� ected. We also
veri� ed that the converged energies and forces agreed with
reference CheFSI results to well below discretization error. As
demonstrated in the next section, however, the computational
gains from using fewer states can be quite noticeable, especially
for large systems.

3.2. Computational E� ciency and Parallel Scaling.We
now carry out a systematic comparison of the computational
e� ciency and parallel scaling of the new CS2CF and standard
CheFSI methodologies.

In order to carry out the comparison, we investigate the wall
time for the construction and solution of the subspace problem
for a number of large systems. Within the context of the
CheFSI or CS2CF strategies, this is the time spent in the

Figure 2.SCF convergence of the complementary subspace (CS) strategy and standard CheFSI method for systems considered in this work: (a)
Electrolyte3D1×2×2 system (1,272 atoms); (b) SiDiamond3D5×5×5 (1,000 atoms); (c) Graphene2D2×2 system (720 atoms); (d) CuFCC3D5×5×5
system (500 atoms); (e) LiBCC3D4×4×4 system (1,024 atoms). The top states of the projected HamiltonianH� can be computed using LOBPCG as
well as CheFSI (the CS2CF strategy), and results for both are shown.

Table 3. Accuracy of Complementary Subspace (CS)
Strategy Using LOBPCG and CheFSI (CS2CF) Methods To
Compute Top Statesa

CS strategy with
LOBPCG for top states

CS strategy with CheFSI
for top states

(CS2CF strategy)

system

energy per
atom

di� erence
(Ha)

max force
component
di� erence

(Ha/Bohr)

energy per
atom

di� erence
(Ha)

max force
component
di� erence

(Ha/Bohr)

Electrolyte3D1×2×2 5 × 10Š5 2 × 10Š4 5 × 10Š5 2 × 10Š4

SiDiamond3D5×5×5 4 × 10Š6 4 × 10Š5 2 × 10Š6 1 × 10Š5

Graphene2D1×2×2 7 × 10Š6 8 × 10Š5 9 × 10Š6 8 × 10Š5

CuFCC3D5×5×5 8 × 10Š6 9 × 10Š5 4 × 10Š6 7 × 10Š5

LiBCC3D4×4×4 7 × 10Š6 9 × 10Š5 5 × 10Š6 8 × 10Š5

aShown are energy per atom and force component di� erences from
standard CheFSI results. Di� erences are well below discretization error
in all cases.
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sequence of computational steps that lead to the diagonal
blocks of the (full) density matrix, after the Chebyshev
polynomial� ltered vectors given by the columns ofY have
been computed usingH. Therefore, this time includes
contributions from steps that are common to both standard
CheFSI and CS2CF strategies, such as orthonormalization of
the Chebyshev polynomial� ltered vectors (i.e., columns ofY)
and formation of the projected HamiltonianH� = YT(HY) from
the vector blocksY andZ = HY. Additionally, for the standard
CheFSI method, it includes the time spent on subspace
diagonalization and subspace rotation steps. In contrast, for the
CSF2CF strategy, it includes the time spent on computing the
top states of the projected Hamiltonian (using the inner level of
CheFSI onH�), and any additional computation required for
evaluating the diagonal blocks of the density matrix (seeeq 15).
Thus, within the context of the standard CheFSI or CS2CF
strategies, the subspace problem construction and solution wall
time provides an estimate of the total wall time spent on every
SCF step in (distributed) dense linear algebra operations.

The systems considered for this comparison contain between
4,000 and 27,648 atoms and between 23,040 and 82,944
electrons. In each case, an identical number of computational
cores were allocated to both methods and the ScaLAPACK
process grids used were kept as close to square geometries as
possible.76 The results are shown inFigures 3and4.

From Figure 3we see that for the large noninsulating
systems considered here, the CS2CF strategy is able to bring
down the wall time for the subspace diagonalization and
subspace rotation steps in the standard CheFSI method by
factors of 3.7Š7.8. Additionally, for the particular case of the
Electrolyte3D3×3×3 insulating system, the CS2CF strategy
eliminates these steps altogether and brings down the wall
time by a factor exceeding 60. This dramatic reduction of the
wall times of key steps of the standard CheFSI method leads us
to expect that the overall subspace construction and solution
time for these systems will be reduced signi� cantly as well. This

expectation turns out to be correct. FromFigure 4, we see that
the overall subspace problem construction and solution wall
time is brought down by a factor of� 1.7Š2.2. These
computational wall time savings are particularly signi� cant in
light of the fact that they occur on every SCF step. From the
� gure, it is also evident that the overall savings due to the
replacement of the subspace diagonalization and subspace
rotation steps by the corresponding CS2CF steps are most
signi� cant for systems in which these steps are the largest
contributors to the subspace problem wall time. For the largest
system considered here, i.e., LiBCC3D12×12×12 (27,648 atoms,
82,944 electrons), the orthonormalization cost contributes to
the subspace problem construction wall time in a signi� cant
manner so the overall savings due to the CS2CF strategy, while
substantial (� 5.7× reduction in the time spent on the subspace
diagonalization and subspace rotation steps, as shown inFigure
3), are somewhat smaller (i.e.,� 1.7× reduction in overall
subspace problem wall time) compared to other cases inFigure
4.

In light of earlier comments (seesections 2.2.2and3.1), it is
worth pointing out the computational bene� ts of using fewer
extra and top states in the CS2CF strategy. As can be seen in
Figures 3and4b, on reducing the number of extra states (i.e.,
Nx), and, consequently, the total number of statesNs, the
variations in wall times for the steps of the standard CheFSI
strategy are not particularly signi� cant. However, loweringNx
also allows us to lower the number of top states (i.e.,Nt) in the
CS2CF strategy, and this leads to a signi� cant savings.
Speci� cally, asFigure 3shows, the total wall time spent in
the routines associated with the CS2CF strategy decreases by
more than a factor of 2 due to the value ofNt being halved.77

We also remark that while the above results demonstrate the
computational advantages of the CS2CF strategy for large
systems, the strategy works equally well (i.e., in terms of lower
computational wall times) for smaller systems. For example, for
a SiDiamond3D1×1×4 system (32 atoms, 64 electrons) we found

Figure 3.Wall times associated with solution of the subspace problem using standard CheFSI (subspace diagonalization, subspace rotation, and
miscellaneous calculations) and new CS2CF (computation of top states and miscellaneous calculations) strategies for a few large systems.
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that the CS2CF strategy was able to reduce the (combined)
subspace diagonalization and subspace rotation wall time to less
than 0.001 s, from� 0.003 s. The dense linear algebra
operations for both strategies were carried out serially in this
particular case. Hence, the CS2CF strategy appears to be a
computationally advantageous replacement for the standard
CheFSI strategy for a wide range of system sizes commonly
encountered in KohnŠSham calculations, as well as for sizes
much larger.

Next, we examine the strong parallel scaling properties of the
CS2CF strategy and contrast it with the standard CheFSI
strategy. The parallel scaling properties of the polynomial� lter
application step associated withH (that appears in both
standard CheFSI and CS2CF) have been detailed in previous
work29 and are identical for both strategies. Thus, we focus on
the subspace problem construction and solution steps here.
Taking the LiBCC3D12×12×12 system as an example, we plot the
strong scaling e� ciency of the principal steps involved in
constructing and solving the subspace problem via the standard
CheFSI and CSF2CF strategies inFigure 5. We have used the
data points corresponding to 810 computational cores as the
reference in this plot.

From the plot, we see that the strong scaling e� ciency of the
steps strictly associated with the CS2CF strategy is somewhat

worse than that of the steps associated with the standard
CheFSI strategy, though not markedly so. This is attributed to

Figure 4.Wall times associated with construction and solution of the subspace problem for large systems using standard CheFSI and new CS2CF
methods (a) Electrolyte3D3×3×3 system (8,586 atoms, 29,808 electrons, left two plots) and SiDiamond3D10×10×10 system (8,000 atoms, 32,000
electrons, right two plots) [1,728 processes used in all cases]; (b) Graphene2D8×8 system (11,520 atoms, 23,040 electrons) [right two� gures use
fewer extra and top states; 2,304 MPI processes used in all cases]; (c) CuFCC3D10×10×10 system (4,000 atoms, 44000 electrons, 1,000 MPI
processes, left two plots) and LiBCC3D12×12×12 system (27,648 atoms, 82,944 electrons, 6,480 MPI processes, right two plots). Total wall times and
contributions of key steps are shown.

Figure 5.Strong scaling e� ciencies of key steps in the standard
CheFSI and new CSF2CF strategies for the LiBCC3D12×12×12 system.
While the steps associated with CS2CF scale less well than those
associated with standard CheFSI, they yield a signi� cantly lower wall
time (by a factor of 5.4 for the case of 12,960 processors shown
above). The steps common to both strategies scale somewhat better,
reaching approximately 40% strong scaling e� ciency at 12,960
processors in this case. The parallel scaling property of the polynomial
� lter application step associated withH (which appears in both
standard CheFSI and CS2CF) is identical for both strategies and is not
shown here (see previous work29 for details).
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the fact that the sizes of the matrices in the parallel dense linear
algebra operations in the CS2CF approach are signi� cantly
smaller than those arising in the standard CheFSI approach.
Thus, the PBLAS/ScaLAPACK routines do not parallelize as
e� ciently for the case of the CS2CF strategy. However, the
steps associated with the CS2CF strategy execute signi� cantly
faster than their standard CheFSI counterparts� even for the
case of 12,960 computational cores, the wall time associated
with the CS2CF strategy turns out to be lower than that of the
standard CheFSI strategy by a factor of 5.4. Thus, we may
conclude that it is preferable to use the CS2CF strategy
regardless of the number of computational cores allocated to
the subspace problem.

It is also worth noting that the orthonormalization and
projected Hamiltonian construction steps common to both
strategies fare somewhat better in terms of strong scaling
performance (reaching approximately 40% strong scaling
e� ciency at 12,960 computational cores in this case). This
suggests that it is worthwhile to allocate more computational
cores to these parts of the calculation since the wall time for
these steps can be reduced signi� cantly. We employ this
strategy in the large benchmark calculations presented in the
next section.

3.3. Benchmark Calculations on Large Systems.From
the results presented above, it is clear that the CS2CF strategy
is well suited for bringing down the computational wall times of
large-scale KohnŠSham calculations. We have already demon-
strated29 the superior computational e� ciency of the standard
CheFSI strategy within DGDFT compared to existing

alternatives based on direct diagonalization (using ScaLA-
PACK) and certain sparse-direct solution strategies (namely,
PEXSI14,15,21). Since the CS2CF strategy is successful in
bringing down the wall times of the standard CheFSI approach,
it is the method of choice for large-scale calculations in
DGDFT. To demonstrate this, we display inTable 4the wall
time per SCF iteration for the large materials systems
considered above, when the CS2CF strategy is employed.80

For comparison, we also show the corresponding wall times
associated with direct diagonalization of the DG Hamiltonian
using ELPA82,83� a state-of-the-art massively parallel eigensolv-
er library.84 The ELPA eigensolver was made to use the same
total number of computational cores as the CS2CF strategy for
all cases considered.

From the table we see that, with the ability to leverage large-
scale computational resources, the CS2CF strategy within
DGDFT is able to tackle several bulk and nano systems
containing tens of thousands of electrons in less than a minute
of wall time per SCF step. In terms of the number of electrons
in the system, the LiBCC3D12×12×12 case is the largest, and even
in this case, the DGDFT-CS2CF methodology is able to
complete each SCF iteration in a little over 3.5 min of wall
time. In contrast, the wall times required for direct
diagonalization of the DG Hamiltonian for these systems (via
ELPA) are signi� cantly longer, with the reductions achieved by
the CS2CF strategy exceeding a factor of 15 in some cases. The
direct diagonalization wall time appears to be the closest to that
of the CS2CF strategy for the CuFCC3D10×10×10 system (likely
because the overall size of the DG Hamiltonian is smallest in

Table 4. SCF Iteration Wall Times (in Seconds, Rounded to the Nearest Whole Number) for Large Systems Using the CS2CF
Strategy in DGDFTa

system
no. of atoms

(no. of electrons)

total computational
cores (cores used in
subspace problem)

(s)

ALB
generation

(s)
Hamiltonian
update (s)

CS2CF strategy
(subspace

problem time)
(s)

total SCF wall
time via
CS2CF

strategy (s)

direct
diagonalization
via ELPA (s)

total SCF
wall time
via ELPA

(s)

Electrolyte3D3×3×3 8,586 (29,808) 34,560 (3,456) 12 4 34 (19) 50 647 663
SiDiamond3D10×10×10 8,000 (32,000) 34,560 (3,456) 9 2 40 (24) 51 648 659
Graphene2D8×8 11,520 (23,040) 27,648 (4,608) 4 2 35 (27) 41 262 268
CuFCC3D10×10×10 4,000 (44,000) 30,000 (3,000) 20 9 75 (46) 104 199 228
LiBCC3D12×12×12 27,648 (82,944) 38,880 (12,960) 22 13 180 (165) 215 5844 5879

aThe contributions of key computational steps are also shown. In the third and sixth columns, numbers in parentheses indicate the numbers of
processors used for subspace problem construction and solution, and wall times for those operations, respectively. For comparison, corresponding
wall times associated with direct diagonalization of the DG Hamiltonian using the ELPA library82Š85 are also shown in the last two columns. ELPA
was made to use the same total number of computational cores as the CS2CF strategy.

Figure 6.Results from 1.0 ps NVE ab initio molecular dynamics simulation of the SiDiamond3D10×10×10 system (8,000 atoms, 16,000 electrons)
using the CS2CF strategy in DGDFT: (a) total energy (per atom) variation; (b) temperature variation. Total energy is well conserved, with a drift of
less than 10Š5 Ha/atom over the course of the simulation.

Journal of Chemical Theory and Computation Article

DOI:10.1021/acs.jctc.7b01243
J. Chem. Theory Comput.2018, 14, 2930Š2946

2942

http://dx.doi.org/10.1021/acs.jctc.7b01243


this case); however, even in this situation, the CS2CF strategy
appears to be faster by a factor of� 2.6. A comparison of the
total SCF wall times between the CS2CF and direct
diagonalization strategies also highlights signi� cant gains, with
an overall reduction factor of� 13 or higher in some cases.

We reiterate that the wall times presented above pertain to
discretization parameter choices within DGDFT that lead to
well converged (chemically accurate) energies and forces. In
our opinion, this is one of the key di� erences with earlier
attempts at simulating such large scale metallic or semi-
conducting systems from� rst principles. To further highlight
this point, we employed the DGDFT-CS2CF methodology to
carry out a 1.0 ps ab initio molecular dynamics simulation of
the SiDiamond3D10×10×10 system initialized at 300 K ionic
temperature. We used theNVEensemble and a time step of 2.5
fs for integrating the equations of motion using the velocityŠ
Verlet scheme.44,86 We initialized the system by randomly
perturbing the positions of the silicon atoms in the
SiDiamond3D10×10×10 con� guration and assigning the atoms
random velocities consistent with the initial temperature. We
then let the system evolve and equilibrate for 50 fs before
collecting data for 400 ionic time steps (i.e., 1 ps). To accelerate
SCF convergence at each ionic step, we employed linear
extrapolation of the real-space electron density and SCF
converged wave functions from one ionic step were used as the
starting point for the SCF iterations on the next ionic step.
Results from the simulation are shown inFigure 6. The mean
and standard deviation of the total energy (i.e., kinetic energy of
the ions+ potential energy) areŠ3.96329 Ha per atom and 4.8
× 10Š6 Ha per atom, respectively. Additionally, the drift in total
energy (obtained using a linear� t) is less than 10Š5 Ha/(atom-
ps). Thus, the scheme consistently produces high quality
atomic forces and, consequently, excellent energy conserva-
tion.88 The mean ionic temperature during the course of the
simulation89 comes out to be about 274 K.

With the aid of the CS2CF strategy, the 1.0 ps ab initio MD
simulation of the above 8,000-atom system can be carried out
in � 4.2 min per MD step, for a total of� 28 h of wall time on
34,560 computational cores. From the earlier discussion in
section 3.2, it is clear that doing a similar simulation without the
use of the CS2CF strategy would have been far more expensive
computationally, if not infeasible due to resource constraints.

4. CONCLUSIONS
In summary, we have presented a novel iterative strategy for
KS-DFT calculations aimed at large system sizes, applicable to
metals and insulators alike. Our CS2CF methodology combines
a complementary subspace (CS) strategy and two-level
Chebyshev polynomial� ltering (2CF) scheme to reduce
subspace diagonalization to just fractionally occupied states
and obtain those states in an e� cient and scalable way,
exploiting the limited spectral width and extremal nature of the
resulting eigenvalue problem. In so doing, the CS2CF approach
reduces or eliminates some of the most computationally
intensive and poorly scaling steps in large-scale KohnŠSham
calculations employing iterative solution methods. We showed
that the approach integrates well within the framework of the
massively parallel discontinuous Galerkin electronic structure
method. Considering a variety of large systems, including
metals, semimetals, semiconductors, and insulators, we then
demonstrated that the use of the CS2CF strategy within the
massively parallel DGDFT code allows us to tackle systems
containing tens of thousands of electrons within a few minutes

of wall time per SCF iteration on large-scale computing
platforms. We found that the CS2CF strategy signi� cantly
outperforms alternatives based on direct diagonalization of the
Hamiltonian. In particular, the strategy makes possible ab initio
molecular dynamics simulations of complex systems containing
many thousands of atoms within a few minutes per MD step, as
we demonstrate for bulk silicon.

With the use of the CS2CF strategy, the subspace
diagonalization and subspace rotation steps cease to be the
dominant parts of the calculation. For the largest systems
considered here, the time for carrying out orthonormalization
and forming the projected Hamiltonian then start to contribute
signi� cantly. We aim to confront these next. Once again, our
focus will not necessarily be on lowering the computational
complexity of these steps. Rather, any procedure that can lower
the prefactor and/or improve the parallel scalability of these
steps is likely be more e� ective in bringing down wall times in
practice, without sacri� cing accuracy, thus pushing the envelope
of ab initio calculations to larger, more complex, and more
realistic systems than feasible today.
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