
Accelerating Optical Absorption Spectra and
Exciton Energy Computation for Nanosystems

via Interpolative Separable Density Fitting

Wei Hu1, Meiyue Shao1, Andrea Cepellotti2, Felipe H. da Jornada2, Lin Lin3,1,
Kyle Thicke4 and Chao Yang1, and Steven G. Louie2

1Computational Research Division, Lawrence Berkeley National Laboratory,
Berkeley, California 94720, United States

{whu,myshao,cyang}@lbl.gov
2Department of Physics, University of California, Berkeley

Berkeley, California 94720, United States
{andrea.cepellotti,jornada,sglouie}@berkeley.edu

3Department of Mathematics, University of California, Berkeley
Berkeley, California 94720, United States

linlin@math.berkeley.edu
4Department of Mathematics, Duke University,

Durham, NC 27708, United States
kyle.thicke@duke.edu

Abstract. We present an efficient way to solve the Bethe–Salpeter equa-
tion (BSE), a model for the computation of absorption spectra in molecules
and solids that includes electron–hole excitations. Standard approaches
to construct and diagonalize the Bethe–Salpeter Hamiltonian require
at least O(N5

e ) operations, where Ne is proportional to the number of
electrons in the system, limiting its application to small systems. Our
approach is based on the interpolative separable density fitting (ISDF)
technique to construct low rank approximations to the bare and screened
exchange operators associated with the BSE Hamiltonian. This approach
reduces the complexity of the Hamiltonian construction to O(N3

e ) with
a much smaller pre-constant. Here, we implement the ISDF method for
the BSE calculations within the Tamm–Dancoff approximation (TDA)
in the BerkeleyGW software package. We show that ISDF-based BSE
calculations in molecules and solids reproduce accurate exciton energies
and optical absorption spectra with significantly reduced computational
cost.

1 Introduction

Many-Body Perturbation Theory [20] is a powerful tool to describe one-particle
and two-particle excitations, and to obtain excitation energies and absorption
spectra in molecules and solids [21]. Within many-body perturbation theory,
Hedin’s GW approximation [10] has been successfully used to compute quasi-
particle (one-particle) excitation energies and the Bethe–Salpeter equation (BSE) [24]ar
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describes the interaction of a electron–hole pair (two-particle excitation) pro-
duced during the spectral absorption in molecules and solids [23]. Good agree-
ment between theory and experiment can only be achieved taking into account
such electron–hole interaction by solving the BSE. The BSE is an eigenvalue
problem. In the context of optical absorption, the eigenvalues of the Bethe–
Salpeter Hamiltonian (BSH) are related to quasi-particle exciton energies and
the corresponding eigenfunctions yield the exciton wavefunctions.

The BSH has a special block structure to be shown in the next section. It
consists of bare and screened exchange kernels that depend on the products of
single-particle orbitals obtained from a mean-field calculation. The evaluation
of these kernels requires at least O(N5

e ) operations in a conventional approach,
which is very costly for large complex systems that contain hundreds or even
thousands of atoms. There are several methods, which have been developed
recently to generate a reduced basis set, to reduce such high computational cost
for the BSE calculations [2,12,16,19,22].

In this paper, we present a more efficient way to construct the BSH. Such
a construction allows the BSE to be solved efficiently by an iterative diagonal-
ization scheme. Our approach is based on the recently developed interpolative
separable density fitting (ISDF) decomposition [18]. This ISDF decomposition
has been applied to accelerate a number of applications in computational chem-
istry and materials science, including two-electron integral computation [18],
correlation energy in the random phase approximation [17], density functional
perturbation theory [15], and hybrid density functional calculations [11]. Such a
decomposition is used to approximate the matrix consisting of products of single-
particle orbital pairs as the product of a matrix consisting of a small number
of numerical auxiliary basis vectors and an expansion coefficient matrix [11].
This low rank approximation effectively allows us to construct low rank approx-
imations to the bare and screened exchange kernels. The construction of ISDF
compressed BSE Hamiltonian matrix only requires O(N3

e ) operations if the rank
of the numerical auxiliary basis can be kept at O(Ne) and if we keep the bare
and screened exchange kernel in a low rank factored form. This is considerably
more efficient than the O(N5

e ) complexity required in a conventional approach.

By keeping these kernels in the decomposed form, the matrix–vector mul-
tiplications required in iterative diagonalization procedures for computing the
desired eigenvalues and eigenvectors of HBSE can be performed efficiently. We
may also use these efficient matrix–vector multiplications in a structure pre-
serving Lanczos algorithm [25] to obtain an approximate absorption spectrum,
without explicitly diagonalizing the approximate HBSE.

We have implemented the ISDF based BSH construction in the BerkeleyGW
software package [5]. We demonstrate that this approach can produce accurate
exciton energies and optical absorption spectra for molecules and solids, and re-
duce the computational cost associated with the construction of the BSE Hamil-
tonian significantly compared to the algorithms used in the existing version of
the BerkeleyGW software package.
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2 Bethe–Salpeter equation

The Bethe–Salpeter equation is an eigenvalue problem of the form

HBSEX = XE, (1)

where X is an exciton wavefunction, E is the corresponding exciton energy and
HBSE is the Bethe–Salpeter Hamiltonian that has the following block structure

HBSE =

[
D + 2VA −WA 2VB −WB

−2V B +WB −D − 2V A +WA

]
, (2)

where D(ivic, jvjc) = (εic − εiv )δivjcδicjc is an (NvNc) × (NvNc) diagonal ma-
trix with εiv , iv = 1, 2, . . . , Nv being the quasi-particle energies associated with
valence bands and εic , ic = Nv + 1, Nv + 2, . . . , Nv +Nc being the quasi-particle
energies associated with conduction bands. These quasi-particle energies are typ-
ically obtained from the so-called GW calculation [23]. The VA and VB matrices
represent the (bare) exchange of electron–hole pairs, and the WA and WB ma-
trices are often referred to as the direct terms that describe screened exchange
of electron–hole pairs. These matrices are defined as follows:

VA(ivic, jvjc) =

∫
ψ̄ic(r)ψiv (r)V (r, r′)ψ̄jv (r′)ψjc(r′) dr dr′,

VB(ivic, jvjc) =

∫
ψ̄ic(r)ψiv (r)V (r, r′)ψ̄jc(r′)ψjv (r′) dr dr′,

WA(ivic, jvjc) =

∫
ψ̄ic(r)ψjc(r)W (r, r′)ψ̄jv (r′)ψiv (r′) dr dr′,

WB(ivic, jvjc) =

∫
ψ̄ic(r)ψjv (r)W (r, r′)ψ̄jc(r′)ψiv (r′) dr dr′,

(3)

where ψiv and ψic are usually taken to be the valence and conduction single-
particle orbitals obtained from a Kohn–Sham density functional theory (KS-
DFT) calculation respectively, and V (r, r′) andW (r, r′) are the bare and screened
Coulomb operators. Both VA and WA are Hermitian, whereas VB and WB are
complex symmetric in general. In the so-called Tamm–Dancoff approximation
(TDA) [21], both VB and WB are neglected and set to zeros in Equation (2). As
a result, HBSE is Hermitian in this case, and we only need to be concerned with
the upper left block of HBSE.

Let Mcc(r) = {ψic ψ̄jc}, Mvc(r) = {ψic ψ̄iv}, and Mvv(r) = {ψiv ψ̄jv} be
matrices that consist of products of discretized orbital pairs in real space, and
M̂cc(G), M̂vc(G), M̂vv(G) be the reciprocal space representation of these ma-
trices. Equations (3) can then be succinctly written as

VA = M̂∗vcV̂ M̂vc,

WA = reshape(M̂∗ccŴM̂vv),
(4)

where V̂ and Ŵ are reciprocal space representations of the bare and screened
exchange operators V and W , respectively, and the reshape function is used to
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map the (icjc, ivjv)th element on the right-hand side of (4) to the (iciv, jcjv)th
element of WA. A similar set of equations can be derived for VB and WB . How-
ever, in this paper, we will mainly focus on the TDA model.

The reason that the right-hand sides of (4) are computed in the reciprocal
space is that V̂ is diagonal and an energy cutoff is often adopted to limit the
number of the Fourier components used to represent ψi. As a result, the leading
dimension of M̂cc, M̂vc and M̂cc, which we denote by Ng, is often much smaller
than that of Mcc, Mvc and Mvv, which we denote by Nr.

In additional to performing O(N2
e ) Fast Fourier transforms (FFTs) to obtain

M̂cc, M̂vc and M̂vv from Mcc, Mvc and Mvv, respectively, we need to perform
at least

O(NgN
2
cN

2
v +N2

gNcNv) (5)

floating-point operations to obtain VA and WA using matrix–matrix multiplica-
tion operations.

Note that, to achieve high accuracy with a large basis set, such as the plane
wave basis set, Ng is typically much larger than Nc or Nv. The number of
occupied bands is either Ne or Ne/2 depending on how spin is counted. In many
existing calculations, the actual number of conducting band Nc included in the
calculation is often a small multiple of Nv, whereas Ng is often 100–10000 ×Ne

(Nr ∼ 10×Ng). Therefore, the second term in Equation (5), which accounts for

the cost of multiplying ŴA with Ẑ in Equation (4) can be much larger than other
parts under the Tamm–Dancoff approximation (TDA) in the BSE calculations.

3 Interpolative separable density fitting (ISDF)
decomposition

In order to reduce the computational complexity, we seek to minimize the num-
ber of integrals we need to perform in Equation (3). This is possible if we can
rewrite the matrix Mij , where the labels i and j are indices of either valence or
conducting orbitals, as the product of a matrix Θij that contains a set of N t

ij

linearly independent auxiliary basis vectors with N t
ij ≈ tNe � O(N2

e ) (t is a
small constant referred as a rank truncation parameter) [11] and an expansion
coefficient matrix Cij . For large problems, the number of columns of Mij , which
is either O(NvNc), O(N2

v ), or O(N2
c ), is typically larger than the number of

grid points Nr on which ψn(r) is sampled, i.e., the number of rows in Mij . As
a result, N t

ij should be much smaller than the number of columns of Mij . Even
when a cutoff is used to limit the size of Nc or Nv so that the number of columns
in Mij is much less than Ng, we can still approximate Mij by ΘijCij with a Θij

that has a smaller rank N t
ij ∼ t

√
NiNj .

To simplify our discussion, let us drop the subscript of M , Θ and C for the
moment, and describe the basic idea of ISDF. The optimal low rank approxima-
tion of M can be obtained from a singular value decomposition. However, the
complexity of this decomposition is at least O(N2

rN
2
e ) or O(N4

e ). An alternative
decomposition, which is close to optimal, but has a much favorable complexity
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has recently been developed. This type of decomposition is called interpolative
separable density fitting (ISDF) [11], which we will now describe.

In ISDF, instead of computing Θ and C simultaneously, we fix the coefficient
matrix C first, and determine the auxiliary basis matrix Θ by solving a linear
least squares problem

min ‖M −ΘC‖2F , (6)

where each column of M is given by ψi(r)ψ̄j(r) sampled on a dense real space

grids {ri}Nr
i=1, and Θ = [ζ1, ζ2, . . . , ζNt ] contains the auxiliary basis vectors to be

determined, ‖ · ‖F denotes the Frobenius norm.
We choose C to be a matrix that consists of ψi(r)ψ̄j(r) evaluated at a subset

of N t carefully chosen real space grid points, with N t � Nr and N t � N2
e , i.e.,

each column of C indexed by (i, j) is given by

[ψi(r̂1)ψ̄j(r̂1), · · · , ψi(r̂k)ψ̄j(r̂k), · · · , ψi(r̂Nt)ψ̄j(r̂Nt)]T.

If the minimum of the objective function in Equation (6) is zero, the product
of Θ and a column of C can be viewed as an interpolation of corresponding
function {ψi(r)ψ̄j(r)} in M . However, in general, we cannot expect the minimum
of (6) be zero. The least squares minimizer is given by

Θ = MC∗(CC∗)−1. (7)

It may appear that the matrix–matrix multiplications MC∗ and CC∗ take
O(N4

e ) operations because the size of M is Nr×O(N2
e ) and the size of C is N t×

O(N2
e ). However, both multiplications can be carried out with fewer operations

due to the separable structure of M and C [11]. As a result, the computational
complexity for computing the interpolation vectors is O(N3

e ).
Intuitively, the least squares problem in Equation (6) is easier to solve when

the rows of C, which can be selected from the rows of M , are maximally linearly
independent. This task can be achieved by performing a QR factorization of MT

with column pivoting (QRCP) [4]. In QRCP, we choose a permutation Π such
that the factorization

MTΠ = QR (8)

yields a unitary matrix Q and an upper triangular matrix R with decreasing ma-
trix elements along the diagonal of R. The magnitude of each diagonal element R
indicates how important the corresponding column of the permuted MT is, and
whether the corresponding grid point should be chosen as an interpolation point.
The QRCP decomposition can be terminated when the (N t + 1)-st diagonal ele-
ment of R becomes less than a predetermined threshold. The leading N t columns
of the permuted MT are considered to be maximally linearly independent nu-
merically. The corresponding grid points are chosen as the interpolation points.
The indices for the chosen interpolation points r̂Nt can be obtained from indices
of the nonzero entries of the first N t columns of the permutation matrix Π.

Roughly speaking, the QRCP moves matrix columns of MT with large norms
to the left, and pushes matrix columns of MT with small norms to the right.
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Note that the square of the vector 2-norm of the column of MT associated with
r is just

N∑
i,j=1

∣∣ψi(r)ψ̄j(r)
∣∣2 =

( N∑
i=1

∣∣ψi(r)
∣∣2)( N∑

j=1

∣∣ψj(r)
∣∣2). (9)

In the case when {ψi} and {ψj} both belong to the set of occupied orbitals, the
norm of each column of MT is simply the electron density. Hence the interpola-
tion points chosen by QRCP tend to locate in areas where the electron density
is relatively large. Once a column is selected, all other columns are immediately
orthogonalized with respect to the chosen column. Hence nearly linearly depen-
dent matrix columns will not be selected repeatedly. As a result, the interpolation
points chosen by QRCP are well separated spatially. Notice that the standard
QRCP procedure has a high computational cost of O(N2

eN
2
r ) ∼ O(N4

e ). But it
can be combined with the randomized sampling method [18] so that its cost is
reduced to O(NrN

2
e ) ∼ O(N3

e ).

4 Low rank representations of bare and screened
exchange operators via ISDF

Applying the ISDF decomposition to Mcc, Mvc and Mvv yields

Mcc ≈ ΘccCcc,

Mvc ≈ ΘvcCvc,

Mvv ≈ ΘvvCvv.

(10)

It follows from Equations (3), (4) and (10) that the exchange and direct terms
of the BSE Hamiltonian can be written as

VA = C∗vcṼACvc,

WA = reshape(C∗ccW̃ACvv),
(11)

where ṼA = Θ̂∗vcV̂ Θ̂vc and W̃A = Θ̂∗ccŴ Θ̂vv are the projected exchange and
direct terms under the auxiliary basis Θ̂vc, Θ̂cc and Θ̂vv. Here, Θ̂vc, Θ̂cc and Θ̂vv

are reciprocal space representations of Θvc, Θcc and Θvv, respectively, that can
be obtained via FFTs,

Note that the dimension of the matrix C∗ccW̃ACcc on the right-hand side of
Equation (11) is N2

c × N2
v . It needs to be reshaped into a matrix of dimension

NvNc ×NvNc according to the mapping WA(icjc, ivjv)→WA(ivic, jvjc) before
it can combined with VA matrix to construct the BSH.

Once the ISDF approximations for Mvc, Mcc and Mvv are available, the cost
for constructing a low rank approximation to the exchange and direct terms re-
duced to that of computing the projected exchange and direct kernels Θ̂∗vcV̂ Θ̂vc

and Θ̂∗ccŴ Θ̂vv, respectively. If the ranks of Θvc, Θcc and Θvv are N t
vc, N

t
cc and

N t
vv, respectively, then the computational complexity for computing the com-

pressed exchange and direct kernels isO(N t
vcN

t
vcNg+N t

ccN
t
vvNg+N t

vvN
2
g ), which
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is significantly lower than the complexity of the conventional approach given in
(5). When N t

vc ∼ t
√
NvNc, N

t
cc ∼ t

√
NcNc and N t

vv ∼ t
√
NvNv are on the order

of Ne, the complexity of constructing the compressed kernels is O(N3
e ).

5 Iterative diagonalization of the BSE Hamiltonian

In the conventional approach, exciton energies and wavefunctions can be com-
puted by using the recently developed BSEPACK library [26,27] to diagonalize
the BSE Hamiltonian HBSE. When TDA is adopted, we may also just use a
standard diagonalization procedure implemented in the ScaLAPACK [1] library.

When ISDF is used to construct low rank approximations to the bare and
screened exchange operators VA and WA, we should keep both matrices in the
factored form given by Equation (11). This is because that multiplying the matri-
ces on the right-hand sides of Equation (11) would require at least O(N5

e ) oper-
ations, which is higher than the cost for using the ISDF procedure to construct
low rank approximations to the BSH. Instead of using BSEPACK or ScaLA-
PACK which has a complexity of O(N6

e ), we propose to use iterative methods
to diagonalize the approximate BSH constructed via the ISDF decomposition.

When TDA is used, several iterative methods such as the Lanczos [14] and
LOBPCG [13] algorithms can be used to compute a few desired eigenvalues of
the HBSE. In each step of these algorithms, we need to multiply HBSE with a
vector x of size NvNc. When VA is kept in the factored form given by (11), VAx
can be evaluated as three matrix vector multiplications performed in sequence,
i.e.,

VAx← C∗vc
[
ṼA(Cvcx)

]
. (12)

The complexity of these calculations is O(NvNcN
t
vc). If N t

vc is on the order of
Ne, then each VAx can be carried out in O(N3

e ) operations.

Because C∗ccW̃ACvv cannot be multiplied with a vector x of size NvNc before
it is reshaped, a different multiplication scheme needs to be used. It follows from
the separable nature of Cvv and Ccc that this multiplication can be succinctly
described as

WAx = reshape
[
Ψ∗c
(
W̃ � (ΨcXΨ

∗
v )
)
Ψv

]
, (13)

where X is a Nc×Nv matrix reshaped from the vector x, Ψc is a N t
cc×Nc matrix

containing ψic(r̂k) as its elements, Ψv is a N t
vv×Nv matrix containing ψiv (r̂k) as

its elements, and � denotes componentwise multiplication (Hadamard product).
The reshape function is used to turn the Nc ×Nv matrix–matrix product back
into a size NvNc vector. If N t

vv and N t
cc are on the order of Ne, then all matrix–

matrix multiplications in Equation (13) can be carried out in O(N3
e ) operations.

This make the complexity of each step of the iterative method O(N3
e ). If the

number of iterative steps required to reach convergence is not excessively large,
then the ISDF enabled iterative diagonalization can be carried out in O(N3

e )
operations.
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6 Estimating optical absorption spectra without
diagonalization

If we have all eigenpairs of HBSE, we can easily obtain the optical absorption
spectrum, which is the imaginary part of the dielectric function defined as

ε2(ω) =
8π2e2

Ω
dHr
(
(ω − iη)I −HBSE

)−1
dl, (14)

where Ω is the volume of the primitive cell, e is the elementary charge, dr and dl
are the right and left optical transition vectors, and η is a broadening factor used
to account for the lifetime of excitation. However, it can become prohibitively
expensive to use an iterative diagonalization method to compute all eigenpairs
of HBSE.

Fortunately, it is possible to use a structure preserving iterative method to
estimate the optical absorption spectrum without explicitly computing all eigen-
pairs of HBSE. In Ref. [3,25], we developed a structure preserving Lanczos algo-
rithm for estimating the optical spectrum. The algorithm has been implemented
in the BSEPACK [27] library. When TDA is used, the standard Lanczos algo-
rithm can be used to estimate the absorption spectrum. When our objective
is to obtain the basic shape of the absorption spectrum to identify where the
major peaks are, it is not necessary to compute all eigenpairs of HBSE. As a
result, the accuracy required to construct approximate bare and screened ex-
change operators used in BSE can possibly be lowered, thereby allowing us to
use a more aggressive truncation threshold in ISDF to further reduce the cost
of HBSE construction. We will demonstrate this possibility in the next section.

7 Numerical results

In this section, we demonstrate the accuracy and efficiency of the ISDF method
when it is used to compute exciton energies and optical absorption spectrum in
the BSE framework. We implemented the ISDF based BSH construction in the
BerkeleyGW software package [5]. BerkeleyGW is a massively parallel compu-
tational package that uses a many-body perturbation theory and Green’s func-
tion formalism to study quasi-particle excitation energies and optical absorption
of nanosystems. We use the ab initio software package Quantum ESPRESSO
(QE) [7] to compute the ground-state quantities required in the GW and BSE cal-
culations. In our Quantum ESPRESSO density functional theory (DFT) based
electronic structure calculations, we use Hartwigsen–Goedecker–Hutter (HGH)
norm-conserving pseudopotentials [9] and the LDA [8] exchange–correlation func-
tional. All the calculations were carried out on a single core at the Cori1 systems
at the National Energy Research Scientific Computing Center (NERSC).

We performed calculations for three systems. They consist of a bulk silicon Si8
system and two molecular systems: carbon monoxide (CO) and benzene (C6H6)
as plotted in Fig. 1. All systems are closed shell systems, and the number of
occupied bands is Nv = Ne/2, where Ne is the valence electrons in the system.

1 https://www.nersc.gov/systems/cori/
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Fig. 1. Atomic structures of (a) a bulk silicon Si8 unit cell, (b) carbon monoxide
(CO) and (c) benzene (C6H6) molecules. The white, gray, red, and yellow balls denote
hydrogen, carbon, oxygen, and silicon atoms, respectively.

7.1 Accuracy

We first measure the accuracy of the ISDF method by comparing the computed
eigenvalues of the BSH’s constructed with and without the ISDF decomposition.

In our test, we set the plane wave energy cutoff required in the QE calcu-
lations to Ecut = 10 Ha, which is relatively low. However, this is sufficient for
assessing the effect of ISDF. Such a choice of Ecut results in Nr = 35937 and
Ng = 2301 for the Si8 system, Nr = 19683 and Ng = 1237 for the CO molecule
(Nv = 5), Nr = 91125 and Ng = 6235 for the benzene molecule. We only include
the lowest Nc conducting bands in the BSE calculation. The number of active
conduction bands (Nc) and valence bands (Nv), the number of reciprocal grids
and the dimensions of the corresponding BSE Hamiltonian HBSE for these three
systems are listed in Table 1. In Fig. 2, we plot the singular values of the matrices

Table 1. Parameters of system size for bulk silicon Si8, carbon monoxide (CO) and ben-
zene (C6H6) molecules used for constructing corresponding BSE Hamiltonian HBSE .

System Nr Ng Nv Nc dim(HBSE)

Si8 35937 2301 16 64 2048
CO 19683 1237 5 60 600

Benzene 91125 6235 15 60 1800

Mvc(r) = {ψic(r)ψ̄iv (r)}, Mcc(r) = {ψic(r)ψ̄jc(r)} and Mvv(r) = {ψiv (r)ψ̄jv (r)}
associated with the CO molecule. We observe that the singular values of these
matrices decay rapidly. For example, the leading 500 (out of 3600) singular val-
ues of Mcc(r) decreases rapidly towards zero. All other singular values are below
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Fig. 2. The singular values of (a) Mvc(r) = {ψic(r)ψ̄iv (r)} (Nvc = 300), (b) Mcc(r) =
{ψic(r)ψ̄jc(r)} (Ncc = 3600) and (c) Mvv(r) = {ψiv (r)ψ̄jv (r)} (Nvv = 25).

10−4. Therefore, the numerical rank N t
cc of Mcc is roughly 500 (t = 8.3), or

roughly 15% of the number of columns in Mcc. Consequently, we expect that
the rank of Θcc produced in ISDF decomposition can be set to 15% of N2

c without
sacrificing the accuracy of the computed eigenvalues.

This prediction is confirmed in Fig. 3, where we plot the absolute difference
between the lowest the exciton energy of Si8 computed with and without using
ISDF to construct HBSE. To be specific, the error in the desired eigenvalue is
computed as ∆E = EISDF − EBGW, where EISDF is computed from the HBSE

constructed with ISDF approximation, and EBGW is computed from a standard
HBSE constructed without using ISDF. We first vary one of the ratios N t

cc/Ncc,
N t

vc/Nvc and N t
vv/Nvv while holding the others at a constant of 1. We observe

that the error in the lowest exciton energy (positive eigenvalue) is around 10−3

Ha, when either N t
cc/Ncc or N t

vc/Nvc is set to 0.1 while the other ratios are held
at 1. However, reducing N t

vv/Nvv to 0.1 introduces a significant amount of error
(0.1 Ha) in the lowest exciton energy. This is likely due to the fact that Nv = 16
is too small. We then hold N t

vv/Nvv at 0.5 and let both N t
cc/Ncc and N t

vc/Nvc

vary. The variation of ∆E with respect to these ratios is also plotted as in Fig. 3.
We observe that the error in the lowest exciton energy is still around 10−3 Ha
even when both N t

cc/Ncc and N t
vc/Nvc are set to 0.1.

We then check the absolute error ∆E (Ha) of all the exciton energies com-
puted with the ISDF method compared to standard BSE calculations for the
CO and benzene molecules as plotted in Fig. 4. In numerical experiments with
CO and benzene molecules, the errors in all computed eigenvalues are below
0.002 Ha when N t

cc/Ncc is 0.1.

7.2 Efficiency

At the moment, we have only implemented a sequential version of the ISDF
method within the BerkeleyGW software package. Therefore, our efficiency test
is limited in the size of the problem as well as the number of conducting bands
(Nc) we can include in the bare and screened exchange operators. As a result, our
performance measurement does not fully reflect the computational complexity
analysis presented in the previous sections. In particular, taking benzene as an
example, Ng = 6235 is much larger than Nv = 15 and Nc = 60, therefore the
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Fig. 3. The change of absolute error ∆E in the smallest eigenvalue of HBSE associated
with the Si8 system with respect to different truncation levels used in ISDF approx-
imation of Mvc, Mcc and Mvv. The curves labeled by ‘vc’, ‘cc’, ‘vv’ correspond to
calculations in which only one of the ratios N t

vc/Nvc, N
t
cc/Ncc and N t

vv/Nvv changes
while all other parameters are held constant. The curve labeled by ‘vc + cc’ corre-
sponds to the calculation in which both N t

vc/Nvc and N t
cc/Ncc change at the same rate

(N t
vv = Nvv).
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Fig. 4. Error in all eigenvalues of the BSH associated with the CO (a) and benzene
(b) molecules. Two rank ratios N t

cc/Ncc = 0.5 (t = 30.0) and N t
cc/Ncc = 0.1 (t = 6.0)

are used in the tests.

computational cost of N2
gN

2
v ∼ O(N4

e ) term is much higher than the NgN
2
vN

2
c ∼

O(N5
e ) term in the BSE calculations.
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Nonetheless, in this section, we will demonstrate the benefit of using ISDF
to reduce the cost to construct the BSE Hamiltonian HBSE. In Table 2, we focus
on the benzene example and report the wall-clock time required to construct
the ISDF approximations of the Mvc, Mcc, and Mvv matrices at different rank
truncation levels. Without using ISDF, it takes 746.0 seconds to construct the
reciprocal space representations of Mvc, Mcc, and Mvv in BerkeleyGW. Most
of the timing is spent in the large number of FFTs applied to Mvc, Mcc, and
Mvv in real representation. We can clearly see that if only N t

cc/Ncc is changed
from 0.5 (t = 30.0) to 0.1 (t = 6.0), the time for low rank approximation to
Mcc can be reduced from 578.9 to 34.3 seconds. Furthermore, the total cost of
computing three element matrices can be further reduced to around 1/19th that
in a conventional approach (39.3 vs. 746.0 seconds) if N t

vc/Nvc, N
t
vv/Nvv and

N t
cc/Ncc are all set to 0.1.

Table 2. The variation of time required to carry out the ISDF decomposition of Mvc,
Mvv and Mcc with respect to rank truncation ratio.

Rank truncation ratio Time (s) for Mij(r)

N t
vc/Nvc N

t
vv/Nvv N

t
cc/Ncc Mvc Mvv Mcc

1.0 0.5 0.5 157.0 5.8 578.9
1.0 0.5 0.1 157.0 5.8 34.3
0.1 0.1 0.1 4.3 0.7 34.3

Note that because ISDF decomposition is carried out on a real space grid,
its measured cost reflect the cost for performing QRCP in real space. Even
though QRCP with random sampling has O(N3

e ) complexity, it has a relatively
large pre-constant compared to the size of the problem. Hence the measured
cost of QRCP is relatively high in this case. Recently, Dong et al. proposed a
new approach to find the interpolation points based on the centroidal Voronoi
tessellation (CVT) method [6], which offers a much less expensive alternative
to the QRCP procedure when the ISDF method is used in hybrid functional
calculations. We will explore this CVT method in the BSE-ISDF calculations in
the future.

In Table 3, we report the wall-clock time required to construct the projected
bare and screened exchange matrices ṼA and W̃A that appear in Equation (11)
once the ISDF approximations of Mvc, Mvv, and Mcc become available. Without
ISDF, it takes 1.574 + 4.198 = 5.772 seconds to construct both WA and VA.
When N t

cc/Ncc is set to 0.1 only, the construction cost for WA, which is the
dominant cost, is reduced by a factor of 2.8. Furthermore, if N t

vc/Nvc, N
t
vv/Nvv

and N t
cc/Ncc are all set to 0.1. We reduce the cost for constructing ṼA and W̃A by

a factor of 63.0 and 10.1, respectively. Note that the original implementation of
the WA and VA in BerkeleyGW is much slower because the elements of WA and
VA are integrated one by one. For benzene, it take takes 103,154 seconds (28.65
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Fig. 5. Optical dielectric function (imaginary part ε2) of (a) CO and (b) benzene
molecules computed with the ISDF method (the rank ratio N t

cc/Ncc is set to be 0.05 (t
= 3.0) and 0.10 (t = 6.0)) compared to conventional BSE calculations in BerkeleyGW.

hours) to construct the BSE Hamiltonian HBSE in the original BerkeleyGW
code.

Table 3. The variation of time required to construct the projected bare and screened
exchange matrices ṼA and W̃A exhibited by the ISDF method respect to rank trunca-
tion ratio.

Rank truncation ratio Time (s) for HBSE

N t
vc/Nvc N

t
vv/Nvv N

t
cc/Ncc ṼA W̃A

1.0 1.0 1.0 1.574 4.198
1.0 0.5 0.1 1.574 1.474
0.1 0.1 0.1 0.025 0.414

7.3 Optical absorption spectra

One important application of BSE is to compute the optical absorption spec-
trum, which is determined by optical dielectric function in Equation (14). Fig. 5
plots the optical absorption spectra for both CO and benzene obtained from ap-
proximate HBSE constructed with the ISDF method and the HBSE constructed
in a conventional approach implemented in BerkeleyGW. When the rank trun-
cation ratio N t

cc/Ncc is set to be only 0.10 (t = 6.0), the absorption spectrum
obtained from the ISDF approximate HBSE is nearly indistinguishable from that
produced from the conventional approach. When N t

cc/Ncc is set to 0.05 (t = 3.0),
the absorption spectrum obtained from ISDF approximate HBSE still preserves
the main features (peaks) of the absorption spectrum obtained in a conventional
approach.
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8 Conclusion and outlook

In summary, we demonstrate that the interpolative separable density fitting
(ISDF) technique can be used to efficiently and accurately construct the Bethe–
Salpeter Hamiltonian matrix. This ISDF method allows us to reduce the com-
plexity of the Hamiltonian construction from O(N5

e ) to O(N3
e ) with a much

smaller pre-constant. We show that the ISDF based BSE calculations in molecules
and solids can efficiently produce accurate exciton energies and optical absorp-
tion spectrum in molecules and solids.

In the future, we plan to replace the costly QRCP produce with the cen-
troidal Voronoi tessellation (CVT) method [6] for selecting the interpolation
points in the ISDF method. This CVT method is expected to significantly re-
duce the computational cost for computing the matrix elements under the ISDF
decomposition for the BSE calculations.

The performance results reported here are based on a sequential implementa-
tion of the ISDF method. In the near future, we will implement a parallel version
suitable for large-scale distributed memory parallel computers. Such an imple-
mentation will allow us to tackle much larger problems for which the favorable
scaling of the ISDF approach is much more pronounced.
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