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ABSTRACT: We present a new efficient way to perform hybrid density
functional theory (DFT)-based electronic structure calculations. The new
method uses an interpolative separable density fitting (ISDF) procedure to
construct a set of numerical auxiliary basis vectors and a compact
approximation of the matrix consisting of products of occupied orbitals
represented in a large basis set such as the planewave basis. Such an
approximation allows us to reduce the number of Poisson solves from

N( )e
2 to N( )e when we apply the exchange operator to occupied orbitals

in an iterative method for solving the Kohn−Sham equations, where Ne is
the number of electrons in the system to be studied. We show that the ISDF
procedure can be carried out in N( )e

3 operations, with a much smaller
preconstant compared to methods used in existing approaches. When
combined with the recently developed adaptively compressed exchange (ACE) operator formalism, which reduces the number of
times the exchange operator needs to be updated, the resulting ACE-ISDF method significantly reduces the computational cost
associated with the exchange operator by nearly 2 orders of magnitude compared to existing approaches for a large silicon system
with 1000 atoms. We demonstrate that the ACE-ISDF method can produce accurate energies and forces for insulating and
metallic systems and that it is possible to obtain converged hybrid functional calculation results for a 1000-atom bulk silicon
within 10 min on 2000 computational cores. We also show that ACE-ISDF can scale to 8192 computational cores for a 4096-
atom bulk silicon system. We use the ACE-ISDF method to geometrically optimize a 1000-atom silicon system with a vacancy
defect using the HSE06 functional and computes its electronic structure. We find that that the computed energy gap from the
HSE06 functional is much closer to the experimental value compared to that produced by semilocal functionals in the DFT
calculations.

1. INTRODUCTION

Kohn−Sham density functional theory (KSDFT)1,2 is the most
widely used electronic structure theory in condensed matter
physics and quantum chemistry. The fidelity of the results
produced by a KSDFT calculation often depends on the choice
of the exchange and correlation functional.3 Hybrid exchange−
correlation functionals, such as B3LYP,4 PBE0,5 and HSE,6,7 are
known to be more reliable in producing high fidelity results for a
wide range of systems over calculations that make use of local and
semilocal exchange−correlation functionals, such as the local
density approximation (LDA),8−10 the generalized gradient
approximation (GGA),11−13 and meta-GGA functionals.14−16

However, hybrid functionals include a fraction of the Fock

exchange operator. Here, ψ ′ = −∑ ψ ψ
=

′
| − ′|V r r[{ }]( , )X i i

n r r

r r1
( ) ( )i i .

Applying such an operator to a set of n orbitals Ψ =
[ψ1(r),...,ψn(r)], which is often used in an iterative method for
solving the Kohn−Sham equations, requires solving N( )e

2

Poisson-like equations, with effective charges taking the form of
ψi(r)ψj(r)(1≤ i, j≤ n). Here, ∼n N( )e andNe is the number of
electrons. This is costly, especially for calculations performed in a

large basis set such as planewaves and finite elements. In these
calculations, an iterative diagonalization procedure is used solve
the KS equations, and the multiplication of VX withΨ, which has
the complexity of N( )e

3 with a large preconstant, needs to be
performed in each iteration. These multiplications alone often
constitute more than 95% of the overall computational time in a
conventional approach.
There are two main routes to reducing the computational cost

of hybrid functional calculations. The first route is to reduce the
cost of multiplying VX withΨ. This can be done through efficient
parallelization over a large number of processors,17−19 or the use
of linear scaling methods (i.e., N( )e methods).20−25 For large
systems with a substantial band gap, linear scaling methods use
the nearsightedness property26 to construct a sparse approx-
imation to the exchange operator, thereby reducing the cost of
computing VXΨ.27 The second route is to reduce the frequency
of computing VXΨ, and this route is much less explored until
recently.17,28−31 The adaptively compressed exchange (ACE)
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operator formalism30,31 replaces the dense and full rank exchange
operator by a low rank operator that is constructed on the fly.
The low rank operator is only updated once every few iterations.
The ACE operator fully agrees with VX in the subspace spanned
by orbitals in Ψ. The reduced rank of the ACE operator lowers
the cost of VXΨ calculation without losing accuracy. The ACE
formulation is applicable to insulators, semiconductors, and
metals. Recently, we have proved that such a low rank
compression of the exchange operator is uniquely determined
through the ACE formulation and that the updating scheme for
the ACE operator converges in the self-consistent field (SCF)
iteration both locally and globally for the linearized Hartree−
Fock-like equations.32 The ACE formulation can enable hybrid
functional calculations in a planewave basis set for more than a
thousand atoms31 and has recently been integrated19 into
software packages such as Quantum ESPRESSO.33

In this paper, we develop a new method that combines the
strength of both approaches mentioned above to accelerate large-
scale hybrid functional calculations. By using an interpolative
separable density fitting (ISDF)method first proposed by Lu and
Ying in ref 34, we construct a numerical auxiliary basis for
{ψi(r)ψj(r)}(1≤ i, j≤ n) that contains only cNe basis vectors for a
small constant c. As a result, applying VX to a set of N( )e orbitals

only requires solving N( )e instead of N( )e
2 Poisson-like

equations. Compared to the widely used density fitting and
Cholesky decomposition techniques35−40 in quantum chemistry,
the main feature of the ISDF decomposition is that the fitting
coefficient tensor, which is usually written as a three-way tensor,
can be analytically separated into the product of two matrices.
This is the key to achieving N( )e

3 scaling and avoiding the

N( )e
4 computational complexity that appears in many other

density fitting schemes. The ISDF decomposition is closely
related to the recently developed tensor hypercontraction
(THC) approach.41,42

The ISDF decomposition replaces {ψi(r)ψj(r)}(1 ≤ i, j ≤ n)
with the product of two matrices. One of the matrices, which can
be viewed as a matrix of fitting coefficients, simply consists of
{ψiψj} evaluated at a set of carefully chosen interpolation points rμ̂,
for μ = 1,...,Nμ andNμ = cNe. The other matrix contains numerical
auxiliary basis vectors that we refer to as the interpolating vectors.
In this paper, these two matrices are determined separately. The
matrix containing the fitting coefficients, which depends solely
on the choice of interpolation points, is determined first. The
matrix containing the interpolating vectors is subsequently
obtained through a least-squares fitting procedure. This
approach is different from the decomposition proposed in ref
34, where the numerical auxiliary basis and the fitting coefficients
are determined simultaneously through a randomized QR
factorization with column pivoting (QRCP) applied to {ψi(r)-
ψj(r)} directly. We find that using randomized QRCP at each
SCF iteration is costly and does not speed up hybrid functional
calculations. By separating the treatment of the interpolation
points from the construction of the matrix containing the
interpolating vectors in ISDF, we can use the relatively expensive
randomized QRCP procedure to find the interpolation points in
advance and only recompute the interpolation vectors whenever
{ψi(r)ψj(r)} has been updated using an efficient least-squares
procedure that exploits the separable nature of the matrix to be
approximated. As a result, we can significantly accelerate hybrid
functional calculations using the ISDF decomposition in all but
the first SCF iteration.

The ISDF decomposition can be used in the construction of an
ACE operator to reduce the number of Poisson solves. In fact, the
decomposition itself yields a low-rank approximation of the Fock
exchange operator. However, symmetry is not strictly preserved
in the ISDF decomposition. The lack of symmetry can introduce
numerical stability issues in the convergence of the SCF iteration.
We demonstrate how to combine the ISDF decomposition with
the ACE formulation in a numerically stable manner by
maintaining the symmetry of the compressed exchange operator.
The resulting ACE-ISDF method does not rely on the
nearsightedness property and is applicable to insulators,
semiconductors, and metals. The computational complexity of
our new approach is still N( )e

3 , but the preconstant is
significantly reduced. The ACE-ISDF method can be efficiently
parallelized on high performance supercomputers. Using this
technique, we can perform hybrid functional calculations for a
bulk silicon system with 1000 atoms in less than 10 wall clock
minutes on 2000 computational cores. We find that the cost
associated with the exchange operator is reduced by nearly 2
orders of magnitude compared to conventional approaches.
Furthermore, this method can also scale to 8192 computational
cores for a 4096-atom bulk silicon system.
As an example, we use the ACE-ISDF method to optimize the

geometry and compute the electronic structure of a bulk 1000-
atom silicon system that contains a single vacancy at the level of
the HSE06 hybrid functional calculations.7 Our calculation
reveals three defect states within the intrinsic energy gap of the
silicon. The computed energy gap is much closer to the
experimental value compared to GGA functional calculations.
The rest of the paper is organized as follows. In Section 2, we

introduce the density fitting approximation in the context of
hybrid functional calculations and the interpolative separable
density fitting approximation. In Section 3, we develop a new
method to efficiently compute the interpolative separable density
fitting approximation and to combine with the adaptively
compressed exchange formulation. We describe an efficient
parallelization strategy in Section 4. The numerical results are
given in Section 5, followed by the conclusions Section 6.

2. PRELIMINARIES
2.1. Density Fitting Approximations in Hybrid Func-

tional Calculations. For simplicity, we consider isolated,
gapped systems and omit spin degeneracy. In hybrid functional
calculations, the exchange operator is an integral operator
defined in terms of the occupied orbitals {φi}i = 1

Ne with kernel

∑φ φ φ′ = − ′ ′

≡ − ′ ′φ
=

V K

P K

r r r r r r

r r r r

[{ }]( , ) ( ) ( ) ( , )

( , ) ( , )

X i
i

N

i i
1

e

(1)

where K is either the Coulomb potential ′ = | − ′|K r r( , )
r r

1 in

hybrid functionals such as B3LYP4 and PBE05 or the screened

Coulomb potential ′ = μ | − ′ |
| − ′|K r r( , ) r r
r r

erfc( ) in functionals such

as HSE.6 Pφ is the density matrix.
When a large basis set such as the planewave basis set is used to

discretize the KS equations, it is generally more efficient to
perform VX[{φi}]ψj, j = 1,2, ..., n on the fly in an iterative
diagonalization procedure without explicitly constructing or
storing VX[{φi}]. In many cases, n =Ne, but {φi} and {ψi} may be
different sets of orbitals when used in a self-consistent field
(SCF) iteration. It is also possible to have n > Ne when some

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00807
J. Chem. Theory Comput. 2017, 13, 5420−5431

5421

http://dx.doi.org/10.1021/acs.jctc.7b00807


unoccupied orbitals are also to be computed. So, we deliberately
use different notation to distinguish the occupied orbitals {φi}
from generic orbitals {ψi} that can be either occupied or
unoccupied. In order to reach self-consistency for the occupied
orbitals {φi}, a common practice is to separate the self-consistent
field (SCF) iteration into two sets of SCF iterations. In the inner
SCF iteration, the exchange operation VX defined by the orbitals
{φi} is fixed and the Hamiltonian operator only depends on the
density ρ(r). The SCF iteration then proceeds as in KSDFT
calculations with a fixed exchange operator. In the outer SCF
iteration, the occupied components of the output orbitals {ψj}
can be used as the input orbitals to update the exchange operator.
In each inner iteration, the product of VX[{φi}] and ψj need to be
evaluated many times using the relation

∫∑φ ψ φ φ ψ= − ′ ′ ′ ′
=

V Kr r r r r r r( [{ }] )( ) ( ) ( , ) ( ) ( )dX i j
i

N

i i j
1

e

(2)

The integration in eq 2 is often carried out by solving Poisson-
like equations, using, e.g., a fast Fourier transform (FFT)
method. The number of equations to be solved is ∼ NnN ( )e e

2 .
This is typically the most time-consuming component in hybrid
functional calculations.
We would like to reduce the number of equations to be solved

by exploiting the numerical rank deficiency in the set of right-
hand sides {φi(r)ψj(r)} in these Poisson-like equations and
represent them using a smaller set of linearly independent basis.
One possible way to achieve this is through the use of a density
fitting method (a.k.a., resolution of identity).39,40 In general,
given two sets of functions {φi(r) }i = 1

m , {ψj(r)}j = 1
n , a density

fitting procedure constructs an auxiliary basis {ζμ}, μ = 1,2,...,Nμ,
with Nμ ≪ mn, for the set of Hadamard products (i.e., the
element-wise product)

φ ψ≔ ≤ ≤ ≤ ≤Z r r r{ ( ) ( ) ( )}ij i j i m j n1 ,1 (3)

so that

∑φ ψ ζ≈
μ

μ μ
=

μ

Cr r r( ) ( ) ( )i j

N
ij

1 (4)

whereCμ
ij’s are fitting coefficients. This can be implemented using

rank revealing methods such as the singular value decomposition
(SVD)43 and the pivoted Cholesky factorization.44

In the context of hybrid functional calculations above, we have
m = Ne and ∼n N( )e . Hence, the density fitting procedure

compresses ∼mn N( )e
2 functions into a much smaller set of

auxiliary functions {ζμ(r)}μ = 1
Nμ . Numerical results indicate that it

is often sufficient to choose Nμ = cNe, where c is a small constant
that we refer to as a rank parameter. This parameter determines
the computational accuracy of the decomposition (eq 4).
In the standard density fitting procedure, the fitting coefficient

tensor {Cμ
ij} is treated as a three way tensor and is often obtained

through a least-squares fitting procedure. The storage cost of
{Cμ

ij} is N( )e
3 , and the computational cost of density fitting

typically scales as N( )e
4 . When a large basis set such as the

planewave basis set is used, both the storage and the
computational cost can be prohibitively high. As a result, density
fitting is rarely used for this type of basis set unless additional
locality constraints are enforced.39

2.2. Interpolative Separable Density Fitting Decom-
position. In order to reduce the complexity of the density fitting

method, the key is to find amore efficient treatment for the three-
way fitting coefficient tensor. This has been achieved by the
tensor hypercontraction (THC) method41,42 and the interpola-
tive separable density fitting (ISDF) method.34 Both methods
use the following compression format:

∑φ ψ ζ φ ψ≈ ̂ ̂
μ

μ μ μ
=

μ

r r r r r( ) ( ) ( ) ( ) ( )i j

N

i j
1 (5)

Here, {rμ̂}μ =1
Nμ is a subset of real space grid points {ri}i =1

Ng on which
the orbitals are evaluated. We refer to {rμ̂}μ = 1

Nμ as the
interpolation points and {ζμ(r)}μ = 1

Nμ sampled on {ri}i = 1
Ng the

interpolation vectors. Since the term “interpolative separable”
captures clearly the relation between the format (eq 5) and
standard density fitting formats, with some abuse of terminology,
we also refer to the format (eq 5) as the “ISDF format” or the
“ISDF decomposition”.
Comparing eq 4 with eq 5, we see that the ISDF

decomposition is a special form of a density fitting decom-
position, where the fitting coefficient tensor Cμ

ij = φi(rμ̂)ψj(rμ̂) is
given explicitly without additional computation. Hence, the
storage cost is reduced from N( )e

3 to N( )e
2 , and the ISDF

decomposition is potentially suitable for calculations with a large
basis set. The reason why such decomposition can be expected
can be understood from the perspective of interpolation. Indeed,
if {rμ̂} is a set of grid points in the real space, let ζμ(r) be the
Lagrange interpolation function on these grid points satisfying

ζ
μ μ

̂ =
= ′

μ μ′

⎧⎨⎩r( )
1, ,

0, otherwise (6)

then the ISDF decomposition would become sufficiently
accurate as one systematically refines the set {rμ̂}μ = 1

Nμ . In the
worst case, all grid points are selected and Nμ = Ng. Since

∼N N( )g e , the asymptotic number of interpolation vectors is

still smaller than N( )e
2 even in such scenario. Furthermore, if

both {φi(r)} and {ψi(r)} are sets of sufficiently smooth functions,
the number of pointsNμ can be expected to bemuch smaller than
Ng.
The THC and ISDF methods differ in terms of the procedure

for finding the interpolation points and interpolation vectors and
hence the computational complexity. For the THC method, the
interpolation points are determined through a quadrature rule,
e.g., uniform grid points or grid points from a Gauss-Hermite
quadrature rule. However, the focus of THC is not to identify the
interpolation vectors but to find an efficient approximation
scheme for the four-way Coulomb integral tensor, which can be
written in the current context as

∫ φ ψ φ ψ= ′ ′ ′ ′V K r r r r r r r r( , ) ( ) ( ) ( ) ( )d dijkl i j k l (7)

Using the ISDF format, we have

∑ φ ψ φ ψ≈ ̂ ̂ ̂ ̂
μ ν

μ μ μ ν ν ν
=

μ

V Mr r r r( ) ( ) ( ) ( )ijkl

N

i j k l
, 1

,
(8)

Here, the coefficient matrix is given by the interpolation vectors

∫ ζ ζ= ′ ′ ′μ ν μ νM K r r r r r r( , ) ( ) ( )d d, (9)

On the other hand, if Vijkl is already known, it is possible to not
explicitly evaluate the interpolation vectors but directly obtain
Mμ,ν using the following equation:
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∑

∑ ∑ ∑ ∑ ∑

φ ψ φ ψ

φ φ ψ ψ φ φ ψ ψ

̂ ̂ ̂ ̂

≈ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂

μ μ ν ν

μ ν
μ μ μ μ μ ν ν ν ν ν

′ ′=
′ ′ ′ ′ ′ ′

μ

V

M

r r r r

r r r r r r r r

( ) ( ) ( ) ( )

( ( ) ( ))( ( ) ( )) ( ( ) ( ))( ( ) ( ))

ijkl
i j ijkl k l

N

i
i i

j
j j

k
k k

l
l l

, 1
,

(10)

Equation 10 can be understood as a least-squares fitting to eq 8.
The dominant computational cost comes from the evaluation of
the left-hand side, which scales as N( )e

5 if we do not assume any
structure on the four way tensor Vijkl. Hence, the strategy of THC
is not suitable for large basis set calculations.
The ISDF method34 uses a different approach to construct the

decomposition (eq 5). Instead of using a quadrature rule, it uses a
randomized QR factorization with column pivoting (QRCP)
procedure45 to find the interpolation points for the product pairs
{φi(r)ψj(r)}, which can be potentially much more compact than
a set of universal quadrature points. The interpolation vectors
can also be deduced from the QRCP decomposition in the same
calculation. The computational cost of the ISDF decomposition
is only N( )e

3 and hence is suitable for large basis set calculations.
It should be pointed out that the ISDF decomposition yields a
decomposition for the Coulomb integral tensor once the
coefficient matrix in eq 9 is computed, but the reverse statement
is not true. Some of the key steps of the randomized QRCP
procedure are discussed in Section 3.
As an example, we consider a water molecule (four occupied

bandsNband = 4) (Figure 1(a)) in a 10 Å × 10 Å × 10 Å box, with

the kinetic energy cutoff Ecut = 60 hartree. This corresponds to a
real space grid of size 66 × 66 × 66 (i.e., Ng = 663). Figure 1(b)
shows how Nμ = 8 interpolation points are distributed in the real
space. As we can see, they are closer to the oxygen atom than to
hydrogen atoms. This is consistent with the distribution of the
electron density. Figure 1(b) also indicates that instead of using a
uniform sampling grid, and it may be more advantageous to
select the interpolation points adaptively from QRCP, especially
for electron densities with an inhomogeneous spatial distribu-
tion.

3. ISDF DECOMPOSITION FOR HYBRID FUNCTIONAL
CALCULATIONS

Although the ISDF decomposition significantly reduces the
number of Poisson-like equations to be solved, the complexity of
the randomized QRCP method used to find the interpolation
points is still N( )e

3 , which is comparable to the cost of
computing VX[{φi}]ψj. Hence, at first glance, the ISDF

decomposition may not lead to much efficiency gain in the
context of hybrid functional calculations.
Below, we introduce a new method to compute the ISDF

decomposition, which separates the treatment of the inter-
polation vectors and the interpolation points. More specifically,
we use the randomized QRCP decomposition only to find the
interpolation points and use a least-squares fitting procedure to
efficiently find the interpolation vectors without randomization.
Although it is more expensive to use the randomized QRCP
decomposition, this step only needs to be invoked once in the
entire hybrid functional calculation. The calculation of the
interpolation vectors still scales as N( )e

3 , but the preconstant is
significantly smaller. We find that such choice balances the
efficiency and accuracy, especially when the decomposition
needs to be repeatedly used such as in a SCF iteration procedure.
We also discuss how to combine the ISDF decomposition with
the adaptively compressed exchange operator (ACE) formula-
tion in a numerically stable way, so that the overall computational
cost can be significantly reduced.

3.1. Finding the Interpolation Vectors. We first discuss
how to find the interpolation vectors assuming that the
interpolation points {rμ̂} are given.
Note that eq 5 can be written as

− Θ =Z C 0 (11)

where each column of Z is defined by eq 3 sampled on real space
grids {ri}i = 1

Ng . Θ = [ζ1, ζ2, ..., ζNμ
] contains the interpolating

vectors, and the column of C indexed by (i, j) is given by

φ ψ φ ψ φ ψ̂ ̂ ··· ̂ ̂ ··· ̂ ̂μ μ μ μ
r r r r r r[ ( ) ( ), , ( ) ( ), , ( ) ( )]i j i j i N j N

T
1 1

Equation 11 is an overdetermined linear system with respect to
the interpolation vectors Θ. One possible way to solve the
overdetermined system is to impose the Galerkin condition

− Θ =Z C C( ) 0T
(12)

It follows that the interpolating vectors can be obtained from

Θ = −ZC CC( )T T 1
(13)

Note that the solution given by eq 13 is a least-squares
approximation to the solution of eq 5. This is similar to that in the
THC method, but the important difference is that the least-
squares fitting is applied to the Z matrix, which is the key to
reduce the complexity.
It may appear that the matrix−matrix multiplications ZCT and

CCT take N( )e
4 operations because the size of Z is Ng × (Nen)

and the size of C is Nμ × (Nen). However, both multiplications
can be carried out with fewer operations due to the separable
structure of Z and C. It follows from the identity

∑ ∑ ∑φψ φ ψ= ( )( )
i j

i j
i

i
j

j
,

that wemay rewrite the (k, μ)th element of ZCT (also denoted by
Pkμ
φψ) as

Figure 1. (a) Electron density (yellow isosurfaces) and (b) interpolation
points (green squares) {rμ̂}μ =1

Nμ (Nμ = 8) selected from the real space grid
points {ri}i = 1

Ng (Ng = 663) for a water molecule in a 10 Å × 10 Å × 10 Å
box. The white and red balls denote hydrogen and oxygen atoms,
respectively.
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≡ = ̂ ̂μ
φψ φψ

μ
φ

μ
ψ

μP P e ZC e P Pr r r r( , ) ( , )k k
T T

k k (14)

where Pφ(r, rμ̂) and P
ψ(r, rμ̂) can be viewed as columns of (quasi)

density matrices defined as

∑ ∑φ φ ψ ψ′ = ′ ′ = ′φ ψ

= =

P Pr r r r r r r r( , ) ( ) ( ), ( , ) ( ) ( )
i

m

i i
j

n

j j
1 1

(15)

Similarly, we can rewrite the (ν, μ)th element of CCT as

= ̂ ̂ ̂ ̂ν μ
φ

ν μ
ψ

ν μe CC e P Pr r r r( , ) ( , )T T
(16)

Because both Pφ and Pψ matrices can be evaluated with N( )e
3

floating point operations, and the multiplications in eqs 14 and
16 are pointwise multiplications (Hadamard products) consum-
ing only N( )e

2
floating point operations, the computational

complexity for computing the interpolation vectors is N( )e
3 .

The ISDF decomposition can be readily used to accelerate the
computation in eq 2. Substituting eq 5 into eq 2 yields

∫

∫

∑

∑ ∑

∑

φ ψ φ φ ψ

φ ζ

φ ψ

ψ

= − ′ ′ ′ ′

≈ − ′ ′ ′

̂ ̂

≡ − ̂ ̂

μ
μ

μ μ

μ

φ
μ μ

ζ
μ

=

= =

=

μ

μ

V K

K

P V

r r r r r r r

r r r r r

r r

r r r r

( [{ }] )( ) ( ( ) ( , ) ( ) ( )d )

( )( ( , ) ( )d )

( ) ( )

( , ) ( ) ( ),

X i j
i

N

i i j

i

N N

i

i j

N

j

1

1 1

1

e

e

(17)

where Pφ(r, rμ̂) is given by the quasi density matrix defined in eq
15, and

∫ ζ≡ ′ ′ ′μ
ζ

μV Kr r r r r( ) ( , ) ( )d
(18)

can be carried out as the solution to a Poisson-like equation. The
ISDF decomposition reduces the total number of Poisson-like
equations to be solved from N( )e

2 to ∼μN N( )e .
3.2. Finding the Interpolation Points. The problem for

finding a suitable set of interpolation points {rμ̂}μ = 1
Nμ can be

formulated as the following linear algebra problem. Consider the
discretized matrix Z of size as anNg × (mn) matrix Z and findNμ

rows of Z so that the rest of the rows of Z can be approximated by
the linear combination of the selected Nμ rows. This is called an
interpolative decomposition,45 and a standard method to achieve
such a decomposition is the QR factorization with a column
pivoting (QRCP) procedure45 as

Π =Z QRT (19)

where ZT is the transpose of Z, Q is an mn × Ng matrix that has
orthonormal columns, R is an upper triangular matrix, andΠ is a
permutation matrix chosen so that the magnitude of the diagonal
elements of R form an nonincreasing sequence. The magnitude
of each diagonal element R indicates how important the
corresponding column of the permuted ZT is and whether the
corresponding grid point should be chosen as an interpolation
point. The QRCP factorization can be terminated when the (Nμ

+ 1)th diagonal element of R becomes less than a predetermined
threshold. The leading Nμ columns of the permuted ZT are
considered to be linearly independent numerically. The

corresponding grid points are chosen as the interpolation points.
The indices for the chosen interpolation points {rμ̂} can be
obtained from indices of the nonzero entries of the first Nμ

columns of the permutation matrix Π. However, the storage
requirement for the matrix Z is N( )e

3 and the computational

cost associated with a standard QRCP procedure is N( )e
4 ,

which is not so appealing.
The key idea used in ref 34 to lower the cost of QRCP is to use

a random matrix to subsample columns of the matrix Z to form a
smaller matrix Z̃ of size Ng × Ñμ, where Ñμ is only slightly larger
than Nμ. It can be shown that under some mild assumptions the
reduction in the number of columns in a randomly subsampled Z
does not havemuch impact the quality of the interpolation points
{rμ̂}. However, we do not present the theoretical analysis here
but merely describe the algorithmic ingredients. We refer readers
to refs 46 and 47 for more detailed analysis of randomized
sampling methods.
There are a number of ways to subsample columns of Z.

Instead of using the subsampled Fourier transform as in ref 34,
here we choose two orthogonalized Gaussian matrices Gφ,Gψ of
sizem × p and n × p, respectively, where ∼ μp N( ) is chosen
to satisfy Ñμ = p2, and use them to construct a set of subsampled
products defined by

∑ ∑φ ψ α β̃ = ≤ ≤αβ α
φ

β
ψ

= =

Z G G pr r r( ) ( ( ) )( ( ) ), 1 ,
i

m

i i
j

n

j j
1 1

(20)

The corresponding discretized matrix Z̃ is of size Ng × Ñμ.
Applying the QRCP procedure to Z̃ yields

̃ Π =Z QRT
(21)

where the interpolation points {rμ̂}μ = 1
Nμ are given by the first Nμ

columns of the permutation matrixΠ. Since the randommatrices
Gφ and Gψ are only applied to {φi} and {ψj}, respectively, the
storage cost for Z̃ is N( )e

2 , and the computational cost for
generating Z̃, which is dominated by the cost of matrix−matrix
multiplications is N( )e

2.5 . The reduced matrix size allows the
computational cost of the QRCP procedure to be reduced to

N( )e
3 . Since the QRCP algorithm has been implemented in

standard linear algebra software packages such as LAPACK and
ScaLAPACK,48 the implementation and parallelization of ISDF
is relatively straightforward.
Our numerical results indicate that the cost of the randomized

QRCP method can be comparable to that of computing
VX[{φi}]ψj. However, while the interpolation vectors depends
sensitively on the shape of the input orbitals {φi} and {ψj} and
need to be recomputed whenever they are updated, the
interpolation points are much less sensitive to small changes of
the orbitals. This is because the significance of the interpolation
points is only to indicate which columns of ZT are important. In
practice, we find it sufficient to determine the interpolation
points at the beginning of the hybrid functional calculations
starting from a set of KS orbitals from a converged GGA
calculation and to use such interpolation points throughout the
SCF iterations.

3.3. Combining with the Adaptively Compressed
Exchange Operator Formulation. The ISDF decomposition
can be combined with the recently developed adaptively
compressed exchange operator (ACE) formulation30,31 to
further reduce the cost of hybrid functional KSDFT calculations.
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In the ACE formulation, the operator VX is replaced by a rank-
n operator VX

ACE that satisfies

ψ ψ=V VX j X j
ACE

for j = 1,2, ..., n, where n is much less than the total number of grid
points Ng. The operator VX

ACE can be written in the form

∑ ξ ξ′ = − ′
=

V r r r r( , ) ( ) ( )X
k

n

k k
ACE

1 (22)

for some vectors {ξk}. The application of VX
ACE to a set of orbitals

resembles the application of a nonlocal pseudopotential
operator. This does not require any Poisson solves and is
much cheaper than applying VX to these orbitals in an iterative
diagonalization procedure used to update the set of occupied
orbitals {φi} in the SCF iteration. However, the construction of
VX
ACE, which must be performed in each (outer) SCF iteration,

still requires applying VX to ψj to produce

φ ψ= =W V j nr r( ) ( [{ }] )( ) 1, ...,j X i j (23)

The basis vectors {ξk} that appear in eq 22 are obtained fromWj
via

∑ξ =
=

−W Lr r( ) ( )( )k
j

n

j
T

jk
1 (24)

where L is the lower triangular Cholesky factor of the matrix M.
The (i, j)th element of M is given by

∫ ψ=M Wr r r( ) ( )dij i j (25)

Because M is a symmetric negative definite matrix of size n, a
Cholesky factorization can be used to decompose −M as −M =
LLT, where L is unit lower triangular. Since eq 23 is performed
only in each outer iteration, which is less frequent than applying
VX to ψj in every step of the diagonalization procedure, the use of
ACE significantly reduces the cost of hybrid functional
calculation, without requiring any approximation to the
computation of the Wj’s.
The ISDF decomposition can be readily used to accelerate the

computation of Wj’s in eq 23. However, straightforward
computation using in eq 25 may result in an M matrix that is
not symmetric, let alone being negative definite. To see this, we
combine eq 17 and eq 25 to obtain

∫∑ ψ ψ=
μ

φ
μ μ

ζ
μ

=

μ

( )M P Vr r r r r r( ) ( , ) ( )d ( )ij

N

i j
1

which may be different from

∫∑ ψ ψ=
μ

φ
μ μ

ζ
μ

=

μ

( )M P Vr r r r r r( ) ( , ) ( )d ( )ji

N

j i
1

The lack of symmetry may result in numerical stability problems
in the subsequent Cholesky factorization of M. In order to
overcome this problem, we can apply the ISDF decomposition in
a symmetric fashion as follows. Note that

∫∑ ψ φ φ ψ= ′ ′ ′ ′
=

M Kr r r r r r r r( ) ( ) ( , ) ( ) ( )d dij
l

N

i l l j
1

e

(26)

Hence, we can use ISDF to expand both the φl(r)ψi(r) and
φl(r′)ψj(r′) pairs in terms of the interpolating vector {ζμ} to
obtain

∫

∫

∑ ∑

∑

∑

ζ ζ φ φ ψ ψ

ζ ζ ψ ψ

ψ ψ

≈ ′ ′ ′

= ′ ′ ′

= ̃

μ ν
μ ν μ ν μ ν

μ ν
μ ν

φ
μ ν μ ν

μ ν
μ μν ν

= =

=

=

μ

μ

μ

( )

( )

M K

K P

M

r r r r r r r r r r

r r r r r r r r r r

r r

( ) ( , ) ( )d d ( ) ( ) ( ) ( )

( ) ( , ) ( )d d ( , ) ( ) ( )

( ) ( ),

ij
l

N N

l l i j

N

i j

N

i j

1 , 1

, 1

, 1

e

(27)

where

∫ ζ ζ̃ = ′ ′ ′μν μ ν
φ

μ ν( )M K Pr r r r r r r r( ) ( , ) ( )d d ( , )
(28)

Since both the first and second factors on the right-hand side of
eq 28 are symmetric, M̃μν is clearly symmetric, which guarantees
the symmetry and the definiteness of M defined in eq 27.
In the symmetric formulation given by eq 27, M is

automatically a symmetric negative definite matrix. Therefore,
the Cholesky factorization of M yields the ACE operator
according to eq 22. Hence we refer to the combined method
using ACE and ISDF as the ACE-ISDF method.

4. PARALLEL IMPLEMENTATION
In this section, we demonstrate an efficient parallel implementa-
tion of the ACE-ISDF method for hybrid functional calculations
in a planewave basis set.
We denote the matrix of the discretized orbitals by Φ =

[φ1,...,φNe
], and Ψ = [ψ1,...,ψn]. When Pe processors are used,

these orbitals are stored using the 1D column cyclic partition as
shown in Figure 2(a), so that the application of the Hamiltonian
operator (excluding the exchange part) to the orbitals Ψ can be
easily parallelized. In particular, the Laplacian operator can be

Figure 2. Three different types of data partition for the matrix used in
the ACE-ISDF formulation for hybrid density functional calculations:
(a) 1D column cyclic partition (1 × Pe MPI processor grid), (b) 2D
block cyclic partition (Pm × Pn MPI processor grid), and (c) 1D row
block partition (Pe × 1 MPI processor grid). Pe is total computational
cores used in the ACE-ISDF formulation and Pm × Pn = Pe.
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applied through the use of a sequential fast Fourier trans-
formation (FFT) library. Moreover, the application of the local
and nonlocal pseudopotentials in the real space representation is
also rather straightforward. The application of the ACE operator
to Ψ involves two matrix−matrix multiplication operations and
can be done most efficiently by using a row-based partition
shown in Figure 2(c) (see, e.g., ref 31 for more details). However,
in the ACE-ISDF procedure, a 2D block cyclic partition shown in
Figure 2(b) is the most efficient data distribution scheme for
performing a number of dense linear algebra operations such as
QRCP implemented in the ScaLAPACK software package.48

The conversion among different data storage formats is
performed using the pdgemr2d subroutine in the ScaLAPACK
software package.48

More specifically, we describe the various quantities in the
ACE-ISDF method and the corresponding storage formats in
Figure 3. Starting fromΦ andΨ distributed in the column cyclic

partition, we first transform these matrices into the 2D block
cyclic partition to generate the Z̃ matrix. We then perform the
QRCP procedure to obtain the permutation matrix Π. The
interpolation points {rμ̂}μ = 1

Nμ are retrieved from the permutation
matrix Π. This is a small vector of size Nμ and are shared among
all processors.
In order to construct the interpolation vectors, we distribute

the columns of the quasi density matrices Pφ(rk, rμ̂) and P
ψ(rk,rμ̂)

in a 2D block cyclic fashion so that the matrix ZCT defined in eq
14 can be evaluated in parallel via local Hadamard multi-
plications. The matrix CCT that appears in eq 13 can be obtained
by simply subsampling rows of ZCT.
The resulting discretized interpolation vectors Ω = [ζ1,...,ζNμ

]
can be obtained by calling a ScaLAPACK linear equation solver.
The 2D block cyclically distributed solution is redistributed and
partitioned by a 1D column partition for computing the
Coulomb-like potential for the interpolation vectors Vζ = [V1

ζ,
..., VNμ

ζ ] as in eq 18. {Vζ} are then converted back to the 2D block
cyclic distribution pattern. Finally, the {Wj} in eq 23 can be

computed usingmatrix−matrix multiplication in the 2D partition
as in eq 17 and then converted to 1D row partition.
In order to implement the symmetric formulation for the M

matrix in eq 27 as required by ACE, we form the matrix M̃ in eq
28 in parallel within a 2D block cyclic distribution scheme, and
the M matrix in eq 27 can be obtained by two parallel matrix−
matrix multiplication calls. Finally, we perform a parallel
Cholesky factorization of M on the 2D block cyclic grid, and
the ACE vectors Ξ = [ξ1,...,ξn] are partitioned by rows on a 1D
processor grid. This gives the VX

ACE implicitly and can be readily
used in subsequent iterations.

5. NUMERICAL RESULTS

We demonstrate the performance of the ACE-ISDF method
using the DGDFT (Discontinuous Galerkin Density Functional
Theory) software package.49−53 DGDFT is a massively parallel
electronic structure software package designed for large scale
DFT calculations involving up to tens of thousands of atoms. It
includes a self-contained module called PWDFT for performing
planewave-based electronic structure calculations (mostly for
benchmarking and validation purposes). We implemented the
ACE-ISDF method in PWDFT. We use Message Passing
Interface (MPI) to handle data communication and the
Hartwigsen−Goedecker−Hutter (HGH) norm-conserving
pseudopotential.54 All calculations use the HSE06 functional.7

All calculations are carried out on the Edison systems at the
National Energy Research Scientific Computing Center
(NERSC). Each node consists of two Intel “Ivy Bridge”
processors with 24 cores in total and 64 gigabyte (GB) of
memory. Our implementation only uses MPI. The number of
cores is equal to the number of MPI ranks used in the simulation.
In this section, we demonstrate the accuracy of the ACE-ISDF

method for accelerating hybrid functional calculations using a
bulk silicon system Si216 and a disordered system Al176Si24

52 as
shown in Figure 4(a) and (b), respectively. The Si216 system is
semiconducting with an energy gap of Egap = 1.45 eV, and the
Al176Si24 system is metallic with Egap < 0.1 eV. The density of
states of the two systems are shown in Figure 4(c) and (d),
respectively. All systems are closed shell systems, and the number

Figure 3. Flowchart of the ACE-ISDF formulation for constructing the
ACE exchange operator in PWDFT. Red and blue boxes, respectively,
represent 1D column cyclic partition and 2D block cyclic partition for
thematrices used in the ACE formulation. Once the interpolation points
{rμ}μ = 1

Nμ are obtained from QRCP at the first outer SCF iteration, the
interpolation vectors {ζμ(r)}μ = 1

Nμ can be updated directly from the input
vectors at other outer SCF iterations.

Figure 4.Atomic structures of (a) Si216 and (b) Al176Si24. The yellow and
pink balls denote silicon and aluminum atoms, respectively. The total
densities of states (DOS) of (c) semiconducting Si216 and (d) metallic
Al176Si24. The Fermi levels are marked by green dotted lines.
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of occupied bands is Nband = Ne/2. We include two unoccupied
bands for computing the energy gap in the systems. We show the
parallel scalability of our implementation using seven bulk silicon
systems with 64 to 4096 atoms.31 Finally, we use the ACE-ISDF
method in a hybrid DFT calculation to study the electronic
structure of vacancy defect in a silicon supercell that contains
1000 Si atoms.
5.1. Accuracy. In the previous work,30,31 we demonstrated

that the ACE formulation can significantly accelerate hybrid
functional calculations without loss of accuracy. Hence, the
results from the ACE calculation is used as the baseline for
comparison in assessing the accuracy of the ACE-ISDF method.
Table 1 shows the convergence of the ACE-ISDF method as a
function of the rank parameter c for the Si216 and Al176Si24
systems. We measure the accuracy in terms of the valence band
maximum (VBM) energy level, the conduction band minimum
(CBM) energy levels, the energy gap, the Hartree−Fock (HF)
exchange energy, and the total energy as well as the atomic force.
The energy cutoff Ecut is set to 20 hartree. We define the errors in
the HF energy, the total energy and the atomic force respectively
as

Δ = −−E E E N( )/HF HF
ACE ISDF

HF
ACE

A

Δ = −−E E E N( )/ACE ISDF ACE
A

Δ = | − |−F F Fmax
I

I I
ACE ISDF ACE

Here, NA is the total number of atoms, and I is the atom index.

Our calculations show that the ACE-ISDF method can
produce highly accurate results with a moderate rank parameter
c. (Recall that the rank of the ISDF approximation is Nμ =
cNband.) The accuracy of the approximation can be improved
systematically by increasing the rank parameter c. When a
relatively small c value (e.g., c = 6.0) is used, the error in the total
energy of both the Si216 and the Al176Si24 systems is already below
that required to reach the chemical accuracy of 1 kcal/mol (1.6
Hartree/atom).55 For Si216, the errors in the HF energy, the total
energy and the atomic force systematically decrease from

−(10 )3 to ∼− −(10 10 )6 7 when c is adjusted from 6.0 to
20.0. We note that the total energy convergence with respect to
the rank parameter is similar between Si216 and Al176Si24. The fact
that the rank parameter c is independent of the band gap makes
ISDF more attractive than linear scaling methods56−59 whose
accuracy is controlled by the level of truncation in the density
matrix, which in turn depends strongly on the band gap.

5.2. Efficiency. We demonstrate the efficiency of the ACE-
ISDF method by showing its performance in a hybrid DFT
calculation for a bulk silicon system with 1000 atoms (Nband =
2000) on 2000 cores. In each outer iteration, the cost of hybrid
functional calculations consists of the cost for constructing the
ACE operator (with or without ISDF) and the amount of work
performed in the inner SCF iterations.
Table 2 shows the wall clock time spent in major components

of the ACE-ISDF and ACE calculations. The main cost for
constructing the ACE operator without using the ISDF
decomposition is in the solution of N( )e

2 Poisson-like equations
via FFTs. For this silicon system, the number of Poisson-like

Table 1. Accuracy of Hybrid Functional Calculations (HSE06) Obtained by ACE-ISDFMethod as a Function of Rank Parameter c
for Si216 and Al176Si24

a

ACE-ISDF: Semiconducting Si216 (Nband = 432)

c EVBM ECBM Egap ΔEHF ΔE ΔF

4.0 6.5303 8.4367 1.9064 3.53 × 10−03 4.13 × 10−03 1.49 × 10−03

5.0 6.5923 8.3652 1.7729 2.37 × 10−03 2.75 × 10−03 1.30 × 10−03

6.0 6.6786 8.2535 1.5749 7.34 × 10−04 1.06 × 10−03 1.00 × 10−03

7.0 6.6893 8.1554 1.4661 3.56 × 10−04 4.61 × 10−04 6.61 × 10−04

8.0 6.6763 8.1341 1.4578 1.16 × 10−04 1.64 × 10−04 3.05 × 10−04

9.0 6.6652 8.1164 1.4512 4.74 × 10−05 7.50 × 10−05 1.48 × 10−04

10.0 6.6565 8.1085 1.4520 2.33 × 10−05 4.11 × 10−05 1.09 × 10−04

12.0 6.6487 8.1001 1.4514 7.27 × 10−06 1.54 × 10−05 5.88 × 10−05

16.0 6.6467 8.0959 1.4492 1.57 × 10−06 2.92 × 10−06 1.67 × 10−05

20.0 6.6466 8.0942 1.4476 5.40 × 10−07 7.87 × 10−07 5.54 × 10−06

ACE 6.6467 8.0934 1.4466 0.00 × 10−00 0.00 × 10−00 0.00 × 10−00

ACE-ISDF: Metallic Al176Si24 (Nband = 312)

c EVBM ECBM Egap ΔEHF ΔE ΔF

4.0 7.8907 7.9963 0.1056 7.20 × 10−03 8.06 × 10−03 8.96 × 10−03

5.0 7.8173 7.9103 0.0930 3.46 × 10−03 3.76 × 10−03 3.96 × 10−03

6.0 7.7810 7.8833 0.1023 1.33 × 10−03 1.69 × 10−03 2.32 × 10−03

7.0 7.7805 7.8742 0.0937 5.97 × 10−04 6.41 × 10−04 1.60 × 10−03

8.0 7.7717 7.8710 0.0993 1.90 × 10−04 2.03 × 10−04 5.55 × 10−04

9.0 7.7719 7.8710 0.0991 6.92 × 10−05 7.44 × 10−05 3.10 × 10−04

10.0 7.7713 7.8699 0.0986 3.20 × 10−05 3.55 × 10−05 1.53 × 10−04

12.0 7.7712 7.8695 0.0983 1.16 × 10−05 1.38 × 10−05 9.23 × 10−05

16.0 7.7704 7.8698 0.0994 3.26 × 10−06 4.43 × 10−06 4.34 × 10−05

20.0 7.7703 7.8695 0.0992 1.27 × 10−06 1.93 × 10−06 2.18 × 10−05

ACE 7.7701 7.8695 0.0994 0.00 × 10−00 0.00 × 10−00 0.00 × 10−00

aThe unit for VBM (EVBM), CBM (ECBM), and the energy gap Egap is eV. The unit for the error in the Hartree−Fock exchange energy ΔEHF and the
total energy ΔE is the Hartree/atom, and the unit for the error in atomic forces ΔF is Hartree/Bohr. We use results from the ACE-enabled hybrid
functional calculations as the reference.
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equations to be solved in each outer iteration is as large as Nbands
2

= 4,000,000. To show the detailed cost of constructing the ACE
operator using the ISDF method, we report the timing
measurements for selecting the interpolation points (IP),
computing the interpolation vectors (IV) and other linear
algebra operations and FFTs (labeled by “Other”). The IP
selection is performed once only in the first outer SCF iteration.
Computing the IVs constitutes a major part of the cost in the
construction of the ACE operator in subsequent outer SCF
iterations. The time spent in solving Poisson equations using
FFTs, which we list in the parentheses next to time spent in the
remaining parts of the ACE-ISDF calculation for comparison, is
negligibly small. The reason that this cost is so small is that the
use of ISDF significantly reduces the number of Poisson
equations to be solved from Nbands

2 = 4,000,000 to Nμ = 12,000
(when the rank parameter c is set to 6.)
When Ecut is set to 10 hartree and c is set to 6.0, the IP and IV

computations take 50.22 and 11.13 s, respectively, in ACE-ISDF.
The total amount of time spent in the construction of the ACE
operator via ISDF in the first SCF iteration, which is 70 s (50.22 +
11.13 + 8.56), is already lower than that used to construct the
ACE operator without ISDF (a procedure dominated by solving
a larger number of Poisson-like equations via FFTs), which is
roughly 101.10 s. In each subsequent outer SCF iteration, a total
of 19.86 s (11.13 + 8.56) is used to construct the ACE operator
via ISDF. This is already comparable to the time of one SCF
iteration in GGA calculations, which is 17.89 s.
Note that for some complex systems, more inner SCF

iterations might be required in each outer SCF iteration to reach
convergence. For example, for the disordered Al176Si24 system,
we need to use 14 inner SCF iterations per outer SCF iteration.
As a result, the cost difference between ACE and ACE-ISDF is
magnified, and ACE-ISDF is even more advantageous in these
situation.
To illustrate the reduction of cost the ACE-ISDF scheme has

achieved, we report that the average time spent in the
construction and application of the exchange operator per
outer SCF iteration in the conventional hybrid functional
calculations is 1146.36 s, which is nearly 2 orders of magnitude
higher than that used in ACE-ISDF. The large cost mainly comes
from the fact that conventional hybrid functional calculations
require solving N( )e

2 Poisson-like equations using FFTs in each
step of an iterative diagonalization procedure (e.g., PPCG) when
the exchange operator is applied to a set of N( )e orbitals. For
this system, on average 17 such operations need to be performed
during each outer iteration. The ACE formulation reduces the
cost by only requiring the exchange operator to be applied once

per outer iteration, and the ACE-ISDF method further reduces
the cost for this single application of the exchange operator.
As we discussed earlier, since IP calculation is significantly

more expensive, it is important to perform such a calculation only
once in order to make ACE-ISDF efficient. We found that the
Hartree−Fock exchange energy EHF obtained from using a fixed
set of IPs throughout the SCF iteration differs only slightly from
that obtained by recalculating IPs in each outer SCF iteration
(dynamic IP) as shown in Table 3 for Si216 and Al176Si24. We can

clearly see from the table that the difference between the first and
the second columns is much smaller than the difference between
the second and third columns. This shows that using fixed IP is
well justified. Hence, in practice, we only use the QRCP
decomposition in the first outer SCF iteration to select IPs,
whereas the update of the basis vectors {ζμ(r)}μ = 1

Nμ is performed
in each subsequent outer SCF iterations.
Table 2 also shows that as Ecut is increased from 10 to 40

hartree the time spent in constructing the ACE operator
increases from 101.10 to 807.31 s. The time spent in identifying
the interpolation points via QRCP also increases from 50.22 to
454.42 s. However, the time used to compute the interpolation
vectors only increases from 11.13 to 63.56 s. Given that the
interpolating points only need to be selected once, the
performance gain achieved by ISDF is more notable at a larger
Ecut value. This feature is particularly attractive for calculations
that requiring large kinetic energy cutoff, such as those involving
transition metal oxides.

5.3. Parallel Scalability. To illustrate the strong parallel
scalability of the ACE-ISDF method for large-scale hybrid DFT
calculations, we report the change of the wallclock time in one
outer SCF iteration with respect to the number of cores for the
Si1000 system. The measured wallclock time includes time spent
in one inner SCF iteration and in the ACE-ISDF operator
construction. We also report the weak scaling of ACE-ISDF by
showing the variation of the wallclock time with respect to the
system size for a calculation that uses 8192 cores. These results
are given in Figure 5 which shows that our implementation of the
ACE-ISDF method scales nearly perfectly up to 2000 cores for
the Si1000 system. It also shows ACE-ISDF scales well with
respect to the system size (up to 4096 atoms) on 8192 cores.

5.4. Application to Vacancy Defect in Silicon. Silicon is
one of the most important materials in industry due to its
remarkable properties and a wide range of applications in
electronics. However, the presence of defects can significantly
affect these properties. Furthermore, defects also can be
extremely useful for designing innovative electronic devices.60,61

Therefore, accurate description of the electronic structures of
silicon defects62 is required to examine their effects on the
electronic devices.
It is well known that DFT calculations based on LDA and

GGA functionals are not reliable in predicting electronic
structures of nanosystems.63 In particular, such DFT calculations

Table 2. Wall Clock Time (in s) Spent in Components of
ACE-ISDF- and ACE-Enabled Hybrid DFT Calculations
Related to the Exchange Operator for Si1000 on 2000 Edison
Cores at Different Ecut Levels

a

Si1000 ACE-ISDF ACE

Ecut Ng IP IV Other (FFT) FFT

10 743 50.22 11.13 8.56 (0.28) 101.10
20 1043 105.95 24.52 20.52 (1.17) 148.73
30 1283 222.36 40.67 32.88 (1.31) 302.98
40 1483 454.42 63.56 54.95 (3.08) 807.31

aThe corresponding number of real space grid points used to
represent the wavefunction is labeled by Ng. We use the rank
parameter c = 6.0 in the ACE-ISDF calculation.

Table 3. Comparison among Hartree−Fock Exchange
Energies Computed by ACE Only and by ACE-ISDF with a
Fixed or Changing Set of IPsa

Systems fixed IP in ACE-ISDF dynamic IP in ACE-ISDF ACE

Si216 −45.3225 −45.3250 −45.4835
Al176Si24 −25.9112 −25.9093 −26.1745

aThe rank parameter c used in ACE-ISDF is set to 6.0 for the Si216 and
Al176Si24 systems.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00807
J. Chem. Theory Comput. 2017, 13, 5420−5431

5428

http://dx.doi.org/10.1021/acs.jctc.7b00807


tend to underestimate the energy gap of semiconductors. For
example, GGA calculations that use the PBE functional13 give an
energy gap of 0.69 eV in silicon, which is much smaller than that
in bulk silicon measured in the experiments (1.17 eV).64 The use
of hybrid functionals can mitigate this type of error.
The defect concentration in silicons used in experimental

studies is about 1018 cm−3. To faithfully represent experimental
conditions and avoid the nonphysical interactions between a
defect and its images introduced by periodic boundary
conditions, a large unit cell containing thousands of silicon
atoms is required to in a computational study. Systems of this size
is beyond the capability of existing planewave DFT software
when a hybrid functional is used in the calculation. In this section,
we employ the ACE-ISDF method implemented in PWDFT to
calculate the energy levels of a vacancy defect in an 1000-atom
silicon system using the HSE06 hybrid functional. The defect
concentration is about 5× 1019 cm−3 in this case, which is close to
concentration used in experimental studies. Our calculation
based on the HSE06 functional yields an energy gap of 1.28 eV,
which is very close to the experimental value of 1.17 eV. We also
find that a calculation that uses a smaller unit cell that contains
512 atoms yields an energy gap of 1.32 eV,31 and hence, the size
effect plays an important role.
Figure 6 shows the electronic structure of the vacancy defect in

the Si1000 system computed with two different exchange−
correlation functionals (GGA-PBE and HSE06). We fully relax
the structures, respectively, with the GGA and HSE06
exchange−correlation functionals by using the steepest descent
algorithm with the Barzilai−Borwein line search method65 to
optimize the geometry of the atomic configuration. The optimal
unit cell lattice constants we obtained are 5.46 and 5.45 Å,
respectively, for the GGA-PBE and HSE06 exchange−
correlation functional-based calculations. These values are
close to those reported in previous theoretical studies.66

Our DFT calculations show that hybrid functional HSE06
calculations accurately describe the VBM and CBM energy levels
of the silicon and the defect energy levels introduced by the
vacancy defect. Furthermore, we can clearly see that the vacancy
defect introduces three defect states into the intrinsic energy gap
(1.28 eV) of silicon. These include a single defect state a1 and a
doubly degenerate state e, 0.14 and 1.04 eV above the VBM
energy of silicon, respectively. The GGA-based DFT calculations
fail to accurately predict these defect states.

6. CONCLUSION
In this paper, we demonstrate that the interpolative separable
density fitting (ISDF) decomposition can be used to reduce the
cost hybrid functional calculations for large systems in a
planewave DFT code. The reduction in cost results from the
construction of a set of cNe numerical auxiliary basis vectors,
where c is a modest constant. Using these auxiliary basis vectors
instead of Ne

2 products of the occupied orbitals, we only need to
solve N( )e Poisson-like equations instead of N( )e

2 equations
to apply an approximate exchange operator to a set of occupied
orbitals. The accuracy of the approximation depends entirely on
the rank parameter c, and we find that the choice of c is insensitive
with respect to the band gap.
The ISDF decomposition can be performed in N( )e

3

operations. The interpolation points are chosen by a randomized
QR factorization with column pivoting (QRCP). It is relatively
expensive compared to other parts of the ISDF calculation.
However, this procedure only needs to be carried out once for all
during the first outer SCF iteration in a hybrid functional
calculation. The interpolation vectors can be computed via a
least-squares fitting procedure that makes use of the separable
nature of the functions to be fitted. The complexity of this step
still scales as N( )e

3 but with a significantly smaller preconstant
compared to the cost of applying the uncompressed exchange
operator or the cost of QRCP. We are currently also exploring
other methods for selecting interpolation points that avoid the
use of the QRCP procedure, especially in the context of
geometry optimization and ab initio molecular dynamics
simulation.
For a moderate choice of rank parameter, the error in the total

energy per atom and the force can be kept under 10−3 Hartree/
atom and 10−3 Hartree/Bohr, respectively, for both semi-
conducting and metallic systems. Meanwhile the computational
time can be reduced by up to an order of magnitude for applying
the exchange operator once to all Kohn−Sham orbitals. We
demonstrated that the ISDF decomposition can be combined
with the adaptively compressed exchange operator (ACE)
formulation to reduce the cost of ACE operator construction.
The resulting ACE-ISDF method exhibits excellent parallel
scalability on high performance computers and significantly
reduces the time required to perform hybrid functional
calculations by nearly 2 orders of magnitude. In particular, the

Figure 5. (a) The change of wallclock time in one outer SCF iteration
with respect to the number of cores for the Si1000 system (strong
scaling). (b) The change of wallclock time with respect to system size
(weak scaling) on 8192 cores. The black dotted lines represent the ideal
scaling.

Figure 6. Comparison of VBM, CBM, and defect energy levels of a
1000-atom silicon system that contains a vacancy defect. Two different
types of exchange−correlation functionals (GGA-PBE and HSE06) are
used for geometry optimization and for computing the electronic
structure. All the energy levels are referenced to the VBM energy, which
is set to zero. The black arrows are used to mark the occupied energy
levels.
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time spent in the ACE-ISDF-enabled hybrid functional
calculation is only marginally higher than that spent in DFT
calculations that use local and semilocal functionals.
However, we also find that hybrid functional calculations often

require more iterations to converge compared to GGA
calculations. One main reason is the two-level SCF iteration
structure in hybrid functional calculations, which may be
inefficient especially in the context of ab initio molecular
dynamics simulation. Further reduction of the number of SCF
iterations may close the final gap between hybrid functional
calculations and calculations with local and semilocal functionals
and thus opens the door to the accurate simulation of a vast range
of nanomaterials using hybrid functionals beyond reach today.
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