
Adaptively Compressed Exchange Operator
Lin Lin*

Department of Mathematics, University of California, Berkeley, California 94720, United States

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

ABSTRACT: The Fock exchange operator plays a central role in modern
quantum chemistry. The large computational cost associated with the Fock
exchange operator hinders Hartree−Fock calculations and Kohn−Sham
density functional theory calculations with hybrid exchange-correlation
functionals, even for systems consisting of hundreds of atoms. We develop
the adaptively compressed exchange operator (ACE) formulation, which
greatly reduces the computational cost associated with the Fock exchange
operator without loss of accuracy. The ACE formulation is not dependent on
the size of the band gap, and thus can be applied to insulating and
semiconducting systems, as well as metallic systems. In an iterative framework
for solving Hartree−Fock-like systems, such as that observed in planewave-
based methods, the ACE formulation only requires moderate modification of
the code. The ACE formulation can also be advantageous for other types of
basis sets, especially when the storage cost of the exchange operator is
expensive. Numerical results indicate that the ACE formulation can become advantageous, even for small systems with tens of
atoms. In particular, the cost of each self-consistent field iteration for the electron density in the ACE formulation is only
marginally larger than that of the generalized gradient approximation (GGA) calculation, and thus offers orders-of-magnitude
acceleration for Hartree−Fock-like calculations.

1. INTRODUCTION

The Fock exchange operator, or simply the exchange operator,
plays a central role both in wave function theory and in density
functional theory (DFT), which are two cornerstones of
modern quantum chemistry. Hartree−Fock theory (HF) is the
starting point of almost all wave-function-based correlation
methods. Kohn−Sham density functional theory (KSDFT)1,2 is
the most widely used electronic structure theory for molecules
and systems in condensed phase. The accuracy of KSDFT is
ultimately determined by the exchange-correlation (XC)
functional employed in the calculation. Despite the great
success of relatively simple XC functionals such as local density
approximation (LDA),3,4 generalized gradient approximation
(GGA),5−7 and meta-GGA8,9 functionals, numerous computa-
tional studies in the past two decades suggest that KSDFT
calculations with hybrid functionals10−13 can provide system-
atically improved description of important physical quantities,
such as band gaps, for a vast range of systems. As an example,
the B3LYP functional,10 which is only one specific hybrid
functional, has generated more than 55 000 citations (data from
ISI Web of Science, January 2016). Hybrid functional
calculations are computationally more involved, since it
contains a fraction of the Fock exchange term, which is defined
using the entire density matrix, rather than the electron density.
If the exchange operator is constructed explicitly, the
computational cost scales as N( )e

4 , where Ne is the number

of electrons of the system. The cost can be reduced to N( )e
3

by iterative algorithms that avoid the explicit construction of

the exchange operator, but with a large preconstant. Hence,
hybrid functional calculations for systems consisting of
hundreds of atoms or even less can be a very challenging
computational task.
Various numerical methods have been developed to reduce

the computational cost of Hartree−Fock-like calculations (i.e.,
Hartree−Fock calculations and KSDFT calculations with
hybrid functionals), most notably methods with asymptotic
“linear scaling” complexity.14,15 The linear scaling methods use
the fact that, for an insulating system with a finite HOMO−
LUMO gap, the subspace spanned by the occupied orbitals has
a compressed representation: it is possible to find a unitary
transformation to transform all occupied orbitals into a set of
orbitals localized in the real space. This is closely related to the
“nearsightedness” of electronic matters.16,17 Various efforts
have been developed to find such localized representation.18−24

After such localized representation is obtained, the exchange
operator also becomes simplified, leading to more efficient
numerical schemes for systems of sufficiently large sizes.24−26

Recent numerical studies indicate that linear scaling methods
can be very successful in reducing the cost of the calculation of
the exchange term for systems of large sizes with substantial
band gaps.27−29

In this work, we develop a new method for reducing the
computational cost due to the Fock exchange operator. The
objective of our method is to find a low rank decomposition of
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the exchange operator. However, standard low rank decom-
position schemes, such as the singular value decomposition,
mandates the low rank operator to yield similar result as the
exchange operator does when applied to an arbitrary orbital.
This is doomed to fail since the exchange operator is not a low
rank operator, and forcefully applied low rank decomposition
can lead to unphysical results. The key observation of this work
is that, in order to compute physical quantities in Hartree−
Fock-like calculations, it is sufficient to construct an operator
that yields the same result as the exchange operator does when
applied to the occupied orbitals. This is possible since the rank of
the subspace spanned by the occupied orbitals is known a
priori. Since occupied orbitals vary in self-consistent field
iterations, the compressed representation must be adaptive to
the changing orbitals. Hence, our compressed exchange
operator is referred to as the adaptively compressed exchange
(ACE) operator. We remark that the idea of constructing
approximate Fock exchange operator targeting at occupied
orbitals has been considered previously. Recent works include
real-space-based methods, such as the quantized tensor train
(QTT) representation of the exchange operator,30 and
Gaussian orbital-based methods, such as the occ-RI-K
method.31

The ACE formulation has a few notable advantages:

(1) The ACE is a strictly low rank operator, and there is no
loss of accuracy when used to compute physical
quantities such as total energies and band gaps.

(2) The effectiveness of the ACE is not dependent on the size
of the band gap. Hence, the method is applicable to
insulators as well as semiconductors or even metals.

(3) The construction cost of the ACE is similar to the one-
time application cost of the exchange operator to the set
of occupied orbitals. Once constructed, the ACE can be
repeatedly used. The cost of applying the ACE is similar
to that of applying a nonlocal pseudo-potential operator,
thanks to the low rank structure.

(4) In an iterative framework for solving the Hartree−Fock-
like equations such as that observed in planewave-based
methods, the ACE formulation only requires moderate
change of the code.

The ACE formulation can also be advantageous for other types
of basis sets, especially when the storage cost of the exchange
operator is expensive. This includes real-space methods such as
finite-difference methods and finite-element methods. The ACE
formulation can be used for small basis sets such as Gaussian
orbitals and atomic orbitals as well. However, when it is
inexpensive to store the full exchange operator in memory, the
advantage of the ACE formulation may only be marginal.
Our numerical results indicate that once the ACE is

constructed, the cost of each self-consistent field iteration of
the electron density in a hybrid functional calculation is only
marginally larger than that of a GGA calculation. The ACE
formulation offers significant acceleration, even for small
systems with tens of atoms in a serial implementation with a
planewave basis set. For moderately larger systems, such as a
silicon system with 216 atoms, we observe acceleration by a
factor of >50, in terms of the cost of each SCF iteration for the
electron density.
The rest of this paper is organized as follows. Section 2

reviews the basic procedure of using iterative methods to solve
Hartree−Fock-like equations. Section 3 describes the method
of the ACE operator. Section 4 discusses how to apply to the

ACE formulation to Gaussian orbitals and atomic orbitals. The
numerical results are presented in section 5, followed by
conclusions and future work in section 6.

2. ITERATIVE METHODS FOR SOLVING
HARTREE−FOCK-LIKE EQUATIONS

For the sake of simplicity, our discussion below focuses on the
Hartree−Fock (HF) equations. The generalization from HF
equations to KSDFT equations with hybrid functionals is
straightforward and will be mentioned at the end of this
section. To simplify the notation, we neglect the spin
degeneracy in the discussion below and assume that all orbitals
{ψi(r)} are real. The spin degeneracy is properly included in the
numerical results in section 5.
The HF theory requires solving the following set of

equations in a self-consistent fashion:

∫

∑

ψ ψ ρ ψ ψ ε ψ

ψ ψ δ

ρ ψ

= − Δ + + + =

* =

= | |
=

⎜ ⎟
⎛
⎝

⎞
⎠H V V V

r r r

r r

[{ }]
1
2

[ ] [{ }]

( ) ( ) d

( ) ( )

j i H X j i i i

i j ij

i

N

i

ion

1

2
e

(1)

Here, the eigenvalues {εi} are ordered nondecreasingly, and Ne
is the number of electrons. Vion is a local potential
characterizing the electron−ion interaction in all-electron
calculations. In pseudo-potential or effective core potential
calculations, Vion may contain a low rank and semilocal
component as well. Vion is independent of the electronic states
{ψi}. ρ(r) is the electron density. The Hartree potential is a
local potential, and it is dependent only on the electron density
as

∫ρ δ ρ′ = − ′ ′
| − ′|

′V r r r r
r

r r
r[ ]( , ) ( )

( )
dH

The exchange operator VX is a full-rank, nonlocal operator, and
it depends on not only the density but also the occupied
orbitals {ψj}j=1

Ne as

∑ψ
ψ ψ ψ

′ = −
′

| − ′|
≡ −

Γ ′

| − ′|=

V r r
r r

r r

r r

r r
[{ }]( , )

( ) ( ) ( , ; { })
X j

j

N
j j j

1

e

(2)

Here, Γ(r,r′;{ψj}) = ∑j=1
Ne ψj(r) ψj(r′) is the single particle

density matrix with an exact rank Ne. However, VX is not a low
rank operator, because of the dot product (i.e., the Hadamard
product) between Γ and the Coulomb kernel. One common
way to solve the HF equations (eqs 1) is to expand the orbitals
{ψj}j=1

Ne , using a small basis set {χμ}μ=1
Nμ , such as Gaussian-type

orbitals, Slater-type orbitals, and numerical atomic orbitals. The
basis set is small in the sense that the ratio Nμ/Ne is a small
constant (usually in the order of 10). This results in a
Hamiltonian matrix H with reduced dimension Nμ. In order to
compute the matrix element of H, the four-center integral

∫ ∫
χ χ χ χ

α β μ ν
′ ′

| − ′|
′ =μ α β ν

μN
r r r r

r r
r r

( ) ( ) ( ) ( )
d d , , , , 1 , ...,

must be performed. The cost of the four-center integral is

μN( )4 . The quartic scaling becomes very expensive for
systems of large sizes. In order to reduce the cost of the

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00092
J. Chem. Theory Comput. 2016, 12, 2242−2249

2243

http://dx.doi.org/10.1021/acs.jctc.6b00092


four-center integral, resolution-of-identity (RI)-type techniques
(also known as “density fitting”)31−33 are often employed.
For a more complete basis set, such as planewaves and finite

elements, the constant Nμ/Ne is much larger (usually 1000 or
more), and the cost of forming all four-center integrals is
prohibitively expensive, even for very small systems. In such
case, it is only viable to use an iterative algorithm, which only
requires the application of VX to several orbitals, rather than the
explicit construction of VX. According to eq 2, VX applied to any
orbital ψ can be computed as

∫∑ψ ψ ψ
ψ ψ

= −
′ ′

| − ′|
′

=

V r r
r r

r r
r( [{ }] )( ) ( )

( ) ( )
dX j

j

N

j
j

1

e

(3)

Equation 3 can be performed by solving Ne Poisson-type
problems with an effective charge of the form ψj(r′)ψ(r′). For
instance, in planewave calculations, if we denote the total
number of planewaves by Ng (Ng ≡ Nμ), then the cost for
solving each Poisson equation is N N( log )g g thanks to
techniques such as the fast Fourier transform (FFT). Applying
VX to all ψi values requires the solution of Ne

2 Poisson problems,
and the total cost is N N N( log( ) )g g e

2 . The cubic scaling makes
iterative algorithms asymptotically less expensive, compared to
quartic scaling algorithms associated with the four-center
integral calculation. Therefore, for large systems, iterative
methods can become attractive, even for calculations with small
basis sets such as Gaussian orbitals, as indicated in the recently
proposed occ-RI-K method.31

The HF equations must be performed self-consistently until
the output orbitals {ψj}j=1

Ne from eq 1 agree with those provided
as the input to the Hamiltonian operator. However, the Fock
exchange energy is only a small fraction (usually <5%) of the
total energy, and it is more efficient not to update the exchange
operator in each self-consistent field iteration. For instance, in
planewave-based electronic structure software packages such as
Quantum ESPRESSO,34 the self-consistent field (SCF)
iteration of all occupied orbitals can be separated into two
sets of SCF iterations. In the inner SCF iteration, the orbitals
defining the exchange operator VX as in eq 2 are fixed, denoted
by {φi}i=1

Ne . The matrix-vector multiplication of VX and an orbital
ψ then is given by

∫∑φ ψ φ
φ ψ

= −
′ ′

| − ′|
′

=

V r r
r r

r r
r( [{ }] )( ) ( )

( ) ( )
dX j

j

N

j
j

1

e

(4)

With VX fixed, the Hamiltonian operator is only dependent on
the electron density ρ, which must be updated in the inner SCF
iteration. This allows standard charge mixing schemes, such as
Anderson acceleration35 and Pulay mixing36 to be used to
converge the electron density efficiently. Note that similar
techniques to mix the density matrix directly can be
prohibitively expensive for large basis sets. Once the inner
SCF for the electron density is converged, the output orbitals
can simply then be used as the input orbitals to update the
exchange operator. The outer SCF iteration continues until
convergence is reached. The convergence of the outer iteration
can be monitored by the convergence of the Fock exchange
energy, which is defined as

∫ ∫∑ ψ ψ ψ ψ= − ′ ′
| − ′|

′
=

E r r r r
r r

r r
1
2

( ) ( ) ( ) ( )
1

d dX
i j

N

i j j i
HF

, 1

e

(5)

In each inner SCF iteration, with both the ρ and φi
parameters fixed, the Hamiltonian operator H becomes a linear
operator, and the linear eigenvalue problem

ρ φ ψ ε ψ− Δ + + + =⎜ ⎟
⎛
⎝

⎞
⎠V V V

1
2

[ ] [{ }]H X j i i iion (6)

must be solved. The linear eigenvalue problem can be solved
with iterative algorithms such as the Davidson method37 and
the locally optimal block preconditioned conjugate gradient
(LOBPCG) method.38 Algorithm 1 describes the pseudocode
of using iterative methods to solve Hartree−Fock-like
equations.

So far, our discussion has been focused on the Hartree−Fock
theory. For KSDFT calculations with hybrid functionals, such
as the PBE0 functional,11 the exchange-correlation energy is

= + +E E E E
1
4

3
4xc X X c

PBE0 HF PBE PBE

(7)

Here, EX
PBE and Ec

PBE are the exchange and correlation part of
the energy from the GGA-type Perdew−Burke−Ernzerhof
(PBE) functional,7 respectively. Hence, the corresponding
exchange operator VX

PBE0 is simply given by 1/4 of the exchange
operator defined in eq 2. For exchange-correlation functionals
with screened exchange interactions such as the HSE
functional,12 the exchange-correlation energy is

μ μ μ= + + +E E E E E( )
1
4

( )
3
4

( )xc X X X c
HSE SR PBE,SR PBE,LR PBE

(8)

Here, EX
PBE,SR and EX

PBE,LR refers to short-range and long-range
part of the exchange contribution in the PBE functional,
respectively. EX

SR is the short-range part of the Fock exchange
energy, defined as

∫ ∫∑μ ψ ψ ψ ψ μ= − ′ ′ | − ′|
| − ′|

′
=

E r r r r
r r

r r
r r( )

1
2

( ) ( ) ( ) ( )
erfc( ( ))

d dX
i j

N

i j j i
SR

, 1

e

(9)

Here, erfc is the complementary error function, and μ is an
adjustable parameter to control the screening length of the
short-range part of the Fock exchange interaction. The only
change is to replace the Coulomb kernel by the screened
Coulomb kernel, and the screened Coulomb kernel should be
used to define the exchange operator VX

HSE accordingly.

3. ADAPTIVELY COMPRESSED EXCHANGE
OPERATOR

The most expensive step of Algorithm 1 is the matrix-vector
multiplication between the Fock operator VX and all occupied
orbitals. In planewave methods, each set of such matrix-vector
multiplication amounts to the solution of Ne

2 Poisson
equations. This must be done for each iteration step when
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solving the linear eigenvalue problem (eq 6), and in each inner
SCF iteration for updating the electron density.
In order to reduce the computational cost, it is desirable to

use a low rank decomposition to approximate the Fock
exchange operator VX. However, the exchange operator is a full-
rank operator, and a compressed representation, such as the
singular value decomposition (SVD), can lead to inaccurate
results. However, note that the goal of an SVD is to find an
effective operator, denoted by ṼX, so that the discrepancy
measured by ∥VXψ − ṼXψ∥2 is small for any orbital ψ. The key
observation of the ACE operator is that the condition above,
while desirable, is not necessary to solve Hartree−Fock-like
equations. In fact, it is sufficient to construct ṼX such that ∥VXψ
− ṼXψ∥2 is small when ψ is any occupied orbital, which spans a
subspace of strict rank Ne. In this sense, the ACE is designed to
be adaptive to the occupied orbitals. When self-consistency of
the occupied orbitals is reached, the physical quantities
computed in the ACE formulation is exactly the same as that
obtained with standard methods for solving Hartree−Fock-like
equations. While the idea of constructing approximate Fock
exchange operator targeting at occupied orbitals has been
considered previously (e.g., see refs 30 and 31), our goal is to
construct ṼX with exact rank Ne that can be efficiently used
without changes in multiple SCF iterations.
More specifically, in each outer iteration, for a given set of

orbitals {φi}i=1
Ne , we first compute

φ φ= =W V i Nr r( ) ( [{ }] )( ), 1 , ...,i X i e (10)

The ACE operator, denoted by VX
ACE, should satisfy the

conditions

φ = ′ = ′V W V Vr r r r r r( )( ) ( ) and ( , ) ( , )X i i X X
ACE ACE ACE

(11)

One possible choice to satisfy both conditions in eq 11 is

∑′ = ′
=

V W B Wr r r r( , ) ( ) ( )X
i j

N

i ij j
ACE

, 1

e

(12)

where B is a negative semidefinite matrix to be determined,
since VX is a negative semidefinite operator. In order to
determine the matrix B, for any k, l = 1, ..., Ne, we require

∫ ∫ ∫

∫ ∫∑

φ φ φ

φ φ

′ ′ ′ ≡

= ′ ′ ′
=

V W

W B W

r r r r r r r r r

r r r r r r

( ) ( , ) ( ) d d ( ) ( ) d

( ( ) ( ) d ) ( ( ) ( ) d )

k X l k l

i j

N

k i ij j l

ACE

, 1

e

(13)

Define Mkl = ∫ φk(r) Wl(r) dr; then, using eq 10, M is a
negative semidefinite matrix of size Ne. Equation 13 can be
simplified using matrix notation as M = MBM, and therefore B
= M−1. It is straightforward to verify that such choice of B
satisfies the requirements in eq 11, despite the fact that eq 13
only projects VX

ACE to the occupied orbitals. Also, because of eq
11, VX

ACE fully agrees with the exchange operator applied to the
occupied orbitals when self-consistency is reached, and hence
the occupied orbital energies are correct. We will discuss the
computation of low-lying unoccupied orbital energies at the
end of this section, which is required in the calculation of the
HOMO−LUMO gap, as well as excited-state calculations such
as GW and Bethe−Salpeter equations.
Perform Cholesky factorization for −M, i.e., M = −LLT,

where L is a lower triangular matrix, then the solution to eq 13

is B = −L−TL−1. Define the projection vector in the ACE
formulation as

∑ξ =
=

−W Lr r( ) ( )( )k
i

N

i ik
1

T
e

(14)

then the ACE operator is given by

∑ ξ ξ′ = − ′
=

V r r r r( , ) ( ) ( )X
k

N

k k
ACE

1

e

(15)

The main advantage of the ACE formulation is the
significantly reduced cost of applying VX

ACE to a set of orbitals
than that of applying VX. Once ACE is constructed, the cost of
applying VX

ACE to any orbital ψ is similar to the application of a
nonlocal pseudopotential, thanks to its low rank structure. ACE
only needs to be constructed once when φi values are updated
in the outer iteration. After construction, the ACE can be
reused for all the subsequent inner SCF iterations for the
electron density, and each iterative step for solving the linear
eigenvalue problem. Since each outer iteration could require
10−100 or more applications of the Hamiltonian matrix H, the
cost associated with the solution of the Poisson problem is
hence greatly reduced. The pseudocode for iterative methods
with the ACE formulation is given in Algorithm 2. Compared
to Algorithm 1, the ACE formulation only requires moderate
modification of the code.

We also remark that ACE can be readily used to reduce the
computational cost of the exchange energy, without the need of
solving any extra Poisson equation:

∫ ∫

∫

∑

∑

ψ ψ

ψ ξ

= ′ ′ ′

= −

=

=

E Vr r r r r r

r r r
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( ( ) ( ) d )

X
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N
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HF

1

ACE

, 1

2

e

e

(16)

So far, we have assumed that the number of {φi} orbitals,
denoted by Nφ, is exactly equal to Ne. When unoccupied states
are needed, e.g., for the computation of the HOMO−LUMO
gap or for excited-state calculations, Nφ > Ne should be used.
We define the oversampling ratio r = Nφ/Ne. Similar to the
argument that ACE gives the correct occupied orbital energies,
when oversampling is used, at self-consistency, we have

ψ ψ= = φV V i N1 , ...,X i X i
ACE

Hence, the orbital energies are correct up to the Nφth orbital.
Choosing the oversampling ratio r > 1 can also be potentially
advantageous in the ACE formulation to accelerate the
convergence of the outer SCF iteration. This is because when
r > 1, VX

ACE agrees with the true exchange operator VX when
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applied to orbitals over a larger subspace. Our numerical results,
while validating this intuitive understanding, also indicate that
the choice r = 1 (i.e., Nφ = Ne) can be good enough for practical
hybrid functional calculations when only occupied states are
needed.

4. ACE FOR GAUSSIAN ORBITALS AND ATOMIC
ORBITALS

The discussion in section 3 focuses on large basis sets such as
planewaves, where an iterative method is the only practically
viable way for solving the Hartree−Fock-like equations. For
Gaussian orbitals and atomic orbitals (referenced hereafter as
AO orbitals for simplicity), the computation of the four-center
integral is a feasible approach when the total number of basis
functions of the system is small. For large systems with a
relatively small basis set (e.g., single-ζ or double-ζ basis sets),
linear scaling approaches, such as the LinK approach,39 can
become advantageous. On the other hand, for medium-sized
systems with larger basis sets (e.g., triple-ζ basis sets or
beyond), the recently proposed occ-RI-K method31 indicates
that an iterative framework similar to that used in planewave-
based methods can be an attractive alternative.
Assume ψi(r) is expanded into the AO basis set {χμ(r)} as

ψi(r) = ∑μ χμ(r) cμi. The key component of the occ-RI-K
method is to compute

∫ χ ψ= ′ ′ ′μ μK Vr r r r r r( ) ( , ) ( ) d di X i (17)

Here, i is the index for occupied orbitals only. Hence, the
computational cost for constructing Kμi is less expensive,
compared to that for constructing the full exchange operator,
Kμν:

∫ χ χ= ′ ′ ′μ μ ννK Vr r r r r r( ) ( , ) ( ) d dX

Kμi can be computed using the RI-K technique,32 instead of
Poisson solvers. However, the computation of Kμi is still the
most expensive step, and must be performed for each SCF
iteration. One possibility to accelerate the computation is to
construct Kμi less frequently, using a two-level SCF procedure
similar to that in Algorithm 1. In the two-level SCF procedure,
Kμi only needs to be computed at the beginning of each outer
SCF. If it is inexpensive to store the full exchange operator Kμν

in memory, then Kμν in the occ-RI-K formulation can be
constructed explicitly, and can be used in multiple inner SCF
iterations without changes. If it is not desirable to store the full
exchange operator, we demonstrate below that the ACE
formulation can be used to provide a compressed representa-
tion of the exchange operator as well.
Similar to section 3, we assume the exchange operator in the

AO basis set can be expressed using the ACE formulation as

∑=μν μ ν
=

K K B K
i j

N

i ij j
ACE

, 1

e

(18)

Define the matrix

∫ ∑ψ ψ= ′ ′ ′ =
μ

μ μM V c Kr r r r r r( ) ( , ) ( ) d dij i X j i j

and M is a negative semidefinite matrix. Then, similar to eq 13,
we have M = MBM, which gives B = M−1. Perform the
Cholesky factorization M = −LLT and define

∑ξ =μ μ
=

−K L( )k
i

N

i ik
1

T
e

we have

∑ ξ ξ= −μν μ ν
=

K
k

N

k k
ACE

1

e

(19)

Hence, we arrive at the ACE formulation for the AO basis set,
which is an operator of exact rank Ne, and can be updated only
once in a few SCF iterations to reduce the computational cost.
When unoccupied orbital energies are needed, we can use the
same oversampling strategy as in section 3.
We remark that, to the best of our knowledge, the two-level

SCF procedure is not yet standard practice for treating the
exchange interaction using AO basis sets. The benefit of the
two-level SCF procedure must be studied by future research
along this direction.

5. NUMERICAL RESULTS
In this section, we demonstrate the effectiveness of the ACE
formulation for accelerating KSDFT calculations with hybrid
functionals. The ACE formulation is implemented in the
DGDFT software package.40,41 DGDFT is a massively parallel
electronic structure software package for ground-state calcu-
lations written in C++. It includes a relatively self-contained
module (called PWDFT) for performing standard planewave-
based electronic structure calculations. We implement the
Heyd−Scuseria−Ernzerhof (HSE06)12,13 hybrid functional in
PWDFT, using periodic boundary conditions with Γ-point
Brillouin zone sampling. The screening parameter in the HSE
functional μ is set to 0.106 a.u. Our implementation is
comparable to that in standard planewave-based software
packages such as Quantum ESPRESSO.34 All results are
performed on a single computational core of a 3.4 GHz Intel i-7
processor with 64 GB memory.
We first validate the accuracy of the hybrid functional

implementation in PWDFT by benchmarking with Quantum
ESPRESSO, and by comparing the converged Fock exchange
energy and the HOMO−LUMO gap for a single water
molecule (Figure 1) and an 8-atom silicon system (Figure 2).
The Hartwigsen−Goedecker−Hutter (HGH) dual-space pseu-
dopotential42 is used in all calculations. Both Quantum
ESPRESSO and PWDFT control the accuracy using a single
parameter Ecut, which is the kinetic energy cutoff. However,

Figure 1. (a) Fock exchange energy and (b) HOMO−LUMO gap
obtained from Quantum ESPRESSO and PWDFT with and without
the ACE formulation for a water molecule.
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there is a notable difference in the detailed implementation. For
instance, PWDFT uses a real-space implementation of the
pseudopotential with a pseudocharge formulation,43 and
implements the exchange-correlation functionals via the
LibXC44 library, while Quantum ESPRESSO uses a Fourier
space implementation of the HGH pseudopotential converted
from the CPMD library,45 and uses a self-contained
implementation of exchange-correlation functionals. Nonethe-
less, at sufficiently large Ecut, the difference of the total Fock
exchange energy between Quantum ESPRESSO and PWDFT
is only 9 meV for the water system and 11 meV for the silicon
system, and the difference of the gap is 8 meV for the water
system and 5 meV for the silicon system, respectively. The
HOMO−LUMO gap is calculated using the oversampling
method discussed at the end of section 3 by setting r = 2, which
allows the ACE formulation to compute orbital energies
correctly up to Nφ = 2Ne. In both systems, the difference of the
results from PWDFT is negligibly small between the standard
implementation of hybrid functional (No-ACE), and with the
ACE formulation.
In section 3, the oversampling ratio r = Nφ/Ne is defined. It is

conceivable that as r increases, the convergence of the outer
iteration for the orbitals {φi} can accelerate. Figures 3a and

Figures 3b report the convergence of the difference of the Fock
exchange energy at each outer iteration, with respect to
different oversampling ratios r for the water and silicon system,
respectively, as a measure of the convergence of the outer
iteration. The kinetic energy cutoff for the water and silicon
systems is set to 100 and 20 a.u., respectively. The convergence

without the ACE formulation is also included for comparison.
We observe that as the oversampling ratio increases, the
convergence rate of the outer iteration becomes marginally
improved. In fact, the convergence rate using the ACE
formulation with r = 1 is very close to that without the ACE
formulation at all. This indicates that the use of the ACE
formulation does not hinder the convergence rate of the hybrid
functional calculation.
In order to demonstrate the efficiency of the ACE

formulation for hybrid functional calculations, we study three
silicon systems with increasing sizes 8, 64, and 216 atoms,
respectively. The latter two systems correspond to a silicon unit
cell with 8 atoms replicated into a 2 × 2 × 2 and a 3 × 3 × 3
supercell, respectively. Since hybrid functional is implemented
in PWDFT so far in the serial mode, we use a relatively small
kinetic energy cutoff Ecut = 5 a.u. in these calculations.
Nonetheless, the kinetic energy cutoff mainly affects the cost of
the fast Fourier transforms (FFTs), and we expect that the ACE
formulation will become more advantageous with a higher Ecut,
in terms of the reduction of the absolute computational time.
Figure 4 shows the time cost of each inner SCF iteration for the
electron density, which involves 10 LOBPCG iterations, for the
calculation with the HSE functional with and without the ACE
formulation. This is the same as the cost per outer SCF
iteration in Algorithm 2 when the number of inner SCF
iterations is set to be 1. Even in this case, the ACE formulation
already exhibits a significant computational advantage, and the
reduction of the computational time would be more significant
when the same ACE operator is used for multiple inner SCF
iterations. For comparison, we also include the time cost of
each inner SCF iteration for the electron density in a GGA
functional calculation using the Perdew−Burke−Ernzerhof
(PBE) functional,7 of which the cost is much less expensive.
The cost of the construction phase of the ACE formulation is
marked separately as “ACE,Construct” in Figure 4.
First, we confirm that the cost of each hybrid functional

calculations is much higher than that of GGA calculations. The
time per inner SCF iteration for the electron density of the
HSE calculation without ACE is 42 times higher than that of
the PBE calculation for the 64-atom system. This ratio increases
by a factor of 58 for the 216-atom system. With the ACE
formulation, this ratio is reduced to 1.18 and 1.05, for the 64-
and 216-atom systems, respectively (i.e., the cost of each HSE
calculation in the ACE formulation is only marginally larger
than that of the GGA calculation). Although the construction
of the ACE still requires solving a large number of Poisson
equations, the overall time is greatly reduced since the ACE,
once constructed, can be used for multiple times. Even
assuming that the outer SCF iteration only consists of one
inner iteration, for the system with 216 atoms, the ACE
formulation already achieves an overall acceleration by a factor
of 8.8 times, compared to the standard implementation. The
ACE formulation becomes orders of magnitude more efficient
when multiple inner SCF iterations are required, which is
usually the case both in PWDFT and in other software
packages, such as Quantum ESPRESSO.

6. CONCLUSION
We have introduced the adaptively compressed exchange
(ACE) operator formulation for compressing the Fock
exchange operator. The main advantage of the ACE
formulation is that there is no loss of accuracy, and its
effectiveness is not dependent on the size of the band gap.

Figure 2. (a) Fock exchange energy and (b) HOMO−LUMO gap
obtained from Quantum ESPRESSO and PWDFT with and without
the ACE formulation for a silicon system with 8 atoms.

Figure 3. Convergence of the difference of the exchange energy.
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Hence, the ACE formulation can be used for insulators and
semiconductors, as well as metals. We demonstrated the use of
the ACE formulation in an iterative framework for solving
Hartree−Fock equations and Kohn−Sham equations with
hybrid exchange-correlation functionals. The ACE formulation
only requires moderate modification of the code, and it can
potentially be applied to all electronic structure software
packages for treating the exchange interaction in an iterative
framework. The construction cost of the ACE formulation is
the same as applying the Fock exchange operator once to the
occupied orbitals. Once constructed, the cost of each self-
consistent field (SCF) iteration for the electron density in
hybrid functional calculations becomes only marginally larger
than that of generalized gradient approximation (GGA)
calculations. Our numerical results indicate that the computa-
tional advantage of the ACE formulation can be clearly
observed, even for small systems with tens of atoms.
We have demonstrated the numerical efficiency of the ACE

formulation in a planewave basis set, and we have introduced
the ACE formulation for Gaussian orbitals and atomic orbitals
following the occ-RI-K method. For insulating systems, the cost
of the ACE formulation can be further reduced when combined
with linear scaling type methods. For range-separated hybrid
functionals, it might even be possible to localize the projection
vectors ξk, because of the screened Coulomb interaction in the
real space. This could further reduce the construction as well as
the application cost of the ACE, and it opens the door to
Hartree−Fock-like calculations for a large range of systems
currently beyond reach.
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