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Criteria for achieving quantum advantage in scientific computation



Quantum computation meets public attention

Google, Nature 2019 USTC, Science 2020
Random circuit sampling Boson sampling.

Theory: [Boixo et al, 2018] Theory: [Aaronson—Arkhipov, 2011]
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Quantum supremacy



Quantum supremacy and quantum advantage

¢ |s controlling large-scale quantum systems merely really, really hard, or
is it ridiculously hard?"

e Quantum supremacy: quantum computer is faster than classical
computer on some (contrived) task.

e Quantum advantage: quantum computer is faster than classical
computer on a useful task.

John Preskill

1(Preskill, 25th Solvay Conference on Physics, arXiv:1203.5813)



Crash course on quantum computing
* |p) € C2" = (C?)®", n: number of qubits.

e Quantum superpower: For certain unitary matrices U € C2"%2",
cost of quantum implementation of matrix-vector multiplication
U |¢) can be poly(n). (Potential) exponential speedup.

Read the fine print:
e Input vector |¢y,) prepared using classical information.

e Run quantum algorithm: |¢ou) = Ut - - - Uy |tin).
Circuit depth: O(T)

e QOutput via measurement of e.g., a qubit: p = (Yout| P|%out)-
Outcome is a Bernoulli random variable ~ Bern(p).
Can also estimate p via repetition.



Criteria for Quantum Advantage?

Useful; Quantumly ; Classically hard
° quantum input cost
. quantum running cost

° quantum output cost



Shor’s algorithm for prime number factorization

Useful: RSA cryptosystem

Input: N € N with promise N = p - q. number of bits n = log N

Output: Prime numbers p, g.

Quantum running cost': O (n?).

Best available classically cost?: O (exp {cn%D

1(Shor, FOCS 1994; SIAM J. Comput. 1997)
2General number field sieve, see e.g., (Lenstra and Lenstra, 1993)

Peter Shor



Unitary dynamics / Hamiltonian simulation

(1)) = e M |p(0)),  |¥(0)) € CZ".  Richard Feynman

Useful: Dynamics of quantum many-body systems.
Feynman’s original vision.

Input state: Often simple initial state (such as product state)

Quantum running cost': poly(n)

Output: Measure (¢(1)|O|y (1))

Empirically challenging for classical simulation beyond 1D?

1(Lloyd, Science, 1996) and numerous works
2This question is constantly being re-examined see e.g., (Angrisani et al, arXiv:2409.01706)



Scientific Computation: Numerical tasks

Linear systems of equations Ax = b

Matrix function x = A=Pb

Differential equations v/(t) = —Au

¢ Eigenvalue problems Au = \u

How to express these non-unitary processes?



Scientific Computation: Applications

High dimensional problems (R, d >> 3)

e Quantum many body system: (Schrédinger equation, Dirac
equation, Lindblad equation)

e Control theory, game theory (Hamilton-Jacobi equation)

e Probability theory, sampling (Fokker-Planck equation)

Low dimensional problems (R?, d < 3)

¢ Fluid dynamics (Navier-Stokes equation)

e Electromagnetism (Maxwell equation, Helmholtz equation)

* Approximate models for high dimensional problems (Kohn-Sham
density functional theory, Mean-field games)

Which one(s) hold promise for quantum advantage?



S
Quantum advantage hierarchy (as of now)

Shor’s algorithm (for
prime factorization)

Hamiltonian simulation
i%u(t) = H(t)u(t), H(t) is Hermitian

Existing evidence of

quantum advantage
Unitary quantum

processes
1 Open quantum dynamics,
Non-unitary quantum ground state/energy, Gibbs state
processes preparation, Green’s function
v Linear systems of equations,

ODE, PDE, SDE, optimization,

Classical processes ; ) !
optimal control, machine learning

A 4

Potential range of scientific applications



Quantum advantage hierarchy (as of now)

Shor’s algorithm (for
prime factorization)

Hamiltonian simulation
d
/Eu(t) = H(t)u(t), H(t) is Hermitian

Existing evidence of
quantum advantage

Open quantum dynamics,
v o ground state/energy, Gibbs state
preparation, Green’s function

Linear systems of equations,
ODE, PDE, SDE, optimization,
optimal control, machine learning

Potential range of scientific applications



Quantum advantage hierarchy (as of now)

Level | Input Output Running | Classical Examples
Cost  Cost Cost Cost

| Provably Prime number factorization
expensive

Il Empirically | Hamiltonian simulation
expensive

1l ? ? Empirically | Ground state energy estimation,
expensive | thermal state preparation, Green’s
function, open quantum system dy-
namics

[\ ? ? ? ? Classical partial differential equa-
tions, stochastic differential equa-
tions, optimization problems, sam-
pling problems

Table: Examples of problems in the quantum advantage hierarchy and
existing amount of evidence justifying significant quantum speedups.



End-to-end complexities

Search

ar (]_V > quant-ph > arXiv:2310.03011

Quantum Physics

[Submitted on 4 Oct 2023]

Quantum algorithms: A survey of applications and end-to-end
complexities

Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, Andras Gilyén, Connor T.
Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica, Grant Salton, Samson Wang, Fernando G. S.
L. Brandao Cambridge Univ. Press (to be published)

SIAM NEWS APRIL 2024

Quantum Advantages and End-to-end
Complexity

By Lin Lin

https://sinews.siam.org/Details-Page/quantum-advantages-and-end-to-end-complexity
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Early fault tolerant quantum eigensolver
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Ground-state energy estimation problem

H |v0) = Xo |%0)

e Estimate the smallest eigenvalue A\ to precision e.
e Theoretically intractable in the worst case (QMA-hard).

e Main assumption: good initial state |¢):
Po =7 = [ {plvo) [* = Q(1).

* Focus on methods with performance guarantee. Can be
combined with e.g., VQE (prepare good initial state)



Shor’s algorithm (for
prime factorization)

Existing evidence of

quantum advantage Hamiltonian simulation

i%u(t) = H(t)u(t), H(t) is Hermitian
Open quantum dynamics,

ground state/energy, Gibbs state
preparation, Green’s function

Non-unitary quantum
processes

v Linear systems of equations,
ODE, PDE, SDE, optimization,

Classical processes optimal control, machine learning

»
»

Potential range of scientific applications

Given that classical computer can prepare a good initial state, is the
problem still classically hard?

(Lee et al, Nature Communications 14, 1952, 2023)



Quantum chemistry, classical heuristics, and quantum advantage
Garnet Kin-Lic Chan

We describe the problems of quantum chemistry, the intuition behind classical heuristic methods used to solve them, a
conjectured form of the classical complexity of quantum chemistry problems, and the subsequent opportunities for quantum
advantage. This article is written for both quantum chemists and quantum information theorists. In particular, we attempt to
summarize the domain of quantum chemistry problems as well as the chemical intuition that is applied to solve them within
concrete statements (such as a classical heuristic cost conjecture and a classification of different avenues for quantum
advantage) in the hope that this may stimulate future analysis.

(Chan, Spiers Memorial Lecture, arXiv:2407.11235) Garnet Chan



First near-optimal quantum eigensolver

Py (x) f(x)
_.._..__...,\\
—Oi—_-u _.bm
AO uw ;I'l X }10 u /11 X

* Efficient implementation of a filtering matrix function f(H — p).
Cost: O(e™ ") in the worst case (take A = ¢).

¢ Binary amplitude estimation for deciding ||f(H — i) |¢) || > /Po(1 — €') or
~ 1
If(H — ) |¢) || < €. Cost: O(pg ?). (Po = | (¢lvoo) [°)

* Binary search to refine u: Cost: O(loge™").
~ —1
e Total cost: O(e~'p, 2).

(L.-Tong, Near-optimal ground state preparation, Quantum 2020)



Towards early fault-tolerant quantum eigensolver

[LT20] uses the block encoding framework:

e Many ancillary qubits.

e [ ong circuit depth (preconstant).

Efficient quantum eigensolvers for early fault tolerant quantum
computer?



Early fault-tolerant (EFT) quantum computer

Be very frugal with quantum resource usage:

¢ Few ancillary qubits.
e Short circuit depth.
e Small number of repetitions.

* Proper error mitigation and correction strategies.

There is no universally accepted definition of an early fault-tolerant quantum computer.
See recent discussions: (Katabarwa, Gratsea, Caesura, Johnson, Early fault-tolerant quantum
computing, PRX Quantum 2024)



Single ancilla quantum phase estimation

Classical postprocessing

Outcome
Ze{+1+i}
)

|
0
1]

1)
[\

Evolution time ¢

Alexei Kitaev
Kitaev algorithm: py = 72 ~ 1.
Post-Kitaev type: (L., Tong, PRX Quantum 2022); (Dong-L.-Tong, PRX Quantum 2022); (Wan, Berta, Campbell, PRL 2022);

(Ding-L., PRX Quantum 2023); (Ding-L., Quantum, 2023); (Wang et al, Quantum 2023); (Ni, Li, Ying Ouantum’2023)
(Ding et al, Quantum 2024)...

Quantum Krylov subspace type: (Parrish, McMahon, 2019); (Stair, Huang, Evangelista, JCTC 2020); (Epperly,

; L.,
Nakatsukasa, SIMAX 2022); (Klymko et al, PRX Quantum 2022); (Shen et al, QCE 2023); (Li, Ni, Ying, PRA 2023);
(Ding, Epperly, L., Zhang, arXiv: 2404.03885, FOCS 2024)...

Experimental relevance: (Blunt et al, PRX Quantum 2023); (Kiss et al, arXiv:2405.03754)..



B
Workflow

Evolution ‘
time t,,

L | ]
Timax = maxt, : Maximal evolution time (circuit depth)

Tiotal = 2 tn : Total evolution time (total cost)



Dataset
Du={(t Z)N"0, theR, Zye{x1+i}
so that
EZp = (¢|exp(—itnH Zp e N = / e ™ p(x) dx.

* Choice of {t,} is important. Allow repetition. Tigu = ), th.

¢ Classical signal processing of noisy data
to estimate spectral density

x)= 3" pio(x - ).
)

Ground state energy: first peak of p(x). 2

p()




Choice of {t,}

Consider |¢) = |¢o) (or pp = 1)
D= {(t Z)IN"0, theR, Zye{x1+i}

so that |
EZ, = (¢|exp(—itaH) |p) = g itnho

e Uniform grid: t, = nr. N7 = ¢
Tiotal = O(e~2). Standard quantum limit

* Kitaev's algorithm: logarithmic grid: t, = 2"7, 2N7 = ¢,
Tt = O(e1). Heisenberg limit (saturates lower bound)

Early fault tolerant eigensolver with Heisenberg limited scaling?



- 2
First EFT eigensolver with Heisenberg scaling

* Randomized evolution time:
P(t, = j7)  j-th Fourier coefficient of Heaviside function

¢ Noisy approximation to the cumulative density function (CDF)
C(u) = [*. p(x) dx.

T Ve
0.75 1 r’w m
0.50 thM

— G(x)

|
0.00 wa, —-— CDF C(x)
-1.0 =05 0.0 0.5 1.0

e Works for any pg > 0. T = O(e'p,?)

(L.-Tong, Heisenberg-limited ground state energy estimation for early fault-tolerant
quantum computers, PRX Quantum 2022)



First EFT eigensolver with Heisenberg scaling
¢ Randomized evolution time:
P(t, = j7)  j-th Fourier coefficient of Heaviside function

¢ Noisy approximation to the cumulative density function (CDF)
C(n) = [*., p(x) dx.

1.00 " m i
0.75 WM'MW "

F'q.

M — G(x)
0.00 Y\" CDF C(x)

-1.0 =05 0.0 0.5 1.0

~ _1
e Can improve to near optimal complexity Tiom = (’)(e—1po 2) with
3 ancilla qubits

(Dong-L.-Tong, Ground state preparation and energy estimation on early fault-tolerant quantum
computers via quantum eigenvalue transformation of unitary matrices, PRX Quantum 2022)



Short-depth quantum eigensolver?

e Assume ||H|| < 1, so far, all algorithms require circuit depth

T
Tmax = max ity > —.
n €

e = 1073 gives Tmay ~ 3000.

* As pp — 1, can we design quantum eigensolvers with short
circuit depth while maintaining Heisenberg limited scaling?

Tmaxzfa o< 1.



First short-depth quantum eigensolver
e Quantum complex exponential least squares (QCELS)'

e Randomized evolution time: Truncated Gaussian distribution

2
__2 5
2
II‘:D(tn = t) x e Blinax 1 [_'YTmaxa'YTmax]7 Tmax = 27 5 = 0(1 - pO)
""""" QCELS (upper bound)
4 QEE type (lower bound)
v Hadamard

1 —p
(e} Tnm,\ =0 (i>

Ding-L., Even shorter quantum circuit for phase estimation on early fault-tolerant quantum
computers with applications to ground-state energy estimation, PRX Quantum 2023
See also (Ni-Li-Ying, Quantum 2023)(Ding-L., Quantum 2023).



Numerical results for QCELS
Transverse field Ising model (TFIM)

10!
—e- error of QCELS p_0=0.6
error of QPE p_0=0.6
A ~e- error of QCELS p_0=0.8
10° = +- error of QPE p_0=0.8
—— 0.06/T scaling
<. —— 6mT scaling
. e
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¥
¥ 10-2 w1y
NN
e .
3 D N
10 e es
e goe
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10t
—e— error of QCELS p_0=0.6
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-+ error of QPE p_0=0.8
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e Two order of magnitude reduction of T,ax

e Comparable (in fact, a bit smaller) Tiota-




Quantum Multiple Eigenvalue Gaussian filtered Search (QMEGS)

e Randomized evolution time: Truncated Gaussian distribution

2 5
Pty =t) x & Mol T qToads Tmax =2 8= 0(1 = po).
e Compute G(x) x |3, Z,e™*| at each grid point x. Find the

maximum pomt and block a neighborhood; and repeat

px)
i
Gaussian i i )
—_— [

convolution i i :
i )
“““““
“““““

Adom,o }Ldom,l Adom,o ldom,l

D pe e < G
j

(Ding, Li, L., Ni, Ying, Zhang, Quantum 2024, arXiv:2402.01013)



Quantum Multiple Eigenvalue Gaussian filtered Search (QMEGS)

Algorithms Properties Comments
Allow  Heisenberg No gap “Short”
Prail > 0 limit requirement  depth
QEEA [Som19] v X 4 X
ESPRIT [SHT22| ? X ? X
[DTO22] ? v v X poly(|D]) quantum cost
|LNY23, Theorem II1.5] v/ v/ v X
[LNY23, Theorem V.1| 7 v X v poly(|D|) quantum cost
“Constant” depth,
MM-QCELS [DL23b| v v X v log |D| quantum cost
large classical cost
. “Constant” depth,
QMEGS (this work) v v v v log [D| quantum cost
[ ]

Dominant modes Agom,m; M € D. Puit = . jcpe Pi-

® Prmin = MiNjep Pdom,i 2 Prail- GAP A 1= minjep jzi [Adom,i — Aj]
“Short” depth: Tmax = O(Puil/€)

“Constant” depth: Tax = O(Aloge™)



Numerical results for QMEGS

—¥— error of QPE

100 —o— error of ESPRIT
—4— error of MM-QCELS
10-Y - —*— error of QMEGS

error(e)

Trmax

error(e)

—¥— error of QPE

—e— error of ESPRIT
error of MM-QCELS
error of QMEGS

10* 10° 10° 107 10!
Tiotal

ESPRIT: Estimation of signal parameters via rotational invariance techniques.
See (Roy, Kailath, 1989). Used recently for quantum eigensolver (Shen et al, QCE 2023)
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Noisy super-resolution in classical signal processing



ESPRIT

One of the most widely used classical signal processing method’

ESPRIT -estimation of signal parameters via rotational invariance techniques

R Roy, T Kailath - IEEE Transactions on acoustics, speech, and ..., 1989 - ieeexplore.ieee.org

... In this paper, a new algorithm ( ESPRIT ) that dramatically reduces these computation and...
the signals are elements of the ESPRIT solution as well. ESPRIT is also manifestly more robust...

Y¢ Save U9 Cite Cited by 9180 Related articles  All 7 versions  Web of Science: 4721  Impc

e Uniform time grid: Dy = {(ty = 17, Z) N0, Tonax = maxn ty
¢ Noisy measurement:

Zy=EZy+nn=»_ pje”"™ + Noise.
)

Goal: Dominant mode estimation (Agom,m, Pdom,m), M € D.

Similar type algorithms: Prony, Matrix pencil, MUSIC..



38
Workflow

Evolution
time t,, = nt

) 7, € {+1+i}

V4

=] =]
Tmax = max t, : Maximal evolution time (circuit depth)

Ttotal = 2ntn : Total evolution time (total cost)



. .
Super-resolution of ESPRIT

Super resolution: Beyond Nyquist limit e = O (T,;.1).

max

Super resolution

Noise < poly(e)
l
Tinax ~ o(1/a

Not proper in quantum

A = max|2; = 4]

[Ankur Moitra, STOC, 2015] gap between eigenvalues
[Weilin Li, et al, IEEE Transactions on Information

Theory, 2020]

[M E Stroeks, New Journal of Physics, 2022]



.
Super-resolution of ESPRIT

max

Super resolution: Beyond Nyquist limit e = O (T,;.1).

Super resolution Central limit regime

. Noise~ 0(1)
Noise < poly(e)

I |

1
Tmax ~ 0(1/A) Tax ~ ?
T, ~—I
[Ankur Moitra, STOC, 2015] total 2

[Weilin Li, et al, IEEE Transactions on
Information Theory, 2020]
[M E Stroeks, New Journal of Physics, 2022]

[Weilin Li, et al, IEEE Transactions on
Information Theory, 2020]



.4
Noisy super-resolution of ESPRIT

Our recent work
Noise~ O(1)
|

Tnax ~ o(1/48) Tmax ~

) Ty ~—
—62/3 Optimal max " 2

1
Troral ~ 373!

e =0 <T3/2) Beyond Nyquist limit.

max

Match Cramér-Rao type lower bound and numerical results

® Tiota =0 (Trﬁax) =0 ( 4/3> Not Heisenberg limit scaling due to
uniform sampling.

(Ding, Epperly, L., Zhang, FOCS 2024, arXiv:2404.03885)
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Conclusion

e Recommend QMEGS' as early fault-tolerant eigensolver.

e Short Tax With a good initial state.
Tiota COMparable to most advanced quantum phase estimation?

e Overcome dependence on good initial state?
Ideas from quantum Markov Chain / Lindblad dynamics 3

(Ding, Li, L., Ni, Ying, Zhang, Quantum 2024, arXiv:2402.01013)
2(Berry at al, arXiv:2409.11748)
3(Ding, Chen, L., Phys. Rev. Research 2024, arXiv:2308.15676)



e [s jt fair to say that there has not been much progress in quantum
algorithms since Shor’s algorithm? — Sebastian Hassinger

¢ Reflection that Shor’s algorithm is still essentially the only Level |
application on the quantum advantage hierarchy!

¢ Find better ways to communicate with the public on what have
been achieved and what are achievable!
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Linear combination of Hamiltonian simulation (LCHS)

Express non-unitary dynamics (Level 1lI)
as Hamiltonian simulation problems (Level II)

Theorem (LCHS)

Let A= L + iH with Hermitian H, L and L = 0, then there exists a
kernel function f : C — C s.t.

_ f(k) _
At _ it(kL+H) gk
© r1-— /k d

An asymptotically near-optimal choice of f(k) is

1

"0 = preargtivar

B e (0,1).

(An, Liu, L.. Phys. Rev. Lett., 2023, arXiv: 2303.01029) (An, Childs, L., arXiv:2312.03916)



Complexity for solving differential equations
First algorithm to achieve optimal state preparation cost and
near-optimal matrix query complexity.

U'(t) = —-A(t)u(t), u(0) = up.

Query complexity

Method
A(t) Up
Truncated Dyson' | O (an (log (%))2) O (qaTlog (1))
Time-marching? 0 (qa®T?log (1)) 0(q)
Original LCHS? 0 (q?aT/e) 0(9)
Improved LCHS* | O (an (log (}))1“/‘8) 0(q)
|

[Berry, and Costa. arXiv:2212.03544]

2[Fang, L., and Tong. Quantum 2023, arXiv:2208.06941]
3[An, Liu, L.. PRL 2023, arXiv: 2303.01029]

4[An, Childs, L., arXiv:2312.03916]
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