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Time-dependent linear differential equations

du(t)
dt

= −A(t)u(t), A(t) ∈ CN×N ,

u(0) = |u0〉 .

• A(t) is a general time-dependent matrix.
If A(t) = iH(t): Hamiltonian simulation.

• For general A(t), quantum ODE solver approximately
implements T e−

∫ t
0 A(s)ds (or e−At when A(s) ≡ A)

• Application: Classical linear ODEs and PDEs, imaginary time
quantum evolution, non-Hermitian quantum physics...

• Can generalize to inhomogeneous case e.g., by Duhamel’s
principle (variation of constants)
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Setup

du(t)
dt

= −A(t)u(t), A(t) ∈ CN×N ,

u(0) = |u0〉 .

• Cartesian decomposition of A(t)

A(t) = L(t) + iH(t), L(t) =
A(t) + A(t)†

2
, H(t) =

A(t)− A(t)†

2i

• Assume L(t) � 0 for stability
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Linear combination of Hamiltonian simulation

Non-unitary evolution operator written as
a Linear Combination of Hamiltonian Simulation problems1.

Theorem (LCHS)
Suppose A(t) = L(t) + iH(t) and L(t) � 0, then

T e−
∫ t

0 A(s)ds =

∫
R

1
π(1 + k2)

Uk (t)dk .

Here Uk (t) are unitaries that solve the Schrödinger equation

dUk (t)
dt

= −i(kL(t) + H(t))Uk (t), U(0) = I.

1[An, Liu, Lin. Phys. Rev. Lett. (2023); 2303.01029]
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Special cases

Special cases used in [Zeng, Sun, and Yuan. 2109.15304; Huo, and Li, 2109.07807]
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Algorithms

LCHS identity + integral truncation (K = O(1/ε)) + quadrature

T e−
∫ t

0 A(s)ds ≈
∫ K

−K

1
π(1 + k2)

Uk (t)dk ≈
∑

j

cjUkj (t).

Flexible implementation:
• For Ukj (t): any Hamiltonian simulation algorithm

• Linear combination:
• Fully quantum: linear combination of unitaries (LCU) technique1

• Hybrid quantum classical: Importance sampling2,3,4

1[Childs, and Wiebe. Quantum Inf. Comput. (2012)]
2[Lin, and Tong. PRX Quantum (2022)]
3[Wan, Berta, and Campbell. Phys. Rev. Lett. (2022)]
4[Wang, McArdle, and Berta. arXiv:2302.01873 (2023)]
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Quantum implementation: LCU
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Hybrid implementation: Importance sampling

u(t) ≈
∑

j

cjUkj (t) |u0〉 =⇒ u(t)∗Ou(t) ≈
∑
j,j ′

c∗j cj ′ 〈u0|U†kj
(t)OUkj′

(t)|u0〉
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Comparison with QSVT

Solving (time-independent) differential equations is an eigenvalue
transformation instead of singular value transformation problem.

QSVT: Gilyen, Su, Low, Wiebe, 1806.01838
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Previous works on general linear differential equations

• (Berry, 1010.2745), Linear system approach.

• (Berry, Childs, Ostrander, Wang, 1701.03684),
time-independent, truncated Taylor series, linear system.

• (Childs, Liu, 1901.00961), Spectral method, linear system.

• (Berry, Costa, 2212.03544) Truncated Dyson, linear system.

• (Fang, Lin, Tong, 2208.06941) Time marching.

• (Jin, Liu, Yu, 2212.13969) Schrödingerization.

See Di Fang’s tutorial talk on Quantum algorithms for dynamics simulation, IPAM Program
Mathematical and Computational Challenges in Quantum Computing, Fall 2023
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Comparison with linear system approach
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Comparison

Method
Query complexity

A u0

Dyson 1 Õ
(

qαT log2 (1
ε

))
O
(
qαT log

(1
ε

))
LCHS Õ

(
q2αT/ε

)
O(q)

Table: Comparison between LCHS and the best linear system approach.
Here α = maxt ‖A(t)‖, q = ‖u0‖/‖u(T )‖.

• LCHS achieves optimal state preparation cost: lower bound is
Ω(q).

• LCHS is a first order method (query to A scales as O(1/ε)).

1Berry-Costa, arXiv:2212.03544 (2022)
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Drawback

T e−
∫ t

0 A(s)ds =

∫
R

1
π(1 + k2)

Uk (t)dk .

dUk (t)
dt

= −i(kL(t)+H(t))Uk (t), U(0) = I.

• Main drawback: only first-order
convergence (K = O(1/ε))

• Improved LCHS: better kernel
function

1
π(1 + k2)

→ f (k)

1− ik
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Why possible?

Change kernel:

e−(L+iH)t =

∫
R

f (k)

1− ik
e−i(kL+H)tdk

Only need L � 0. Scalar case with H = 0,

e−x =

∫
R

f (k)

1− ik
e−ikxdk , x ≥ 0.

• The same Fourier transform on the
positive real axis

• Flexibility on the negative real axis
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Theorem (Improved LCHS)
Suppose A(t) = L(t) + iH(t) and L(t) � 0, then

T e−
∫ t

0 A(s)ds =

∫
R

f (k)

1− ik
Uk (t)dk .

Here Uk (t) are unitaries that solve the Schrödinger equation

dUk (t)
dt

= −i(kL(t) + H(t))Uk (t), U(0) = I,

and f (z) is a function of z ∈ C, such that
1. (Analyticity) f (z) is analytic on the lower half plane
{z : Im(z) < 0} and continuous on {z : Im(z) ≤ 0},

2. (Decay) there exist α > 0,C > 0 such that |z|α|f (z)| ≤ C when
Im(z) ≤ 0,

3. (Normalization)
∫
R

f (k)
1−ik dk = 1.

[An, Childs, Lin. 2312.03916]
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Kernel functions

T e−
∫ t

0 A(s)ds =

∫
R

f (k)

1− ik
Uk (t)dk .

• Original LCHS:

f (z) =
1

π(1 + iz)

• Improved LCHS with near exponential decay e−c|z|β

f (z) =
1

Cβe(1+iz)β
, β ∈ (0,1)

• The asymptotic decay rate is near optimal (cannot reach e−c|z|).
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Complexity

Method
Query complexity

A(t) u0

Dyson1 Õ
(

qαT
(
log
(1
ε

))2
)

O
(
qαT log

(1
ε

))
Time-marching2 Õ

(
qα2T 2 log

(1
ε

))
O (q)

Original LCHS Õ
(
q2αT/ε

)
O(q)

Improved LCHS Õ
(

qαT
(
log
(1
ε

))1+1/β
)

O(q)

Table: Here α = maxt ‖A(t)‖, q = ‖u0‖/‖u(T )‖, and 0 < β < 1.

Optimal state preparation cost and near-optimal matrix complexity at
the same time!

1[Berry, and Costa. arXiv:2212.03544 (2022)]
2[Fang, Lin, and Tong. Quantum (2023)]
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Proof of the LCHS formula

OL(t) := e−(L+iH)t =

∫
R

f (k)

1− ik
e−i(kL+H)tdk =: OR(t).

Idea: to show that OL and OR satisfy the same ODE

dOL

dt
= −(L + iH)OL(t),

dOR

dt
= −(L + iH)OR(t) + P

∫
R

f (k)e−i(kL+H)tdk .

It suffices to show:

P
∫
R

f (k)e−i(kL+H)tdk = 0.

We use Cauchy’s integral theorem.
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Proof of the LCHS formula

∫ R

−R
f (k)e−i(kL+H)tdk

= −i
∫ iR

−iR
f (−iω)e−ωLt−iHtdω

= −i
∫
γC

f (−iω)e−ωLt−iHtdω

= −i

(∫ −π
2 +θ0

−π
2

+

∫ π
2

π
2−θ0

+

∫ π
2−θ0

−π
2 +θ0

)
· · · dθ

Suppose L � 0 and choose proper θ0, then all
the integrals vanish as R →∞, so we prove the
LCHS formula for L � 0.

Take the limit to prove for L � 0.
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Optimality of the kernel function

Theorem (Optimality)
Suppose f (z) is a function of z ∈ C, such that

1. (Analyticity) f (z) is analytic on the lower half plane
{z : Im(z) < 0} and continuous on {z : Im(z) ≤ 0},

2. (Boundedness) |f (z)| ≤ C̃ on {z : Im(z) ≤ 0},
3. (Exponential decay) for any z = k ∈ R, we have |f (k)| ≤ c̃e−c|k |.

Then f (z) = 0 for all z ∈ {z : Im(z) ≤ 0} (including all z ∈ R).

Proof techniques: Phragmén–Lindelöf principle (generalization of
maximum modulus principle)
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Optimality of the kernel function
Sketch of the proof:

1. Exponential decay on the real axis
=⇒ Exponential decay on the entire
lower half plane (by the
Phragmén–Lindelöf principle)

2. Consider the extended Fourier
transform on
w ∈ {−c/2 < Im(w) < c/2},

F (w) =

∫
R

f (k)e−iwkdk .

3. Prove that F (w) is analytic and
F (w) = 0 on w ∈ (0, c/2) =⇒
F (w) ≡ 0 (by the identity theorem)
and thus f (k) = 0 on real axis.

4. f (z) ≡ 0 for all z.
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Conclusion

• Any linear non-unitary dynamics can be represented as a linear
combination of unitary problems.

• LCHS can be implemented quantumly or in a hybrid fashion.

• The quantum improved LCHS algorithm is near-optimal for
general ODEs.

• Complexity improvement for time-independent problems and
Gibbs state preparation.
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Future work - direct extension

• Even better complexity via
• Better Hamiltonian simulation

• Better numerical quadrature: (Gaussian: K = O((log(1/ε))1/β))

min max
j
|kj | s.t.

∫
R

f (k)

1− ik
Uk (t)dk ≈

∑
j

cjUkj (t)

• Nonlinear non-unitary dynamics? General matrix functions?

• Different stability condition?
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