Linear combination of Hamiltonian simulation for non-unitary dynamics with optimal state preparation cost

Lin Lin

Department of Mathematics, UC Berkeley
Lawrence Berkeley National Laboratory
Challenge Institute for Quantum Computation

QIP 24, Taipei, January, 2024

Joint work with

Dong An
(Maryland, Hartree fellow)

Andrew Childs
(Maryland)

Jin-Peng Liu (Simons quantum fellow -> Tsinghua)

An, Liu, Lin. Linear combination of Hamiltonian simulation for nonunitary dynamics with optimal state preparation cost. Phys. Rev. Lett. 131, 150603 (2023)
An, Childs, Lin. Quantum algorithm for linear non-unitary dynamics with near-optimal dependence on all parameters. arXiv:2312.03916

Outline

Linear combination of Hamiltonian simulation (LCHS)

Improved LCHS and near-optimal dependence on all parameters

Summary

Outline

Linear combination of Hamiltonian simulation (LCHS)

Improved LCHS and near-optimal dependence on all parameters

Summary

Time-dependent linear differential equations

$$
\begin{aligned}
\frac{d u(t)}{d t} & =-A(t) u(t), \quad A(t) \in \mathbb{C}^{N \times N} \\
u(0) & =\left|u_{0}\right\rangle
\end{aligned}
$$

- $A(t)$ is a general time-dependent matrix.

If $A(t)=i H(t)$: Hamiltonian simulation.

Time-dependent linear differential equations

$$
\begin{aligned}
\frac{d u(t)}{d t} & =-A(t) u(t), \quad A(t) \in \mathbb{C}^{N \times N}, \\
u(0) & =\left|u_{0}\right\rangle .
\end{aligned}
$$

- $A(t)$ is a general time-dependent matrix.

If $A(t)=i H(t)$: Hamiltonian simulation.

- For general $A(t)$, quantum ODE solver approximately implements $\mathcal{T} e^{-\int_{0}^{t} A(s) d s}$ (or $e^{-A t}$ when $A(s) \equiv A$)

Time-dependent linear differential equations

$$
\begin{aligned}
\frac{d u(t)}{d t} & =-A(t) u(t), \quad A(t) \in \mathbb{C}^{N \times N} \\
u(0) & =\left|u_{0}\right\rangle
\end{aligned}
$$

- $A(t)$ is a general time-dependent matrix.

If $A(t)=i H(t)$: Hamiltonian simulation.

- For general $A(t)$, quantum ODE solver approximately implements $\mathcal{T} e^{-\int_{0}^{t} A(s) d s}$ (or $e^{-A t}$ when $A(s) \equiv A$)
- Application: Classical linear ODEs and PDEs, imaginary time quantum evolution, non-Hermitian quantum physics...

Time-dependent linear differential equations

$$
\begin{aligned}
\frac{d u(t)}{d t} & =-A(t) u(t), \quad A(t) \in \mathbb{C}^{N \times N}, \\
u(0) & =\left|u_{0}\right\rangle .
\end{aligned}
$$

- $A(t)$ is a general time-dependent matrix. If $A(t)=i H(t)$: Hamiltonian simulation.
- For general $A(t)$, quantum ODE solver approximately implements $\mathcal{T} e^{-\int_{0}^{t} A(s) d s}$ (or $e^{-A t}$ when $A(s) \equiv A$)
- Application: Classical linear ODEs and PDEs, imaginary time quantum evolution, non-Hermitian quantum physics...
- Can generalize to inhomogeneous case e.g., by Duhamel's principle (variation of constants)

Setup

$$
\begin{aligned}
\frac{d u(t)}{d t} & =-A(t) u(t), \quad A(t) \in \mathbb{C}^{N \times N} \\
u(0) & =\left|u_{0}\right\rangle
\end{aligned}
$$

- Cartesian decomposition of $A(t)$

$$
A(t)=L(t)+i H(t), \quad L(t)=\frac{A(t)+A(t)^{\dagger}}{2}, \quad H(t)=\frac{A(t)-A(t)^{\dagger}}{2 i}
$$

- Assume $L(t) \succeq 0$ for stability

Linear combination of Hamiltonian simulation

Non-unitary evolution operator written as
a Linear Combination of Hamiltonian Simulation problems ${ }^{1}$.
Theorem (LCHS)
Suppose $A(t)=L(t)+i H(t)$ and $L(t) \succeq 0$, then

$$
\mathcal{T} e^{-\int_{0}^{t} A(s) d s}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} U_{k}(t) d k
$$

Here $U_{k}(t)$ are unitaries that solve the Schrödinger equation

$$
\frac{d U_{k}(t)}{d t}=-i(k L(t)+H(t)) U_{k}(t), \quad U(0)=I
$$

${ }^{1}$ [An, Liu, Lin. Phys. Rev. Lett. (2023); 2303.01029]

Special cases

$$
e^{-A t}=e^{-(L+i H) t}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} e^{-i(k L+H) t} d k
$$

Only H (the anti-Hermitian part)

$$
e^{-i H t}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} e^{-i H t} d k
$$

Proof: $\frac{1}{\pi\left(1+k^{2}\right)}$ is the Cauchy probability distribution function

Only L (the Hermitian part)

$$
e^{-L t}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} e^{-i k L t} d k
$$

Proof: the Fourier transform of $\frac{1}{\pi\left(1+k^{2}\right)}$ is $e^{-|x|}$

Special cases used in [Zeng, Sun, and Yuan. 2109.15304; Huo, and Li, 2109.07807]

Algorithms

LCHS identity + integral truncation $(K=\mathcal{O}(1 / \epsilon))+$ quadrature

$$
\mathcal{T} e^{-\int_{0}^{t} A(s) d s} \approx \int_{-K}^{K} \frac{1}{\pi\left(1+k^{2}\right)} U_{k}(t) d k \approx \sum_{j} c_{j} U_{k_{j}}(t)
$$

Algorithms

LCHS identity + integral truncation $(K=\mathcal{O}(1 / \epsilon))+$ quadrature

$$
\mathcal{T} e^{-\int_{0}^{t} A(s) d s} \approx \int_{-K}^{K} \frac{1}{\pi\left(1+k^{2}\right)} U_{k}(t) d k \approx \sum_{j} c_{j} U_{k_{j}}(t)
$$

Flexible implementation:

- For $U_{k_{j}}(t)$: any Hamiltonian simulation algorithm
- Linear combination:
- Fully quantum: linear combination of unitaries (LCU) technique ${ }^{1}$
- Hybrid quantum classical: Importance sampling ${ }^{2,3,4}$
${ }^{1}$ [Childs, and Wiebe. Quantum Inf. Comput. (2012)]
${ }^{2}$ [Lin, and Tong. PRX Quantum (2022)]
${ }^{3}$ [Wan, Berta, and Campbell. Phys. Rev. Lett. (2022)]
${ }^{4}$ [Wang, McArdle, and Berta. arXiv:2302.01873 (2023)]

Quantum implementation: LCU

A toy example: computing $\frac{1}{2}\left(U_{0}+U_{1}\right)\left|u_{0}\right\rangle$

$$
\begin{aligned}
& |0\rangle-H a d \\
& \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\left|u_{0}\right\rangle \\
& \frac{1}{\sqrt{2}}\left(\left|u_{0}\right\rangle U_{0}\left|u_{0}\right\rangle+|1\rangle U_{1}\left|u_{0}\right\rangle\right) \\
& \left.\frac{1}{2}|0\rangle\left(U_{0}+U_{1}\right)\left|u_{0}\right\rangle+\frac{1}{2}|1\rangle\left(U_{0}-U_{1}\right)\left|u_{0}\right\rangle\right)
\end{aligned}
$$

General: computing $\sum_{j} c_{j} U_{k_{j}}(t)$

Prepare Oracle $O_{p}:|0\rangle \rightarrow \frac{1}{\sqrt{\|c\|_{1}}} \sum_{j} \sqrt{c_{j}}|j\rangle$
Select Oracle $O_{s}=\sum_{j}|j\rangle\langle j| \otimes U_{k_{j}}(t)$

$$
\text { Had }=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \begin{cases}|0\rangle & \rightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
|1\rangle & \rightarrow \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\end{cases}
$$

Hybrid implementation: Importance sampling

$$
u(t) \approx \sum_{j} c_{j} U_{k_{j}}(t)\left|u_{0}\right\rangle \Longrightarrow u(t)^{*} O u(t) \approx \sum_{j, j^{\prime}} c_{j}^{*} c_{j^{\prime}}\left\langle u_{0}\right| U_{k_{j}}^{\dagger}(t) O U_{k_{j^{\prime}}}(t)\left|u_{0}\right\rangle
$$

Classical
Quantum
$\rightarrow \xrightarrow[-]{-\square} \square o_{1}=\left\langle u_{0}\right| U_{k_{j_{1}}}^{\dagger}(t) O U_{k_{j_{1}^{\prime}}}(t)\left|u_{0}\right\rangle$
Sample (j, j^{\prime}) with
probability $\propto\left|c_{j}^{*} c_{j^{\prime}}\right|$

$$
\begin{aligned}
& -\rightarrow o_{2}=\left\langle u_{0}\right| U_{k_{j_{2}}}^{\dagger}(t) O U_{k_{j_{2}^{\prime}}}(t)\left|u_{0}\right\rangle \\
& \\
& \rightarrow o_{3}=\left\langle u_{0}\right| U_{k_{j_{3}}}^{\dagger}(t) O U_{k_{j_{3}^{\prime}}}(t)\left|u_{0}\right\rangle
\end{aligned}
$$

Comparison with QSVT

Solving (time-independent) differential equations is an eigenvalue transformation instead of singular value transformation problem.

LCHS vs Quantum singular value transformation (QSVT)

Previous works on general linear differential equations

- (Berry, 1010.2745), Linear system approach.
- (Berry, Childs, Ostrander, Wang, 1701.03684), time-independent, truncated Taylor series, linear system.
- (Childs, Liu, 1901.00961), Spectral method, linear system.
- (Berry, Costa, 2212.03544) Truncated Dyson, linear system.
- (Fang, Lin, Tong, 2208.06941) Time marching.
- (Jin, Liu, Yu, 2212.13969) Schrödingerization.

See Di Fang's tutorial talk on Quantum algorithms for dynamics simulation, IPAM Program Mathematical and Computational Challenges in Quantum Computing, Fall 2023

Comparison with linear system approach

LCHS vs other quantum ODE algorithms

Comparison

Method	Query complexity	
	A	u_{0}
Dyson 1	$\widetilde{\mathcal{O}}\left(q \alpha T \log ^{2}\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(q \alpha T \log \left(\frac{1}{\epsilon}\right)\right)$
LCHS	$\widetilde{\mathcal{O}}\left(q^{2} \alpha T / \epsilon\right)$	$\mathcal{O}(q)$

Table: Comparison between LCHS and the best linear system approach. Here $\alpha=\max _{t}\|A(t)\|, q=\left\|u_{0}\right\| /\|u(T)\|$.

- LCHS achieves optimal state preparation cost: lower bound is $\Omega(q)$.
- LCHS is a first order method (query to A scales as $\mathcal{O}(1 / \varepsilon)$).
${ }^{1}$ Berry-Costa, arXiv:2212.03544 (2022)

Drawback

$$
\mathcal{T} e^{-\int_{0}^{t} A(s) d s}=\int_{\mathbb{R}} \frac{1}{\pi\left(1+k^{2}\right)} U_{k}(t) d k
$$

- Main drawback: only first-order convergence $(K=\mathcal{O}(1 / \epsilon))$
- Improved LCHS: better kernel function

$$
\frac{1}{\pi\left(1+k^{2}\right)} \rightarrow \frac{f(k)}{1-i k}
$$

LCHS formula

$$
\frac{d U_{k}(t)}{d t}=-i(k L(t)+H(t)) U_{k}(t), \quad U(0)=I
$$

Slowly decaying kernel (quadratically)

Large K and Hamiltonian spectral norm

Hamiltonian simulation
algorithms
High cost in matrix oracles

Outline

Linear combination of Hamiltonian simulation (LCHS)

Improved LCHS and near-optimal dependence on all parameters

Summary

Why possible?

Change kernel:

$$
e^{-(L+i H) t}=\int_{\mathbb{R}} \frac{f(k)}{1-i k} e^{-i(k L+H) t} d k
$$

Only need $L \succeq 0$. Scalar case with $H=0$,

$$
e^{-x}=\int_{\mathbb{R}} \frac{f(k)}{1-i k} e^{-i k x} d k, \quad x \geq 0
$$

- The same Fourier transform on the positive real axis
- Flexibility on the negative real axis

Theorem (Improved LCHS)

Suppose $A(t)=L(t)+i H(t)$ and $L(t) \succeq 0$, then

$$
\mathcal{T} e^{-\int_{0}^{t} A(s) d s}=\int_{\mathbb{R}} \frac{f(k)}{1-i k} U_{k}(t) d k .
$$

Here $U_{k}(t)$ are unitaries that solve the Schrödinger equation

$$
\frac{d U_{k}(t)}{d t}=-i(k L(t)+H(t)) U_{k}(t), \quad U(0)=I,
$$

and $f(z)$ is a function of $z \in \mathbb{C}$, such that

1. (Analyticity) $f(z)$ is analytic on the lower half plane $\{z: \operatorname{Im}(z)<0\}$ and continuous on $\{z: \operatorname{Im}(z) \leq 0\}$,
2. (Decay) there exist $\alpha>0, C>0$ such that $|z|^{\alpha}|f(z)| \leq C$ when $\operatorname{Im}(z) \leq 0$,
3. (Normalization) $\int_{\mathbb{R}} \frac{f(k)}{1-i k} d k=1$.

Kernel functions

$$
\mathcal{T} e^{-\int_{0}^{t} A(s) d s}=\int_{\mathbb{R}} \frac{f(k)}{1-i k} U_{k}(t) d k
$$

- Original LCHS:

$$
f(z)=\frac{1}{\pi(1+i z)}
$$

- Improved LCHS with near exponential decay $e^{-c|z|^{\beta}}$

$$
f(z)=\frac{1}{C_{\beta} e^{(1+i z)^{\beta}}}, \quad \beta \in(0,1)
$$

- The asymptotic decay rate is near optimal (cannot reach $e^{-c|z|}$).

Complexity

Method	Query complexity	
	$A(t)$	u_{0}
Dyson 1	$\widetilde{\mathcal{O}}\left(q \alpha T\left(\log \left(\frac{1}{\epsilon}\right)\right)^{2}\right)$	$\mathcal{O}\left(q \alpha T \log \left(\frac{1}{\epsilon}\right)\right)$
Time-marching 2	$\widetilde{\mathcal{O}}\left(q \alpha^{2} T^{2} \log \left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}(q)$
Original LCHS	$\widetilde{\mathcal{O}}\left(q^{2} \alpha T / \epsilon\right)$	$\mathcal{O}(q)$
Improved LCHS	$\widetilde{\mathcal{O}}\left(q \alpha T\left(\log \left(\frac{1}{\epsilon}\right)\right)^{1+1 / \beta}\right)$	$\mathcal{O}(q)$

Table: Here $\alpha=\max _{t}\|A(t)\|, q=\left\|u_{0}\right\| /\|u(T)\|$, and $0<\beta<1$.
Optimal state preparation cost and near-optimal matrix complexity at the same time!

[^0]
Proof of the LCHS formula

$$
O_{L}(t):=e^{-(L+i H) t}=\int_{\mathbb{R}} \frac{f(k)}{1-i k} e^{-i(k L+H) t} d k=: O_{R}(t)
$$

Idea: to show that O_{L} and O_{R} satisfy the same ODE

$$
\begin{aligned}
\frac{d O_{L}}{d t} & =-(L+i H) O_{L}(t) \\
\frac{d O_{R}}{d t} & =-(L+i H) O_{R}(t)+\mathcal{P} \int_{\mathbb{R}} f(k) e^{-i(k L+H) t} d k
\end{aligned}
$$

It suffices to show:

$$
\mathcal{P} \int_{\mathbb{R}} f(k) e^{-i(k L+H) t} d k=0
$$

We use Cauchy's integral theorem.

Proof of the LCHS formula

$$
\begin{aligned}
& \int_{-R}^{R} f(k) e^{-i(k L+H) t} d k \\
= & -i \int_{-i R}^{i R} f(-i \omega) e^{-\omega L t-i H t} d \omega \\
= & -i \int_{\gamma_{C}} f(-i \omega) e^{-\omega L t-i H t} d \omega \\
= & -i\left(\int_{-\frac{\pi}{2}}^{-\frac{\pi}{2}+\theta_{0}}+\int_{\frac{\pi}{2}-\theta_{0}}^{\frac{\pi}{2}}+\int_{-\frac{\pi}{2}+\theta_{0}}^{\frac{\pi}{2}-\theta_{0}}\right) \cdots d \theta
\end{aligned}
$$

Suppose $L \succ 0$ and choose proper θ_{0}, then all
 the integrals vanish as $R \rightarrow \infty$, so we prove the LCHS formula for $L \succ 0$.

Take the limit to prove for $L \succeq 0$.

Optimality of the kernel function

Theorem (Optimality)
Suppose $f(z)$ is a function of $z \in \mathbb{C}$, such that

1. (Analyticity) $f(z)$ is analytic on the lower half plane $\{z: \operatorname{Im}(z)<0\}$ and continuous on $\{z: \operatorname{Im}(z) \leq 0\}$,
2. (Boundedness) $|f(z)| \leq \tilde{C}$ on $\{z: \operatorname{lm}(z) \leq 0\}$,
3. (Exponential decay) for any $z=k \in \mathbb{R}$, we have $|f(k)| \leq \widetilde{c} e^{-c|k|}$.

Then $f(z)=0$ for all $z \in\{z: \operatorname{lm}(z) \leq 0\}$ (including all $z \in \mathbb{R}$).

Proof techniques: Phragmén-Lindelöf principle (generalization of maximum modulus principle)

Optimality of the kernel function

Sketch of the proof:

1. Exponential decay on the real axis
\Longrightarrow Exponential decay on the entire
lower half plane (by the
Phragmén-Lindelöf principle)
2. Consider the extended Fourier transform on
$w \in\{-c / 2<\operatorname{Im}(w)<c / 2\}$,

$$
F(w)=\int_{\mathbb{R}} f(k) e^{-i w k} d k
$$

3. Prove that $F(w)$ is analytic and
$F(w)=0$ on $w \in(0, c / 2) \Longrightarrow$
$F(w) \equiv 0$ (by the identity theorem) and thus $f(k)=0$ on real axis.
4. $f(z) \equiv 0$ for all z.

Outline

Linear combination of Hamiltonian simulation (LCHS)

Improved LCHS and near-optimal dependence on all parameters

Summary

Conclusion

- Any linear non-unitary dynamics can be represented as a linear combination of unitary problems.
- LCHS can be implemented quantumly or in a hybrid fashion.
- The quantum improved LCHS algorithm is near-optimal for general ODEs.
- Complexity improvement for time-independent problems and Gibbs state preparation.

Future work - direct extension

- Even better complexity via
- Better Hamiltonian simulation
- Better numerical quadrature: (Gaussian: $\left.K=\mathcal{O}\left((\log (1 / \epsilon))^{1 / \beta}\right)\right)$

$$
\min \max _{j}\left|k_{j}\right| \quad \text { s.t. } \quad \int_{\mathbb{R}} \frac{f(k)}{1-i k} U_{k}(t) d k \approx \sum_{j} c_{j} U_{k_{j}}(t)
$$

- Nonlinear non-unitary dynamics? General matrix functions?
- Different stability condition?

Acknowledgment

Thank you for your attention!

Lin Lin
https://math.berkeley.edu/~linlin/

(1)
Google AI
Quantum
SIMONS

[^0]: ${ }^{1}$ [Berry, and Costa. arXiv:2212.03544 (2022)]
 ${ }^{2}$ [Fang, Lin, and Tong. Quantum (2023)]

