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Twisted bilayer graphene as a correlated insulator

• Flat bands predicted by Bistrizter-MacDonald in 2010, which
shows a simple metallic phase.

• Experiments in 2018 showed a correlated insulator phase (at
integer filling)

• Nature of electron correlation?

(Bistrizter-MacDonald PNAS 2010), (Cao et al, Nature 2018)
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Exact ground states of FlatBand Interacting (FBI)
Hamiltonian

• At chiral limit, single Slater determinants can be exact ground
states of many-body Hamiltonian at integer-filling1

• TBG is strongly interacting (beyond non-interacting)
but not strongly correlated (beyond Hartree-Fock)?2

1(Kang, Vafek, PRL 2019), (Bultinck et al, PRX 2020),
(Liu et al, PRR 2021), (Bernevig et al, PRB 2021)

2(Soejima et al PRB 2020), (Faulstich et al PRB 2023)
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Local Density of States (LDOS) of single valley ground
state

• Sublattice polarized. “Valley hall” state in the two-valley model.

• “Ferromagnetic” Slater determinant.

• Flatband interacting Hamiltonian: smears out microscopic
details. Only sublattice (σ) indices in each moire cell will matter
later (defines the “ferromagnetism”)
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Electron density of valley hall ground state

Acknowledgement: Raehyun Kim and Woochang Kim for ab initio simulation
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Motivating questions

• Ground state is a single Slater determinant:
Very counter-intuitive viewed from Hubbard model.

• Algebraic structure underlying the exact ground state result?

• Generalization (multiple flatbands, multiple layers)?

• Unique ground states?
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Chiral Hamiltonian for TBG-2

• Chiral BM Hamiltonian1

H(α) =

[
0 D(α)†

D(α) 0

]

with D(α) =

[
Dx1 + iDx2 αU(r)
αU(−r) Dx1 + iDx2

]
• Choice of U(r):

U0(r) =
2∑

i=0

ωie−iqi ·r (ω = e2πi/3)

1(Tarnopolsky, Kruchkov, Vishwanath, PRL 2019)
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Magic angle and multiplicity of TBG-2
M = multiplicity of magic angle α. * means M = 1. #|N | = 2M
N = {−1,1} flat bands indices. For U0(r), #|N | = 2. (TBG-2)

(Becker, Embree, Wittsten, Zworski, Prob. Math. Phys. 2022)
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Chiral Hamiltonian for TBG-4

• Chiral BM Hamiltonian

H(α) =

[
0 D(α)†

D(α) 0

]

with D(α) =

[
Dx1 + iDx2 αU(r)
αU(−r) Dx1 + iDx2

]
• Alternate choice of U(r):

U7/8(r) =
1√
2

(
2∑

i=0

ωie−iqi ·r −
2∑

i=0

ωie2iqi ·r

)
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Magic angle and multiplicity of TBG-4
M = multiplicity of magic angle α. * means M = 1. #|N | = 2M
N = {−2,−1,1,2} flat bands indices. For U7/8(r), #|N | = 4
(TBG-4).
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Chiral Hamiltonian for Trilayer Graphene

• For equal twist angles case same form as TBG, but D(α)
replaced with

D(α) =

Dx1 + iDx2 αU(r) 0
αU(−r) Dx1 + iDx2 αU(r)

0 αU(−r) Dx1 + iDx2


• Can have either 4 or 8 flat bands (we focus on U = U0(r) ,

#|N | = 4).
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Magic angle and multiplicity of eTTG-4

M = multiplicity of magic angle α. * means M = 1. #|N | = 2M
N = {−2,−1,1,2} flat bands indices. For U0(r), #|N | = 4 (eTTG-4).
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Total Density of States for Hartree-Fock ground state
in TBG-2
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Total Density of States for Hartree-Fock ground state
in TBG-4
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Total Density of States for Hartree-Fock ground state
in eTTG-4
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Second quantization

Γ

Θ

ΓmBZ

K+

K− ΓmBZ

K+

K−

Ω∗

∈K

• Ω∗: moire Brillouin zone. K: discretization of Ω∗. Single valley

• At each k ∈ K, diagonalize BM Hamiltonian HBM(k), obtain
flatbands {unk},n ∈ N = {±1, . . . ,±M}.

• f̂ †nk, f̂nk: creation, annihilation operators associated with unk.
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Flatband interacting (FBI) Hamiltonian

ĤFBI :=
1

Nk|Ω|
∑

q′∈K+Γ∗

V̂ (q′)ρ̂(q′)ρ̂(−q′)

ρ̂(q′) :=
∑
k∈K

∑
m,n∈N

[Λk(q′)]mn

(
f̂ †mk f̂n(k+q′) −

1
2
δmn

∑
G

δq′,G

)
.

• V̂ (q′): Fourier transform of the (screened) Coulomb kernel.

• V̂ (q′) ≥ 0,∀q′ ∈ R2.

• Can show ρ̂(−q′) = ρ̂(q′)† ⇒ ĤFBI is positive semidefinite.
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Form Factor

• Normalization of unk(r;σ, j), sublattice (σ) and layer (j)∫
Ω

∑
σ,j

|unk(r;σ, j)|2dr = 1.

• ûnk(G;σ, j): Fourier coefficients, G ∈ Γ∗ reciprocal lattice vector

ûnk(G;σ, j) :=

∫
Ω

e−iG·runk(r;σ, j)dr.

• Form factor: for k ∈ K, q′ ∈ R2

[Λk(q′)]mn :=
1
|Ω|

∑
G′∈Γ∗

∑
σ,j

ûmk(G′;σ, j)ûn(k+q′)(G′;σ, j).
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Symmetries

• Sublattice symmetry Z

Zu(r;σ, j) = σu(r;σ, j)

• C2zT symmetry Q

Qu(r;σ, j) = u(−r;−σ, j)

• Layer symmetry L

Lu(r;σ, j) = (−1)ju(−r;σ,N − j)
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Symmetries and gauge fixing

• Q (C2zT ) symmetry: gauge fixing (rotate unk)

u(−n)k(r;σ, j) = Qunk(r;σ, j) = unk(−r;−σ, j), n ∈ N .

• From Z (sublattice) and Q (C2zT ) symmetries

Λk(q′) =

[
Ak(q′)

Ak(q′)

]
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Ferromagnetic Slater Determinants

Ferromagnetic Slater determinant (FSD) states fully fill one of the two
chiral sectors (half filling)

|Ψ+〉 =
∏

k

∏
n>0

f̂ †nk |vac〉 |Ψ−〉 =
∏

k

∏
n<0

f̂ †nk |vac〉

Theorem (Informal)
With Z,Q,L symmetries, FSD states are many-body ground states of
the FBI Hamiltonian.

There is a positive charge gap⇒ Correlated insulator phase.

Extension of exact ground state argument (Kang, Vafek, PRL 2019), (Bultinck et
al, PRX 2020) (Liu et al, PRR 2021), (Bernevig et al, PRB 2021), and charge gap
argument (Bernevig et al, PRB 2021) for TBG-2.
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Main result

Theorem (Informal)
Under additional non-degeneracy assumptions, the FSD states are
the only translational invariant Slater determinant ground states at
half filling.
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Frustration-free Hamiltonian

Ĥ =
∑

I

ĤI , ĤI � 0

• Ĥ is frustration-free if ∃ |Ψ〉 s.t. ĤI |Ψ〉 = 0 for all I.

• Determining whether Ĥ is frustration-free is known as the
quantum satisfiability (QSAT) problem.

• Usually ĤI is a local operator1.

• ĤICM is frustration-free and each ĤI is nonlocal.

1(Sattah et al PNAS 2016)
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FSD states are ground states

ĤFBI =
1

Nk|Ω|
∑

q′∈K+Γ∗

V̂ (q′)ρ̂(q′)ρ̂(−q′)

• ĤFBI positive semidefinite⇒ Find |Ψ〉 so that ∀q, ρ̂(−q′) |Ψ〉 = 0.

• For FSD states have

ρ̂(−q′) |ΨFSD〉 =
1
2

( ∑
G′∈Γ∗

δq′,G′

)(∑
k∈K

Im (Tr (Ak(q′)))

)
|ΨFSD〉

• L (layer) symmetry gives sum rule∑
k∈K

Im (Tr (Ak(G))) = 0, ∀G ∈ Γ∗.
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Translational invariance
• 1-RDM [P(k,k′)]nm = 〈Ψ|̂f †mk′ f̂nk|Ψ〉.

P =


P (k1,k1) P (k1,k2) · · · P

(
k1,kNk

)
P (k2,k2) P (k2,k2) · · · P

(
k2,kNk

)
...

...
. . .

...
P
(
kNk ,kNk

)
P
(
kNk ,k2

)
· · · P

(
kNk ,kNk

)


• Translational invariance

P =


P (k1,k1) 0 · · · 0

0 P (k2,k2) · · · 0
...

...
. . .

...
0 0 · · · P

(
kNk ,kNk

)


• If |Ψ〉 is a single Slater determinant: alternative characterization
P2(k,k) = P(k,k)
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Uniqueness (May, Flatiron)

Theorem (Informal)
Generically, FSD states are the only translational invariant Slater
determinant ground states of ĤFBI at half filling.
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Uniqueness

Theorem
Assume K is a sufficiently fine grid. If ∃k ∈ K,

1. (Finite energy penalty of local flip) for some G ∈ Γ∗,
Im Tr (Ak(G)) 6= 0

2. (No hidden invariant subspace) for all non-trivial orthogonal
projectors Π (i.e. Π 6= 0, I), there exists a G ∈ Γ∗ so that

‖(I − Π)Ak(G)Π‖ > 0

then FSD states are the only translational invariant Slater
determinant ground states of ĤFBI at half filling.
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Why non-degeneracy conditions? Two-valley model

Γ

Θ

ΓmBZ

K+
1

K−
1

For two-valley models, for all k ∈ Ω∗ and G ∈ Γ∗

• Im Tr (Ak(G)) = 0 (no energy penalty)

• Ak(G) are simultaneously block diagonalizable (invariant
subspace)

With spins, this gives U(4)× U(4) “hidden” symmetry1

1(Bultinck et al PRX 2020) (Bernevig et al, PRB 2021)
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Local Density of States (LDOS) of other possible
ground states in two valley model

• “Quantum hall” state. Not sublattice polarized.

• Many other competing states1

1(Hong, Soeijima, Zaletel, PRL 2022) (Nuckolls et al, Nature 2023)
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Concrete Examples of Main Result

• No hidden invariant subspace condition is difficult to check 1

• Conditions for two band and four band can be simplified.

• Explicit verification of non-degeneracy conditions using Jacobi θ
functions and Weierstrass ℘ functions for Twisted Bilayer
Graphene with 2 flat bands (TBG-2), Twisted Bilayer Graphene
with 4 flat bands (TBG-4), Equal Twist Angle Trilayer Graphene
with 4 flat bands (eTTG-4)

1(Al-Dweik et al, 2103.08316)
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Specialization to Two and Four Bands

Corollary (Two Band Case, e.g., TBG-2)
If |N | = 2, it is sufficient to check there exists a k ∈ K so that
• For some q′, Im Tr (Ak(q′)) 6= 0.

Corollary (Four Band Case, e.g., TBG-4, eTTG-4)
If |N | = 4, it is sufficient to check there exists a k ∈ K so that

1. For some q′, Im Tr (Ak(q′)) 6= 0,
2. (No simultaneous diagonalization) For some q′′,q′′′,

[Ak(q′′),Ak(q′′′)] 6= 0.
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Example: TBG-2
• Im(Ak(q′)) 6= 0 equiv. to ‖uk(r)‖ 6= ‖uk(−r)‖ for some r ∈ Ω.

uk(r) = u0(r)e
(k1+ik2)

2 (−i(1+ω)x1+(ω−1)x2)
θ(3(x1+ix2)

4πiω + k1+ik2√
3ω

)

θ
(

3(x1+ix2)
4πiω

)
• Below, log(‖uk(r)‖) for k = (0,0) (left) and k 6= (0,0) (right)
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Proof strategy of main result
• Hartree-Fock energy (no extra quadratic term)

EHF [P] = EH [P] + EF [P].

min
P

EHF [P] ≥ min
P

EH [P] + min
P

EF [P] ≥ 0.

• P needs to simultaneously minimize Hartree and Fock.
Minimize Fock energy requires
• Uniform filling: Tr[P(k)] = M for all k

• No intra-band rotations for the special k satisfying
non-degeneracy condition.

• Fine k mesh and continuity: no intra-band rotation for all k.

• Fixes ferromagnetic ground state (which minimizes Hartree).
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Open questions
• Strengthen assumptions to rule out translational symmetry

breaking? (solving a set of Sylvester equations)

• Uniqueness of many-body ground states?

• Two-valley model. Uniqueness up to U(4)× U(4) symmetry and
other integer fillings?

• TTG with non-equal twisting angle, helical TTG?

• Beyond chiral limit: Importance of material details and ab initio
modeling

• Is MATBG ever strongly correlated? (FQHE; Finite temperature;
Doping)
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Notational Setup

• N : number of layers

• N : set of flat bands

• Γ∗: reciprocal moiré lattice

• Ω, Ω∗: moiré unit cell and moiré Brillouin zone

• unk: periodic Bloch functions unk : Ω→ C2 × CN

• K: discrete set of momenta ⊆ Ω∗

• Nk: number of elements in K
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Discretization of the Brillouin Zone

• We discretize the Brillouin zone by fixing (nkx ,nky ) odd and
taking K to be the set:{(2i − nkx − 1

2nkx

)
g1 +

(2j − nky − 1
2nky

)
g2 : i ∈ [nkx ], j ∈ [nky ]

}
Under this definition 0 ∈ K and K = −K

• For technical reasons, must choose nkx ,nky to be sufficiently
large.
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Uniformly Filled States are Optimal

• Suppose you had two neighboring points k and k + q with
different fillings.
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Uniformly Filled States are Optimal

• Suppose you had two neighboring points k and k + q with
different fillings.

• Since k and k + q are close, overlap between k and k + q is
bounded away from zero.
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Uniformly Filled States are Optimal

• Suppose you had two neighboring points k and k + q with
different fillings.

• Since k and k + q are close, overlap between k and k + q is
bounded away from zero.

• Non-trival overlap + different filling implies exchange energy
must be smaller than true minimizer. Contradiction.
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Optimization over Local Rotations

• Proof is a fairly involved calculation, but key mechanism can be
understood with 2 bands.

• Can parameterize Hartree-Fock state by 1-body reduced density
matrices P(k):

P(k) =
1
2

I +
1
2

[
cos(θ(k)) sin(θ(k))eiφ(k)

sin(θ(k))e−iφ(k) − cos(θ(k))

]
• For simplicity, take φ(k) = 0 so P(k) is purely real.
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Optimization over Local Rotations

• Minimizing exchange energy leads to the expression

−|Ak(q′)|2 cos(θ(k)) cos(θ(k + q′))

− |Re (Ak(q′))|2 sin(θ(k)) sin(θ(k + q′))

• Under assumptions, Ak(q′) 6= Re (Ak(q′)) for some k,q′ → pick
cos(θ(k)) = 1 or cos(θ(k)) = −1 for all k.
• This gives the FSD states.

• For 2N-bands, proof involves parameterizing Gr(N,2N) and
performing similar calculations.
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