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Solve nature with nature

Figure. A superposition of
Feynmans

... If you want to make a simulation of nature (quantum many-body
problem), you'd better make it quantum mechanical, and by golly
it's a wonderful problem, because it doesn’t look so easy.

— Richard P Feynman (1981) 1st Conference on Physics and Com-
putation, MIT



Quantum computation meets public attention

Google, Nature 2019
Random circuit sampling
Theory: [Boixo et al, 2018]

USTC, Science 2020
Boson sampling.
Theory: [Aaronson—Arkhipov, 2011]
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e After about four decades, quantum supremacy has been reached: the
point where quantum computers can do things that classical computers
cannot, regardless of whether those tasks are useful.

® /s controlling large-scale quantum systems merely really, really hard, or
is it ridiculously hard? — John Preskill (2012)

e Quantum computer does anything useful? called quantum advantage.



What is a quantum computer (mathematically)

) e CN = (C?)®". N =2". n: number of qubits.
Normalization condition (v)[1)) = Zj’i_(f ‘z/)j‘2 = 1.

Quantum gate: unitary matrix U € CN*N. For some U,
application U |¢) is efficient: cost is O(polylog(N)).

Quantum algorithm: a series of large matrix-vector
multiplications: Uk - - - U; |¥). Then measure some qubits and
repeat M times for classical output.

Quantum cost (roughly): MKpolylog(N).

Exponential quantum advantage (EQA): if MK = O(polylog(N)),
and classical algorithm scales as O(poly(N)).



Quantum advantage in

scientific computing problems?



Quantum speedup

min log Cost(classical)

Quantum speedup = log Cost(quantum)

e Task with a system size n, classical cost is O(n“¢) and quantum
costis O(n“9). n — oo, quantum speedup is a¢/aq.

® Quadratic quantum speedup: ac/ag = 2
Cubic quantum speedup: a¢/aq = 3.

®* a¢ — 0o but ag remains bounded, quantum speedup is
superpolynomial.



Shor’s algorithm for prime factorization

e n=p-q(p.qgare prime humbers)

e Classical algorithm with best asymptotic
complexity:
General Number Field Sievze
3

O (exp [C(Iog n)%(log log N) D

® (Shor, SIAM J. Comput. 1997)
Quantum algorithm achieves polynomial Peter Shor

complexity O ((log n)?(log log n)(log log log n))

e Superpolynomial (but strictly, not exponential)
quantum speedup.



Classical cost

e |n principle, the classical cost should be minimized with respect
to all classical algorithms, including algorithms that exist today,
and those that will ever be developed in the future.

e Extremely challenging for the majority of scientific computing
problems.

e Content with an estimate of min Cost(classical) using theoretical
as well as empirical evidences based on existing classical

algorithms.



Quantum cost

® |nput cost, or the cost for preparing the input quantum state.
e Qutput cost, or the cost of quantum measurement.

e Running cost, or the cost of coherent quantum propagation.



Quantum advantage hierarchy (as of now)

Unitary quantum
processes
Existing evidence of
significant

quantum advantage

[l
Non-unitary quantum processes

v
Classical processes

Potential range of
scientific applications



Quantum advantage hierarchy (as of now)

Level | Input  Output Running | Classical Examples
Cost Cost Cost Cost

L v v v Provably Shor’s algorithm for prime number fac-
expensive torization

I v v v Empirically | Hamiltonian simulation
expensive

111 ? ? v Empirically | Ground state energy estimation, ther-
expensive mal state preparation, Green’s func-

tion, open quantum system dynamics
IV 7 ? 7 ? Classical partial differential equations,

stochastic differential equations, opti-
mization problems, sampling problems




My personal favorite towards quantum advantage
Level lll: Non-unitary quantum process

- Ground and excited state energy estimation

Hy = E

- Green’s function
Ax = Db

- Non-Hermitian quantum dynamics
d;u(t) = —Au(t) = —(iH + L)u(t)

- Lindblad dynamics
0ep(t) = L[p(t)]



Quantum advantage from open quantum
system simulation?

- Empirically challenging
- Rich potential for algorithms

- Interplay between open and closed quantum systems
(open boundary condition, thermal states, ground states)



Linear combination of Hamiltonian simulation (LCHS)

Express non-unitary dynamics (Level II)
as Hamiltonian simulation problems (Level I1)

Theorem
Suppose A(t) = L(t) + iH(t), then

; 1
— [~ A(s)ds

Here Uy (t) are unitaries that solve the Schrodinger equation

idUd"‘ft) = (kL(t) + H(t))Uk(t), U(0)=1.

[An, Liu, Lin, arXiv:2303.01029, Phys. Rev. Lett. in press]



Ground-state energy estimation problem

H |vo) = Ao |W0) - estimate \g with e-accuracy

e Hamiltonian evolution input model: Uy = e~'"" for some 7.
e A good initial state |¢) = U, |0™): pp = 72 = | (o|10) |2 = Q(1).

e Good initial state is a very strong assumption. But without it, the
problem is theoretically intractable in the worst case (QMA-hard).



Progresses for ground-state energy estimation

Maximal Total # ancilla Need | Input

runtime runtime qubits MQC? | model
QPE (high confidence) O(e ) O(e~1~472) O(polylog(v~'e=1)) | High | HE
QPE (1 ancilla) O(e~1472) O(e=144) o) No HE
Som19 (short depth) O O(c~4y~%) O(1) No HE
GTC19 O(e 3271 O(e 32,1 O(log(e 1)) High | HE
LT20* O(e 1471 O(e 151 m+ O(log(¢~')) | High | BE
LT22 (short depth) O(e™) O(e174) o(1) No HE
DLT22 (short depth) O(e ) O(e=1~472) o) No HE
DLT22* O(c—141) O(c— 141 o) Llow | HE
DL22 (even shorter depth)® | O(D~1)+ 2 | O((D~" +d/e)v~*) O(1) No HE

Initial guess py = | (¢|vg) |2 = ~°.
MQC: Multi-qubit control. HE: Hamiltonian evolution. BE: Block encoding
* Achieves near optimal complexity w.r.t. ~, e.
¢ Significantly reduced preconstant in depth with large overlap / relative overlap.

Som19: (Somma New J. Phys., 2019; slightly improved by LT22); GTC19: (Ge-Tura-Cirac, J. Math. Phys. 2019)
(Lin-Tong, Quantum 2020); (Lin-Tong, PRX Quantum 2022); (Dong-Lin-Tong, PRX Quantum 2022);

(Ding-Lin, PRX Quantum 2023)



Can we obtain good initial overlap?
nature communications

Evaluating the evidence for exponential quantum
advantage in ground-state quantum chemistry

Seunghoon Lee, Joonho Lee, Huanchen Zhai, Yu Tong, Alexander M. Dalzell, Ashutosh Kumar, Phillip

Helms, Johnnie Gray, Zhi-Hao Cui, Wenyuan Liu, Michael Kastoryano, Ryan Babbush, John Preskill, David R.

Reichman, Earl T. Campbell, Edward F. Valeev, Lin Lin & Garnet Kin-Lic Chan &

Nature Communications 14, Article number: 1952 (2023) ‘ Cite this article
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Eliminate the py dependence?

e QMA-hardness: cannot prepare ground state just by knowing H.

e Open quantum system for preparing ground state:
- System bath coupling, Lindblad dynamics

e Potential advantage:

- po = (1 /poly(n)) is sufficient but not necessary for efficient
preparation.

- Replace assumption on pg by mixing time.

(Chen-Brandao, 2112.07646), (Shtanko, Movassagh, 2112.14688), (Cubitt, 2303.11962), (Rall et al, 2210.01670), (Chen et
al, 2303.18224)



Lindblad dynamics

di—gﬂ = —i[H.p()] + > Kap(t)K] — % {KakLn(0)]}

Lindblad dynamics for open quantum system’:

Total System
(HT: P, HT)

System
(H,p, H)

Environment
(HE, pe, HE)

q 1 +
Z(:) =~ ilH, p(0)] + KpOK" ~ = {KK', p(0)}




D
New method (Lindblad for ground state)’

Lindblad dynamics with one jump operator

1

Dep(t) = ~ilH. p(D)] + Kp(t)K" — 2 { KK, p(1)}

e Jump operator K = [*_f(s)e*Ae~ ds
Simple “Detailed balance" = only requires one jump operator

e Choose proper f such that:
- Lk(|o) (¢o]) =0
fix ground state

- (Uil Lk ([1y) (W) [¥i) > 0 for some i < |
push high energy state to low energy state

1(Ding, Chen, Lin, arXiv/2308.15676)



Simulate Lindblad dynamics on quantum computer

1

Oep(t) = —ilH. p(D)] + Kp(t)K' = { KK, p(1)}

e Simple simulation: One jump operator One ancilla qubit.

po—g(T)—Pl—g(T)— T pi—=ppi<]j
\ é Pr+1
|%0) | . e_.“.{"'  |v1) E —
W(m) Discard E W(n2)
|0) i 10—

Quantum circmt

e Accelerated Lindblad dynamics: large time step with cost
@(2‘1+O(1 _0(1))

miX

!(Ding, Chen, Lin, arXiv/2308.15676)



TFIM-6 model:

—— Lindblad (exact)

—_— AO

0.8
-2
AO.G
Lﬁ—4 2
Y Vo.a
—6
0.2
-8 0.0 —— Lindblad (exact)
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
time time
(a) Simulation time vs energy (b) Simulation time vs overlap

Start from pg = 0!



Conclusion

- Quantum advantage:

Quantum input, quantum output, quantum running,
Classical

- | think quantum advantage in Level | and Il (unitary quantum)
will be achieved.

- Level lll (non-unitary quantum)? Many interesting questions!
Open quantum systems are ever more interesting. Polynomial
mixing time?

- Level IV (Classical)?



Early fault tolerant
gquantum computation



“Ten digit numerical algorithms”

Ten digits,

Five seconds,
And just one page.

Lloyd N. Trefethen

A ten digit algorithm 1s a little gem of a program to compute something
numerical. The jingle summarizes the three defining conditions. The program
can be at most one page long, and 1t has to solve your problem to at least ten
digits of accuracy on your machine 1n less than five seconds.

[ Trefethen, A. R. Mitchell Lecture, 2005]



Criterion for comparing quantum algorithms

Number of
ancilla qubits

Circuit depth




Full fault-tolerant quantum computer

Asymptotic

total cost




Early fault-tolerant quantum computer

O(1) ancilla Short circuit
qubits depth

Simple gates

Eventually, lead to a small non-Clifford (Toffoli/T) gate count.



“333 quantum algorithms”

- Can demonstrate 3 digits of (meaningful) accuracy

- Use at most 3 ancilla qubits

- Can be expressed within 3 lines of circuit diagrams.



Classical post-processing of Hadamard test circuit

Classical postprocessing

Evolution time, number of measurements

Simple and surprisingly powerful.



—e— QCELS (upper bound)
4 QPE type (lower bound)
Tre, v Hadmard test
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QCELS: guantum complex exponential least squares

[Ding, Lin, PRX Quantum, 2023]



Quantum complex exponential least squares

. Data
—— Fitting
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e Minimize mean square error (MSE)

N—1
(r,0*) = argmin L(r.0). L(r.0) = 1 > " |Z, - rexp(—ionT)[*.
reC0eR N —~

e Fitting can be inexact when py < 1, but can still estimate A\ to
any precision e.
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Two order of magnitude reduction of maximal runtime!



Thank you for your attention!

g U.S5. DEPARTMENT OF Oﬂ:lCe Of
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Comparison
LCHS vs Quantum singular value transformation (QSVT) LCHS vs other quantum ODE algorithms
Hamiltonian simulation ODE algorithms
Schrédinger equation Linear ODE
Only Hermitian or
anti-Hermitian A=L+iH J; \l
A(t) = L(t) + iH(t . ~ ~
QSVT (t) = L{t) +iH() U1 - - - UoaUy Up |uin) Linear system Ax = b
Single input state High state preparation cost

LCHS
LCHS
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