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Solve nature with nature

Figure. A superposition of
Feynmans

... if you want to make a simulation of nature (quantum many-body
problem), you’d better make it quantum mechanical, and by golly
it’s a wonderful problem, because it doesn’t look so easy.

– Richard P. Feynman (1981) 1st Conference on Physics and Com-
putation, MIT
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Representing polynomials using unitary matrices

Motivation:
• Quantum computers are fundamentally about manipulating

unitary matrices.

• Polynomial function f (A), e.g., A−1,e−A is generally non-unitary.

• Efficient quantum algorithms for f (A):
Quantum signal processing (QSP)1, quantum singular value
transformation (QSVT)2, quantum eigenvalue transformation of
unitary matrices (QETU)3.

1(Low, Chuang, PRL 2017)
2(Gilyén, Su, Low, Wiebe, STOC, 2019) (Martyn et al, PRX Quantum 2021)
3(Dong-Lin-Tong, PRX Quantum 2022)
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Game rule
• Single qubit Pauli matrices

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
• For x = cos θ ∈ [−1,1], rotation matrix

W (x) = eiθX =

(
x i

√
1− x2

i
√

1− x2 x

)
.

• Use products with phase factors Φ := (φ0, · · · , φd ) ∈ Rd+1

U(x ,Φ) := eiφ0Z W (x)eiφ1Z W (x) · · · eiφd−1Z W (x)eiφd Z ∈ SU(2).

• Adjust Φ to fit a polynomial f (x) using the real part of the upper left
entry

Re[U(x ,Φ)]1,1 = f (x), x ∈ [−1,1]

• A problem with rich mathematical structures.
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MATLAB Demonstration
Try it: https://qsppack.gitbook.io/qsppack|

https://qsppack.gitbook.io/qsppack
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Example 1: Chebyshev polynomial of the first kind

U(x ,Φ) := eiφ0Z W (x)eiφ1Z W (x) · · · eiφd−1Z W (x)eiφd Z .

• f (x) = Td (x) = cos(d arccos(x)), x = cos θ.

• Choose Φ = (φ0, · · · , φd ) = (0, . . . ,0).

• Then U(x ,Φ) = W d (x) = eidθX ⇒
Re[U(x ,Φ)]1,1 = cos(dθ) = cos(d arccos(x))
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Example 2: All zero vector

U(x ,Φ) := eiφ0Z W (x)eiφ1Z W (x) · · · eiφd−1Z W (x)eiφd Z .

• f (x) = 0.

• Φ = (π/4,0, · · · ,0, π/4).

• [U(x ,Φ)]1,1 = i cos(dθ) ⇒ Re[U(x ,Φ)]1,1 = 0.
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Example 3. 3rd order Chebyshev polynomial

• f (x) = 0.2T1(x) + 0.4T3(x)

• Φ = (0.5768,−0.1132,−0.1132,0.5768).

• Some random Chebyshev polynomial. Symmetric phase factor.
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Example 4. A smooth function

• f (x) = 1
2cos(100x).

• Cheyshev polynomial approximation.

• Symmetric phase factor. Decay behavior.
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Phase factors used to be hard to compute..

Section H.3:
...However, this computation is difficult in practice, so we can only
carry it out for very small instances. Specifically, we found the time
required to calculate the angles to be prohibitive for values of M
greater than about 32...It is a natural open problem to give a more
practical method for computing the angles.

d = 32 was thought to be hard..
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Tremendous progress..

Direct methods (factorization of polynomials):

• (Gilyen et al 1806.01838; Haah 1806.10236): compute the roots of a
high-degree polynomial to high precision. High precision arithmetic.

• (Chao et al, 2003.02831): “Capitalization”.
• (Ying, 2202.02671): Prony’s method.

Iterative methods: (symmetric phase factors)

• (Dong, Meng, Whaley, Lin, 2002.11649): Optimization based
algorithm. Convergence proof (Wang, Dong, Lin, 2110.04993)

• (Dong, Lin, Ni, Wang, 2209.10162): fixed point iteration for solving
nonlinear system. Improved convergence result.

• (Dong, Lin, Ni, Wang, in preparation): Newton’s method. Most robust
algorithm so far.

d > 10000. The problem is practically solved after 5 years!
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Goal of QSP (real case)

QSPd : Rd+1 → Rd [x ]. Map phase factor to polynomial.

U(x ,Φ) := eiφ0Z W (x)eiφ1Z W (x) · · · eiφd−1Z W (x)eiφd Z =

(
f (x) + i∗ ∗
∗ ∗

)
.

Question Range of the mapping, representability of f?

Theorem (Gilyen-Su-Low-Wiebe STOC 2019)
If f ∈ Rd [x ] satisfies

1. parity is d mod 2,
2. ‖f‖∞ = maxx∈[−1,1] |f (x)| ≤ 1,

then there exists phase factors Φ ∈ Rd+1.
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Uniqueness?
• degree of freedom: DOF(Φ) = d + 1, DOF(f ) = d(d + 1)/2e

• one (natural) way towards uniqueness: symmetric QSP
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Symmetric QSP

QSPd : Rd+1 → Rd [x ]. Map phase factor to polynomial.

U(x ,Φ) := eiφ0Z W (x)eiφ1Z W (x) · · · eiφd Z W (x)eiφ0Z =

(
f (x) + i∗ ∗
∗ ∗

)
.

Theorem (Wang-Dong-Lin, Quantum 2022)
If f ∈ Rd [x ] satisfies

1. parity is d mod 2,
2. ‖f‖∞ = maxx∈[−1,1] |f (x)| ≤ 1,

then there exists symmetric phase factors Φ ∈ Rd+1.
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Optimization based formulation

• Parity: only d̃ := dd+1
2 e degrees of freedom to determine f (x).

• Sampling on Chebyshev nodes xk = cos
(

2k−1
4d̃

π
)

, k = 1, ..., d̃ .

• Minimization problem

Φ∗ = argmin
Φ∈[−π,π)d+1,

symmetric.

F (Φ), F (Φ) :=
1

d̃

d̃∑
i=1

∣∣Re[U(xi ,Φ)]1,1 − f (xi)
∣∣2 ,

• Global minimum F (Φ∗) = 0.

(Dong, Meng, Whaley, Lin, 2002.11649 PRA 2021),https://github.com/qsppack/qsppack
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Optimization landscape
2 independent symmetric phase factors φ0, φ1.
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Local minima exists (and there are many)
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There are combinatorially many global minima at large d .
Can we characterize them?
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Uniqueness of symmetric phase factor

Theorem (Wang-Dong-Lin, Quantum 2022)

For any P ∈ C[x ] and Q ∈ R[x ] satisfying

1. deg(P) = d and deg(Q) = d − 1.

2. P has parity (d mod 2) and Q has parity (d − 1 mod 2).

3. (Normalization condition) ∀x ∈ [−1,1] : |P(x)|2 + (1− x2)|Q(x)|2 = 1.

4. If d is odd, then the leading coefficient of Q is positive.

there exists a unique set of symmetric phase factors
Φ := (φ0, φ1, · · · , φ1, φ0) ∈ Dd such that

U(x ,Φ) =

(
P(x) iQ(x)

√
1− x2

iQ(x)
√

1− x2 P∗(x)

)
Without specifying Im P and Q, the phase factors are still not unique.
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Characterization of all global minimizers

Corollary (Wang-Dong-Lin, Quantum 2022)
There is a bijection between global minimizers and all admissible
(P(x),Q(x)) pairs with Re[P](x) = f (x).

• P(x) = f (x) + iPIm(x). Complementary polynomials
PIm(x),Q(x) ∈ R[x ].

• Normalization condition

1− f (x)2 = PIm(x)2 + (1− x2)Q(x)2.

• Pin down all roots of RHS via Laurent polynomial C[z, z−1] ⇒ finite
# of global minimizers.

• Generalize results in [Gilyen et al 2019; Haah 2019] to find all global
minimizers.
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Magical initial guess

Fixed initial guess Φ0 = (π/4,0, . . . ,0, π/4).
• Used in qsppack for all examples.

• Robust for all target functions seen so far.

• Corresponds to P(x) = iTd (x),Q(x) = Ud−1(x).

• One special solution for f (x) = 0.

• Why does it work?

(Dong, Meng, Whaley, Lin, 2002.11649 PRA 2021)
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Symmetric phase factors are important to the
landscape
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Example: Hamiltonian simulation
• Simulate a Hamiltonian means (mathematically)..

H 7→ e−iτH ⇒ x 7→ cos(τx)− i sin(τx)

• Optimal polynomial approximates simulation d ≈ e
2τ
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Why does optimization algorithm work?

Theorem (Local strong convexity)

If ‖f‖∞ ≤ Cd−1,
∥∥∥Φ̃− Φ̃0

∥∥∥
2
≤ C′d−1, (C,C′ are universal), then:

1
4
≤ λmin

(
Hess(Φ̃)

)
≤ λmax

(
Hess(Φ̃)

)
≤ 25

4
. (1)

Corollary (Convergence from Φ0)

If ‖f‖∞ ≤ Cd−1, starting from Φ0, at the `-th iteration of the (projected)
gradient method ∥∥∥Φ̃` − Φ̃∗

∥∥∥
2
≤ e−γ`

∥∥∥Φ̃0 − Φ̃∗
∥∥∥

2
. (2)

Here γ,C are universal constants.

Dependence O(d−1) is undesirable.

(Wang-Dong-Lin, Quantum 2022)
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QSP representation for smooth functions

Questions about consequences of this convergence
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Question of infinite QSP

c(d) ∈ R∞ c? ∈ `1

Φ(d) ∈ R∞ Φ? ∈ `1

d→∞

F

d→∞?

F̄?

Theorem (Dong, Lin, Ni, Wang, 2209.10162)
Universal constant rc ≈ 0.902, F has an inverse map
F
−1

: B(0, rc) ⊂ `1 → `1, where B(a, r) := {v ∈ `1 : ‖v − a‖1 < r}.
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Fixed-point iteration for solving iQSP
Solve nonlinear equation

F (Φ) = c

via a very simple algorithm, i.e., fixed point iteration:

Φ`+1 = Φ` − 1
2

(
F
(

Φ`
)
− c
)

Theorem (Dong, Lin, Ni, Wang, 2209.10162)
∃ universal constants C1,C2, γ, so that when ‖c‖1 ≤ C1, fixed point
iteration converges to Φ? = F

−1
(c).∥∥∥Φ(`) − Φ?
∥∥∥

1
≤ C2γ

`. (3)

No explicitly dependence on d !
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Fixed-point iteration for solving iQSP

102 103
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• f (x) = sin(τx) or
f (x) = cos(τx).

• Fixed ε, degree of
approximating polynomial
d = O(τ).

• Complexity is O(d2 log(1/ε))
theoretically and numerically.
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Decay behavior of the phase sequence
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Decay properties of reduced phase factors

Theorem (Dong, Lin, Ni, Wang, 2209.10162)
∃ universal constants C,C1,C2. Given target function f with
‖c‖1 < C, then for any n,

C1
∑
k>n

|ck | ≤
∑
k>n

|φk | ≤ C2
∑
k>n

|ck | . (4)
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Sharper tests of decay properties
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• f (x) = 0.8 |x |3.
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• f (x) = 0.5 sin(1000x).

• Superalgebraic decay.
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Conclusion

• QSP: Polynomial representation using parts of a unitary matrix.

• Iterative methods can survive in the presence of complex energy
landscape from a problem-independent initial guess

• Surprising relation between (a branch of) phase factors,
Chebyshev coefficients, and regularity of target functions.

• Open question: Why iterative method works for f (x) = c cos(τx)
when (1) τ is large (2) c ≈ 1 ? (violates both `∞ and `1 bound).

• Not discussed: fully-coherent limit ‖f‖∞ = 1 and Newton’s
method.
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