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Introduction



T
What is a quantum computer (mathematically)
e [) e CN = (C?)®", N =2". n: number of qubits.
e Normalization condition (1[1)) = SN " [u]* = 1.

e Quantum gate: unitary matrix U € CV*N. For some U,
application U |v) is efficient: cost is O(polylog(N)).

e Quantum algorithm: a series of large matrix-vector
multiplications: Uk - -- U; |¢)). Then measure some qubits and
repeat M times for classical output.

e Quantum cost (roughly): MKpolylog(N).

e Exponential quantum advantage (EQA): if MK = O(polylog(N)),
and classical algorithm scales as O(poly(N)).
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| don’t know. Maybe
this is going to be like
nuclear fusion (always
10 years away)..

Will a fault-tolerant
quantum computer
ever be built?




US researchers achieve historic fusion ignition

13 December 2022

< Share
The first ever controlled fusion experiment to produce more energy from fusion than the laser energy
used to drive it was | | at the National Ignition Facility (NIF) at the Lawrence Livermore National

Laboratory (LLNL) on 5 December - a breakthrough that has been decades in the making.

The target chamber at NIF (Image: LLNL)



Quantum numerical linear algebra

e Solving numerical linear algebra problems on a quantum
computer. Exciting progress in the past few years.

* Note “Quantum algorithms for scientific computation™
¢ This talk is about eigenvalue problems:

H [40) = Ao |%0)

H e CN*N Hermitian matrix (Hamiltonian).
Find the smallest \y and/or prepare |vq)

® One of the most important problems in quantum physics,
quantum chemistry and materials science.

TarXiv:2201.08309. More frequently updated: https:/math.berkeley.edu/~linlin/qasc/


https://math.berkeley.edu/~linlin/qasc/

Hamiltonian evolution input model

e Unitary matrix: Uy = e~'™ for some .

°eg.,H=X",2Z, Uy =T, e ™ can be implemented with n
single qubit gate rotations. Gate complexity is n = log, N.

e Approximate implementation || Uy — e~'™"|| < € via e.g., Trotter
expansion is acceptable.

e Long time evolution e~/ = Ug.
Runtime T = dr. Query depth d.
Both measure query complexities



Assumptions in this talk

H [10) = o |%0)

Hamiltonian evolution input model: Uy = e~/ for some 7.

A good' initial state |¢) = U, [0"), po = | (¢]1o) |2 = Q(1).
0™ = 0)*" = (1,0,...,0)T.

Ground-state energy estimation: estimate \q to precision e.

Good initial state is a very strong assumption. But without it, the
problem is theoretically intractable in the worst case? .

* Focus on methods with performance guarantee. Can be
combined with e.g., VQE (prepare good initial state)

1Can be theoretically relaxed to v = Q(1/poly(n)).

2The worst case is QMA-hard, which is a quantum analogue of NP hardness. In other words, the task can be difficult even
with a perfect quantum computer.



Exponential quantum advantage under debate
nature communications

Evaluating the evidence for exponential quantum
advantage in ground-state quantum chemistry

Seunghoon Lee, Joonho Lee, Huanchen Zhai, Yu Tong, Alexander M. Dalzell, Ashutosh Kumar, Phillip

Helms, Johnnie Gray, Zhi-Hao Cui, Wenyuan Liu, Michael Kastoryano, Ryan Babbush, John Preskill, David R.

Reichman, Earl T. Campbell, Edward F. Valeev, Lin Lin & Garnet Kin-Lic Chan &

Nature Communications 14, Article number: 1952 (2023) | Cite this article
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Textbook algorithm 1: Hadamard test

0) {H}— H—LC 1>
=

1 -1

| e—iTH :

| e |

Readout the success probability

P(0) = (1 +Re (gle™ ™)) = (1 + cos(Aor))

Maximal runtime T,,.x = 7 can be arbitrarily small: very short
circuit depth. At the expense of larger number of repetitions.

Monte Carlo algorithm: To reach precision ¢, the number of
repetitions is O((er)~2). Total runtime: Tiora = O(e 277 1)

Need to prepare exact eigenstate, i.e. py = | (¢|¢o) |2 = 1.



Textbook algorithm 2: Kitaev’s algorithm

0 —[i—

d=1,2,4,...,27" = z(er)~".

Maximal runtime T =277 = 7 /e.

Total runtime is Tioral = O(¢~1). Heisenberg-limited scaling’

Need to prepare exact eigenstate, i.e. py = | (d|vo) |2 = 1.

Can be modified to accommodate inexact eigenstate?®
In this case, Tmax = O(e "'y "), Trotal = O~ py?).

"Best scaling allowed by quantum mechanics
2The first work is semi-classical QPE, or single ancilla QPE: (Griffiths, Niu, PRL 1996; Higgins et al, Nature 2007)



Textbook algorithm 3: Quantum phase estimation

o —{i]
0) —{H] QFt (]
o ]

e Use many ancilla qubits.
e Exact eigenstate: Tmayx = 27 = 27/€, Tyoral = O ).

* Naturally accommodate inexact eigenstate py < 1.
In this case, Tmax = O(e 'y "), Trotal = O~ py?).
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Main results



Classical post-processing of Hadamard test circuit

Classical postprocessing

Evolution time, number of measurements

Simple and surprisingly powerful.



Theoretical comparison of preconstants with large pg
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QCELS: quantum complex exponential least squares

(Ding-Lin, PRX Quantum 2023)



Further improvement of preconstant

§=0(V/1—po) = 0=0(1—-py), Tmax = -
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0.5] ~+- QPE type (lower bound)
QCELS (old upper bound)
0.0{ ~®- QCELS (new upper bound)
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Earlier bound (Ding-Lin, , PRX Quantum 2023); New bound: (Ding-Lin, 2303.05714)
See also (Ni-Li-Ying, 2302.0245) for proving robust phase estimation (RPE) satisfies 6 = ©(1 — pp).



Large po

Theorem (Ding-Lin, 2211.11973)

If pg > 0.71, choose
6 =0O(v1— po).

There exists an algorithm that uses 1 ancilla qubit to estimate \q to
precision e with

) =
Tmax ) 7-t()ta] S5 e (67(1+o(1))€71> o
€

¢ Distinct feature: the preconstant § can be arbitrarily small as
Po — 1.

(Ding-Lin, PRX Quantum 2023)



Numerical results for large po
Transverse field Ising model (TFIM)’
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¢ Numerical performance is much better than theoretical
prediction, and the bound 0.71 can be pushed downward.

¢ Two order of magnitude reduction of maximal runtime!

TQCELS refers to the multi-level version of quantum complex exponential least squares




Small py: convert to large po with a spectral gap

pi = Kol pi = Kplp)|?
Fourier filter
Approximate
filtering
0.1 0.1
PN
Ao A Ay Ao A ...
[ S |
D D

(Spectral gap)

(Lin-Tong, PRX Quantum 2022): Effective approximate Fourier filtering algorithm with the Hadamard test circuit



.22
Small py: convert to large po with a spectral gap

pi = ol pi = ol Can approach 1
with a good filter
0.9
Normalization
0.1
Ao 4 A Ao M ...
| S —
D D

Apply the algorithm for the case of large pg!



Small py: what if the spectral gap is small?

pi = )l pi = Kol
Fourier filter
Approximate
filtering
0.1 0.1
| | N
Aody A A oAy Ay .

(Lin-Tong, PRX Quantum 2022): Effective approximate Fourier filtering algorithm with the Hadamard test circuit



2%
Small py: what if the spectral gap is small?

pi = KolYa)l? pi = KolYo)?

Can be improved
with a good filter
0.8

Normalization

>

0.1

ot A Aj... o A Aj

Apply the algorithm for the case of large pg!



Relative overlap

pi = pla)l?

0.1
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(Effective gap)
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~ Relative overlap
pr(1,1)

The concept of relative overlap is applicable to certain small gapped
quantum systems, and is aware of the information of the initial state.



Small pg

Theorem (Ding-Lin, 2211.11973)

Given relative overlap pr(1,I') > 0.71, D = miny, ¢y x,e1 X1 — Xzl,

choose
d=0(/1—-p/(I1)).

There exists an algorithm that uses 1 ancilla qubit to estimate \q to
precision e with

Toax = O(D™") + 8¢, Tiow = 8 (p3 26~ @+ (D77 1 6/e) ).

v

¢ Distinct feature: can use the information of relative overlap (all
previous algorithms are agnostic to it)

¢ Reduce circuit depth when D >> € and p(/, I') is large.



Numerical results for small pg

Hubbard model
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Two order of magnitude reduction of maximal runtime!



Criterion for comparing quantum algorithms

Number of
ancilla qubits

Circuit depth




Full fault-tolerant quantum computer

i
g

Asymptotic

total cost




Early fault-tolerant quantum computer

0O(1) ancilla Short circuit
qubits depth

Simple gates

Eventually, lead to a small non-Clifford (Toffoli/T) gate count.



Progresses for ground-state energy estimation

Maximal Total # ancilla Need | Input

runtime runtime qubits MQC? | model
QPE (high confidence) O(e™) O(e'772) O(polylog(y~'e~")) | High | HE
QPE (1 ancilla) O(e'v7?) O(e ') o(1) No HE
Som19 (short depth) O(e™) O(e ™) o(1) No HE
GTC19 O(e73/2471) O(e73/2471) O(log(e1)) High | HE
LT20* O(e 'y O(e 'y m+O(log(e™")) | High | BE
LT22 (short depth) O O(e ') o) No HE
DLT22 (short depth) O(e™) O(e'472) o(1) No HE
DLT22* O(e ') O(c ') o(1) Low HE
DL22 (even shorter depth)® | O(D~ 1)+ ¢ | O((D~" +6/e)v%) o() No HE

Initial guess py = | (d|o) |2 = 2.

MQC: Multi-qubit control. HE: Hamiltonian evolution. BE: Block encoding

* Achieves near optimal complexity w.r.t. -, e.

o Significantly reduced preconstant in depth with large overlap / relative overlap.

Som19: (Somma New J. Phys., 2019; slightly improved by LT22); GTC19: (Ge-Tura-Cirac, J. Math. Phys. 2019)
(Lin-Tong, Quantum 2020); (Lin-Tong, PRX Quantum 2022); (Dong-Lin-Tong, PRX Quantum 2022);
(Ding-Lin, PRX Quantum 2023)



Exponential improvement of dependence on precision
for gapped system

Corollary (Ding-Lin, 2211.11973)

If e < D, there exists an algorithm that uses 1 ancilla qubit to
estimate \q to precision e with high probability using

Tmax = é(D_1)a Ttotal = é (D/(p§€2)> ’

® Tmax IS independent of ¢, though this does not satisfy
Heisenberg-limited scaling.

This matches the result in (Wang et al, 2209.06811).



Outline

Algorithms



Classical post-processing of Hadamard test circuit
) —{H—

|¥)
W = I, E(X,) = Re ((¢| exp(—inTH) 1)) .

e intH

W = S, E(Yy) = Im (1) exp(~inTH) [¢))) .

Sample N times
1 &
Zn= 1+ Z (Xk,n + iYk,n) ~ (Y| exp(—inTH) [¢)) .
k=1

Post-processing of time series
Dy = {(n7, Za)}00 -



Quantum complex exponential least squares

- Data

—— Fitting

Imaginary part

0
Time ‘

¢ Minimize mean square error (MSE)

(r*,6*) = argmin L(r,6), L(r,0) = il | Z, — rexp(—ifnt)|?.
reC,9eR N

Il
o

e Fitting can be inexact when py < 1, but can still accurately
estimate \g (not an obvious fact).



Solve the optimization problem

¢ Fix 0, optimize r
2
rr’nem L(r,0) =N Z | Z,[2

1 [N
ionr
- N Y Ze
n=0

e Only optimize w.r.t. 6:

ionT

0* = argmax f(0),
9eR

e Energy landscape is rugged but can be handled classically
(there is only one scalar variable 6).



Optimization landscape
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Convergence
Theorem (Basic version QCELS)

Given pg > 0.71, we can choose

5=0(/T—p0). Tow =2, NN; = f3(o-2+oM)
€

Let 6* be the optimizer. Then with high probability

|(6* — Ao) mod [—7/7,7/T)| < €.

e Short maximal runtime (circuit depth).

* Does not achieve Heisenberg-limited scaling.

Tt = TNsN(N — 1)/2 = O(e2)



39
Multi-level QCELS

* The result Trax = 2, NNg = Q(s—(@+o(M)y is independent of T
|(6* — Xo) mod [—7/7,7/T)| < €.

* Choose 7,1 = 27; to refine the search interval

Algorithm

Forj=1,...,J
Generate data set Dy = {(n7}, Zy)) }g:_(;.
Solve

(,—1.*797) — arg min L(f, 9)7
I’E(C,QE[*)\min ,)\max]

Shrink search interval
0 3

)\min <~ 9/* - E; )\max — 9]* + o
J J




Convergence

Theorem (Multi-level QCELS)

If pg > 0.71, choose
6= @( V 11— p0)7

and i
Tmax = 7-tota] = e (67(1+o(1))€71> .
€

Let 6* be the output of multi-level QCELS. Then with high probability

|(6* — X\o) mod [—7,7)| < e.

e Short maximal runtime (circuit depth).

¢ Achieve Heisenberg-limited scaling.



41
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Current directions



Estimating multiple eigenvalues

Hi)y =Xy, i=1,2,....M

Dominant modes A\, me D C {1,2,--- ,M},|D| = K.

Overlap pm = |(¥m|1)|?. Residual overlap R = 3", e Prv-

Assume pX. = minmep pm = Q(RK).

Heisenberg-limited scaling: Total cost O(¢ ).

Short'depth Tmax = 6/6’ 5 = é(RK/pr}T(Hn)



Estimating multiple eigenvalues with short-depth
quantum circuit

(A Oy ) = argmin L ({10 HCq, {061y -

re €C,0, ER
N K 2
L Kok ) = Z 0t
K (Ucdh=rs L0kdht) = > |20 — D i exp(—iftn)
n=1 k=1
10°; error of TGF p_1=0.4, p_2=0.4
2 ey
S0 S
s
510 P
1074,
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10t
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v gm 2, Tk
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(Ding-Lin, 2303.05714)



-
Complexity
Theorem (Ding-Lin, 2303.05714)
If p¥. > 3RK, choose

min
6= é(RK/pr}gm)
There exists an algorithm that uses 1 ancilla qubit to estimate
dominant {\m}mep to precision e with high probability using

) ~ 1
Tmax:*7 Toa =0 .
e o ((pK )451+o(1)6>

min

e Direct generalization of QCELS

e Current drawback: classical optimization cost can be exp(cK) in
the worst case (this has not effect on the quantum cost)

Classical signal processing approaches for gapped and gapless systems (Li-Ni-Ying, 2303.08099)



Ground-state energy estimation with global
depolarized noise

¢ Global depolarized noise channel

1—e 7

MI’

pre “Tp+

 Not possible to run to Tmax > a~! = No Heisenberg-limited
scaling.

e New result: For gapped system A, > 0, choose

oo =© (5 108 (1) )+ N = O(poly(c )

can still approximate ground-state energy to arbitrary precision e.

(Ding-Dong-Tong-Lin, in preparation)



.
QCELS with global depolarized noise channel

(r,0)

Zo — rexp(—it)

n

'111

(r*,0%) = argmin, cg ge(— - Ls (1.0)

o e e = S S AR 221
Ity -
100 =y
Dt S Y X
N/ volx
NS i A
g ) \
107 S N T
w \/ !
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—¥— error of QPE, @ =0.0625 ®
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T mex W ees
- 10271 %
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(Ding-Dong-Tong-Lin, in preparation)



Conclusion

e Early fault-tolerant quantum algorithm:
Small number of ancilla qubits, simple gates, short circuit depth

¢ Recommend QCELS for short-depth simulation, and in general
signal processing based methods.

e Compare with quantum subspace methods / matrix pencil
methods; More general noise channel Applications and initialize
with VQE / DMRG; Excited state properties and Green’s
functions.

* Not discussed:
* Randomized implementation of Fourier filtering and binary search
based ground-state energy estimation';
® Quantum eigenvalue transformation of unitary matrices and
preparation of ground state®

1(Lin-Tong, PRX Quantum 3, 010318, 2022)
Z(Dong»Lin-Tong, PRX Quantum 3, 040305, 2022)
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Proof ideas



Phase cancellation in long time simulation

pi = Kplp:)I? pi = Kplp)l?
0.9 0.9
1)
5 T
L
A A A A A Ay

Uncertainty in short time simulation Uncertainty in long time simulation



Intuitive analysis of basic version of QCELS
¢ Recall
2

0* = argmaxf(0), f(0)=
9eR

Z Zn eIOn‘r

* Need to bound
Ry = |(Ao — 0*)7 mod [, )] .
¢ Lower bound f(\o)
(2P0 — 1) N < /f(Xo)
e Upper bound f(6*)

sin(NRo/2)

f0) = | Gin(Ro/2)

(1PN,



Intuitive analysis of basic version of QCELS

Optimality \/f(6*) > \/f(X\o) gives

sin(NRy/2) B _ sin(N(6/2N)) B ﬁ
sin(Ro/2) ‘ =B -2N==2"ony ~N <1 24>

62 ~72(1 —pg) =6 —0aspy — 1.

sin(Nx)
sin(x)

is decreasing on [0, 7/(2N)] = Ry < & or

(Ao — 6 )mod [—7/7,7/T)| <

— €
Tmax

This gives Tyax = d/e: short runtime!



A more careful analysis
e Everything is noisy. Take into account failure probability.

Need to bound Monte Carlo error

N—1

. — 1 .
En=Zy— (|exp(—inH) [}, Ey = nz_:o E, exp(ifnt)

Lipschitz continuity and Hoeffding’s inequality

Z(m@og‘“(s‘/?’?vsi'\’)m) p >§n

E,—E
T N VNN

P sup
0€No—£ Ao +£]

A somewhat elaborate iterative refinement procedure to improve
the ¢ dependence of NN;.

Finally, multi-level QCELS just applies the analysis to each level.
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