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What is a quantum computer (mathematically)

• |ψ〉 ∈ CN ∼= (C2)⊗n, N = 2n. n : number of qubits.

• Normalization condition 〈ψ|ψ〉 =
∑N−1

j=0

∣∣ψj
∣∣2 = 1.

• Quantum gate: unitary matrix U ∈ CN×N . For some U,
application U |ψ〉 is efficient: cost is O(polylog(N)).

• Quantum algorithm: a series of large matrix-vector
multiplications: UK · · ·U1 |ψ〉. Then measure some qubits and
repeat M times for classical output.

• Quantum cost (roughly): MK polylog(N).

• Exponential quantum advantage (EQA): if MK = O(polylog(N)),
and classical algorithm scales as O(poly(N)).
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A fast growing industry
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Quantum numerical linear algebra

• Solving numerical linear algebra problems on a quantum
computer. Exciting progress in the past few years.
• Note “Quantum algorithms for scientific computation”1

• This talk is about eigenvalue problems:

H |ψ0〉 = λ0 |ψ0〉

H ∈ CN×N Hermitian matrix (Hamiltonian).
Find the smallest λ0 and/or prepare |ψ0〉
• One of the most important problems in quantum physics,

quantum chemistry and materials science.

1arXiv:2201.08309. More frequently updated: https://math.berkeley.edu/~linlin/qasc/

https://math.berkeley.edu/~linlin/qasc/
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Hamiltonian evolution input model

• Unitary matrix: UH = e−iτH for some τ .

• e.g., H =
∑n

i=1 Zi , UH =
∏n

i=1 e−iτZi can be implemented with n
single qubit gate rotations. Gate complexity is n = log2 N.

• Approximate implementation
∥∥UH − e−iτH

∥∥ ≤ ε via e.g., Trotter
expansion is acceptable.

• Long time evolution e−iTH = Ud
H .

Runtime T = dτ . Query depth d .
Both measure query complexities
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Assumptions in this talk

H |ψ0〉 = λ0 |ψ0〉

• Hamiltonian evolution input model: UH = e−iτH for some τ .

• A good1 initial state |φ〉 = UI |0n〉, p0 = | 〈φ|ψ0〉 |2 = Ω(1).
|0n〉 = |0〉⊗n = (1,0, . . . ,0)>.

• Ground-state energy estimation: estimate λ0 to precision ε.

• Good initial state is a very strong assumption. But without it, the
problem is theoretically intractable in the worst case2 .

• Focus on methods with performance guarantee. Can be
combined with e.g., VQE (prepare good initial state)

1Can be theoretically relaxed to γ = Ω(1/poly(n)).
2The worst case is QMA-hard, which is a quantum analogue of NP hardness. In other words, the task can be difficult even

with a perfect quantum computer.
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Exponential quantum advantage under debate
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Textbook algorithm 1: Hadamard test

|0〉 H H

|ψ0〉 e−iτH

H = 1√
2

(
1 1
1 −1

)

• Readout the success probability

p(0) =
1
2

(1 + Re 〈ψ0|e−iτH |ψ0〉) =
1
2

(1 + cos(λ0τ)).

• Maximal runtime Tmax = τ can be arbitrarily small: very short
circuit depth. At the expense of larger number of repetitions.

• Monte Carlo algorithm: To reach precision ε, the number of
repetitions is O((ετ)−2). Total runtime: Ttotal = O(ε−2τ−1)

• Need to prepare exact eigenstate, i.e. p0 = | 〈φ|ψ0〉 |2 = 1.
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Textbook algorithm 2: Kitaev’s algorithm

|0〉 H H

|ψ0〉 e−idτH

• d = 1,2,4, . . . ,2t−1 = π(ετ)−1.

• Maximal runtime Tmax = 2t−1τ = π/ε.

• Total runtime is Ttotal = Õ(ε−1). Heisenberg-limited scaling1

• Need to prepare exact eigenstate, i.e. p0 = | 〈φ|ψ0〉 |2 = 1.

• Can be modified to accommodate inexact eigenstate2

In this case, Tmax = O(ε−1p−1
0 ),Ttotal = Õ(ε−1p−2

0 ).

1Best scaling allowed by quantum mechanics
2The first work is semi-classical QPE, or single ancilla QPE: (Griffiths, Niu, PRL 1996; Higgins et al, Nature 2007)
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Textbook algorithm 3: Quantum phase estimation

. . .

. . .

. . .

. . .

|0〉 H

QFT†|0〉 H

|0〉 H

|φ〉 e−iτH e−i2τH e−i2t−1τH

• Use many ancilla qubits.

• Exact eigenstate: Tmax = 2tτ = 2π/ε,Ttotal = Õ(ε−1).

• Naturally accommodate inexact eigenstate p0 < 1.
In this case, Tmax = O(ε−1p−1

0 ),Ttotal = Õ(ε−1p−2
0 ).
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Classical post-processing of Hadamard test circuit

Simple and surprisingly powerful.
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Theoretical comparison of preconstants with large p0
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QCELS: quantum complex exponential least squares

(Ding-Lin, PRX Quantum 2023)
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Further improvement of preconstant

δ = Θ(
√

1− p0)→ δ = Θ(1− p0), Tmax =
δ

ε
.
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p0 = 0.71
Hadmard test
QPE type (lower bound)
QCELS (old upper bound)
QCELS (new upper bound)

Earlier bound (Ding-Lin, , PRX Quantum 2023); New bound: (Ding-Lin, 2303.05714)

See also (Ni-Li-Ying, 2302.0245) for proving robust phase estimation (RPE) satisfies δ = Θ(1− p0).
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Large p0

Theorem (Ding-Lin, 2211.11973)
If p0 > 0.71, choose

δ = Θ(
√

1− p0).

There exists an algorithm that uses 1 ancilla qubit to estimate λ0 to
precision ε with

Tmax =
δ

ε
, Ttotal = Θ̃

(
δ−(1+o(1))ε−1

)
.

• Distinct feature: the preconstant δ can be arbitrarily small as
p0 → 1.

(Ding-Lin, PRX Quantum 2023)
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Numerical results for large p0
Transverse field Ising model (TFIM)1
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• Numerical performance is much better than theoretical
prediction, and the bound 0.71 can be pushed downward.

• Two order of magnitude reduction of maximal runtime!
1QCELS refers to the multi-level version of quantum complex exponential least squares
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Small p0: convert to large p0 with a spectral gap

(Lin-Tong, PRX Quantum 2022): Effective approximate Fourier filtering algorithm with the Hadamard test circuit
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Small p0: convert to large p0 with a spectral gap

Apply the algorithm for the case of large p0!
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Small p0: what if the spectral gap is small?

(Lin-Tong, PRX Quantum 2022): Effective approximate Fourier filtering algorithm with the Hadamard test circuit
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Small p0: what if the spectral gap is small?

Apply the algorithm for the case of large p0!
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Relative overlap

pr (I, I′) =
|〈ψ|ψ0〉|2 1λ0∈I∑
λk∈I′ |〈ψ|ψk 〉|2

.

The concept of relative overlap is applicable to certain small gapped
quantum systems, and is aware of the information of the initial state.
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Small p0

Theorem (Ding-Lin, 2211.11973)
Given relative overlap pr (I, I′) ≥ 0.71, D = minx1 /∈I′,x2∈I |x1 − x2|,
choose

δ = Θ(
√

1− pr (I, I′)).

There exists an algorithm that uses 1 ancilla qubit to estimate λ0 to
precision ε with

Tmax = Θ̃(D−1) + δ/ε, Ttotal = Θ̃
(

p−2
0 δ−(2+o(1))

(
D−1 + δ/ε

))
.

• Distinct feature: can use the information of relative overlap (all
previous algorithms are agnostic to it)

• Reduce circuit depth when D � ε and pr (I, I′) is large.
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Numerical results for small p0

Hubbard model
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Two order of magnitude reduction of maximal runtime!
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Criterion for comparing quantum algorithms
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Full fault-tolerant quantum computer
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Early fault-tolerant quantum computer

Eventually, lead to a small non-Clifford (Toffoli/T) gate count.
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Progresses for ground-state energy estimation

Maximal Total # ancilla Need Input

runtime runtime qubits MQC? model

QPE (high confidence) Õ(ε−1) Õ(ε−1γ−2) O(polylog(γ−1ε−1)) High HE

QPE (1 ancilla) Õ(ε−1γ−2) Õ(ε−1γ−4) O(1) No HE

Som19 (short depth) Õ(ε−1) Õ(ε−4γ−4) O(1) No HE

GTC19 Õ(ε−3/2γ−1) Õ(ε−3/2γ−1) O(log(ε−1)) High HE

LT20? Õ(ε−1γ−1) Õ(ε−1γ−1) m +O(log(ε−1)) High BE

LT22 (short depth) Õ(ε−1) Õ(ε−1γ−4) O(1) No HE

DLT22 (short depth) Õ(ε−1) Õ(ε−1γ−2) O(1) No HE

DLT22? Õ(ε−1γ−1) Õ(ε−1γ−1) O(1) Low HE

DL22 (even shorter depth)� Õ(D−1) + δ
ε Õ(

(
D−1 + δ/ε

)
γ−4) O(1) No HE

Initial guess p0 = | 〈φ|ψ0〉 |2 = γ2.
MQC: Multi-qubit control. HE: Hamiltonian evolution. BE: Block encoding
? Achieves near optimal complexity w.r.t. γ, ε.
� Significantly reduced preconstant in depth with large overlap / relative overlap.

Som19: (Somma New J. Phys., 2019; slightly improved by LT22); GTC19: (Ge-Tura-Cirac, J. Math. Phys. 2019)

(Lin-Tong, Quantum 2020); (Lin-Tong, PRX Quantum 2022); (Dong-Lin-Tong, PRX Quantum 2022);

(Ding-Lin, PRX Quantum 2023)
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Exponential improvement of dependence on precision
for gapped system

Corollary (Ding-Lin, 2211.11973)
If ε� D, there exists an algorithm that uses 1 ancilla qubit to
estimate λ0 to precision ε with high probability using

Tmax = Θ̃(D−1), Ttotal = Θ̃
(

D/(p2
0ε

2)
)
.

• Tmax is independent of ε, though this does not satisfy
Heisenberg-limited scaling.

This matches the result in (Wang et al, 2209.06811).
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Classical post-processing of Hadamard test circuit
|0〉 H W H

|ψ〉 e−inτH

• W = I, E(Xn) = Re (〈ψ| exp(−inτH) |ψ〉) .

• W = S†, E(Yn) = Im (〈ψ| exp(−inτH) |ψ〉) .

• Sample Ns times

Zn =
1

Ns

Ns∑
k=1

(
Xk ,n + iYk ,n

)
≈ 〈ψ| exp(−inτH) |ψ〉 .

• Post-processing of time series

DH = {(nτ,Zn)}N−1
n=0 .
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Quantum complex exponential least squares
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• Minimize mean square error (MSE)

(r∗, θ∗) = arg min
r∈C,θ∈R

L(r , θ), L(r , θ) =
1
N

N−1∑
n=0

|Zn − r exp(−iθnτ)|2 .

• Fitting can be inexact when p0 < 1, but can still accurately
estimate λ0 (not an obvious fact).
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Solve the optimization problem

• Fix θ, optimize r

min
r∈C

L(r , θ) =
1
N

N−1∑
n=0

|Zn|2 −
1
N

∣∣∣∣∣
N−1∑
n=0

Zneiθnτ

∣∣∣∣∣
2

.

• Only optimize w.r.t. θ:

θ∗ = arg max
θ∈R

f (θ), f (θ) =
1
N

∣∣∣∣∣
N−1∑
n=0

Zneiθnτ

∣∣∣∣∣
2

.

• Energy landscape is rugged but can be handled classically
(there is only one scalar variable θ).
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Optimization landscape
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Convergence

Theorem (Basic version QCELS)

Given p0 > 0.71, we can choose

δ = Θ(
√

1− p0), Tmax =
δ

ε
, NNs = Ω̃(δ−(2+o(1))).

Let θ∗ be the optimizer. Then with high probability

|(θ∗ − λ0) mod [−π/τ, π/τ)| < ε.

• Short maximal runtime (circuit depth).

• Does not achieve Heisenberg-limited scaling.
Tmax = Nτ ⇒ N = O(ε−1) if τ is small

Ttotal = τNsN(N − 1)/2 = Õ(ε−2)
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Multi-level QCELS
• The result Tmax = δ

ε ,NNs = Ω̃(δ−(2+o(1))) is independent of τ

|(θ∗ − λ0) mod [−π/τ, π/τ)| < ε.

• Choose τj+1 = 2τj to refine the search interval

Algorithm
For j = 1, . . . , J

Generate data set DH,j =
{(

nτj ,Zn,j
)}N−1

n=0 .
Solve

(r∗j , θ
∗
j )← arg min

r∈C,θ∈[−λmin,λmax]
L(r , θ) ,

Shrink search interval

λmin ← θ∗j −
π

2τj
, λmax ← θ∗j +

π

2τj
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Convergence

Theorem (Multi-level QCELS)
If p0 > 0.71, choose

δ = Θ(
√

1− p0),

and
Tmax =

δ

ε
, Ttotal = Θ̃

(
δ−(1+o(1))ε−1

)
.

Let θ∗ be the output of multi-level QCELS. Then with high probability

|(θ∗ − λ0) mod [−π, π)| < ε.

• Short maximal runtime (circuit depth).

• Achieve Heisenberg-limited scaling.
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Estimating multiple eigenvalues

H |ψi〉 = λi |ψi〉 , i = 1,2, . . . ,M

• Dominant modes λm,m ∈ D ⊂ {1,2, · · · ,M}, |D| = K .

• Overlap pm = |〈ψm|ψ〉|2. Residual overlap RK =
∑

m′∈Dc pm′ .

• Assume pK
min = minm∈D pm = Ω(RK ).

• Heisenberg-limited scaling: Total cost Õ(ε−1).

• Short-depth: Tmax = δ/ε, δ = Θ̃(RK/pK
min).
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Estimating multiple eigenvalues with short-depth
quantum circuit

(
{r∗k }

K
k=1, {θ

∗
k }

K
k=1

)
= arg min

rk∈C,θk∈R
LK

(
{rk}

K
k=1, {θk}

K
k=1

)
.

LK

(
{rk}

K
k=1, {θk}

K
k=1

)
=

1

N

N∑
n=1

∣∣∣∣∣∣Zn −
K∑

k=1

rk exp(−iθk tn)

∣∣∣∣∣∣
2

Transverse field Ising model (TFIM)
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(Ding-Lin, 2303.05714)
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Complexity
Theorem (Ding-Lin, 2303.05714)

If pK
min > 3RK , choose

δ = Θ̃(RK/pK
min).

There exists an algorithm that uses 1 ancilla qubit to estimate
dominant {λm}m∈D to precision ε with high probability using

Tmax =
δ

ε
, Ttotal = Θ̃

(
1(

pK
min

)4
δ1+o(1)ε

)
.

• Direct generalization of QCELS

• Current drawback: classical optimization cost can be exp(cK ) in
the worst case (this has not effect on the quantum cost)

Classical signal processing approaches for gapped and gapless systems (Li-Ni-Ying, 2303.08099)
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Ground-state energy estimation with global
depolarized noise

• Global depolarized noise channel

ρ 7→ e−ατρ+
1− e−ατ

M
I,

• Not possible to run to Tmax � α−1 ⇒ No Heisenberg-limited
scaling.

• New result: For gapped system ∆λ > 0, choose

Tmax = Θ

(
1

∆λ
log

(
1
ε

))
, N = Θ(poly(ε−1)),

can still approximate ground-state energy to arbitrary precision ε.

(Ding-Dong-Tong-Lin, in preparation)
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QCELS with global depolarized noise channel

(Ding-Dong-Tong-Lin, in preparation)
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Conclusion
• Early fault-tolerant quantum algorithm:

Small number of ancilla qubits, simple gates, short circuit depth

• Recommend QCELS for short-depth simulation, and in general
signal processing based methods.

• Compare with quantum subspace methods / matrix pencil
methods; More general noise channel Applications and initialize
with VQE / DMRG; Excited state properties and Green’s
functions.

• Not discussed:
• Randomized implementation of Fourier filtering and binary search

based ground-state energy estimation1;
• Quantum eigenvalue transformation of unitary matrices and

preparation of ground state2

1(Lin-Tong, PRX Quantum 3, 010318, 2022)
2(Dong-Lin-Tong, PRX Quantum 3, 040305, 2022)



48

Acknowledgment

Thank you for your attention!

Lin Lin
https://math.berkeley.edu/~linlin/

https://math.berkeley.edu/~linlin/


49

Outline

Introduction

Main results

Algorithms

Current directions

Proof ideas



50

Phase cancellation in long time simulation
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Intuitive analysis of basic version of QCELS
• Recall

θ∗ = arg max
θ∈R

f (θ), f (θ) =
1
N

∣∣∣∣∣
N−1∑
n=0

Zneiθnτ

∣∣∣∣∣
2

.

• Need to bound

R0 = |(λ0 − θ∗)τ mod [−π, π)| .

• Lower bound f (λ0)

(2p0 − 1) N ≤
√

f (λ0)

• Upper bound f (θ∗)√
f (θ∗) ≤

∣∣∣∣sin(NR0/2)

sin(R0/2)

∣∣∣∣+ (1− p0)N .
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Intuitive analysis of basic version of QCELS

• Optimality
√

f (θ∗) ≥
√

f (λ0) gives∣∣∣∣sin(NR0/2)

sin(R0/2)

∣∣∣∣ ≥ (3p0 − 2)N ≡ sin(N(δ/2N))

sin(δ/2N)
≈ N

(
1− δ2

24

)
• δ2 ≈ 72(1− p0)⇒ δ → 0 as p0 → 1.

• sin(Nx)
sin(x) is decreasing on [0, π/(2N)]⇒ R0 ≤ δ

N or

|(λ0 − θ∗)mod [−π/τ, π/τ)| < δ

Tmax
= ε

• This gives Tmax = δ/ε: short runtime!
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A more careful analysis
• Everything is noisy. Take into account failure probability.

• Need to bound Monte Carlo error

En = Zn − 〈ψ| exp(−inτH) |ψ〉 , Eθ =
1
N

N−1∑
n=0

En exp(iθnτ)

• Lipschitz continuity and Hoeffding’s inequality

P

(
sup

θ∈[λ0−
ρ
T ,λ0+ ρ

T ]

∣∣∣Eθ − Eλ0

∣∣∣ ≥ (4
√

2 log1/2
(

8
√

NsN
η

)
+ 1
)

ρ√
NsN

)
≤ η

• A somewhat elaborate iterative refinement procedure to improve
the δ dependence of NNs.

• Finally, multi-level QCELS just applies the analysis to each level.


	Introduction
	Main results
	Algorithms
	Current directions
	Proof ideas

