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Quantum numerical linear algebra

• Solving numerical linear algebra problems on a quantum
computer.
• Many interesting, exciting progresses in the past few years.
• Lecture notes on “Quantum Algorithms for Scientific

Computation”1

• Reasonable way towards “quantum advantage”.
• Ground state energy: an eigenvalue problem

H |ψ0〉 = λ0 |ψ0〉

H ∈ CN×N Hermitian matrix (Hamiltonian).
Find the algebraically smallest λ0 and/or prepare |ψ0〉
• Under which conditions the cost can be O(polylog(N))?

1https://math.berkeley.edu/~linlin/qasc/

https://math.berkeley.edu/~linlin/qasc/
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Ground state preparation and energy estimation

H |ψ0〉 = λ0 |ψ0〉

• An efficient input model (local, sparse, etc.) for H:

• QMA-hard (i.e., difficult for quantum computers) of the local
Hamiltonian problem without additional assumptions.

• Some physically relevant assumptions:
1. Good initial guess : | 〈φ|ψ0〉 | ≥ γ.
2. Spectral gap: ∆ = λ1 − λ0. (only necessary for preparing the

ground state but not for estimating ground state energy)
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Quantum advantage for quantum chemistry?
• Ground state energy: useful in predicting material structures,

simulating chemical reactions, etc. FeMoco: primary cofactor of
nitrogenase for nitrogen fixation.

• Quantum many body Hamiltonian (second quantization,
dim(H) = 2n)

H =
n∑

ij=1

hijc
†
i cj +

1
2

n∑
ijkl=1

Vijklc
†
i c†j ckcl

• Even for strongly correlated quantum chemistry, exponential
quantum advantage (EQA) is under debate1.

1S. Lee et al, Is there evidence for exponential quantum advantage in quantum chemistry?
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Input models

• Dimension of Hilbert space is N = 2n.
Access to initial state: UI to prepare |φ〉 = UI |0n〉.

• Access to Hamiltonian H
1. Block encoding (BE): dim UH = MN = 2m+n

UH =

(
H/α ∗
∗ ∗

)
for some α

2. Hamiltonian evolution (HE): dim UH = N = 2n

UH = e−iτH for some τ

• Cost of implementing UH ,UI is O(polylog(N)).

• Query complexity: the number of accesses to UH ,UI .
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Textbook algorithm with Hamiltonian evolution access:
Kitaev’s algorithm

|0〉 H H

|φ〉 e−inH

• Useful when |φ〉 is the exact eigenstate with eigenvalue λ.

• n = 1: Hadamard test. Estimate p(0)→ Re 〈φ|e−iH |φ〉 = cos(λ).
Cost is Õ(ε−2) due to repetition.

• n = 1,2, . . . ,2t−1 = ε−1: Kitaev’s algorithm. Cost is Õ(ε−1)
(Heisenberg limit)

• Can be modified for inexact eigenstate, called the semi-classical
QPE (or single ancilla QPE)1

1(Higgins et al, Nature 2007; Berry et al, PRA 2009)
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Textbook algorithm with Hamiltonian evolution access:
standard quantum phase estimation (QPE)

. . .

. . .

. . .

. . .

|0〉 H

QFT†|0〉 H

|0〉 H

|φ〉 e−iH e−2iH e−2t−1iH

• Use multiple control qubits to store eigenvalues in a quantum
register.

• Run multiple times and take the lowest value as estimate to λ0.
Useful when |φ〉 is not an exact eigenstate.

• Why not stop here? Need to study the query complexity with
respect to γ, ε,∆. Suitability for early fault-tolerant devices?
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What is special about early fault tolerant quantum
computers?

• Limited number of logical qubits.

• It can be difficult to execute certain multiqubit controlled (MQC)
gate operations.

7 High-level : poly(n) two-qubit gates and ancilla qubits, e.g.,
quantum median.

3 Low-level: O(n) two-qubit gates and O(1) ancilla qubit, e.g.,
n-qubit reflection operator.

• It can be important to reduce the circuit depth, sometimes even
at the expense of a larger total runtime (via a larger number of
repetitions).
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Pros and cons of different input models
• Block encoding access:

3 Natural expression of non-unitary matrices, e.g. sparse matrices,
using quantum circuits

3 Matrix functions f (H) via quantum signal processing (QSP) /
quantum singular value transformation (QSVT)

7 Many ancilla qubits; High-level multi-qubit control. Suitable for
fully fault-tolerant quantum devices.

• Hamiltonian evolution access:
3 Implementation can be ancilla-free, e.g., Trotter method. Perhaps

the most important reason for stating that it can be suitable for
early fault-tolerant quantum devices.

7 Trotter method introduces discretization error (though
asymptotically amendable using high order methods)

• HE is the “traditional” way of thinking about quantum algorithms
(e.g., QPE). Historically, complexity can be sub-optimal
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Progresses for ground state energy estimation

Query Query # ancilla Need Input

depth complexity qubits MQC? model

QPE (high conf.) Õ(ε−1) Õ(ε−1γ−2) O(polylog(γ−1ε−1)) High HE

QPE (1 ancilla) Õ(ε−1γ−2) Õ(ε−1γ−4) O(1) No HE

Som19 Õ(ε−1) Õ(ε−4γ−4) O(1) No HE

GTC19 Õ(ε−3/2γ−1) Õ(ε−3/2γ−1) O(log(ε−1)) High HE

LT20? Õ(ε−1γ−1) Õ(ε−1γ−1) m +O(log(ε−1)) High BE

LT22 (short depth) Õ(ε−1) Õ(ε−1γ−4) O(1) No HE

DLT22 (short depth) Õ(ε−1) Õ(ε−1γ−2) O(1) No HE

DLT22 ? Õ(ε−1γ−1) Õ(ε−1γ−1) O(1) Low HE

? Achieves near optimal complexity w.r.t. γ, ε. Knowledge on gap ∆ is not necessary.
Initial guess | 〈φ|ψ0〉 | ≥ γ

Som19: (Somma New J. Phys., 2019; slightly improved by LT22); GTC19: (Ge-Tura-Cirac, J. Math. Phys. 2019)

(Lin-Tong, Quantum 2020); (Lin-Tong, PRX Quantum 2022); (Dong-Lin-Tong, 2204.05955)
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Progresses for ground state preparation

Query Query # ancilla Need Input

depth complexity qubits MQC? model

QPE (high conf.) Õ(∆−1) Õ(∆−1γ−2) O(polylog(∆−1γ−1ε−1)) High HE

QPE (1 ancilla) Õ(∆−1γ−2) Õ(∆−1γ−4) O(1) No HE

GTC19 Õ(∆−1γ−1) Õ(∆−1γ−1) O(log(∆−1) + log log(ε−1)) High HE

LT20? Õ(∆−1γ−1) Õ(∆−1γ−1) m High BE

DLT22 (short depth) Õ(∆−1) Õ(∆−1γ−2) O(1) No HE

DLT22? Õ(∆−1γ−1) Õ(∆−1γ−1) O(1) Low HE

? Achieves near optimal complexity w.r.t. γ,∆.
Initial guess | 〈φ|ψ0〉 | ≥ γ; ∆ = λ1 − λ0: spectral gap

Omitting up to log ε−1 dependence on precision.

GTC19: (Ge-Tura-Cirac, J. Math. Phys. 2019)

(Lin-Tong, Quantum 2020); (Dong-Lin-Tong, 2204.05955)
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Ground state preparation: eigenstate filtering

• First assume µ is given.

• Polynomial / trigonometric approximation to step functions.

• Implement a matrix function via an efficient quantum circuit

f (H/α) |φ〉 =
N−1∑
k=0

f (λk/α) |ψk 〉 〈ψk |φ〉 .
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Implementation of eigenstate filtering function
• Quantum signal processing (QSP) / quantum singular value

transformation (QSVT). Block encoding access.

f (H/α) |φ〉 =
N−1∑
k=0

f (λk/α) |ψk 〉 〈ψk |φ〉 .

U =

(
H/α ∗
∗ ∗

)
, U =

(
f (H/α) ∗
∗ ∗

)
Low and Chuang, “Optimal Hamiltonian simulation by quantum signal processing”, PRL 2017

Gilyén, Su, Low, Wiebe, “Quantum singular value transformation and beyond”, STOC 2019

Martyn et al, “A Grand Unification of Quantum Algorithms”, PRX Quantum 2021

Lin, “Lecture notes on Quantum Algorithms for Scientific Computation”, Ch7,Ch8



17

Finding the phase factors: Quantum Signal
Processing PACKage (QSPPACK)

(Dong-Meng-Whaley-Lin, PRA 2021) https://github.com/qsppack/QSPPACK (website still under construction)
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Binary search based ground state energy estimation

• Idea: use binary search. Need to solve the following problem: if
we know a ≤ λ0 ≤ b, decide λ0 > (a + b)/2 or λ0 < (a + b)/2.

• This does not work because we are essentially asking the
quantum circuit to compute a discontinuous function while the
output probability distribution is a continuous function of λ0.

• Need to account for the fuzziness and statistical uncertainty.
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A decision problem

Assuming we know a ≤ λ0 ≤ b.

(i) When a ≤ λ0 ≤ 2
3a + 1

3b, output 0;
(ii) When 2

3a + 1
3b ≤ λ0 ≤ 1

3a + 2
3b, output 0 or 1;

(iii) When 1
3a + 2

3b ≤ λ0 ≤ b, output 1.

• Success probability of measuring ancilla p = ‖f (H) |φ〉 ‖2.
• Distinguish between ‖f (H) |φ〉 ‖ ≥ γ(1− ε′) and ‖f (H) |φ〉 ‖ ≤ ε′.
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Solving the decision problem (i)

a b
0.0

0.2

0.4

0.6

0.8

1.0
p((x )/2)
eigenvalues

λ0 ≤ 2
3a + 1

3b =⇒ ‖f (H) |φ〉 ‖ ≥ γ(1− ε′)
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Solving the decision problem (ii)

a b
0.0

0.2

0.4

0.6

0.8

1.0
p((x )/2)
eigenvalues

2
3a + 1

3b ≤ λ0 ≤ 1
3a + 2

3b



19

Solving the decision problem (iii)

a b
0.0

0.2

0.4

0.6

0.8

1.0

p((x )/2)
eigenvalues

λ0 ≥ 1
3a + 2

3b =⇒ ‖f (H) |φ〉 ‖ ≤ ε′
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The search process

a b
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0.6

0.8

1.0
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Solving the decision problem

• Success probability of measuring ancilla p = ‖f (H) |φ〉 ‖2.

• Distinguish between ‖f (H) |φ〉 ‖ ≥ γ(1− ε′) and ‖f (H) |φ〉 ‖ ≤ ε′.

• Measure the success probability of the ancilla qubit: query
complexity O(p−1) = O(γ−2)

• Can use binary amplitude estimation1 reduces query complexity
to O(γ−1).

• Error probability can be exponentially suppressed using majority
voting (Chernoff bound).

1(Lin-Tong, Quantum 2020). Similar to gapped phase estimation (Ambainis, STACS 12)
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Summary of the main steps

• Efficient implementation of a filtering matrix function f (H − µ).
Cost: Õ(ε−1) in the worst case.

• Binary amplitude estimation for deciding ‖f (H) |φ〉 ‖ ≥ γ(1− ε′)
and ‖f (H) |φ〉 ‖ ≤ ε′. Cost: Õ(γ−1).

• Binary search to refine µ: Cost: O(log ε−1).

Total cost: Õ(ε−1γ−1)
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(Recall) limitations of early fault tolerant quantum
computers

• Limited number of logical qubits.

• It can be difficult to execute certain controlled operations.

• It can be important to reduce the circuit depth, sometimes even
at the expense of a larger total runtime (via a larger number of
repetitions).
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A simple statistical algorithm for ground state energy
estimation

|0〉 H W H

ρ e−iJτH

• Similar to circuit in Kitaev’s algorithm

• Denote the measurement outcome (±1) by X (for W = I) and Y
(for W = S†)

E[X |J] = Re Tr[ρe−iJτH ]

E[Y |J] = Im Tr[ρe−iJτH ]

• Random evolution time J

(Lin-Tong, 2102.11340, PRX Quantum 2022)
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Summary of the algorithm

Combine with bisection algorithm.
Query complexity for U = e−iτH is O(ε−1γ−4).

3 Heisenberg limit. One ancilla qubit.
3 Short depth O(ε−1): Heisenberg scaling.
7 Suboptimal scaling with respect to γ.
7 Cannot prepare ground state
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From Kitaev’s algorithm to quantum eigenvalue
transformation of unitary matrices (QET-U)

· · ·

· · ·

|0〉 H H

|ψ〉 U U U

⇓
· · ·

· · ·

|0〉 eiϕ0X eiϕ1X eiϕ1X eiϕ0X

|ψ〉 U U† U U†
f (H)|ψ〉
‖f (H)|ψ〉‖

(Dong-Lin-Tong, 2204.05955)
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Quantum eigenvalue transformation of unitary
matrices (QET-U)

• One ancilla qubit. Hamiltonian evolution access U = e−iH ,
(assuming 0 < λ(H) < π).

• F (x) is any real, even polynomial s.t. deg(F ) = d , and |F (x)| ≤ 1
for any x ∈ [−1,1].

• Upon measuring ancilla with 0, output quantum state
∝ F

(
cos H

2

)
|ψ〉 =: f (H) |ψ〉.

• Probability of success
∥∥F
(
cos H

2

)
|ψ〉
∥∥2

2.
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Ground state preparation via QET-U

• Assume the knowledge of quantity µ s.t.
λ0 ≤ µ−∆/2 < µ+ ∆/2 ≤ λ1

• f (H) = F (cos(H/2)) or F (H) = f (2 arccos(H)).

• f (H) is a trigonometric polynomial of H.
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Approximate polynomial

• cos(x/2) is monotonically decreasing on [0, π].

• Convex optimization based method to find near-optimal
polynomial (implemented in QSPPACK).
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Binary search: solving the decision problem
• Distinguish∥∥∥∥F

(
cos

H
2

)
|φ〉
∥∥∥∥ ≥ γ(1− ε′) and

∥∥∥∥F
(

cos
H
2

)
|φ〉
∥∥∥∥ ≤ ε′.

by measuring the success probability of ancilla.

• Short depth algorithm. Circuit depth: Õ
(
ε−1). Queries to

U = Õ
(
ε−1γ−2)

• Gate count can be small enough to consider on near-term
devices.

• Binary amplitude estimation using QET-U1: quadratic speedup to
near-optimal complexity. Circuit depth: Õ

(
ε−1γ−1). Queries to

U = Õ
(
ε−1γ−1). Use 2 ancilla qubits.

1(Dong-Lin-Tong, 2204.05955)



32

Performance comparison for ground state energy
estimation (a simple Kitaev-like circuit)

(Dong-Lin-Tong, 2204.05955)
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Control-free implementation of certain Hamiltonians
• Based on certain anticommutation relation in Hamiltonian.

• Example: Transverse Field Ising Model (TFIM)

HTFIM = −
n−1∑
j=1

ZjZj+1︸ ︷︷ ︸
H(1)

TFIM

−g
n∑

j=1

Xj︸ ︷︷ ︸
H(2)

TFIM

.

• Pauli string K := Y1 ⊗ Z2 ⊗ Y3 ⊗ Z4 ⊗ · · · anticommutes with two
sub Hamiltonians

{K ,H(j)
TFIM} = 0⇒ KeitH(j)

TFIMK = e−itH(j)
TFIM

• Conjugating with K ⇒ negating evolution time.
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Control-free implementation

• W (τ) is the approximation to the time evolution U(τ) by Trotter
splitting.

• No need to control the time evolution directly.

• Ease of the practical implementation by reducing gates and
depth.
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Performance of short depth algorithm on TFIM
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Implementation in Qiskit. No error mitigation.
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Conclusions

Algorithmic ingredients to achieve near-optimal complexity:
• Efficient implementation of eigenstate filtering.

• Binary search based ground state energy estimation.

• Binary amplitude estimation to reduce number of repetitions.

QET-U:
• Hamiltonian evolution access can be as efficient as block

encoding access.

• Suitable for early fault-tolerant devices.

• Achieve near-optimal complexity using ≤ 3 ancilla qubits.
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