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Some additional introductory materials
Particularly for students / researchers with Math background. Physics
/ Chemistry readers may find some discussions clarifying too.

See more references from tutorial talks by Jianfeng Lu and Alexandre
Tkatchenko on Tuesday.
See Robert Webber’s tutorial talk on Wednesday (containing an
excellent introduction of second quantization)
See Szalay et al, Tensor Product Methods and Entanglement
Optimization for Ab Initio Quantum Chemistry, IJQC 2015
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(Crash course on) second quantization
• L sites (spin-orbitals). Occupation number basis set

{|s1, . . . , sL〉}si∈{0,1},i=1,...,L.

orthonormal basis set satisfying

〈si1 , . . . , siL |sj1 , . . . , sjL〉 = δi1j1 · · · δiLjL . (1)

spans the Fock space F (dimension: 2L).
vacuum state: |0〉 = |0, . . . ,0〉 = |0L〉.

• A quantum state |ψ〉 ∈ F : linear combination of occupation
number basis elements:

|Ψ〉 =
∑

s1,...,sL∈{0,1}

Ψ(s1, . . . , sL) |s1, . . . , sL〉 , ψ(s1, . . . , sL) ∈ C.

normalization condition:

〈Ψ|Ψ〉 =
∑

s1,...,sL∈{0,1}

|Ψ(s1, . . . , sL)|2 = 1.
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(Crash course on) second quantization
• ai ,a

†
i ,ni = a†i ai : annihilation, creation, number operator at site i .

Sparse matrix of size 2L.

• Jordan-Wigner transformation (writing down matrix elements)

a†p |s1, . . . , sL〉 = (−1)
∑p−1

q=1 sq (1− sp) |s1, . . . ,1− sp, . . . , sL〉 ,

ap |s1, . . . , sL〉 = (−1)
∑p−1

q=1 sq sp |s1, . . . ,1− sp, . . . , sL〉 ,
np |s1, . . . , sL〉 = sp |s1, . . . , sL〉 , p = 1, . . . ,L.

• Verify:
|s1, . . . , sL〉 = (a†1)s1 · · · (a†L)sL |0〉

• Canonical anti-commutation relation (CAR):

{ai ,aj} = {a†i ,a
†
j } = 0, {a†i ,aj} = δij .

• N̂ :=
∑

p np: total number operator



6

Quantum many-body problem
• Many-body Hamiltonian (dimension: 2L)

Ĥ = Ĥ0︸︷︷︸
non-interacting

+ Ĥ1︸︷︷︸
interacting

Ĥ0 =
L∑

ij=1

Tija
†
i aj , Ĥ1 =

1
2

L∑
ijkl=1

Vijkla
†
i a
†
j alak .

• Ground state
min

|Ψ〉∈F ,〈Ψ|Ψ〉=1
〈Ψ|Ĥ − µN̂|Ψ〉

• Chemical potential µ: Lagrange multiplier chosen so that for a
pre-specified integer Ne ∈ {0,1, . . . ,L}

〈Ψ|N̂|Ψ〉 = Ne.

WLOG set µ = 0. Can also be done by restricting to the
Ne-particle sector of F .
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Simplest setting: non-interacting system
• Ĥ = Ĥ0 =

∑L
ij=1 Tija

†
i aj . Diagonalize T (cost: O(L3))

Tφk = εkφk , ε1 ≤ . . . ≤ εNe < 0 < εNe+1 ≤ · · ·

[φ1, . . . , φL] ∈ CL×L is a unitary matrix.

• Basis rotation (still satisfy CAR)

c†k =
∑

i

a†i φik , ck =
∑

i

aiφ
∗
ik , Ĥ0 =

∑
k

εkc†kck .

• Ground state
|Ψ〉 = c†1 · · · c

†
Ne
|0L〉

Ground state energy E =
∑Ne

k=1 εk

• Also called “quadratic Hamiltonian” / “single particle picture”: still
Ne particles, but they do not interact except through Pauli
exclusion principle.
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Single particle reduced density matrix (1-RDM)
• For quantum many-body state |Ψ〉, Dij = 〈Ψ|a†j ai |Ψ〉. Hermitian

matrix of size L× L.
• Electron density (vector of length L)

ρi = Dii = 〈Ψ|ni |Ψ〉 =
∑

s1,...,sL

|ψ(s1, . . . , sL)|2 si .

• Non-interacting system: |Ψ〉 = c†1 · · · c
†
Ne
|0L〉. Φ = [φ1, . . . , φNe ].

• D̃kk ′ = 〈Ψ|c†k ′ck |Ψ〉 = δkk ′θk , θk =

{
1, k ≤ Ne,

0, k > Ne.
• Basis rotation

c†k =
∑

i

a†i φik ⇒ a†i =
∑

k

c†kφ
∗
ik

Dij =
∑
kk ′

φikφ
∗
jk ′ 〈Ψ|c

†
k ′ck |Ψ〉 =

Ne∑
k=1

φikφ
∗
jk = (ΦΦ†)ij .
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Single particle reduced density matrix (1-RDM)

For non-interacting system
• D is idempotent (D2 = D) of rank Ne. Eigenvalues are 0 or 1.

• D is uniquely determined by Φ.

• Eigendecomposition of D ⇒ Φ⇒ |Ψ〉.

For interacting system, generally 0 � D � 1, and D ; |Ψ〉.
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Next simplest setup: quantum impurity problem

• Graph G = (V ,E). Tij 6= 0 if (i , j) ∈ E .

• Subset of vertices V ′ ⊆ V , Vijkl 6= 0 if i , j , k , l ∈ V ′.

Examples:
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Quantum impurity problem
• Ĥ1 =

∑m
ijkl=1 Vijkla

†
i a
†
j alak , m� L

• Example: single-impurity Anderson model (SIAM)

Ĥ =

{∑
kσ

εkσc†kσckσ +
∑
kσ

(
Vk f †σckσ + V ∗k c†kσfσ

)
+
∑
σ

εf f †σ fσ

}
+ Uf †↑ f↑f

†
↓ f↓

f : fragment. c: environment. a† = (f †, c†).

• Ne = O(L): ∞ in the thermodynamic limit.

• Complexity for estimating ground state energy E to precision γ 1:

O(L3) exp
(
O(m log3(mγ−1)

)
.

1[Bravyi-Gosset, CMP 2017]
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Quantum embedding theory

• Cannot solve the problem with L sites directly

• Willing to solve a series of problems of size m� L with cost up
to O(poly(L) exp(cm)).

• Often more desirable to use methods with cost O(exp(cm)) or
O(poly(L) + exp(cm)).

• Often more of a “recipe” than a rigorous theory (except in some
extreme regimes such as non-interacting systems)
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Examples of quantum embedding theory

• Dynamical mean-field theory (DMFT)1

• Density matrix embedding theory (DMET)2

• Self energy embedding theory (SEET)3

• Projection based embedding theory4

• Constrained RPA embedding5

• Variational embedding theory6

• ...many improvements and many more theories 7

1[Georges and Kotliar, PRB 1992] [Georges et al, Rev. Mod. Phys. 1996]
2[Knizia, Chan, PRL 2012][Wouters et al, JCTC 2015]
3[Lan et al, JCP 2015][Lan,Zgid,JPCL 2017]
4[Manby et al, JCTC 2012]
5[Ma,Govini, Galli, npj Comput. Mater. 2020][Ma et al, JCTC 2021]
6[Lin, Lindsey, CPAM 2022][Khoo, Lindsey, arXiv:2106.02682]
7See review: Sun, Chan, Quantum embedding theories, ACR 2016
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Some shared commonalities

• A “high-level” solver: solve impurity problems accurately with
cost (up to) O(poly(L) exp(cm))

• A “low-level” solver: solve a global, often non-interacting problem
with cost O(poly(L)), and provide some “environmental”
information to the high level solver

• Assemble quantities from each high level solver to obtain a
global quantity (for instance, 1-RDM, Green’s function..)

• A “matching condition”: quantities assembled from the high-level
solvers and obtained from the low-level solver should match.
This often results in a Lagrange multiplier that glues together the
high-level and low-level solvers.
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Some perspectives
• Energy / matching condition usually cannot be derived from a

variational principle⇒ energy is often not variational. Potential
issues with force computations etc.

• Usually no guarantee that the matching condition can be
satisfied, and often there isn’t a plan B.

• Despite all the drawbacks, quantum embedding methods are
often viewed as one of the very few affordable ways to solve
correlated electronic structure problems1

• Share similarities to domain decomposition methods (for solving
PDEs), but are also fundamentally different: often couple many
problems of sizes 2O(m) to solve a problem of size 2L.

• Offer a particularly attractive alternative for materials science (to
handle translational invariance / local impurities)

1At least before machine learning / quantum computing consumes everything..
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Two equivalent perspective of solids

Embedding uses a real space perspective. Compute only for one
fragment.
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The rest of the talk

Our goals are modest:
• Why low-level solvers can provide any useful information for the

high-level solver.

• Why the matching condition can be satisfied under any
circumstance

• Focus on DMET
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DMET for strongly correlated systems
Hubbard model (1D and 2D)1

Hydrogen ring (sto-6G)2

1Knizia, Chan PRL 2012
2Wouters et al, JCTC 2015
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DMET: high level idea

• For the ground state of an arbitrarily large quantum system, a
given fragment is coupled to a finite number of “bath orbitals”

• Obtain information from “fragment + bath”. Remove contribution
from core (low energy) and virtual (high energy) states.

• Since bath cannot be obtained exactly, iteratively update the bath
to satisfy a matching condition.
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Partition of the orbital space

Partition L orbitals (after proper rotation) into fragment, bath, core,
virtual orbitals. This appears in many quantum chemistry methods
(e.g., CASSCF)



23

A finite number of bath orbitals
• Fragment: x = {1, . . . ,LA}. Environment: {LA + 1, . . . ,L}.

• General argument: Schmidt decomposition (SVD)

Ψ(s1, . . . , sL) =
2LA∑
α=1

σαuα(s1, . . . , sLA)vα(sLA+1, . . . , sL)

• uα: fragment orbital. vα: bath orbital. Possibly much fewer than
2LA , and independent of L.

• Problem: (1) vα itself requires exponential cost (2) can only be
obtained with the information of the exact ground state Ψ.

• DMET’s solution: Construct some approximate vα from
non-interacting systems.

• Will demonstrate a linear algebraic derivation (different from
original presentation of the method)
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Cosine-Sine (CS) decomposition

• Various versions1. Q ∈ C(m+p)×k has orthonormal columns (here
m < k ,p ≥ k ).

Q =

( k

m Q1
p Q2

)
• Can find unitaries U1,U2,V ,diagonal matrices C,S

(
Q1
Q2

)
=

( m p

m U1 0
p 0 U2

) 
m k−m

m C 0
m S 0
k−m 0 I
p−k 0 0

V †, C2 + S2 = Im.

1see e.g., [Stewart, Numer. Math. 1982][Bai 1992]
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Bath construction for non-interacting systems

• Setup: D = ΦΦ†. Φ ∈ CL×Ne ,Φ†Φ = INe . Φ =

( Ne

LA ΦA
L−LA ΦB

)
• Apply CS decomposition to Φ (assume LA < Ne)

Φ =

( LA LA Ne−LA L−LA−Ne

LA UA 0 0 0
L−LA 0 UB Ucore Uvir

) 
LA Ne−LA

ΣA 0
ΣB 0
0 I
0 0

(V †

V †⊥

)
.

• UA,UB,Ucore,Uvir: fragment, bath, core, virtual orbitals.

• Diagonal matrices ΣA,ΣB satisfy Σ2
A + Σ2

B = ILA .
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Bath construction for non-interacting systems

• Rewrite

Φ =

( Ne

LA ΦA
L−LA ΦB

)
=

(
UAΣAV †

UBΣBV † + UcoreV †⊥

)
.

D =

(
UAΣ2

AU†A UAΣAΣBU†B
UBΣBΣAU†A UBΣ2

BU†B + UcoreU†core

)
=

(
D11 D12
D21 D22

)
.

• Virtual orbitals do not contribute to Φ or D.

• Next we show that core orbitals do not directly contribute to the
computation of the fragment block D11.
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Basis rotation
• Define the basis Φ̃ = [Φfrag

x ,Φbath
x ,Φcore

x ,Φvir
x ]

Φfrag
x =

(
ILA
0

)
,Φbath

x =
(

0
UB

)
,Φcore

x =
(

0
Ucore

)
,Φvir

x =
(

0
Uvir

)
.

• 1-RDM takes a decoupled form in the rotated basis

Φ̃†DΦ̃ =


UAΣ2

AU†A UAΣAΣB 0 0
ΣBΣAU†A Σ2

B 0 0
0 0 INe−LA 0
0 0 0 0


• In physics terminology, only the orbitals Φbath

x are entangled to
the fragment orbitals Φfrag

x .

• Number of electrons in the impurity:

Nx = Ne − (Ne − LA) = LA

Impurity is at half filling (Nx/Lx = 1/2).
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Impurity Hamiltonian
• Impurity=fragment+bath. Impurity orbitals (size: Lx = 2LA):

Φx =
(

Φfrag
x Φbath

x

)
=

(
ILA 0
0 UB

)
.

• Impurity Hamiltonian (size: 2Lx )

Ĥx =
Lx∑

p,q=1

b†pT̃pqbq, T̃ = Φ†xT Φx .

Note bp = ap,p = 1, . . . ,LA.

• 1-RDM (D11 block) can be recovered exactly by diagonalizing T̃

Dx =

(
UAΣ2

AU†A UAΣAΣB

ΣBΣAU†A Σ2
B

)
.
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RECIPE for interacting Hamiltonian

• Revisit the interacting Hamiltonian

Ĥ =
L∑

ij=1

Tija
†
i aj +

1
2

L∑
ijkl=1

Vijkla
†
i a
†
j alak .

• Assume the partition Φ̃ = [Φfrag
x ,Φbath

x ,Φcore
x ,Φvir

x ] is defined via
some non-interacting Hamiltonian with coefficient matrix T .

• Φcore
x will now contribute a Hartree-Fock background potential

(sometimes called a embedding potential)

• Also need a proper chemical potential to satisfy the half filling
condition Nx = LA (or equivalently, restrict to the LA-particle
sector of the reduced Fock space)
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Interacting impurity Hamiltonian

• Impurity Hamiltonian

Ĥx =
Lx∑

p,q=1

b†pT̃pqbq +
1
2

Lx∑
pqrs=1

Ṽpqrsb†pb†qbsbr

• Coefficients

T̃pq =
∑

ij

(Φx )∗ipTij(Φx )jq

+
∑
ijkl,n

(Vijkl − Vijlk )(Φx )∗ip(Φcore
x )∗jn(Φx )kq(Φcore

x )ln

Ṽpqrs =
∑
ijkl

Vijkl(Φx )∗ip(Φx )∗jq(Φx )kr (Φx )ls
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High level 1-RDM
• Solve the many-body ground state problem

min
|Ψ〉∈Fx ,〈Ψ|Ψ〉=1,〈Ψ|N̂x |Ψ〉=LA

〈Ψ|Ĥx |Ψ〉

• Compute 1-RDM (Px )pq = 〈Ψ|b†qbp|Ψ〉. Only trust the fragment
part

Px =

(
Pfrag

x ∗
∗ ∗

)
• Enumerate all fragments, obtain diagonal blocks of 1-RDM.

Assume Nf fragments, (uniform) non-overlapping partitioning.

P =


Pfrag

1
Pfrag

2
. . .

Pfrag
Nf

 =:

Nf⊕
x=1

Pfrag
x
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Issues not discussed so far

• We have 0 � Pfrag
x � 1, how to satisfy Tr[P] = Ne? Introduce

another global Lagrange multiplier (chemical potential fitting).

• How to compute the total energy? Compute both 1-RDM and
2-RDM and assemble the total energy from all fragments.

• Special techniques: orbital localization, charge self consistency,
non-interacting bath..

• How to iteratively update the bath and core orbitals? Matching
condition.
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Matching condition

• Low-level density matrix D should
(1) minimize a certain energy functional
(2) match Dx = (Φfrag

x )†DΦfrag
x with Pfrag

x .

• Match 1-RDM blocks ⇒ Lagrange multiplier ux ∈ CLA×LA for
each impurity x , called correlation potential

U =

Nf⊕
x=1

ux

• Diagonalize T + U to obtain D ⇒ function D = D(T + U,Ne).

• T can be replaced by any fixed Fock matrix.
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Domain

• Block structure

S =

{
A =

Nf⊕
x=1

Ax

∣∣∣∣∣ Ax ∈ CLA×LA , Ax = A†x for x = 1, . . . ,Nf

}
,

• Domain of correlation potential U (gauge freedom)

S0 := {A ∈ S | Tr[A] = 0}

• Domain of high level density matrix

SNe
+ := {A ∈ S | Tr[A] = Ne,0 � A � 1}
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Least squares (LS-DMET)

• Least squares fitting1

min
U

∑
x

‖Pfrag
x − (Φfrag

x )†D(T + U,Ne)Φfrag
x ‖2F .

• Nonlinear optimization. Local minimizer.

• Inexact matching2.

• Gapless problem: λNe (T + U) = λNe+1(T + U). Instability.

• Seem to be independent issues?

1[Knizia, Chan, PRL 2012]
2Physical argument and density embedding [Bulik, Scuseria, Dukelsky, PRB 2014]
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Potential issues in LS-DMET
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Reformulate the fitting problem

• Energy functional

F (U) = ENe [T + U] =
Ne∑
i=1

λi(T + U) = Tr[(T + U)D(T + U,Ne)]

• When T + U is gapped, i.e., λNe+1(T + U) > λNe (T + U)

∇ux F (T + U) = (Φfrag
x )†D(T + U,Ne)Φfrag

x

• F (U) is concave

F (αU1 + (1− α)U2)

≥αTr[(T + U1)D(T + U1,Ne)] + (1− α) Tr[(T + U2)D(T + U2,Ne)]

=αF (U1) + (1− α)F (U2).
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Convex optimization (CVX-DMET)

• Concave conjugate: Legendre–Fenchel transform

F ∗(P) = inf
U∈S0

{ Nf∑
x=1

Tr[Pxux ]− F (U)

}
, P ∈ SNe

+

• Find the correlation potential via convex (or concave)
optimization (e.g., CVX). Robust global minima.

• Example code (mask enforces sparsity pattern)
cvx_begin

variable U(L,L) symmetric
minimize ( trace(U*P) - lambda_sum_smallest(T+U,Ne) )
subject to
U .* mask == 0

cvx_end
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Improved robustness

Wu, Lindsey, Zhou, Tong, Lin, PRB 2020
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Gapless and inexact matching

Theorem
Assuming P ∈ SNe

++ = {A ∈ S | Tr[A] = Ne,0 ≺ A ≺ 1}, the
evaluation of F ∗(P) admits an optimizer U?, and P lies in the
supergradient set of F at U?. If F + U? is

1. gapped: D = D(F + U?,Ne) achieves exact matching.
2. gapless and if U∗ is unique: exact matching is not achievable.

Remark:
• The condition P ∈ SNe

++ ensures that P is in the relative interior of
the domain of F ∗(= SNe

+ ).

• The condition for U? to be unique is an open question. A
necessary condition is Ne ≥ LA.

Wu, Lindsey, Zhou, Tong, Lin, PRB 2020
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What to do with gapless problems?
• Gapless problems arise more frequently than we like (e.g.,

doped Hubbard model)

• Both LS-DMET and CVX-DMET assume aufbau principle.

• Consider the optimization problem
min

D∈M
Tr(TD),

s.t. Dx = Px , ∀x ,
M = {D ∈ CL×L | D = D†,Tr(D) = Ne, D2 = D}.

• Does the minimizer admits U s.t. D = D(T + U,Ne)? The
answer is no. Has implication in finding the exact
exchange-correlation functional in the discrete setting.

• Can exact matching be achieved?
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Augmented Lagrange multiplier (ALM-DMET)

Faulstich, Kim, Cui, Wen, Chan, Lin, JCTC 2022; See Fabian Faulstich’s talk in WS1.
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Conclusion

• Quantum embedding theory: scalable correlated electronic
structure calculation.

• Involve recipes / artistic components: you can come up with your
own embedding theory and maybe it will perform better!

• Energy is typically not variational, with recent exceptions1

• Matching condition deserves careful mathematical scrutiny and
there is room for algorithmic improvement, which may impact
practical quantum embedding calculations.

• Can talk about DMFT etc later if there is interest

1[Lin, Lindsey, CPAM 2022][Khoo, Lindsey, arXiv:2106.02682]. See Michael Lindsey’s talk in WS1.
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