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Solve nature with nature

Figure. A superposition of
Feynmans

... if you want to make a simulation of nature (quantum many-body
problem), you’d better make it quantum mechanical, and by golly
it’s a wonderful problem, because it doesn’t look so easy.

– Richard P. Feynman (1981) 1st Conference on Physics and Com-
putation, MIT
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Quantum computation meets public attention
Google, Nature 2019
Random circuit sampling
Theory: [Boixo et al, 2018]

USTC, Science 2020
Boson sampling.
Theory: [Aaronson–Arkhipov, 2011]

• After about four decades, quantum supremacy has been reached: the
point where quantum computers can do things that classical computers
cannot, regardless of whether those tasks are useful.

• Is controlling large-scale quantum systems merely really, really hard, or
is it ridiculously hard? – John Preskill (2012)

• Quantum computer does anything useful? called quantum advantage.
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A fast growing industry
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What is a quantum computer (mathematically)

• |ψ〉 ∈ CN ∼= (C2)⊗n, N = 2n. n : number of qubits.

• Normalization condition 〈ψ|ψ〉 = 1.

• U ∈ CN×N is unitary. U |ψ〉 is efficient to apply (polylog(N)).

• Quantum computer: UK · · ·U1 |ψ〉, and then classical output by
measuring one or a few qubits M times.

• Quantum cost: MK polylog(N).

• Exponential quantum advantage (EQA): if MK = O(polylog(N)),
and classical algorithm scales as O(poly(N)).
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Numerical linear algebra
• Linear systems of equation Ax = b

• Least squares problem minx ‖Ax − b‖2

• Eigenvalue decomposition Avi = λivi

• Singular value decomposition Avi = uiσi

• Preconditioner M−1Ax = M−1b

• Matrix exponentiation eiHt (Hamiltonian simulation)

• Other matrix functions:
√

A, log A, . . .

• Machine learning, e.g. kernel ridge regression α = (K + Ĩ)−1y

• ...
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Quantum numerical linear algebra

• Solving numerical linear algebra problems on a quantum
computer.
• Many interesting, exciting progresses in the past few years.
• Lecture notes on “Quantum Algorithms for Scientific

Computation”: arXiv:2201.08309
• Reasonable way towards “quantum advantage”.
• Ground state energy: an eigenvalue problem

H |ψ0〉 = λ0 |ψ0〉

H ∈ CN×N Hermitian matrix (Hamiltonian).
Find the algebraically smallest λ0.
• Under which conditions the cost can be O(polylog(N))?
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Ground state preparation and energy estimation

• Suppose we are given a Hamiltonian that can be succinctly
described (local, sparse, etc.):

H =
∑

k

λk |ψk 〉 〈ψk | , λk ≤ λk+1.

• Goal: prepare its ground state |ψ0〉 or to estimate its ground state
energy λ0 to some precision.

• QMA-hard of the local Hamiltonian problem without additional
assumptions.

• Some physically relevant assumptions:
1. Good initial guess : | 〈φ|ψ0〉 | ≥ γ.
2. Spectral gap: ∆ = λ1 − λ0. (only needed for preparing the ground

state)
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Quantum advantage for quantum chemistry
• Quantum many body Hamiltonian (second quantization,

dim(H) = 2n)

H =
n∑

ij=1

hijc
†
i cj +

1
2

n∑
ijkl=1

Vijklc
†
i c†j ckcl

• Ground state energy: useful in predicting material structures,
simulating chemical reactions, etc.

• “Poster-child” problem: FeMo cofactor (FeMoco): primary
cofactor of nitrogenase for nitrogen fixation.

• Strongly correlated quantum chemistry. EQA is debatable.
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Input models

• Dimension of Hilbert space is N = 2n.

• Initial vector: UI to prepare an initial state |φ〉 = UI |0n〉.

• Hamiltonian H:
1. Hamiltonian evolution access: UH = e−iτH for some τ .
2. Block encoding access:

UH =

(
H/α ∗
∗ ∗

)
(1)

• Query complexity: the number of accesses to UH ,UI .



13

Outline

Introduction

Near optimal quantum algorithm

Algorithm for early fault-tolerant quantum computer

Conclusions



14

Textbook algorithm: quantum phase estimation (QPE)

. . .

. . .

. . .

. . .

|0〉 H

QFT†|0〉 H

|0〉 H

|φ〉 e−iτH e−2iτH e−2t−1iτH

• Requires multiple control qubits (to store eigenvalues in a
quantum register)

• Run multiple times and take the lowest value as estimate to λ0.

• Aliasing problem (textbook analysis: [Nielsen-Chuang 2000])
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Query complexities for ground state energy estimation

H |φ〉
QPE O(ε−1γ−2) O(γ−2)

GTC2017 O(ε−3/2γ−1) O(ε−1/2γ−1)
LT2020 O(ε−1γ−1) O(γ−1)

Table: Query complexities for ground state energy estimation.

1. Previous best results: (Ge-Tura-Cirac, 2019)
2. QPE estimates the eigenvalue coherently on a quantum

computer (which comes with some additional cost)
3. Lower bound for the overlap: | 〈φ|ψ0〉 | ≥ γ; Target precision: ε

(L.-Tong, 2002.12508, Quantum 2020)
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Query complexity for ground state preparation and
lower bound

• ∆ = λ1 − λ0: spectral gap

• Idea of the proof: consider the unstructured search problem
as a ground state preparation problem. Overlap and gap
trade-off through an adiabatic path.1

1 Childs et al., 2002, “Quantum search by measurement”.
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Quantum signal processing
• Quantum signal processing (QSP) / quantum singular value

transformation (QSVT).

Figure: From [Gilyén-Su-Low-Wiebe, 2019].

• QSP/QSVT allows us to implement, with a block encoding of H:

f (H) |φ〉 =
N−1∑
k=0

f (λk ) |ψk 〉 〈ψk |φ〉 .

Low and Chuang, “Optimal Hamiltonian simulation by quantum signal processing”, PRL 2017

Gilyén, Su, Low, Wiebe, “Quantum singular value transformation and beyond”, STOC 2019

Martyn et al, “A Grand Unification of Quantum Algorithms”, PRX Quantum 2021

L., “Lecture notes on Quantum Algorithms for Scientific Computation”, Ch7,Ch8
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Eigenstate filtering

• Polynomial approximation to step functions.

• Ground state energy estimate: find a good µ and implement the
filtering with a proper polynomial.

• Convert to quantum circuit via QSVT.
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Ground state energy estimation

• Idea: use binary search. Need to solve the following problem: if
we know a ≤ λ0 ≤ b, decide λ0 > (a + b)/2 or λ0 < (a + b)/2.

• This does not work because we are essentially asking the
quantum circuit to compute a discontinuous function while the
output probability distribution is a continuous function of λ0.

• Need to account for the fuzziness and statistical uncertainty.
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The decision problem
Assuming we know a ≤ λ0 ≤ b.

(i) When a ≤ λ0 ≤ 2
3a + 1

3b, output 0;

(ii) When 2
3a + 1

3b ≤ λ0 ≤ 1
3a + 2

3b, output 0 or 1;

(iii) When 1
3a + 2

3b ≤ λ0 ≤ b, output 1.
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• Always guaranteed: a ≤ λ0 ≤ b, (b − a)new = (2/3)(b − a)old.

• Solve the decision problem through eigenstate filtering: we can
estimate ‖f (H) |φ〉 ‖ (for a polynomial f ) using amplitude
estimation.
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Solving the decision problem (i)

a b
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p((x )/2)
eigenvalues

λ0 ≤ 2
3a + 1

3b =⇒ ‖f (H) |φ〉 ‖ ≥ γ(1− ε′)
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Solving the decision problem (ii)
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Solving the decision problem (iii)
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Solving the decision problem

• Only need to distinguish between ‖f (H) |φ〉 ‖ ≥ γ(1− ε′) and
‖f (H) |φ〉 ‖ ≤ ε′.

• Can use amplitude estimation to do so with overhead O(γ−1).

• Error probability can be exponentially suppressed using majority
voting (Chernoff bound).
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The search process
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What is early fault tolerant quantum computer

• The number of logical qubits is limited

• It is undesirable to have a large number of controlled operations

• It is a priority to reduce the circuit depth

Better to run a circuit of depth O(D) for O(M) times than to run a
circuit of depth O(DM) for a constant number of times.

(Our current thinking; there may be other definitions)
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How to use one ancilla qubits

Mainly a matter of input model of H:
1. Block encoding access:

UH =

(
H/α ∗
∗ ∗

)
Often require many ancilla qubits, e.g. sparse matrices
[Gilyén-Su-Low-Wiebe, 2019]

2. Hamiltonian evolution access: UH = e−iτH for some τ .
Can use approximate methods (e.g., Trotter splitting) without
ancilla qubits
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Three goals of our work

Throughout this part,

| 〈φ|ψ0〉 |2 = Tr[ρ |ψ0〉 〈ψ0|] = p0 = γ2.

(p0 can be replaced by its lower bound)

(1) Heisenberg-limited precision scaling: total time is
Õ(ε−1poly(p−1

0 ));

(2) Using at most one ancilla qubit

(3) Using lower-depth circuit (O(ε−1polylog(ε−1p−1
0 )))
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Figure: Comparison with other ground state energy estimation algorithms.
The requirements are (1) achieving the Heisenberg-limited precision
scaling, (2) using at most one ancilla qubit, and (3) the maximal evolution
time being at most O(ε−1polylog(ε−1p−1

0 )).

(L.-Tong, 2102.11340, PRX Quantum 2022)
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Comparison with QPE
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Figure: Average ground state energy estimation error for this method and
QPE with fixed max evolution time, benchmarked against QPE with
increasing max evolution time. p0 = Tr[ρΠ0].
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Comparison with QPE
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Figure: Failure (error beyond a certain threshold) rates
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Key quantity: cumulative distribution function (CDF)

• Eigendecomposition of the Hamiltonian

H =
∑

k

λk Πk ,

pk = Tr[Πkρ] is the population of the initial state ρ in the k -th
eigensubspace.

• Cumulative distribution function (CDF) of the spectral
measure:

C(x) := Tr[ρf (x − τH)] =
∑

k :τλk≤x

pk , f (w) =

{
1, w ≥ 0,
0, w < 0.

• Discontinuous function. Each jump corresponds to an eigenvalue
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Statistically estimate the cumulative distribution
function (CDF) of the spectral measure
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Figure: Evaluating the CDF by sampling from the quantum circuit. Note that
we do not need to re-sample for each point.
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The CDF: the numerical result

Height≥ 𝜂

𝛿

Figure: Zoom-in around the ground state energy
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A simplified circuit

|0〉 H W H

ρ e−iJτH

• Used in Kitaev’s algorithm (iterative QPE).

• Denote the measurement outcome (±1) by X (for W = I) and Y
(for W = S†)

E[X |J] = Re Tr[ρe−iJτH ]

E[Y |J] = Im Tr[ρe−iJτH ]

• We could estimate Tr[ρe−iJτH ] for J = 1,2, . . . ,d and do
statistical inference [Somma2019, arXiv:1907.11748] (we are not
doing this).
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Introducing additional randomness

• If we estimate all Tr[ρe−iJτH ] for J = 1,2, . . . ,d then the total
evolution time is

τ + 2τ + · · ·+ dτ =
(d + 1)d

2
τ.

• We need to choose τd = ε−1 and this results in O(τ−1ε−2) total
evolution time. Cannot saturate the Heisenberg limit.

• Idea: sample J from a distribution and look at the output
probability distribution. Sample large τ less frequently
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Random evolution time

• From random variables X and Y define Z = X + iY ∈ {±1± i},

E[Z |J] = Tr[ρe−iJτH ]

• With random evolution time J

E[Zei(θJ+Jx)] =
d∑

j=−d

Tr[ρe−ijτH ] Pr[J = j]ei(θj+jx),

viewed as a function of x ∈ R.
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• For a function f (w) =
∑d

j=−d Ajeijw , with
∑
|Aj | = 1, we can

choose Pr[J = j] = |Aj | and θj = arg Aj , then

E[Zei(θJ+Jx)] = Tr[ρf (x − τH)].

• The expectation value can be evaluated using Monte Carlo
sampling.

• Do not need to re-sample for each x (can reuse Z )!

• If a function f can be approximated by a finite Fourier sum then
Tr[ρf (x − τH)] can be approximately computed using this
method, up to an approximation error.
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Summary of the algorithm

Figure: Schematic representation of the algorithm to compute the CDF.
Ḡ(x) is the approximate CDF.
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Ground state energy estimation

• Only need to find the first jump in the CDF; can be done using a
binary search;

• The transition length is δ = τε to ensure precision ε;

• The max (coherent) evolution time is τ/δ = O(ε−1) (compare
with O(ε−1p−1

0 ) for QPE, lower circuit depth);

• Monte Carlo accuracy O(p0), therefore Ns = O(p−2
0 );

• Total evolution time is O(Nsτd) = O(ε−1p−2
0 ) (Heisenberg

scaling);
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Conclusion

• Fault-tolerant quantum algorithms with performance guarantees
for ground state energy estimation.

• Assumption of a good initial guess is crucial.

• Access model: block encoding and Hamiltonian evolution.
Combine the best of both worlds?

• The CDF could be of use in itself.

• Quantum algorithms: (somewhat) traditional numerical analysis
in a new context
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The control-free version

|0〉 H K H

|0〉 H H

|0n〉 UI UR e−itH U†I U†R

• We assume we have a reference eigenstate |ψR〉 that is easy to
prepare and corresponds to a known eigenvalue.1,2

• Example: for system with particle number conservation we can
use the vacuum state.

1Huggins, Lee, Baek, O’Gorman, Whaley, 2019, arXiv:1909.09114
2Russo, Rudinger, Morrison, Baczewski, 2020, arXiv:2007.08697
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Fourier approximation
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Figure: Our construction of the approx Heaviside function. The number of
terms is 2d + 1 where d = O(δ−1 log(ε′−1)).
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Fourier approximation
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Figure: Directly truncating the Fourier expansion of the Heaviside function.
Note the Gibbs phenomenon.
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