Staggered mesh method for periodic second order Møller-Plesset perturbation theory

Lin Lin

Department of Mathematics, UC Berkeley Lawrence Berkeley National Laboratory

Joint work with Xin Xing (Berkeley), Xiaoxu Li (BNU)

New Frontiers in Electron Correlation, Telluride, June 2021

arXiv:2102.09652 (JCTC in press)

Staggered mesh method for MP2

Finite-size error analysis for MP2

Second order Møller-Plesset theory (MP2)

Simplest wavefunction based theory for correlation energies

$$E_{mp2} = \sum_{ijab} \frac{\langle ij|ab\rangle \left(2\langle ab|ij\rangle - \langle ba|ij\rangle\right)}{\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_b}$$

i, *j*: occupied molecular orbitals (MO); *a*, *b*: virtual MOs.

- Routine for molecular systems
- Diverge for some solids: 3D uniform electron gas¹

¹Gell-Mann, Brueckner, 1957

MP2 for solids

• Need **k**-dependence (*i*, **k**_{*i*} are independent variables)

$$E_{mp2}(N_{\mathbf{k}}) = \frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k}_{j}, \mathbf{k}_{a} \in \mathcal{K}} \sum_{ijab} \frac{\langle i\mathbf{k}_{i}, j\mathbf{k}_{j} | a\mathbf{k}_{a}, b\mathbf{k}_{b} \rangle \left(2 \langle a\mathbf{k}_{a}, b\mathbf{k}_{b} | i\mathbf{k}_{i}, j\mathbf{k}_{j} \rangle - \langle b\mathbf{k}_{b}, a\mathbf{k}_{a} | i\mathbf{k}_{i}, j\mathbf{k}_{j} \rangle \right)}{\varepsilon_{i\mathbf{k}_{i}} + \varepsilon_{j\mathbf{k}_{j}} - \varepsilon_{a\mathbf{k}_{a}} - \varepsilon_{b\mathbf{k}_{b}}}$$

- Costly to evaluate but increasingly gains attention.
- Ω: unit cell with lattice L;
 Ω*: reciprocal unit cell with lattice L*;
 K: Monkhorst-Pack grid for discretizing Ω*.

• Thermodynamic limit (TDL)

$$\mathcal{K} \to \Omega^* \Rightarrow \frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k} \in \mathcal{K}} \to \frac{1}{|\Omega^*|} \int_{\Omega^*} d\mathbf{k}.$$

 \mathbf{k}_a
 \mathbf{k}_i
 \mathbf{k}_b
 \mathbf{k}_j
 \mathbf{k}_a
 \mathbf{k}_b
 \mathbf{k}_i
 \mathbf{k}

Marsman et al JCP 2009; Gruneis, Marsman, Kresse JCP 2010; Müller, Paulus, PCCP 2012; McClain et al, JCTC 2017; Schäfer et al, JCP 2017; Banerjee, Sokolov, JCP 2020...

Finite-size error for solids

A number of correction schemes to finite-size errors. Analysis often for special systems (e.g. UEG). No general analysis.

- Fock exchange¹(special correction schemes available)
- Quantum Monte Carlo²
- MP2, coupled cluster theories³

Applicable to MP2:

- Power-law extrapolation (curve-fitting)
- Twist averaging
- Structure factor extrapolation

¹Gygi, Baldereschi 1986; Carrier et al 2007; Sundararaman, Arias 2013; Shepherd, Henderson, Scuseria, 2014...
 ²Fraser, Foulkes et al, 1996; Chiesa et al 2006; Drummond et al, 2008; Holzmann et al, 2016...
 ³Liao, Grueneis2016; Gruber et al, 2018

Finite-size error: Main result

- Unified analysis based on quadrature error (applicable to Fock exchange and MP2).
- Finite-size error:

$$|E_{mp2}(N_k) - E_{mp2}^{TDL}| = \mathcal{O}(N_k^{-\alpha})$$

- Main result¹:
 - $\alpha = 1$ for using the standard Monkhorst-Pack mesh.
 - $\alpha \ge 1$ for a new staggered mesh (with almost no additional cost)

¹Xing, Li, L., Unified analysis of finite-size error for periodic Hartree-Fock and second order Møller-Plesset perturbation theory, in preparation (theory); 2102.09652 (staggered mesh)

Staggered mesh method

- Idea: two staggered Monkhorst-Pack meshes for occupied orbitals and virtual orbitals.
- Avoid the zero momentum transfer $\mathbf{q} = \mathbf{k}_a \mathbf{k}_i = \mathbf{0}$.

Silicon (gth-szv basis)

Silicon (gth-dzvp basis)

Diamond (gth-szv basis)

Periodic H₂-dimer (gth-szv basis)

Significant improvement for quasi-1D systems. Small/no improvement for some (anisotropic) quasi-2D / 3D systems

Model system

Effective potential $V(\mathbf{r}) = \sum_{\mathbf{R} \in \mathbb{L}} C \exp\left(-\frac{1}{2}(\mathbf{r} + \mathbf{R} - \mathbf{r}_0)^\top \Sigma^{-1}(\mathbf{r} + \mathbf{R} - \mathbf{r}_0)\right)$

- Isotropic: $\Sigma = \text{diag}(0.2^2, 0.2^2, 0.2^2), C = -200, n_{\text{occ}} = 1, n_{\text{vir}} = 3.$
- Anisotropic: $\Sigma = \text{diag}(0.1^2, 0.2^2, 0.3^2), C = -200, n_{\text{occ}} = 1, n_{\text{vir}} = 1.$
- Also compare with structure factor interpolation (Liao, Grueneis 2016; Gruber et al, 2018)

Reason: smoothness of the integrand

Staggered mesh method for MP2

Finite-size error analysis for MP2

Assumptions

Focus on error due to $|\mathcal{K}| \to \infty$ (i.e. quadrature error)

Direct band gap (insulator)

$$\varepsilon_{i\mathbf{k}_{i}}+\varepsilon_{j\mathbf{k}_{j}}-\varepsilon_{a\mathbf{k}_{a}}-\varepsilon_{b\mathbf{k}_{b}}\leq-\varepsilon_{g}<0$$

- Finite sum over *i*, *j*, *a*, *b* (truncation of virtual bands)
- Finite sum over G (truncation of Fourier modes)
- Exact Hartree-Fock energies and orbitals

Crystal momentum conservation

- $\mathbf{k}_i + \mathbf{k}_j \mathbf{k}_a \mathbf{k}_b = \mathbf{G}_{\mathbf{k}_i,\mathbf{k}_j}^{\mathbf{k}_a,\mathbf{k}_b} \in \mathbb{L}^*$
- Integrand is periodic w.r.t. all k's \Rightarrow Fix $\mathbf{k}_i, \mathbf{k}_j, \mathbf{k}_a$, conceptually shift \mathbf{k}_b s.t. $\mathbf{k}_b = \mathbf{k}_i + \mathbf{k}_j \mathbf{k}_a \Rightarrow$ Integrate w.r.t. $\mathbf{k}_i, \mathbf{k}_j, \mathbf{k}_a$.

•
$$\mathbf{q} = \mathbf{k}_a - \mathbf{k}_i = \mathbf{k}_j - \mathbf{k}_b$$
.

- Coulomb singularity $1/|\mathbf{q} + \mathbf{G}|^2 \Rightarrow \text{Problematic when } \mathbf{q} + \mathbf{G} = \mathbf{0}.$
- Shift **q** to Ω^* . Then $\mathbf{q} + \mathbf{G} = \mathbf{0} \Leftrightarrow \mathbf{q} = \mathbf{G} = \mathbf{0}$.

Quadrature representation

Quadrature error of trapezoidal rule on a domain V with a uniform grid X

$$\mathcal{E}_{V}(f, \mathcal{X}) = \int_{V} \mathrm{d}\mathbf{x} f(\mathbf{x}) - \frac{|V|}{|\mathcal{X}|} \sum_{\mathbf{x}_{i} \in \mathcal{X}} f(\mathbf{x}_{i}),$$

Finite-size error for MP2:

$$E_{\text{mp2}}^{\text{TDL}} - E_{\text{mp2}}(N_{\mathbf{k}}) = \frac{1}{|\Omega^*|^3} \mathcal{E}_{(\Omega^*)^{\times 3}} \left(\sum_{ijab} F_{\text{mp2,d}}^{ijab}(\mathbf{k}_i, \mathbf{k}_j, \mathbf{k}_a) + F_{\text{mp2,x}}^{ijab}(\mathbf{k}_i, \mathbf{k}_j, \mathbf{k}_a), (\mathcal{K})^{\times 3} \right)$$

MP2, direct term

- Momentum transfer $\mathbf{q} = \mathbf{k}_a \mathbf{k}_i = \mathbf{k}_j \mathbf{k}_b$
- Change of variable k_a → q
- Reduction of error (singularity only along q direction)

$$\begin{split} \mathcal{E}_{(\Omega^*)^{\times 3}}\left(\sum_{ijab}F^{ijab}_{\mathsf{mp2,d}}(\mathbf{k}_i,\mathbf{k}_j,\mathbf{k}_a),(\mathcal{K})^{\times 3}\right) \lesssim \mathcal{E}_{(\Omega^*)^{\times 3}}\left(\widetilde{F}_{\mathsf{mp2,d}}(\mathbf{k}_i,\mathbf{k}_j,\mathbf{q}),\mathcal{K}\times\mathcal{K}\times\mathcal{K}_{\mathbf{q}}\right) \\ \lesssim \max_{\mathbf{k}_i,\mathbf{k}_j}\mathcal{E}_{\Omega^*}\left(\widetilde{F}_{\mathsf{mp2,d}}(\mathbf{k}_i,\mathbf{k}_j,\mathbf{q}),\mathcal{K}_{\mathbf{q}}\right) \end{split}$$

Staggered mesh:

MP2, exchange term

Error sources: integrand and quadrature error

- Momentum transfer $\mathbf{q}_1 = \mathbf{k}_b \mathbf{k}_i$ and $\mathbf{q}_2 = \mathbf{k}_i \mathbf{k}_a$
- Change of variable $\mathbf{k}_a \rightarrow \mathbf{k}_i \mathbf{q}_2$ and $\mathbf{k}_j \rightarrow \mathbf{k}_i + \mathbf{q}_1 \mathbf{q}_2$.
- Reduction of error (singularity only along q₁, q₂ direction)

$$\begin{split} \mathcal{E}_{(\Omega^*)^{\times 3}}\left(\sum_{ijab}F^{ijab}_{\mathsf{mp2},\mathsf{x}}(\mathsf{k}_i,\mathsf{k}_j,\mathsf{k}_a),(\mathcal{K})^{\times 3}\right) \lesssim \mathcal{E}_{(\Omega^*)^{\times 3}}\left(\widetilde{F}_{\mathsf{mp2},\mathsf{x}}(\mathsf{k}_i,\mathsf{q}_1,\mathsf{q}_2),\mathcal{K}\times\mathcal{K}_{\mathsf{q}}\times\mathcal{K}_{\mathsf{q}}\right) \\ \lesssim \max_{\mathsf{k}_i}\mathcal{E}_{\Omega^*\times\Omega^*}\left(\widetilde{F}_{\mathsf{mp2},\mathsf{x}}(\mathsf{k}_i,\mathsf{q}_1,\mathsf{q}_2),\mathcal{K}_{\mathsf{q}}\times\mathcal{K}_{\mathsf{q}}\right) \end{split}$$

Boils down to quadrature error of singular integrals

• MP2 direct:

$$\int_{\Omega^*} \frac{f_1(\mathbf{q})}{|\mathbf{q}|^2} \, \mathrm{d}\mathbf{q}, \quad \int_{\Omega^*} \frac{f_2(\mathbf{q})}{|\mathbf{q}|^4} \, \mathrm{d}\mathbf{q}.$$

 f_1, f_2 compactly supported in Ω^* . Isolated singularity at $\mathbf{q} = \mathbf{0}$. $f_1(\mathbf{q}) = \mathcal{O}(|\mathbf{q}|^2), f_2(\mathbf{q}) = \mathcal{O}(|\mathbf{q}|^4)$

• MP2 exchange:

$$\int_{\Omega^* \times \Omega^*} \frac{f_3(\mathbf{q}_1, \mathbf{q}_2)}{|\mathbf{q}_1|^2 |\mathbf{q}_2|^2} \, \mathrm{d}\mathbf{q}_1 \, \mathrm{d}\mathbf{q}_2.$$

 f_3 compactly supported in Ω^* . Isolated singularity at $\mathbf{q}_1 = \mathbf{q}_2 = \mathbf{0}$. $f_3(\mathbf{q}_1, \mathbf{q}_2) = \mathcal{O}(|\mathbf{q}_1|^2 |\mathbf{q}_2|^2)$.

Singularity due to anisotropicity

- $f(\mathbf{q}) = \mathcal{O}(|\mathbf{q}|^2) \quad \Rightarrow \quad f(\mathbf{q}) = C |\mathbf{q}|^2 + o(|\mathbf{q}|^2)$
- Hence $f(\mathbf{q})/|\mathbf{q}|^2$ may not be continuous.
- Happens in anisotropic materials

Standard analysis

- $f(\mathbf{q})$ smooth, periodic, $f(\mathbf{q}) = \mathcal{O}(|\mathbf{q}|^{\alpha})$. $|\mathcal{K}_{\mathbf{q}}| = N_{\mathbf{k}} = m^{d}$.
- Standard Euler-Maclaurin analysis:

$$\mathcal{E}_{\Omega^*}\left(f(\mathbf{q})/\left|\mathbf{q}\right|^{2p},\mathcal{K}_{\mathbf{q}}
ight)=\mathcal{O}(m^{-(\gamma-1)}),\quad \gamma=lpha-2p.$$

• In MP2, $\gamma = 0 \Rightarrow$ no convergence rate

Main technical result

Theorem (Xing, Li, L., in preparation)

$$\mathcal{E}_{\Omega^*}\left(f(\mathbf{q})/\left|\mathbf{q}\right|^{2p},\mathcal{K}_{\mathbf{q}}\right)=\mathcal{O}(m^{-(\gamma+d)}),\quad \gamma=lpha-2p.$$

- with $\gamma = 0$, MP2 error (direct term) is $\mathcal{O}(m^{-d}) = \mathcal{O}(N_{\mathbf{k}}^{-1})$.
- Similar result for the exchange term.
- Simplified and generalized results of Lyness¹

¹Lyness, Math. Comp. 1976

Symmetry and removable discontinuity

• For systems with high symmetries (e.g. cubic symmetry), we do have

$$f(\mathbf{q}) = C |\mathbf{q}|^2 + o(|\mathbf{q}|^2)$$

- Standard mesh: set $f(\mathbf{q}) / |\mathbf{q}|^2$ to 0 at $\mathbf{q} = \mathbf{0}$
- Always error of $\mathcal{O}(N_{\mathbf{k}}^{-1})$.
- Similar for the $f_2(\mathbf{q})/|\mathbf{q}|^4$ term.
- Staggered mesh: avoid all these errors. Convergence rate $\mathcal{O}\left(N_{\mathbf{k}}^{-\frac{d+2}{d}}\right)$ or better.

Conclusion

- Quadrature based analysis for finite-size errors of Fock exchange energy: a new derivation for Shifted Coulomb operator ~ Madelung constant correction
- For MP3: $\langle ij|kl \rangle$ or $\langle ab|cd \rangle$ (work in progress)
- For RPA: analysis of an infinite number of diagrams.
- Coupled cluster theory.

Thank you for your attention!

