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A ritual
There is perhaps a widespread belief that a talk on quantum

Figure. A superposition of
Feynmans

Solve nature with nature:
. If you want to make a simulation of nature, you'd better make

it quantum mechanical, and by golly it's a wonderful problem, be-
cause it doesn’t look so easy.

— Richard P Feynman (1981) 1st Conference on Physics and Com-
putation, MIT



Quantum computation meets public attention

Google, Nature 2019 USTC, Science 2020
Random circuit sampling Boson sampling
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e After about four decades, quantum supremacy has been reached: the
point where quantum computers can do things that classical computers
cannot, regardless of whether those tasks are useful.

¢ s controlling large-scale quantum systems merely really, really hard, or
is it ridiculously hard? — John Preskill (2012)

e Quantum computer does anything useful? called quantum advantage.
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Axes swung at Google

Simulating the Sycamore quantum supremacy circuits arXiv:2103.03074v1

Feng Pan'? and Pan Zhang' *

\Institute of Theoretical Physics, Chinese Academy of Scien
2School of Physical Sciences, Unive

es, Beijing 100190, China
ity of Chinese Academy of Sciences, Beijing 100049, China

We propose a general tensor network method for simulating quantum circuits. The method is massively more
efficient in computing a large number of correlated bitstring amplitudes and probabilities than existing methods.
As an application, we study the sampling problem of Google’s Sycamore circuits, which are believed to be
beyond the reach of classical supercomputers and have bt,cn used to demonstrate quantum supremacy. Using
our method, empl. small cluster 60 graphical p units (GPUs), we have
generated one million correlated bitstrings with some entries fixed, from the Sycamore circuit with 53 qubits
and 20 cycles, with linear cross-entropy benchmark (XEB) fidelity equals 0.739, which is much higher than
those in Google’s quantum supremacy experiments.

Another axe swung at the Sycamore

So there’s an interesting new paper on the arXiv by Feng Pan and Pan Zhang,
entitled “Simulating the Sycamore supremacy circuits.” It's about a new tensor
contraction strategy for classically simulating Google’s 53-qubit quantum
supremacy experiment from Fall 2019. Using their approach, and using just 60
GPUs running for a few days, the authors say they managed to generate a million
correlated 53-bit strings—meaning, strings that all agree on a specific subset of
20 or so bits—that achieve a high linear cross-entropy score.

https://www.scottaaronson.com/blog/?p=5371



Quantum computer: current and (near, possible) future

IBM’s road map (02/2021)

We have a few
quantum Development Roadmap
computers..

Quantum

Berkeley




What is a quantum computer (mathematically)

|y) € CN = (C2)®", N =2". n: number of qubits.

Normalization condition (i|y) = 1.

U € CN*Nis unitary. U |y) is efficient to apply (poly(n)).

Quantum computer: Uk - - - Uy |¢), and then classical output by
measuring one or a few qubits M times.

Quantum cost: MKpoly(n). Potential exponential speedup.



Quantum circuit: “graphical” tensor linear algebra
e State vectors
o=(g). m=_°
—\o0)’ —
e Pauli matrices
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Quantum circuit: “graphical” tensor linear algebra
e Tensor product

1 0 0 0
100) = (8) . |o1) = (;) 110) = (?) 1) = (g)
0 0 0 1

e CNOT gate
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Numerical linear algebra

¢ Linear systems of equation Ax = b

Least squares problem miny ||Ax — b||,

e Eigenvalue decomposition Av; = \;v;

Singular value decomposition Av; = ujo;

Preconditioner M—1"Ax = M~ b

Matrix exponentiation exp(A)b and other matrix functions

Machine learning, e.g. kernel ridge regression a = (K + 1)1y



Quantum numerical linear algebra

Solving numerical linear algebra problems on a quantum
computer.

Many interesting, exciting progresses in the past few years.
Reasonable way towards “quantum advantage”.
Quantum linear system problem (QLSP)

A|x) x |b)

A € CN*N: cost can be O(polylog(N)).



A toy linear system problem

1,3, (075 025 1
A‘4X+4':<0.25 0.75)’ |b>:‘°>:<o>'

—0.316

Goal: obtain |x) = A" |b) / ||A~" |b)]|, = <

0.949 >

(One possible) quantum circuit

|x) (upon measuring 0)

Does not look like any classical direct or iterative algorithm.

~7.020 x 1011
—2.106 x 1010

d = 80, error of approximation (



How to query A on a quantum computer?

e X [are unitaries. Ais a linear combination of unitaries (LCU),
and is itself non-unitary. x(A) = [|All, [[A1]|, = 2.

¢ |dea: extend 1-qubit non-unitary matrix to a 2-qubit unitary matrix
w=(10)

e Block-encoding (Low-Chuang, 2016; called “standard form”
initially)



An example of block-encoding Ua

e Unitary. Use 1 ancilla qubit.

0.250 0.750) —0.433 0.433
0.433 —-0.433 0.250 0.750
—0.433 0.433 0.750 0.250

0 —{R(-%) |+ A(%) Up =

Iv)

( 0.750 0.250 0.433 —-0.433

* U, should be viewed as a mapping on (C?)%2,

e Quantum circuit

0= =z

[y — Alv) (upon measuring 0)




Block-encoding the inverse

4 (15 -05
AT = < —05 15
Note [[A~"|| =2 > 1, no hope to have
UA*‘ == < A . >
e How about (with a2 > 1)

(1)

e Construct Us—1 using U, UI\, and simple quantum gates (in this
case Uy = UI‘).

® Inverse



Such an U4+ exists

0.075 -0.029 0.0 0.0 0.271j 0728 —0.442j 0.442j

0.025 0.075 0.0 0.0 0.728] 0.271j 0.442j —0.442j

0.0 0.0 0.075 —0.025 —0.442j 0.442j —0.271j —0.728;
Uy = 0.0 00 -0.025 0.075 0.442j -0.442j -0.728] —0.271]
A7 T | 0271 0728] —0442j 0.442j 0.075 —0.025 0.0 0.0

0.728j 0271/ 0.442j —0.442j —0.025 0.075 0.0 0.0

—0.442j 0.442j -0271j -0.728j 0.0 0.0 0.075 —0.025

0.442j —0.442j —0.728j —0271j 0.0 00 -0.025 0.075

e We find

1, _( 0075 -0.025 B
A /a_<—o.025 0.075 ) =20

¢ Use 2 ancilla qubits.



Procedure to construct U,-1 |b)

o) —[H} s —ivea 12 . N g H

e e ‘ e

0) ] =
U Un
by |x) (upon measuring 0)

(Simplified circuit using that Uy is Hermitian, A > 0;{¢; ;?go are called phase factors).

The same circuit works for arbitrarily large matrix (|b) is n-qubit).

o d = 80. Error for approximating A~" /a
il
—2.046 x 10~ 2,532 x 10—
2,532 x 10~ —2.046 x 10—




What is under the hood?

* Polynomial approximation A~" /o ~ Z,‘(’ZO ¢k Tk(A) :== P(x) on
[«~1,1] (after possible rescaling)

e Key step: parameterized polynomial representation in SU(2)
= Quantum singular value transformation circuit (QSVT)
(Gilyén-Su-Low-Wiebe, 2019).

Re [eiéozei arccos(x) X ei¢1Zei arccos(X)X | .. eiqﬁd,1Zeiarccos(X)XeideZ] y _ P(X)

¢ Use the same circuit (but different parameters) for various
(generalized) matrix functions.

® One of the most interesting developments in quantum algorithms
in the past decade.



QSPPACK

Source Code:
https://github.com/qsppack/qsppack

Example: QSP phase factors for Hamiltonian
simulation

time parameter in cos(tau*x), the real part of Hamiltonian

wlation, e”(i*tau*x)

tau = 1000; parity = 0;

max expansion order and Chebyshev coeficients in Jacobi-Anger
maxorder = ceil(1l.4*tau+log(leld));
.* besselj(2*(0:maxorder/2),tau)";

coef = (-1)."(0:maxorder/2)"

coef(1) = coef(1)/2;

criteria of

le-12;

the optimization solver

opping

opts.criteria =

build QSP phase factors via QSPPACK

[phi,out] = QSP_solver(coef,parity,opts);

Efficient Phase Factor Evaluation in Quantum Signal Processing

Yulong Dong!2, Xiang Meng?®, K. Birgitta Whaley', and Lin Lin®!
"Berkeley Center for Quantum Information and Computation, Berkeley, California 947
2Department of Chemistry, University of California, Berkeley, Calijornia 94720 U
*Department of Mathematics, University of California, Berkeley, California 94720 USA and

' Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
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QLSP: quantum and classical (iterative) solvers

Positive definite matrix. Error in A-norm. N = 2"

Steepest descent: O(Nk log(1/¢)); Conjugate gradient:
O(NV/klog(1/€))

Quantum algorithms can scale better in N but worse in k.

Lower bound: Quantum solver cannot generally achieve O(x'~?)
complexity for any § > 0 (Harrow-Hassadim-Lloyd, 2009)

Goal of near-optimal quantum linear solver: (5(/<;polylog(1/e))
complexity.



2
Compare the complexities of QLSP solvers

Significant progress in the past few years: Near-optimal complexity matching lower bounds. All
with the promise of poly(n) complexity for matrix of size 2.

Algorithm Query complexity

Quantum phase estimation (HHL) (Harrow-Hassidim-Lloyd, 6(:‘12/6)
2009)

Linear combination of unitaries (LCU) (Childs-Kothari- | O(x2polylog(1/€))
Somma, 2017)

Quantum singular value transformation (QSVT) (Gilyén-Su- | O(x2 log(1/¢))
Low-Wiebe, 2019)

Randomization method (RM) (Subasi-Somma-Orsucci, | O(x/¢)
2019)

Time-optimal adiabatic quantum computing (AQC(exp)) (5(npolylog(1/e))
(An-L., 2019, 1909.05500)

Eigenstate filtering (L.-Tong, 1910.14596, Quantum 2020) | O(x log(1/¢))




Adiabatic computation

¢ (Born-Fock, 1928)

A physical system remains in its instantaneous eigenstate if a given perturbation is
acting on it slowly enough and if there is a gap between the eigenvalue and the rest of
the Hamiltonian’s spectrum.

e Albash, Avron, Babcock, Cirac, Cerf, Elgart, Hagedorn, Jansen,
Kato, Lidar, Nenciu, Roland, Ruskai, Seiler, Wiebe...

a(Hen /////// o H(s) = (1 — s)Ho + sHs,
: Li0s bér(s)) = HS) [0r() - 167(0)) = o)

[¥7(1)) = (1) (up to a phase factor), T
sufficiently large?




Reformulating QLSP into an eigenvalue problem

Weave together linear system, eigenvalue problem, differential
equation (Subasi-Somma-Orsucci, 2019)

Qo= Iy—|b)(b]. FAIX)=|b) = QpA|x)=Qp|b)=0

= (g “60): W =100~ ()

Null(Hh) = span{[%) . |B)}, [B) = 1) |b) = (0)

e Then

b

QLSP = Find an eigenvector of H; with eigenvalue 0.
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Slow convergence with respectto T
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o
Instantaneous Error

o

0 02 04 06 08 1
Time s

Algorithm Time complexity (T)
Direct (Jansen-Ruskai-Seiler, 2007) O(x3/e€)

Randomization method (RM) (Subasi-Somma- | O(x log(k)/€)
Orsucci, 2019)

Time-optimal  adiabatic  quantum  computing | O(x poly log(x/¢))
(AQC(exp)) (An-L., 2019)




AQC(exp): exponential improvement w.r.t. e

¢ Adiabatic evolution with H(f(s)) = (1 — f(s))Ho + f(s)H;

f(s)=c," /Os exp <_s’(11—s’)> ds’

e allow H(f(s)) to slow down when the gap is close to 0, to cancel
with the vanishing gap.

4000

1 —~<AQC(1)
- vanilla AQC
308 _ 3000 ~RM
20.6 S 2
3 £ 5 2000
Qo4 - s s /
% - —Vanm(aAL))c 4 z
— AQC(p=1
o2 AQC(p=1.5) 1000
—AQC(p=2) s N
0 — AQC(exp) a9 e serex—
0 02 04 06 08 1 0 10 20 30 40
Time s € Condition number

(An-L., 2019, 1909.05500)



Solving QLSP via eigenstate filtering and quantum
Zeno effect

® QZE: variant of adiabatic computation. Frequent
measurement = Projection

® Measure the state |x(fi_1)) in the eigenbasis of H(f;).

® Fidelity approaches 1 as step size decreases.

® Replace measurement with eigenstate filtering (projection).

[X(fo)) [x(f)) - 1))

Eigenstate filtering Eigenstate filtering  Eigenstate filtering

(L.-Tong, 1910.14596, Quantum 2020)



Eigenstate filtering problem

* His Hermitian. \ is an eigenvalue of H, separated from the rest
of the spectrum by a gap A.

® P,: projection operator into the A-eigenspace of H. How to find a
polynomial P to approximate P,?

e Requirement: P(A\) =1 and |P()\)| is small for X' € o(H)\{A}.

P, (x) "




Application of eigenstate filtering:
Solving QLSP via quantum Zeno effect (QZE)

Theorem (L.-Tong, 1910.14596)
A is a d-sparse Hermitian matrix with condition number , ||Al|, < 1.

Then 1x) oc A=1|b) can be obtained with fidelity 1 — ¢ using
O (dx (log(k) log log(k) + log(1))) queries to A, |b),
O (ndk (log(r) log log(x) + log(1))) other primitive gates,
3 O(n) qubits.
® Fully-gate based implementation.
® No need for time-dependent Hamiltonian simulation.

® Successive projection along the carefully scheduled adiabatic path.

® Near-optimal complexity!



Preconditioned quantum linear system solver

QLSP with || Al > ||B]|

(A+ B)[x) ~ |b)

Preconditioner: A~'

(I+A7'B)|x) ~ A~" |b)

Condition number:
k(I+ATB) < (1+[[(A+B)"[lIBIl) (1+ |A]111BIl)

Circuit depth: independent of ||A]|
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Fast inversion of diagonal matrices
e D =diag(D;): ||D7|| = min|Dj| = Q(1), || D|| = max|Dj| > 1
e Assume Op i) [0') = |i) [D;), i€ [N]
e Circuit Up, for the block-encoding of D~ (classical arithmetic)

b)
o)
0)

INV

e Circuit depth is independent of || D||

(Tong-An-Wiebe-L., 2008.13295)



Example: elliptic partial differential equation

e Consider a 1D Poisson’s equation:

—Au(r)+u(r)=b(r), reQ=][0,1]. (1)
e Discretize under planewave (Fourier) basis exp(2wikr):
1 Uo Eo
14 (27) Uy by
1+ (27rN)2 EN B-N

e Circuit depth of unpreconditioned method depends on
k(D) = O(N?)

¢ Circuit depth of fast inversion: O(1).



Fast matrix function evaluation: Gibbs state
preparation

* Prepare ps = 7.6, Z5 = Tr(e ).

e Purified Gibbs state |V) = \F > xeqn 1X) (€77F/2 |x)) : trace out
first register = Obtain pg

e Two new approaches (convert to linear system problems):
e Cauchy’s contour integral formula:

1
—BH _ —Bz
e o e (z—H)™!

® |nverse transform:
-BH —BH™H™!

e =€



Fast algorithm for preparing o e~ |b)

Algorithm Query complexities
w.o0. preconditioner Phase estimation (Poulin-Wocjan, 2009) @(‘g—’:)
LCU (van Apeldoorn et al, 2020) 5(%’ log(1))
w. preconditioner This work (contour integral) @(Egén Iog(%))
This work (inverse transformation) 14} (f’;ﬁﬁ‘m [log (%)}5>

H=A+ B, [|All > [IBI[,an ~ [[H],as ~ || Bl
¢=lle " |b) |l 5y, = (1 /), Gmin = Q(1/(1 + (A+ B)~"[|[|Bl))

(Tong-An-Wiebe-L., 2008.13295)



Ground state energy

® H o) = Ao |1g). W.0. assumption the problem is QMA-complete.

e |nitial state |¢g) prepared by unitary U, w. assumptions

(P1) Lower bound for the overlap: | (¢o|tpo) | > 7,
(P2) Bounds for the ground energy and spectral gap:
Ao <p—A2<pu+ A2 < ).

Poy(x)

Ao w4 x



Near-optimal algorithm for finding ground state energy

Preparation
(bound known)

Ground energy

Preparation
(bound unknown)

Uy Our work | O (% Iog(%)) o2 Iog( 1 )) 0] (w% Iog(%))
GTC19 | O (%) o (./;3//22) O (1xv2)

U Our work O(%) (9( g(%)log(}) ) (9( log( ) log (3 ))
atcie | 0(1) (;\/%) o(1v3)

Extra | Our work | O(1) O(log(})) O(log(}))

qubits | GTC19 | O(log(% log(1))) | O(log(1)) O(log( log(1)))

Well-known result: phase estimation; Previous best results: (Ge-Tura-Cirac, 2019)

h: precision of the ground energy estimate; 1 — ¥: success probability
Lower bound for the overlap: | (¢o|¢0o) | > 7,

Bounds for the ground energy and spectral gap: \g < u— A/2 < p+ A/2 < Ay.

(L.-Tong, 2002.12508, Quantum 2020)
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Binary search for ground energy

What if E is here?

E, in this E, in this
region: ; region:
small ; large
amplitude [ amplitude
x-h x x+h Spectrum x-h X x+h Spectrum

e Construct filtering polynomial with cost O(+ log(1)) by approximating
erf (Low-Chuang, 2017)

¢ Apply two shifted polynomials. Return with high confidence:
Eo>x—horEg < x+ h.

e Perform binary search for Ey.
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How to select the TOP500 quantum computers?

First, how to do the job for classical supercomputers?

Rpesk  Power

it spem [T i NEWS
. Ersbitontlonh Japan Captures TOP500 Crown with Arm-Powered

2 OnE0D BamAT 28308

o Supercomputer
i somn e 2aesm ueas0 xomiy e June 22, 2020
el ol flen FRANKFURT, Germany; BERKELEY, Calit; and KNOXVILLE, Tenn.—The 55th edition

it of the TOPS00 saw some significant additions to the list, spearheaded by a new
number one system from Japan. The latest rankings also reflect a steady growth in

- | P aggregate performance and power efficiency.

16 L The new top system, Fugaku, turned T T, (HPL result of 415.5 petaflops, besting the now second-
St place Summit system by a factor of 2.8x. Fugaku, is powered by Fujitsu’s 48-core AG4FX SaC, becoming the first number one
1M/ RO/ Mellano

system on the list to be powered by ARM processors. In single or further reduced precision, which are often used in machine

m— — Learning and Al applications, Fugaku’s peak performance is over 1,000 petaflops [1 exaflops). The new system is installed at
) RIKEN Center for Computational Science [R-CCS) in Kobe, Japan,

TaihuLight

Chia N

s i What is LINPACK? Why LINPACK?

'https://www.top500.0rg/, 55th edition of the TOP500, June 2020



Climbing the Quantum Mount Everest

Quantum advantage

Quantum LINPACK benchmark
STEPS away ‘

Quantum supremacy




RAndom Circuit Block Encoded Matrlx (RACBEM)

Qubit 1 takes |0
o (D 2 l s 10)

Get a 3-qubit RACBEM

<0008 0051 0301 00 0153 0UIN 00IGL OV 001 00T D100 D0 011 oo
0301 0000 0067 00dli 0013 0018 0152 0130003
001881 0105+ oom ~03
o Soan s 4 o1+ o108
Lot o1tz 35 - 006
5 e B >
i 0125 06010 516 03151 ~0.150 0317 02 x
° 006110114 009 0116 03100205 0007 10350 0302000k 013 D20 0038 0075 0040 005

¢ A very flexible way to construct a non-unitary matrix with respect
to any coupling map of the quantum architecture.

e Take upper-left diagonal block: measure one-qubit.
A= (0| ® Ih) Ua(|0) ® In)

(Dong, L., 2006.04010)



RACBEM

Source Code:
https://github.com/qsppack/racbem

Random circuit block-encoded matrix and
a proposal of quantum LINPACK benchmark

Yulong Dong'? and Lin Li

*Berkeley Center for Quantum Information. and Computation, Berkeley, California 94780 USA
2Department of Chemistry, University of California, Berkeley, California 94720

artment of Mathematics, University of California, Berteley, California 94720 53 and

 Computational Rescarch Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Example:

from racbem import
from qiskit inport execute

import numpy as np

n_sys_qubit = # the .
n_be_qubit = 1 he n S

n_sig_qubit = 1 gnal qu

n_tot_qubit = n_sig_qubit+n_be_qubit+n_sys_qubit

n_depth = 1 e depth of random c

prob_one_g_op = 0.5 e probab of selecting a one-q
n_shots = 2+ the number of o

be = BlockEncoding(n_be_qubit, n_sys_qubit)
qsp = 0SPCircuit(n_sig_qubit, n_be_qubit, n_sys_qubit)

be.build_random_circuit(n_depth, basis_gatesebasis_gates,

Prob_one_q_op=prob_one_q_op, coupling mapwbe_map)

UA = retrieve _unitary matrix(be.qe)
A = UA[0:2+*n_sys_qubit, 0:2**n_sys_qubit

be.build dag()

qsp-build_circuit(be.qe, be.qc_dag, phi_seq, realpart-True, measure:

job = execute(qsp.geircuit, backend=noisy_backend, shotsn_shots)

result = job.result()

counts = result.get_counts(gsp.geircuit)

prob_meas = np.float(counts('00']) / n_shots




Solving linear system on IBM Q and QVM

Compute ||$ |O”)H§. (sigma: noise level on QVM)
Well conditioned linear system

e length of QSVT
phase factors
14 -3
= 11
12
510 ma
L
< e)x=1 (@
$os8
Q
| 3
g 06 / J
s o /fér
N | / /
02 4 /:/
00 -

ibmq_london  ibmq_burlington  ibmq_essex  ibmq_ourer ibmq_vigo
IBM Q backend (5-qubit) nssowt w3 w4 w5 6 47 -8 9 =10



Conclusion

e | arge-scale fully error-corrected quantum computer remains really,
really hard in the near future. Think about both near-term and
long-term quantum algorithms.

e Many interesting, exciting progresses in the past few years on quantum
linear algebra. Many more are coming.

¢ Linear system, preconditioning, eigenvalue problem, benchmark

e Future? Maybe problem with more structural information. More
efficient implementation (not only asymptotic scaling)

® Heisenberg-limited ground state energy estimation for early
fault-tolerant quantum computers (L.-Tong, 2102.11340)

e Quantum LINPACK benchmark on Sycamore
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IPAM workshop on “Quantum numerical linear algebra”

Quantum Numerical Linear Algebra
JANUARY 24 - 27, 2022

Q rovame [/ aeucamion s recisraamion

Overview

With the rapid development of quantum computers, a number of quantum algorithms have been

developed and tested on both superconducting qubits based machines and trapped-ion hardware. The A — b
recent development of quantum algorithms has significantly pushed forward the frontier of using >€ = {):

qQuantum computers for performing a wide range of numerical linear algebra tasks, such as solving

linear systems, eigenvalue decomposition, singular value decomposition, matrix function evaluation etc

While many quantum algorithms aim at future fault-tolerant quantum architecture, some of such numerical linear algebra algorithms have already demonstrated promise for
being implemented on near term quantum devices. This workshop brings together leading experts in quantum numerical linear algebra, to discuss the recent development of
quantum algorithms to perform linear algebra tasks for solving challenging problems in science and engineering and for various industrial and technological applications.

This workshop will include a poster session; a request for posters will be sent to registered participants in advance of the workshop.

ORGANIZING COMMITTEE

Aram Harrow (Massachusetts Institute of Technology)
Lin Lin (University of California, Berkeley (UC Berkeley), Mathematics)
Thomas Vidick (California Institute of Technology)

Nathan Wiebe (University of Toronto)
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- 45
Block-encoding

Definition
Given an n-qubit matrix A, if we can find a,e € Ry, and an
(m -+ n)-qubit unitary matrix U so that that

IA = a (07 @ In) Ua(I07) @ In) || < e,

then Uy is called an («, m, €)-block-encoding of A.
e A “gray box” for the read-in problem.
* Many examples of block-encoding: density operators, POVM

operators, d-sparse matrices, addition and multiplication of
block-encoded matrices (Gilyén-Su-Low-Wiebe, 2019)



