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A ritual
There is perhaps a widespread belief that a talk on quantum
computation should start with a picture of Feynman..

Figure. A superposition of
Feynmans

Solve nature with nature:
... if you want to make a simulation of nature, you’d better make
it quantum mechanical, and by golly it’s a wonderful problem, be-
cause it doesn’t look so easy.

– Richard P. Feynman (1981) 1st Conference on Physics and Com-
putation, MIT
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Quantum computation meets public attention
Google, Nature 2019
Random circuit sampling

USTC, Science 2020
Boson sampling

• After about four decades, quantum supremacy has been reached: the
point where quantum computers can do things that classical computers
cannot, regardless of whether those tasks are useful.

• Is controlling large-scale quantum systems merely really, really hard, or
is it ridiculously hard? – John Preskill (2012)

• Quantum computer does anything useful? called quantum advantage.
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Axes swung at Google
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Quantum computer: current and (near, possible) future

We have a few
quantum
computers..

IBM’s road map (02/2021)
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What is a quantum computer (mathematically)

• |ψ〉 ∈ CN ∼= (C2)⊗n, N = 2n. n : number of qubits.

• Normalization condition 〈ψ|ψ〉 = 1.

• U ∈ CN×N is unitary. U |ψ〉 is efficient to apply (poly(n)).

• Quantum computer: UK · · ·U1 |ψ〉, and then classical output by
measuring one or a few qubits M times.

• Quantum cost: MK poly(n). Potential exponential speedup.
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Quantum circuit: “graphical” tensor linear algebra
• State vectors

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
• Pauli matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)

|0〉 X |1〉 |1〉 Z − |1〉

• Hadamard gate H = 1√
2

(
1 1
1 −1

)
, H |0〉 = 1√

2
(|0〉+ |1〉) := |+〉

|0〉 H |+〉
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Quantum circuit: “graphical” tensor linear algebra
• Tensor product

|00〉 =

1
0
0
0

 , |01〉 =

0
1
0
0

 , |10〉 =

0
0
1
0

 , |11〉 =

0
0
0
1


• CNOT gate

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 |a〉 |a〉

|b〉 |a⊕ b〉
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Numerical linear algebra

• Linear systems of equation Ax = b

• Least squares problem minx ‖Ax − b‖2

• Eigenvalue decomposition Avi = λivi

• Singular value decomposition Avi = uiσi

• Preconditioner M−1Ax = M−1b

• Matrix exponentiation exp(A)b and other matrix functions

• Machine learning, e.g. kernel ridge regression α = (K + Ĩ)−1y

• ...
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Quantum numerical linear algebra

• Solving numerical linear algebra problems on a quantum
computer.
• Many interesting, exciting progresses in the past few years.
• Reasonable way towards “quantum advantage”.
• Quantum linear system problem (QLSP)

A |x〉 ∝ |b〉

• A ∈ CN×N : cost can be O(polylog(N)).
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A toy linear system problem

A =
1
4

X +
3
4

I =

(
0.75 0.25
0.25 0.75

)
, |b〉 = |0〉 =

(
1
0

)
.

• Goal: obtain |x〉 = A−1 |b〉 /
∥∥A−1 |b〉

∥∥
2 =

(
0.949
−0.316

)
.

• (One possible) quantum circuit

· · ·

· · ·

· · ·

|0〉 H e−iϕ2d Z e−iϕ2d−1Z e−iϕ0Z H

|0〉
UA UA

|b〉 |x〉 (upon measuring 0)

• Does not look like any classical direct or iterative algorithm.

• d = 80, error of approximation
(
−7.020× 10−11

−2.106× 10−10

)
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How to query A on a quantum computer?

• X , I are unitaries. A is a linear combination of unitaries (LCU),
and is itself non-unitary. κ(A) = ‖A‖2

∥∥A−1
∥∥

2 = 2.

• Idea: extend 1-qubit non-unitary matrix to a 2-qubit unitary matrix

UA =

(
A ·
· ·

)
• Block-encoding (Low-Chuang, 2016; called “standard form”

initially)
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An example of block-encoding UA

• Unitary. Use 1 ancilla qubit.

|0〉 Ry (−2π
3 ) Ry (2π

3 )

|ψ〉

UA =


0.750 0.250 0.433 −0.433
0.250 0.750 −0.433 0.433
0.433 −0.433 0.250 0.750
−0.433 0.433 0.750 0.250



• UA should be viewed as a mapping on (C2)⊗2.

• Quantum circuit

|0〉
UA

|ψ〉 A |ψ〉 (upon measuring 0)
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Block-encoding the inverse

• Inverse

A−1 =

(
1.5 −0.5
−0.5 1.5

)
Note

∥∥A−1
∥∥ = 2 > 1, no hope to have

UA−1 =

(
A−1 ·
· ·

)
• How about (with α > 1)

UA−1 ≈
(

A−1/α ·
· ·

)
• Construct UA−1 using UA, U†A, and simple quantum gates (in this

case UA = U†A).
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Such an UA−1 exists

UA−1 =



0.075 −0.025 0.0 0.0 0.271j 0.728j −0.442j 0.442j
−0.025 0.075 0.0 0.0 0.728j 0.271j 0.442j −0.442j

0.0 0.0 0.075 −0.025 −0.442j 0.442j −0.271j −0.728j
0.0 0.0 −0.025 0.075 0.442j −0.442j −0.728j −0.271j

0.271j 0.728j −0.442j 0.442j 0.075 −0.025 0.0 0.0
0.728j 0.271j 0.442j −0.442j −0.025 0.075 0.0 0.0
−0.442j 0.442j −0.271j −0.728j 0.0 0.0 0.075 −0.025
0.442j −0.442j −0.728j −0.271j 0.0 0.0 −0.025 0.075



• We find

A−1/α =

(
0.075 −0.025
−0.025 0.075

)
, α = 20.

• Use 2 ancilla qubits.
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Procedure to construct UA−1 |b〉

(Simplified circuit using that UA is Hermitian, A � 0;{ϕi}2d
i=0 are called phase factors).

The same circuit works for arbitrarily large matrix (|b〉 is n-qubit).

d = 80. Error for approximating A−1/α(
−2.046× 10−11 2.532× 10−11

2.532× 10−11 −2.046× 10−11

)
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What is under the hood?

• Polynomial approximation A−1/α ≈
∑d

k=0 ckTk (A) := P(x) on
[κ−1,1] (after possible rescaling)

• Key step: parameterized polynomial representation in SU(2)
⇒ Quantum singular value transformation circuit (QSVT)
(Gilyén-Su-Low-Wiebe, 2019).

Re
[
eiφ0Z ei arccos(x)X eiφ1Z ei arccos(x)X · · · eiφd−1Z ei arccos(x)X eiφd Z

]
11

= P(x)

• Use the same circuit (but different parameters) for various
(generalized) matrix functions.

• One of the most interesting developments in quantum algorithms
in the past decade.
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QSPPACK
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QLSP: quantum and classical (iterative) solvers

• Positive definite matrix. Error in A-norm. N = 2n

• Steepest descent: O(Nκ log(1/ε)); Conjugate gradient:
O(N

√
κ log(1/ε))

• Quantum algorithms can scale better in N but worse in κ.

• Lower bound: Quantum solver cannot generally achieve O(κ1−δ)
complexity for any δ > 0 (Harrow-Hassadim-Lloyd, 2009)

• Goal of near-optimal quantum linear solver: Õ(κpolylog(1/ε))
complexity.
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Compare the complexities of QLSP solvers
Significant progress in the past few years: Near-optimal complexity matching lower bounds. All

with the promise of poly(n) complexity for matrix of size 2n.

Algorithm Query complexity

Quantum phase estimation (HHL) (Harrow-Hassidim-Lloyd,
2009)

Õ(κ2/ε)

Linear combination of unitaries (LCU) (Childs-Kothari-
Somma, 2017)

Õ(κ2polylog(1/ε))

Quantum singular value transformation (QSVT) (Gilyén-Su-
Low-Wiebe, 2019)

Õ(κ2 log(1/ε))

Randomization method (RM) (Subasi-Somma-Orsucci,
2019)

Õ(κ/ε)

Time-optimal adiabatic quantum computing (AQC(exp))
(An-L., 2019, 1909.05500)

Õ(κ poly log(1/ε))

Eigenstate filtering (L.-Tong, 1910.14596, Quantum 2020) Õ(κ log(1/ε))
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Adiabatic computation

• (Born-Fock, 1928)
A physical system remains in its instantaneous eigenstate if a given perturbation is
acting on it slowly enough and if there is a gap between the eigenvalue and the rest of
the Hamiltonian’s spectrum.

• Albash, Avron, Babcock, Cirac, Cerf, Elgart, Hagedorn, Jansen,
Kato, Lidar, Nenciu, Roland, Ruskai, Seiler, Wiebe...

H(s) = (1− s)H0 + sH1,

1
T

i∂s |ψT (s)〉 = H(s) |ψT (s)〉 , |ψT (0)〉 = |ψ0〉

|ψT (1)〉 ≈ ψ(1) (up to a phase factor), T
sufficiently large?
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Reformulating QLSP into an eigenvalue problem

• Weave together linear system, eigenvalue problem, differential
equation (Subasi-Somma-Orsucci, 2019)

• Qb = IN − |b〉 〈b|. If A |x〉 = |b〉 ⇒ QbA |x〉 = Qb |b〉 = 0

• Then

H1 =

(
0 AQb

QbA 0

)
, |x̃〉 = |0〉 |x〉 =

(
x
0

)

Null(H1) = span{|x̃〉 , |b̄〉}, |b̄〉 = |1〉 |b〉 =

(
0
b

)
• QLSP ⇒ Find an eigenvector of H1 with eigenvalue 0.
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Slow convergence with respect to T
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Direct (Jansen-Ruskai-Seiler, 2007) O(κ3/ε)

Randomization method (RM) (Subasi-Somma-
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O(κ log(κ)/ε)

Time-optimal adiabatic quantum computing
(AQC(exp)) (An-L., 2019)

O(κ poly log(κ/ε))
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AQC(exp): exponential improvement w.r.t. ε

• Adiabatic evolution with H(f (s)) = (1− f (s))H0 + f (s)H1

f (s) = c−1
e

∫ s

0
exp

(
− 1

s′(1− s′)

)
ds′

• allow H(f (s)) to slow down when the gap is close to 0, to cancel
with the vanishing gap.
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Solving QLSP via eigenstate filtering and quantum
Zeno effect

• QZE: variant of adiabatic computation. Frequent
measurement ⇒ Projection

• Measure the state |x̄(fj−1)〉 in the eigenbasis of H(fj ).

• Fidelity approaches 1 as step size decreases.

• Replace measurement with eigenstate filtering (projection).

(L.-Tong, 1910.14596, Quantum 2020)
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Eigenstate filtering problem

• H is Hermitian. λ is an eigenvalue of H, separated from the rest
of the spectrum by a gap ∆.

• Pλ: projection operator into the λ-eigenspace of H. How to find a
polynomial P to approximate Pλ?

• Requirement: P(λ) = 1 and |P(λ′)| is small for λ′ ∈ σ(H)\{λ}.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
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Application of eigenstate filtering:
Solving QLSP via quantum Zeno effect (QZE)

Theorem (L.-Tong, 1910.14596)
A is a d-sparse Hermitian matrix with condition number κ, ‖A‖2 ≤ 1.
Then |x〉 ∝ A−1 |b〉 can be obtained with fidelity 1− ε using
1. O

(
dκ
(
log(κ) log log(κ) + log(1

ε )
))

queries to A, |b〉,
2. O

(
ndκ

(
log(κ) log log(κ) + log(1

ε )
))

other primitive gates,
3. O(n) qubits.

• Fully-gate based implementation.

• No need for time-dependent Hamiltonian simulation.

• Successive projection along the carefully scheduled adiabatic path.

• Near-optimal complexity!
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Preconditioned quantum linear system solver

• QLSP with ‖A‖ � ‖B‖

(A + B) |x〉 ∼ |b〉

• Preconditioner: A−1

(I + A−1B) |x〉 ∼ A−1 |b〉

• Condition number:
κ(I + A−1B) ≤

(
1 + ‖(A + B)−1‖‖B‖

) (
1 + ‖A−1‖‖B‖

)
• Circuit depth: independent of ‖A‖
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Fast inversion of diagonal matrices

• D = diag(Dii):
∥∥D−1

∥∥ = min |Dii | = Ω(1), ‖D‖ = max |Dii | � 1

• Assume OD |i〉 |0l〉 = |i〉 |Dii〉 , i ∈ [N]

• Circuit U ′D for the block-encoding of D−1 (classical arithmetic)

|b〉

OD O†D
|0l〉

INV
|0〉

• Circuit depth is independent of ‖D‖

(Tong-An-Wiebe-L., 2008.13295)
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Example: elliptic partial differential equation

• Consider a 1D Poisson’s equation:

−∆u(r) + u(r) = b(r), r ∈ Ω = [0,1]. (1)

• Discretize under planewave (Fourier) basis exp(2πikr):
1

1 + (2π)2

. . .
1 + (2πN)2




û0
û1
...

ûN

 =


b̂0

b̂1
...

b̂N


• Circuit depth of unpreconditioned method depends on
κ(D) = O(N2)

• Circuit depth of fast inversion: O(1).
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Fast matrix function evaluation: Gibbs state
preparation

• Prepare ρβ = 1
Zβ

e−βH , Zβ = Tr(e−βH).

• Purified Gibbs state |Ψ〉 = 1√
Zβ

∑
x∈[N] |x〉 (e−βH/2 |x〉) : trace out

first register ⇒ Obtain ρβ

• Two new approaches (convert to linear system problems):
• Cauchy’s contour integral formula:

e−βH =
1

2πi

∮
Γ

e−βz(z − H)−1 dz

• Inverse transform:
e−βH = e−β(H−1)−1
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Fast algorithm for preparing ∝ e−H |b〉

Algorithm Query complexities

w.o. preconditioner Phase estimation (Poulin-Wocjan, 2009) Õ(αH
ξε )

LCU (van Apeldoorn et al, 2020) Õ(αH
ξ log(1

ε ))

w. preconditioner This work (contour integral) Õ( αB
ξσ̃′2min

log(1
ε ))

This work (inverse transformation) Õ
(

αB
ξσ̃2

min

[
log
(1
ε

)]5)
H = A + B, ‖A‖ � ‖B‖ , αH ∼ ‖H‖ , αB ∼ ‖B‖
ξ = ‖e−H |b〉 ‖, σ̃′min = Ω(1/αB), σ̃min = Ω(1/(1 + ‖(A + B)−1‖‖B‖))

(Tong-An-Wiebe-L., 2008.13295)
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Ground state energy

• H |ψ0〉 = λ0 |ψ0〉. w.o. assumption the problem is QMA-complete.

• Initial state |φ0〉 prepared by unitary UI , w. assumptions
(P1) Lower bound for the overlap: | 〈φ0|ψ0〉 | ≥ γ,
(P2) Bounds for the ground energy and spectral gap:

λ0 ≤ µ−∆/2 < µ+ ∆/2 ≤ λ1.
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Near-optimal algorithm for finding ground state energy

Preparation
(bound known)

Ground energy Preparation
(bound unknown)

UH
Our work O

(
α
γ∆ log(1

ε )
)

Õ
(
α
γh log( 1

ϑ)
)

Õ
(
α
γ∆ log( 1

ϑε)
)

GTC19 Õ
(
α
γ∆

)
Õ
(
α3/2

γh3/2

)
Õ
(
α3/2

γ∆3/2

)
UI

Our work O
(

1
γ

)
Õ
(

1
γ log(αh ) log( 1

ϑ)
)
Õ
(

1
γ log( α∆ ) log( 1

ϑ)
)

GTC19 Õ
(

1
γ

)
Õ
(

1
γ

√
α
h

)
Õ
(

1
γ

√
α
∆

)
Extra Our work O(1) O(log( 1

γ )) O(log( 1
γ ))

qubits GTC19 O(log( 1
∆ log(1

ε ))) O(log( 1
h )) O(log( 1

∆ log(1
ε )))

Well-known result: phase estimation; Previous best results: (Ge-Tura-Cirac, 2019)
h: precision of the ground energy estimate; 1− ϑ: success probability
Lower bound for the overlap: | 〈φ0|ψ0〉 | ≥ γ,
Bounds for the ground energy and spectral gap: λ0 ≤ µ−∆/2 < µ+ ∆/2 ≤ λ1.

(L.-Tong, 2002.12508, Quantum 2020)
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Binary search for ground energy

  
xx-h x+h

E
0
 in this 

region: 
small 
amplitude

E
0
 in this 

region: 
large 
amplitude

What if E
0 
is here?

Spectrum
  

xx-h x+h Spectrum

• Construct filtering polynomial with cost O( 1
h log( 1

ε )) by approximating
erf (Low-Chuang, 2017)

• Apply two shifted polynomials. Return with high confidence:
E0 ≥ x − h or E0 ≤ x + h.

• Perform binary search for E0.
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How to select the TOP500 quantum computers?

First, how to do the job for classical supercomputers?

What is LINPACK? Why LINPACK?

1https://www.top500.org/, 55th edition of the TOP500, June 2020
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Climbing the Quantum Mount Everest
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RAndom Circuit Block-Encoded Matrix (RACBEM)

• A very flexible way to construct a non-unitary matrix with respect
to any coupling map of the quantum architecture.

• Take upper-left diagonal block: measure one-qubit.
A = (〈0| ⊗ In) UA (|0〉 ⊗ In)

(Dong, L., 2006.04010)
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RACBEM
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Solving linear system on IBM Q and QVM

Compute
∥∥H−1 |0n〉

∥∥2
2. (sigma: noise level on QVM)

Well conditioned linear system
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Conclusion

• Large-scale fully error-corrected quantum computer remains really,
really hard in the near future. Think about both near-term and
long-term quantum algorithms.

• Many interesting, exciting progresses in the past few years on quantum
linear algebra. Many more are coming.

• Linear system, preconditioning, eigenvalue problem, benchmark

• Future? Maybe problem with more structural information. More
efficient implementation (not only asymptotic scaling)

• Heisenberg-limited ground state energy estimation for early
fault-tolerant quantum computers (L.-Tong, 2102.11340)

• Quantum LINPACK benchmark on Sycamore
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Block-encoding

Definition
Given an n-qubit matrix A, if we can find α, ε ∈ R+, and an
(m + n)-qubit unitary matrix UA so that that

‖A− α (〈0m| ⊗ In) UA (|0m〉 ⊗ In) ‖ ≤ ε,

then UA is called an (α,m, ε)-block-encoding of A.

• A “gray box” for the read-in problem.

• Many examples of block-encoding: density operators, POVM
operators, d-sparse matrices, addition and multiplication of
block-encoded matrices (Gilyén-Su-Low-Wiebe, 2019)


