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Fast inversion, preconditioned quantum linear system solvers, fast Green’s function
computation, and fast evaluation of matrix functions, (Tong, An, Wiebe, L., 2008.13295)



Spectroscopic information and Green’s function

e

Spectral function, 2D Hubbard model.
Ak, w) = — L Im(G(k, w))

\/ DMFT calculation: [Mejuto-Zaera,
Zepeda-Nunez, Lindsey, Tubman,
Whaley, L., 2020]
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e |ehmann representation of the single-particle Green’s function

fof!

—en+insgn(en — p)’

n=0".

ep: quasi-particle energy; f,: quasi-particle wavefunction

* Poles: ionization potential, electron affinity.

* Many experiments: photoemission spectroscopy; inverse
photoemission spectroscopy; ARPES...



Quasi-particle and quasi-horse
“Quasi-horse”: bare horse + response of dust (Mattuck, 1976)

Richard D. Mattuck

real Puv-"’[c‘e

real horse quas horse Second Edition

A Guide to
Feynman Diagrams
in the Many-Body

Problem

Quasi-particle: bare particle + response of material
Quasi-electron: added electron + response

Quasi-hole: removed electron + response 4mmm Photoemission
experiment!



Quantum many-body problem

e N sites (spin-orbitals)
° 3, é,T, h;: annihilation, creation, number operator at site i.
e Many-body Hamiltonian (dimension: 2")

H= Ho + H1
~—~
non-interacting  interacting

N
Ho=>" Tjaly, M= Z Viwal a aja.
=1 k=1

® |Wy): ground state with N, electrons (Ne < 2N)
Ey: ground state energy.



Problem we consider: large spectral radius

* Planewave / real space refined spatial discretization:
|4 = ] > 7]

e Hubbard model, large U limit: HHH ~ HFA H > HHOH

* Schwinger model (Kogut-Susskind, 1975)

e Write H = A+ B, HZ\H > HEH but A is somewhat easy to
manipulate.



Fast Green’s function computation

Main result (informal), 2008.13295
F = A+ B, with G = 2 (n/ HBH) and HAH > HBH; lIm(2)] > 7 > 0
(broadening parameter)

Algorithm Queries to block-

encodings

HHL o2

Lcurasvt | o2l

Ourwork | O(LL)

HHL,(Harrow-Hassidim-Lloyd, 2009); Linear combination of unitaries
(LCU),(Childs-Kothari-Somma, 2017); Quantum singular value transformation (QSVT)
(Gilyén-Su-Low-Wiebe, 2019)



Green’s function

¢ Time-ordered single-particle Green’s function (or Green’s
function for short) in the frequency domain: map C — CN*N

G(z) = GH(2) + GU(2).

* Advanced (G1)) and retarded (G(~)) Green’s functions
. -1,

é,' (Z— |:H—E0:|) a}r \Uo>

wo> .

Gi(2) = <w0

6 @)= (w8 (z+ [fi-&1]) '

e Assume |Im(z)| > n > 0 (broadening parameter)



Simplest setting: non-interacting system

N ~ N At A
H=Hy = Zij:1 T,-,-a,Taj.

Very simple analytic solution via a (small) matrix inversion

Go(2)=(z-T)"'=)_ , Ty = enfp.

Bare Green’s function (bare horse)

With interaction H = Hy + Hy. G(z): quasi-horse

Self energy (c.f. Frank Wilhelm-Mauch’s talk on Monday)

Y(2) =G ' (2) - G, (2).



Next simplest setting: quantum impurity

Example: Single-impurity Anderson model ©0000000000
(SIAM) .14
H=>edit+ 3 el e, + > (Wieo + viehh) + UK
g iie i —_—
> H
Ho

Perturbation to the Green’s function is global.

Self energy X (z) is only nonzero on the impurity.

Foundation of DMFT / CT-QMC etc. “Folk
theorem” at least since Feynman (with
diagrammatic arguments)

Non-perturbative proof (for general impurities):
[L.-Lindsey, Ann. Henri Poincare 2020]




Computing Green’s functions (with general interaction)
e With HF/DFT: essentially a non-interacting picture

e Small f;: many-body perturbation theory (MBPT). GF2, GW,
SOSEX, GFCC..

Guas( horse

mLDA
©:GW(LDA)
, L

0
van Schiligaarde et al PRL 96 226402 (2008)

2 4 6
experimental gap (eV)

e Large H;: exact diagonalization / Cl, QMC, DMRG, quantum
embedding (DMFT/DMET)..

e Quantum computer



Quantum strategy: direct computation of G

e Brute-force “matrix-matrix-multiplication”

G,(-jﬂ(z) = <\U0 a; (z — [Fl_ E°D_1 g,jT

wo> = (ol AWy

~ -1
o (z — {H - EOD é/T |Wo): quantum linear system problem
(QLSP)



Compare the complexities of QLSP solvers

Significant progress in the past few years: Near-optimal complexity matching lower bounds. All
with the promise of poly(/N) complexity for matrix of size 2V

Algorithm

Query complexity

Remark

HHL,(Harrow-Hassidim-Lloyd,
2009)

O(v?/e)

w.  VTAA, complexity becomes
O(r/€%) (Ambainis 2010)

Linear combination of unitaries
(LCU),(Childs-Kothari-Somma,
2017)

O(r2polylog(1/c))

w.  VTAA, complexity becomes

O(r: poly log(1/¢))

Quantum singular value transfor-
mation (QSVT) (Gilyén-Su-Low-
Wiebe, 2019)

O(+? log(1/¢))

Queries the RHS only O(x) times

Randomization = method  (RM)
(Subasi-Somma-Orsucci, 2019)

O(r/e)

Prepares a mixed state; w. re-
peated phase estimation, complex-
ity becomes O(«x poly log(1/¢))

Time-optimal adiabatic quantum | O(k poly log(1/€)) | No need for any amplitude amplifi-
computing  (AQC(exp)) (An-L., cation. Use time-dependent Hamil-
2019, 1909.05500) tonian simulation.

Eigenstate filtering (L.-Tong, (’3(;{ log(1/¢)) No need for any amplitude amplifi-

1910.14596, Quantum 2020)

cation. Does not rely on any com-
plex subroutines.




Near-optimal algorithm for finding the ground energy

Preparation Ground energy Preparation
(bound known) (bound unknown)
o [Crvotc O t) (O] 0[]
GTC19 | 0 (%) 0 (=% O (5m2)
y, | Ourwork (3(%) ( g($) |ogl,) O( log( ) log(3 ))
GTC19 o(;) (\/;) (g&)
Extra | Our work | O(1) O(log(1)) O(log(1))
qubits [ GTC19 | O(log(5 log($))) | O(log(5)) O(log(5 log(3)))

Well-known result: phase estimation; Previous best results: (Ge-Tura-Cirac, 2019)
Our work: (L.-Tong, 2002.12508, Quantum 2020)

h: precision of the ground energy estimate; 1 — ¥): success probability

Lower bound for the overlap: | (¢o|%0) | > 7,

Bounds for the ground energy and spectral gap: \g < u— A/2 < p+ A/2 < \y.

Heisenberg-limited ground state energy estimation for early
fault-tolerant quantum computers (L.-Tong, 2102.11340)



Block-encoding

Quantum gates have to be unitary.

A=3 (z - [FI - E()Di1 &l is not unitary.

Idea: extend n-qubit non-unitary matrix to a (n+ m)-qubit unitary
matrix (Low-Chuang, 2016; called “standard form” initially)

()

Many examples of block-encoding: density operators, POVM
operators, d-sparse matrices, addition and multiplication of
block-encoded matrices (Gilyén-Su-Low-Wiebe, 2019)



Hadamard test for Green’s function computation

. —1
¢ |f we can block-encode the inverse: (z — [H — EOD
= Product of block—erlﬁ:oded matrices
A= 3 <z — [F/ - EOD al, call it Uy

e Hadamard test circuit

0 i}

* Success probability p(0) = (1 + Re (¢|A|¢)). Similar circuit for
the imaginary part.

e Amplitude estimation to improve dependence on e.



Fast Green’s functions computation

Algorithm Queries to block-
encodings

HHL O(Z531)

LCU/QSVT (5(‘2‘77%)

Our work O(x2%)

o H=A1+ B, with 5y = 2(n/ag), and HAH > HBH

¢ Block-encodings in our work involves fast inversion.



Fast inversion of diagonal matrices

D = diag(D;): HD*1 H = min|D;| = Q(1), ||D|| = max |D;| > 1

Assume Op |i) |0") = |i)|D;), i€ [N]

Circuit Up, for the block-encoding of D~ (classical arithmetic)

b)
Op
0/

INV

Circuit depth is independent of || D||



Fast inversion beyond diagonal matrices

e 1-sparse matrices A=T1D
* Normal matrices A = VDV

Uy = (V@ ) Up(VT @ l14q).
e Example:

> T(x—y)ak, 8y, = FFFT (Z T(G)eL Uéeﬁg) FFFT!

X,y,o G,O’



Preconditioned quantum linear system solver

Consider
(A+ B)[x) ~ |b)

Preconditioner: A~'

(I+A7'B)|x) ~ A" |b)

Condition number:
(I+ATTB) < (1+[I(A+B)'IIBl) (1+ A8l

Circuit depth: independent of || Al



Green’s function computation for fixed N,
e [H, Py,] = 0: Preserve the number of electrons Ne (Ne < N)

¢ Cost of preconditioned Hubbard solver in second quantization

5 (NS(mir;7(2|:/|> t))® log (;)) |

¢ Cost of preconditioned Hubbard solver in second quantization,
with Ng scaling

(et ()
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Finite temperature effects (Gibbs state preparation)

* Prepare ps = 7,6, Z5 = Tr(e” ).

e Purified Gibbs state |W) = ﬁ > xeqn 1X) (77772 |x)) : trace out

first register = Obtain pg

e Two new approaches (convert to linear system problems):
e Cauchy’s Contour integral formula:

1
-pH _ —Bz(5 _ )1
e 2m}€e (z )" dz

® |nverse transform:
efﬁH — efﬁ(H71)71



Fast algorithm for preparing o e~ |b)

Algorithm Query complexities
wo. pre- | Phase  estimation  (Poulin- | O(%)
conditioner | Wocjan, 2009)

LCU (van Apeldoorn et al, 2020)

O(“% log(1))

w. precon-
ditioner

This work (contour integral)

O(:25- log(1))

min

This work (inverse transforma-

tion)

-
0 (gt

log (1)]°)

¢=le "), 3

min

=Q(1/ag), Tmin = Q(1/(1 + I(A+ B)7'[[IB]))
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