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Solve nature with nature:
Where are we today after four decades?

Nature evolves quantum mechanics in real time.

Use nature to solve quantum mechanical problems.

better make it quantum mechanical, and by golly it's a

1 “... if you want to make a simulation of nature, you'd
wonderful problem, because it doesn’t look so easy:.

i — Richard P. Feynman (1981) 1st Conference on
Physics and Computation, MIT



What does nature do

e Evolution of the Schrédinger equation

.0
i lo(0) = HIv(h)

e Solution

() = e [(0)) = U(t) [4(0)) .

e U(1): unitary matrix.



Shor’s algorithm for prime factorization

* n=p-q(p,q are prime numbers)

Classical algorithm with best asymptotic
complexity (super-polynomial):

General number field sieve

O (exp [C(Iog n)% (loglog n)g]

(Shor, 1994) Quantum algorithm achieves
polynomial complexity
O ((log n)?(log log n)(log log log n))

“First wave” of interests on quantum computing



MIT and quantum computation

Chuang, Farhi, Goldstone, Harrow, Lloyd, Shapiro, Shor..



Quantum supremacy

¢ John Preskill coined the term “Quantum supremacy” in 2012.

e Describe the point where quantum computers can do things that
classical computers cannot, regardless of whether those tasks
are useful.

e |t was not clear whether this “moderate” goal can be reached..

Is controlling large-scale quantum systems merely really, really
hard, or is it ridiculously hard? — John Preskill (2012)

¢ Noisy Intermediate-Scale Quantum (NISQ) technology.



Quantum supremacy

e Quantum supremacy has been reached! (It is merely really,
really hard) (Martinis et al, Nature, 2019) Google’s 54-qubit
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¢ Finding the probability of bit-strings from a random quantum
circuit. Exponentially hard for classical computer w.r.t. n.

e When quantum computer can do something useful, it is called
“Quantum advantage”.

e We are in the “second wave” of interests on quantum computing.



What is a quantum computer (mathematically)

|y) € CN = (C2)®", N =2". n: number of qubits.

U € CN*Nis unitary. U |y) is efficient to apply.

Un - -- Uq [¢), and then measure one or a few qubits (with output

0/1).

Quantum computer: cost poly(n), potential exponential speedup.



Quantum circuit: “graphical” linear algebra

One-qubit gates Measurement
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Quantum circuit: “graphical” linear algebra

e State vectors

e Pauli matrices
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Quantum circuit: “graphical” linear algebra

e Hadamard gate H = - (1 1 >

2\ 1
HI0) = —5(10) +11) = |+)
0 A )
e CNQOT gate
1 000
CNOT = 8 (1) 8 ? a) —e— |a)
0010 by —b— |a®©b)

e See more in the classical textbook (Nielsen-Chuang, 2000), or
simply take a course at MIT..



Quantum numerical linear algebra

e Solving linear systems, eigenvalue problems, matrix
exponentials, least square problems, singular value
decompositions etc on a quantum computer.

Many interesting, exciting progresses in the past few years.
Reasonable way towards “quantum advantage”.

Related to “Quantum machine learning”.
Solving linear equations

Ax=b

Quantum linear system problem (QLSP)

Alx) o< |b)



Our recent works on quantum numerical linear algebra

Near-optimal QLSP solver (adiabatic computing) (An-L., 1909.05500)
Near-optimal QLSP solver (eigenstate filtering) (L.-Tong, 1910.14596)
Near-optimal ground energy solver (L.-Tong, 2002.12508)
Quantum signal process phase factor (Dong-Meng-Whaley-L.,

2002.11649)
Policy gradient method and QAOA (Yao-Bukov-L., 2002.01068)
Proposal of quantum LINPACK benchmark (Dong-L., 2006.04010)

Fast inversion and preconditioned linear solver (Tong-An-Wiebe-L., 2008.13295)



A concrete, toy example

1, 3, (075 0.25
AX+’<0.25 o.75>’ by =10)-

4 4
e X [are unitaries. Ais a linear combination of unitaries (LCU),
and is itself non-unitary. x(A) = 2.

® |dea: extend 1-qubit non-unitary matrix to a 2-qubit unitary matrix

=)

¢ Block-encoding



A concrete, toy example

e An example of block-encoding. Unitary. Use 1 ancilla qubit.

0.750 0.250| 0.433 —-0.433
Us — 0.250 0.750) —-0.433 0.433

AT 0.433 —-0.433 0.250 0.750
—-0.433 0433 0.750 0.250

e Uy should be viewed as a mapping on (C?)%2,

* ((0|® NUx(J0) @ 1) = A.

o) —

Una
|y — — Aly) (upon measuring 0)

e [J,is our oracle.



A concrete, toy example

4 (15 -05
AT = < —05 15
Note [[A~"|| =2 > 1, no hope to have
UA*‘ == < A . >
e How about (with a2 > 1)

(1)

e Construct Us—1 using U, UI\, and simple quantum gates (in this
case Uy = UI‘).

® Inverse



Such an U4+ exists

0.075 -0.029 0.0 0.0 0.271j 0728 —0.442j 0.442j

0.025 0.075 0.0 0.0 0.728] 0.271j 0.442j —0.442j

0.0 0.0 0.075 —0.025 —0.442j 0.442j —0.271j —0.728;
Uy = 0.0 00 -0.025 0.075 0.442j -0.442j -0.728] —0.271]
A7 T | 0271 0728] —0442j 0.442j 0.075 —0.025 0.0 0.0

0.728j 0271/ 0.442j —0.442j —0.025 0.075 0.0 0.0

—0.442j 0.442j -0271j -0.728j 0.0 0.0 0.075 —0.025

0.442j —0.442j —0.728j —0271j 0.0 00 -0.025 0.075

e We find

1, _( 0075 -0.025 B
A /a_<—o.025 0.075 ) =20

¢ Use 2 ancilla qubits.



Procedure to construct U,-1 |b)

Does not look like any classical direct or iterative algorithm.

e Start from |0) |0) |b) = (by, b»,0,0,0,0,0,0)"
* Apply H® I ® | and obtain |+) [0) |b), where |+) = —5(|0) +|1)).
e Fori=0,...,2d — 1!
Apply U, ® I, where U, = €4 @ |0) (0| + e~ % @ [1) (1.
Apply | ® Uga
* Apply U,,, @ |
* Apply Ho I |
e (Optionally, multiply a global phase factor (—1))
e Measure the ancilla qubits, i.e. ((0%| @ /) [¢)) ~ A~ /a |b).

'This is a simplified procedure using that Uy is Hermitian, A - 0;{¢;}2%, are
called phase factors.



Accuracy
Take d = 80, plot the phase factors

--- 2

0 W 2 0 4 50 & 70 8
i

¢ Decay of the phase factor away from the center
e Error for approximating A" /a

—2.046 x 10~ 2,532 x 1011
2532 x 10" —2.046 x 10~



N
Simplifying the presentation using a quantum circuit
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* The same circuit works for arbitrarily large matrix.

¢ A special case of quantum signal processing (Low-Chuang,
2017) and quantum singular value transformation circuit (QSVT)
(Gilyén-Su-Low-Wiebe, 2019).

* One of the most interesting developments in quantum algorithms
in the past decade.

e Polynomial eigenvalue transformation and singular value
transformation with a definite parity.



RAndom Circuit Block-Encoded Matrix (RACBEM)

l Qubit 1 takes |0)
Get a 3-qubit RACBEM

0,038
0,049+ 0.0578

Coars+ 0200 0058 1 b7

+0. —0.316 + +0,
0064701141 0090 - 0.11s ~0310'7 0248 0097 +05001 05825 000m

¢ A very flexible way to construct a non-unitary matrix with respect
to any coupling map of the quantum architecture.

e Take upper-left diagonal block: measure one-qubit.
A= (0] ® In) Ua(|0) ® In)
'(Dong, L., arXiv: 2006.04010)




Solving linear system on IBM Q and QVM

Compute ||$~ |0”>H§. (sigma: noise level on QVM)
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- length of QSVT
phase factors
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RACBEM

Source Code:
https://github.com/qsppack/racbem

Random circuit block-encoded matrix and
a proposal of quantum LINPACK benchmark

Yulong Dong'? and Lin Li

*Berkeley Center for Quantum Information. and Computation, Berkeley, California 94780 USA
2Department of Chemistry, University of California, Berkeley, California 94720

artment of Mathematics, University of California, Berteley, California 94720 53 and

 Computational Rescarch Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Example:

from racbem import
from qiskit inport execute

import numpy as np

n_sys_qubit = # the .
n_be_qubit = 1 he n S

n_sig_qubit = 1 gnal qu

n_tot_qubit = n_sig_qubit+n_be_qubit+n_sys_qubit

n_depth = 1 e depth of random c

prob_one_g_op = 0.5 e probab of selecting a one-q
n_shots = 2+ the number of o

be = BlockEncoding(n_be_qubit, n_sys_qubit)
qsp = 0SPCircuit(n_sig_qubit, n_be_qubit, n_sys_qubit)

be.build_random_circuit(n_depth, basis_gatesebasis_gates,

Prob_one_q_op=prob_one_q_op, coupling mapwbe_map)

UA = retrieve _unitary matrix(be.qe)
A = UA[0:2+*n_sys_qubit, 0:2**n_sys_qubit

be.build dag()

qsp-build_circuit(be.qe, be.qc_dag, phi_seq, realpart-True, measure:

job = execute(qsp.geircuit, backend=noisy_backend, shotsn_shots)

result = job.result()

counts = result.get_counts(gsp.geircuit)

prob_meas = np.float(counts('00']) / n_shots




Time series (no Trotter)

Re (07[e™]0")
o o
g »
8

I
o
N
&

-0.50

Im (0"]e*t|0")
s o o o
o N S =3

'
S
©

—e— exact, real
-4~ exact, imag

(i) n_sys_qubit=7

—e— QSVT without error, real
-4~ QSVT without error, imag

s(t) = (v|€")

(i) n_sys_qubit = 8

—e— sigma=0.00,real  —e— sigma = 0.25, real

-4~ sigma=000,imag -4~ sigma=0.25 imag

(iii) n_sys_qubit =9

—e— sigma =050, real
-4~ sigma = 0.50, imag

Re (07]e]0")

b o o o o
S 88 28 S
8k g3

-0.50

10 2

—e— sigma = 0.75, real
-4~ sigma =075, imag

(iv) n_sys_qubit = 10

sigma = 1.00, real
A~ sigma = 1.00, imag



Spectral measure

S(E) = (wI5(5 — E)v) ~ L m (v](9 ~ E —in) '}v)

QVM:

(a) n_sys_qubit=7

spectral measure

000 025 050 075

E
(c) n_sys_qubit=9

spectral measure
o o o o
o o N

)
S

000 025 050 075

—e— exact
—&— QSVT without noise

—e— sigma =0.00
—— sigma =025

(b) n_sys_qubit =8

[N}

o

o
o

spectral measure

o
@

1.00 000 025 050 075 1.00

E
(d) n_sys_qubit = 10

1.00 000 025 050 075 1.00
E

—e— sigma =0.50
—e— sigma=0.75

sigma =1.00



Thermal energy
TriHe P9]
E(ﬁ) = W
IBM Q (left) and QVM (right)

(i) n_sys_qubit =1 (ii) n_sys_qubit =2 (i) n_sys_qubit=3 (i)) n_sys_qubit = 3
035 4 05 o backend = ibma_essex (5-qubit) backend = ibma_16_melbourne (15-qubit)
45

2 4 6 s 2 4 o s 2 4 . 6 8 2 4 6 8
B
- (il n_sys_qubit = 5 (iv) n_sys_qubit=7
(iv) n_sys_qubit=5 backend = ibmq_16_melbourne (15-qubit) backend = ibmq_16_melbourne (15-qubit)
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'Use the minimally entangled typical thermal state (METTS) algorithm (White,
2009) (Motta et al, 2020)



FAQ (usually from a math audience)

1. Is quantum linear algebra a real thing? Yes and no (usually
works with complex arithmetic..)

2. How do you get the matrix / vector into the computer? Read-in
problem, e.g. RACBEM, LCU, block-encoding, Trotter

3. Which quantity do you measure? Read-out problem. e.g. some
success probabilities and/or access to samples

4. How do you know your answer is correct? Verification problem.
Performance guarantee versus a posteriori verification
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Quantum linear system problem (QLSP)

All vectors must be normalized. A € CN*N |b) ¢ CN, N = 2".

I1b) 12 := (blb) = 1.

Solution vector
L)

X = AT

How to get A, |b) into a quantum computer? read-in problem.
Oracular assumption.

e Query complexity: the number of oracles used.



20
Quantum speedup

e : condition number of A. e target accuracy. Proper
assumptions on A (e.g. d-sparse) so that oracles cost poly(n).

e (Harrow-Hassadim-Lloyd, 2009): O(poly(n)~?/¢). Exponential
speedup with respect to n.

e (Childs-Kothari-Somma, 2017): Linear combination of unitary
(LCU). O(poly(n)x2poly(log(r/c)))

¢ (Low-Chuang, 2017) (Gilyén-Su-Low-Wiebe, 2019): Quantum
signal processing (QSP). O(poly(n)x2poly(log(x/¢)))



Comparison with classical iterative solvers

Positive definite matrix. Error in A-norm

Steepest descent: O(Nk log(1/¢)); Conjugate gradient:
O(Ny/klog(1/e))

Quantum algorithms can scale better in N but worse in k.

e Lower bound: Quantum solver cannot generally achieve O(x'~9)
complexity for any § > 0 (Harrow-Hassadim-Lloyd, 2009)

Goal of near-optimal quantum linear solver:
O(poly(n)x polylog(r/€)) complexity.



Compare the complexities of QLSP solvers
Significant progress in the past few years: Near-optimal complexity

matching lower bounds.

Algorithm Query complexity | Remark
HHL,(Harrow-Hassidim-Lloyd, O(K?/€) w.  VTAA, complexity becomes
2009) O(r/€%) (Ambainis 2010)

Linear combination of unitaries | O(x2polylog(1/¢)) | w.  VTAA, complexity becomes

(LCU),(Childs-Kothari-Somma,
2017)

O(r poly log(1/e))

Quantum singular value transfor-
mation (QSVT) (Gilyén-Su-Low-
Wiebe, 2019)

O(r? log(1/e))

Queries the RHS only O(x) times

Randomization = method  (RM)
(Subasi-Somma-Orsucci, 2019)

O(r/e)

Prepares a mixed state; w. re-
peated phase estimation, complex-
ity becomes O(«x poly log(1/¢))

Time-optimal adiabatic quantum
computing  (AQC(exp)) (An-L.,
2019, 1909.05500)

O(r poly log(1/e))

No need for any amplitude amplifi-
cation. Use time-dependent Hamil-
tonian simulation.

Eigenstate filtering (L.-Tong, 2019,
1910.14596)

O(k log(1/€))

No need for any amplitude amplifi-
cation. Does not rely on any com-
plex subroutines.




Reformulating QLSP into an eigenvalue problem

Weave together linear system, eigenvalue problem, differential
equation (Subasi-Somma-Orsucci, 2019)

Qo= Iy—|b)(b]. FAIX)=|b) = QpA|x)=Qp|b)=0

= (g “60): W =100~ ()

Null(Hh) = span{[%) . |B)}, [B) = 1) |b) = (0)

e Then

b

QLSP = Find an eigenvector of H; with eigenvalue 0.



Adiabatic computation

Known eigenstate Hy |tg) = Ag |1g) for some Hy.

Interested in some eigenstate Hy 1) = A1 [11)

e H(s) = (1—s)Hy + sHs,

Lids wr(s)) = H(S)[r(s)) . [07(0)) = o)

lv7(1)) =~ (1) (up to a phase factor), T sufficiently large?

Gate-based implementation: time-dependent Trotter, for
near-optimal complexity (Low-Wiebe, 2019)



Adiabatic computation

e (Born-Fock, 1928)

A physical system remains in its instantaneous eigenstate if a given perturbation is
acting on it slowly enough and if there is a gap between the eigenvalue and the rest of
the Hamiltonian’s spectrum.

e Albash, Avron, Babcock, Cirac, Cerf, Elgart, Hagedorn, Jansen,
Kato, Lidar, Nenciu, Roland, Ruskai, Seiler, Wiebe...

a(H(s))
} Q(s)

i | -
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Adiabatic quantum computation (AQC) for QLSP

® |ntroduce

Ho = (gb %") . Null(Ho) = span{|B) , B)}

B -6 = (o). B=mb-(7)

¢ Adiabatically connecting \B> (zero eigenvector of Hy) to |x) (zero
eigenvector of H;) (Subasi-Somma-Orsucci, 2019)

* Only one eigenvector in the null space is of interest: transition to
|b) is prohibited during dynamics



Eigenvalue gap and fidelity

Fidelity
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Time s
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Fidelity:

F(lo), [4)) = [{el)[? = Tr[P,Py].



Adiabatic quantum computation

Theorem (Jansen-Ruskai-Seiler, 2007)

Hamiltonian H(s), P(s) projector to eigenspace of H(s) separated by
a gap A(s) from the rest of the spectrum of H(s)

11— (Wr(8)|P(S)l¥r(s) | < n?(s), 0<s<i
where

~ CrHDO)l2 | IHD(s)ll2
() =+ AZ0) T AZ(s)

*(IHAS)] , IHOE)B o
* /0( R(s) A 2) o'}

T: time complexity; 1/ T convergence.
A(S) > A, T ~ O((A,)3/€) (worst case)
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Implication in QLSP

e Lower bound of gap (Assume A > 0 for now, can be relaxed)
A(S) > Au(s)=1—5+8/k> k"
» Worst-case time complexity T ~ O(x3/¢)

¢ AQC inspired algorithm: randomization method
(Subasi-Somma-Orsucci, 2019),

T ~ O(klog(rk)/e)
e : 2-norm error of the density matrix.

* Rescheduled dynamics.
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Accelerate AQC for QLSP: Scheduling

Goal: improve the scaling AQC w.r.t. k.

Adiabatic evolution with H(f(s)) = (1 — f(s))Ho + f(s)H;

lTias [47(s)) = H(f(8)) [¢7(s)) . [47(0)) = [b)

f(s): scheduling function. 0 < f(s) <1,f(0) =0,f(1) = 1.

allow H(f(s)) to slow down when the gap is close to 0, to cancel
with the vanishing gap.

(Roland-Cerf, 2002) for time-optimal AQC of Grover search.



.
Choice of scheduling function: AQC(exp)

e AQC(exp): modified schedule (slow at beginning and end)

i

o
©

o
=)

o
~

== V/anilla AQC|
——AQC(p=1)
AQC(p=1.5)

Scheduling f(s)

I
)

f(s) = c5' /Os exp (_s’(11—s’)> ds’

—AQC(p=2)

==AQC(exp)

0 0.2 0.4 0.6 0.8 1
Time s

o

e Intuition: error bound of (Jansen-Ruskai-Seiler, 2007) and
integration by parts (Wiebe-Babcock, 2012)

¢ Rigorous proof of exponential convergence: follow the idea of
(Nenciu, 1993), asymptotic expansion of P(s)



.4
Near-optimal time complexity

Theorem (An-L., 1909.05500)

A = 0, condition number «. Then for large enough T > 0, the error of
the AQC(exp) scheme is

2\
IP7(1) — [X) (x| ]2 < Clog(r) exp (C (Hlog n) ) |

T

€

Therefore the runtime T = O </<; log?(x) log* ('Og“>>.

Near-optimal complexity (up to polylog factors).
Similar results for Hermitian indefinite and non-Hermitian matrices.



Conclusion

¢ Large-scale fully error-corrected quantum computer remains at
least really, really, really hard in the near future. Think about both
near-term and long-term for quantum linear algebra.

e Quantum signal processing and quantum singular value
transformation: polynomial approximation theory in SU(2).

e Decay properties of phase factors.

e Statistics of random-circuit block-encoded matrix: truncated
random unitaries and classical hardness

e Fast thermal state preparation.
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