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How many quantum computers will we need?
Finally we have a few quantum computers

I think there is a world market for maybe five computers.
–Thomas Watson, president of IBM, 1943

In 2019, there are around 2 billion computers in the world
(estimate).

Prediction is very difficult, especially if it’s about the future.
–Niels Bohr (also attributed to others)
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Let us make some prediction: there will be say, 10000
quantum computers
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How to select the TOP500 quantum computers?

First, how to do the job for classical supercomputers?

What is LINPACK? Why LINPACK?

1https://www.top500.org/, 55th edition of the TOP500, June 2020
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LINPACK benchmark
• Interested in using supercomputers for scientific computing

(instead of e.g. recognizing cats, but maybe now it is difficult to
distinguish the two..)

• Solving linear systems: building block for numerous scientific
computing applications

• LINPACK: Solve Ax = b with dense, random matrices. No
obvious applications. Supremacy?

• Controversial over its effectiveness since early days. Alternative
benchmarks have been proposed1. Still solving linear systems
with some random sparsity patterns.

• Has been used to define TOP500 since its debut in 1993.

• Quantum LINPACK benchmark?
1Why Linpack no longer works as well as it once did. (link)

https://news.utk.edu/2013/07/10/professor-jack-dongarra-announces-supercomputer-benchmark/
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Climbing the Quantum Mount Everest
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Quantum linear system problem (QLSP)

• Use quantum computers to solve

|x〉 ∝ A−1 |b〉 .

• How to get the information in A, |b〉 into a quantum computer?
read-in problem.

• κ: condition number of A = ‖A‖
∥∥A−1

∥∥; ε: target accuracy.

• Proper assumptions on A (e.g. d-sparse) so that oracles cost
poly(n), while A ∈ C2n×2n

. (Potentially) exponential speedup.
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Compare the complexities of QLSP solvers
Significant progress in the past few years: Near-optimal complexity
matching lower bounds.

Algorithm Query complexity Remark
HHL,(Harrow-Hassidim-Lloyd,
2009)

Õ(κ2/ε) w. VTAA, complexity becomes
Õ(κ/ε3) (Ambainis 2010)

Linear combination of unitaries
(LCU),(Childs-Kothari-Somma,
2017)

Õ(κ2polylog(1/ε)) w. VTAA, complexity becomes
Õ(κ poly log(1/ε))

Quantum singular value transfor-
mation (QSVT) (Gilyén-Su-Low-
Wiebe, 2019)

Õ(κ2 log(1/ε)) Queries the RHS only Õ(κ) times

Randomization method (RM)
(Subasi-Somma-Orsucci, 2019)

Õ(κ/ε) Prepares a mixed state; w. re-
peated phase estimation, complex-
ity becomes Õ(κ poly log(1/ε))

Time-optimal adiabatic quantum
computing (AQC(exp)) (An-L.,
2019, 1909.05500)

Õ(κ poly log(1/ε)) No need for any amplitude amplifi-
cation. Use time-dependent Hamil-
tonian simulation.

Eigenstate filtering (L.-Tong, 2019,
1910.14596)

Õ(κ log(1/ε)) No need for any amplitude amplifi-
cation. Does not rely on any com-
plex subroutines.
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Quantum benchmark problem

• All these algorithms require full fault-tolerant computers to get
anywhere.

• Getting the matrix into quantum computer alone (using e.g. LCU)
can be prohibitively expensive on near-term devices.

• Will likely remain so for some time for real applications.

• Quantum LINPACK benchmark is different: do we really need /
want to generate random numbers classically and get them into
quantum computers say via QRAM?
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Idea: from the success of Google’s supremacy circuit

• A big random, unitary matrix, almost drawn from Haar measure.

• Linear algebra usually works with non-unitary matrices.

• How about taking the upper-left diagonal block n-qubit matrix of
the (n + 1)-qubit unitary matrix (can be random)?

UA =

(
A ·
· ·

)
• FACT: It can represent in principle any n-qubit matrix (up to

scaling)!

• Block-encoding (Gilyén-Su-Low-Wiebe, 2019)

• RAndom Circuit Block-Encoded Matrix (RACBEM)
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RACBEM

• A very flexible way to construct a non-unitary matrix with respect
to any coupling map of the quantum architecture.

• Take upper-left diagonal block: measure one-qubit.
A = (〈0| ⊗ In)UA (|0〉 ⊗ In)
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Error of RACBEM on IBM Q
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Representing matrix functions, say f (A) = A−1

• General quantum singular value transformation circuit (QSVT)
(Gilyén-Su-Low-Wiebe, 2019). Always even order polynomial,
and 1 extra ancilla qubit.

• Follow the natural layout of the quantum circuit. Can run without
even calling a transpiler.

• Applications: Linear systems, time series, spectral measure,
thermal energy ... with Hermitian-RACBEM.

• How to obtain the phase factors: optimization based approach to
get > 10000 phase factors 1

1(Dong-Meng-Whaley-L., 2002.11649). https://github.com/qsppack/qsppack

https://github.com/qsppack/qsppack
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Solving linear system on IBM Q and QVM

Compute
∥∥H−1 |0n〉

∥∥2
2. (sigma: noise level on QVM)

Well conditioned linear system
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Time series (no Trotter)

s(t) = 〈ψ|eiHt |ψ〉

QVM:
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Spectral measure

s(E) = 〈ψ|δ(H− E)|ψ〉 ≈ 1
π
Im 〈ψ|(H− E − iη)−1|ψ〉

QVM:
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Thermal energy

E(β) =
Tr[He−βH]
Tr[e−βH]

IBM Q (left) and QVM (right)
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1Use the minimally entangled typical thermal state (METTS) algorithm (White,
2009) (Motta et al, 2020)



18

Conclusion

• Linear system with (Hermitian-)RACBEM: Quantum LINPACK
benchmark

• Uses a supremacy circuit as building block.

• Can be easily engineered w.r.t. almost any architecture.

• Maybe only steps away from the supremacy test.

• Hardness? Each UA is already hard..

• More quantitative ways to measure success and classical
hardness: cross-entropy test etc.
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Two issues of RACBEM

• Not Hermitian.

• Matrix becomes increasingly singular as n increases.
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Fixing both issues: Hermitian-RACBEM

• Simple quantum singular value transformation circuit (QSVT)
(Gilyén-Su-Low-Wiebe, 2019) of degree 2.

• Explicit formulation of the Hermitian matrix by tracing out 2
ancilla (the extra ancilla can be reused later).

H = [−2 sin(2ϕ0) sinϕ1]A†A + cos(2ϕ0 − ϕ1).

• Fully adjustable condition number.

• This is the really useful thing.


