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How many quantum computers will we need?

Finally we have a few quantum computers

Quantum
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| think there is a world market for maybe five computers.
—Thomas Watson, president of IBM, 1943

In 2019, there are around 2 billion computers in the world
(estimate).

Prediction is very difficult, especially if it's about the future.
—Niels Bohr (also attributed to others)



Let us make some prediction: there will be say, 10000
quantum computers
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How to select the TOP500 quantum computers?

First, how to do the job for classical supercomputers?
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Supercomputer Fugaku

: Japan Captures TOP500 Crown with Arm-Powered
Supercomputer
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T, b FRANKFURT, Germany; BERKELEY, Calif.; and KNOXVILLE, Tenn.—The S5th edition

linband of the TOPS00 saw some significant additions to the list, spearheaded by a new
number one system from Japan. The latest rankings also reflect a steady growth in
aggregate performance and power efficiency.

e sws00 znzo
16 L The new top system, Fugaku, turned T T, (HPL result of 415.5 petaflops, besting the now second-
St place Summit system by a factor of 2.8x. Fugaku, is powered by Fujitsu’s 48-core AG4FX SaC, becoming the first number one
1M/ NVIDIA / Mollanox system on the list to be powered by ARM processors. In single or further reduced precision, which are often used in machine
— . tearning and Al applications, Fugaku’s peak performance is over 1,000 petaflops 1 exaflopsl. The new system is installed at
’ s RIKEN Center for Computational Science [R-CCS) in Kobe, Japan
China N
What is LINPACK? Why LINPACK?

NuoT

'https://www.top500.0rg/, 55th edition of the TOP500, June 2020
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LINPACK benchmark

Interested in using supercomputers for scientific computing
(instead of e.g. recognizing cats, but maybe now it is difficult to
distinguish the two..)

Solving linear systems: building block for numerous scientific
computing applications

LINPACK: Solve Ax = b with dense, random matrices. No
obvious applications. Supremacy?

Controversial over its effectiveness since early days. Alternative
benchmarks have been proposed!. Still solving linear systems
with some random sparsity patterns.

Has been used to define TOP500 since its debut in 1993.

Quantum LINPACK benchmark?

"Why Linpack no longer works as well as it once did. (link)


https://news.utk.edu/2013/07/10/professor-jack-dongarra-announces-supercomputer-benchmark/

Climbing the Quantum Mount Everest

Quantum advantage

Quantum LINPACK benchmark
STEPS away ‘

Quantum supremacy




Quantum linear system problem (QLSP)

Use quantum computers to solve

Ix) < A1 |b).

How to get the information in A, |b) into a quantum computer?
read-in problem.

; €: target accuracy.

e x: condition number of A = ||A|| |A~"

® Proper assumptions on A (e.g. d-sparse) so that oracles cost
poly(n), while A € C2"%2"_ (Potentially) exponential speedup.



Compare the complexities of QLSP solvers
Significant progress in the past few years: Near-optimal complexity

matching lower bounds.

Algorithm Query complexity | Remark
HHL,(Harrow-Hassidim-Lloyd, O(K?/€) w.  VTAA, complexity becomes
2009) O(r/€%) (Ambainis 2010)

Linear combination of unitaries | O(x2polylog(1/¢)) | w.  VTAA, complexity becomes

(LCU),(Childs-Kothari-Somma,
2017)

O(r poly log(1/e))

Quantum singular value transfor-
mation (QSVT) (Gilyén-Su-Low-
Wiebe, 2019)

O(r? log(1/e))

Queries the RHS only O(x) times

Randomization = method  (RM)
(Subasi-Somma-Orsucci, 2019)

O(r/e)

Prepares a mixed state; w. re-
peated phase estimation, complex-
ity becomes O(«x poly log(1/¢))

Time-optimal adiabatic quantum
computing  (AQC(exp)) (An-L.,
2019, 1909.05500)

O(r poly log(1/e))

No need for any amplitude amplifi-
cation. Use time-dependent Hamil-
tonian simulation.

Eigenstate filtering (L.-Tong, 2019,
1910.14596)

O(k log(1/€))

No need for any amplitude amplifi-
cation. Does not rely on any com-
plex subroutines.




Quantum benchmark problem

¢ All these algorithms require full fault-tolerant computers to get
anywhere.

e Getting the matrix into quantum computer alone (using e.g. LCU)
can be prohibitively expensive on near-term devices.

e Will likely remain so for some time for real applications.

e Quantum LINPACK benchmark is different: do we really need /
want to generate random numbers classically and get them into
quantum computers say via QRAM?



ldea: from the success of Google’s supremacy circuit
* A big random, unitary matrix, almost drawn from Haar measure.
¢ Linear algebra usually works with non-unitary matrices.

e How about taking the upper-left diagonal block n-qubit matrix of
the (n + 1)-qubit unitary matrix (can be random)?

n=(%7)
e FACT: It can represent in principle any n-qubit matrix (up to
scaling)!

¢ Block-encoding (Gilyén-Su-Low-Wiebe, 2019)

e RAndom Circuit Block-Encoded Matrix (RACBEM)



RACBEM

~0.066 — 00551

—0.301 — 0.099i

~0.079 - 0.188
—0.109 + 0.149i
—0.135 + 0,033
—0.419 +0.294

0.071 - 01251
—0.064+0.114i

~0.301 — 0,093

0.067 - 0.041i
~0.105 + 0.1551
—0.107 - 0.1761
—0.412 +0.299
—0.118 +0.047i

0060+ 0.118i
—0.090 — 0114

~0.133 — 0.118i
0042+ 0.014i

—0.178 +0.097i —0.195 - 0.104i
—0.197 - 0.104i —0.154 +0.128i
0.037+0.272i —

—0.035 — 0,050
0020+ 0.367i
—0.319 +0.249

Qubit 1 takes |0)

Get a 3-qubit RACBEM

6~ 0.069i —0.253 — 0.270i  0.0:

30 — 02761 0.386 — 0.1281  —0.007
—0.003 +0.045i  0.053 + 0.156i —0.278 + 0.162i
0.051+0.158  0.003+0.041i  0.048 — 0.065i
0150 +0.247i  0.265 — 0.000i  0.035 + 0.066i
0262+ 0,001 —0.113 +0.269i

~0.024 - 0,027 ~0.119 —0.056i 0.393 + 0.403
—0.058 —0.025 — 0.021i —0.130 — 0.054i

124
0.101

—0.038 + 0,075

—0.141 - 0.061i
0450 + 0.333i
—0.096 +0.099%
0050 + 01151
0.053 — 0.070i
—0.248 +0.208

0.038 4 0.074i
0.049 +0.057i

* A very flexible way to construct a non-unitary matrix with respect
to any coupling map of the quantum architecture.

e Take upper-left diagonal block: measure one-qubit.
A= ({0]® In) Ua(]0) ® In)



Error of RACBEM on IBM Q

n_sys_qubit

Relative error in success probability of obtaining A|0") for different
number of system qubits, on the 5-qubit backend ibmqg_burlington,
and 15-qubit backend ibmqg_16_melbourne.



Representing matrix functions, say f(A) = A"
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RACBEM

e General quantum singular value transformation circuit (QSVT)
(Gilyén-Su-Low-Wiebe, 2019). Always even order polynomial,
and 1 extra ancilla qubit.

lﬂm
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¢ Follow the natural layout of the quantum circuit. Can run without
even calling a transpiler.

e Applications: Linear systems, time series, spectral measure,
thermal energy ... with Hermitian-RACBEM.

¢ How to obtain the phase factors: optimization based approach to
get > 10000 phase factors '
'(Dong-Meng-Whaley-L., 2002.11649). https://github.com/gsppack/qsppack



https://github.com/qsppack/qsppack

Solving linear system on IBM Q and QVM

Compute ||$ |O”)H§. (sigma: noise level on QVM)
Well conditioned linear system

e length of QSVT
phase factors
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Time series (no Trotter)
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—e— exact, real
-4~ exact, imag

(i) n_sys_qubit=7

—e— QSVT without error, real
-4~ QSVT without error, imag

s(t) = (v|€")

(i) n_sys_qubit = 8

—e— sigma=0.00,real  —e— sigma = 0.25, real

-4~ sigma=000,imag -4~ sigma=0.25 imag

(iii) n_sys_qubit =9

—e— sigma =050, real
-4~ sigma = 0.50, imag
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—e— sigma = 0.75, real
-4~ sigma =075, imag

(iv) n_sys_qubit = 10

sigma = 1.00, real
A~ sigma = 1.00, imag
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Spectral measure

S(E) = (wI5(5 — E)v) ~ L m (v](9 ~ E —in) '}v)
QVM:

(a) n_sys_qubit=7 (b) n_sys_qubit =8
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spectral measure
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Thermal energy

TriHe P9]

E0) = e

IBM Q (left) and QVM (right)

(i) n_sys_qubit =1 (ii) n_sys_qubit =2 (i) n_sys_qubit=3 (i)) n_sys_qubit =
05 o backend = ibma_essex (5-qubit) backend = ibma_16_ melbnu ne (15-qubit)
45

(i n_sys. (iv) n_sys_qubi
backend = ibma_16. me\boume(isaubn backend = ibmq_16, melbuumEUS qubit)

'Use the minimally entangled typical thermal state (METTS) algorithm (White,
2009) (Motta et al, 2020)



Conclusion

e Linear system with (Hermitian-)RACBEM: Quantum LINPACK
benchmark

e Uses a supremacy circuit as building block.

e Can be easily engineered w.r.t. almost any architecture.
e Maybe only steps away from the supremacy test.

e Hardness? Each U, is already hard..

¢ More quantitative ways to measure success and classical
hardness: cross-entropy test etc.
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Two issues of RACBEM

e Not Hermitian.

e Matrix becomes increasingly singular as n increases.

n_sys_gqubit=5 n_sys_qubit=10
10 ©es0eece 10—
osse -
08 oeee 08 =i
06 eses 06 .
04 04 T
eson -
02 esee 0.2 e
cos0 -~
0.0
0 10 20 30 0 200 400 600 800 1000

index index



- 22
Fixing both issues: Hermitian-RACBEM

RACBEM

e Simple quantum singular value transformation circuit (QSVT)
(Gilyén-Su-Low-Wiebe, 2019) of degree 2.

e Explicit formulation of the Hermitian matrix by tracing out 2
ancilla (the extra ancilla can be reused later).

§ = [—2sin(2¢0) sin 1] ATA + cos(2p0 — ¢1).
¢ Fully adjustable condition number.

¢ This is the really useful thing.



