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Stiefel manifold
• ℂ𝑀𝑀×𝑁𝑁 𝑀𝑀 > 𝑁𝑁

• Stiefel manifold (1935): 𝑁𝑁 orthogonal vectors in ℂ𝑀𝑀

𝑆𝑆𝑡𝑡𝑀𝑀,𝑁𝑁 = 𝑋𝑋 ∈ ℂ𝑀𝑀×𝑁𝑁|𝑋𝑋∗𝑋𝑋 = 𝐼𝐼𝑁𝑁

2

𝑀𝑀

𝑁𝑁



Grassmann manifold
• Grassmann manifold (1848): set of 𝑁𝑁 dimensional 

subspace in ℂ𝑀𝑀

𝐺𝐺𝑟𝑟𝑀𝑀,𝑁𝑁 = 𝑆𝑆𝑡𝑡𝑀𝑀,𝑁𝑁/𝒰𝒰𝑁𝑁

𝒰𝒰𝑁𝑁: 𝑁𝑁 dimensional unitary group (i.e. the set of unitary 
matrices in ℂ𝑁𝑁×𝑁𝑁)

• Any point in 𝑆𝑆𝑡𝑡𝑀𝑀,𝑁𝑁 can be viewed as a representation of a 
point in 𝐺𝐺𝑟𝑟𝑀𝑀,𝑁𝑁
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Example (in optimization)
min
𝑋𝑋

𝐹𝐹(𝑋𝑋)
𝑠𝑠. 𝑡𝑡.𝑋𝑋∗𝑋𝑋 = 𝐼𝐼𝑁𝑁

• 𝐹𝐹 𝑋𝑋 = 𝐹𝐹 𝑋𝑋𝑋𝑋 ,𝑋𝑋 ∈ 𝒰𝒰𝑁𝑁. invariant to the choice of basis ⇒
Optimization on a Grassmann manifold.

• The representation 𝑋𝑋 is called the gauge in quantum 
physics / chemistry.  Gauge invariant.

4



Example (in optimization)
min
𝑋𝑋

𝐹𝐹(𝑋𝑋)
𝑠𝑠. 𝑡𝑡.𝑋𝑋∗𝑋𝑋 = 𝐼𝐼𝑁𝑁

• Otherwise, if 𝐹𝐹(𝑋𝑋) is gauge dependent ⇒ Optimization on 
a Stiefel manifold. 

• [Edelman, Arias, Smith, SIMAX 1998] many works 
following
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This talk: Quantum chemistry
• Time-dependent density functional theory (TDDFT)

• Kohn-Sham density functional theory (KSDFT)

• Localization.

• Gauge choice is the key

• Used in community software packages: Quantum ESPRESSO, 
Wannier90, Octopus, PWDFT etc

6



7

Time-dependent density functional theory

Parallel transport gauge



Time-dependent density functional theory
[Runge-Gross, PRL 1984] 
(spin omitted, 𝑁𝑁𝑒𝑒: number of electrons) 

𝑖𝑖𝜕𝜕𝑡𝑡𝜓𝜓𝑖𝑖 𝑥𝑥, 𝑡𝑡 = 𝐻𝐻 𝑡𝑡,𝑃𝑃 𝑡𝑡 𝜓𝜓𝑖𝑖 𝑥𝑥, 𝑡𝑡 , 𝑖𝑖 = 1, … ,𝑁𝑁𝑒𝑒

𝑃𝑃 𝑥𝑥, 𝑥𝑥′, 𝑡𝑡 = �
𝑖𝑖=1

𝑁𝑁𝑒𝑒

𝜓𝜓𝑖𝑖(𝑥𝑥, 𝑡𝑡)𝜓𝜓𝑖𝑖∗(𝑥𝑥′, 𝑡𝑡)

Hamiltonian

𝐻𝐻 𝑡𝑡,𝑃𝑃 𝑡𝑡 = −
1
2
Δ + 𝑉𝑉𝑒𝑒𝑒𝑒𝑡𝑡(𝑡𝑡) + 𝑉𝑉𝐻𝐻𝑒𝑒𝐻𝐻[𝑃𝑃 𝑡𝑡 ]
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Density matrix
• Key quantity throughout the talk
• Ψ(t) = 𝜓𝜓1 𝑡𝑡 , … ,𝜓𝜓𝑁𝑁𝑒𝑒 𝑡𝑡 ∈ ℂ𝑁𝑁𝑔𝑔×𝑁𝑁𝑒𝑒.  
𝑁𝑁𝑔𝑔: number of discretized grid points to represent each 𝜓𝜓𝑖𝑖

𝑃𝑃 𝑡𝑡 = Ψ 𝑡𝑡 Ψ 𝑡𝑡 ∗
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𝑁𝑁𝑔𝑔 𝑁𝑁𝑔𝑔𝑁𝑁𝑒𝑒



Gauge invariance
• Unitary rotation

Φ = Ψ𝑋𝑋, 𝑋𝑋∗𝑋𝑋 = 𝐼𝐼

𝑃𝑃 = ΦΦ∗ = Ψ(𝑋𝑋𝑋𝑋∗)Ψ∗ = ΨΨ∗

• Propagation of the density matrix, von Neumann equation 
(quantum Liouville equation)

𝑖𝑖𝜕𝜕𝑡𝑡𝑃𝑃 𝑡𝑡 = 𝐻𝐻,𝑃𝑃 𝑡𝑡 = 𝐻𝐻 𝑡𝑡,𝑃𝑃 𝑡𝑡 𝑃𝑃 𝑡𝑡 − 𝑃𝑃(𝑡𝑡)𝐻𝐻 𝑡𝑡,𝑃𝑃 𝑡𝑡
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Gauge choice affects the time step
Extreme case (boring Hamiltonian)

𝐻𝐻 𝑡𝑡 ≡ 𝐻𝐻0

Initial condition
𝐻𝐻0𝜓𝜓𝑖𝑖 0 = 𝜓𝜓𝑖𝑖 0 𝜀𝜀𝑖𝑖

Exact solution
𝜓𝜓𝑖𝑖 𝑡𝑡 = 𝜓𝜓𝑖𝑖(0)𝑒𝑒−𝑖𝑖𝜀𝜀𝑖𝑖𝑡𝑡

𝑃𝑃 𝑡𝑡 = 𝑃𝑃(0)
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Small time step

(Formally) 
arbitrarily large
time step



P v.s. Ψ
• Propagation of 𝑃𝑃(𝑡𝑡) requires storing 𝑁𝑁𝑔𝑔 × 𝑁𝑁𝑔𝑔 matrix. Often 

impractical for large basis set (𝑁𝑁𝑔𝑔 = 103 ∼ 107)

• Propagation of Ψ(𝑡𝑡) requires storing 𝑁𝑁𝑔𝑔 × 𝑁𝑁𝑒𝑒 matrix, but is 
non-optimal due to gauge choice (𝑁𝑁𝑒𝑒 = 10 ∼ 104)

• 𝑃𝑃 is only a rank 𝑁𝑁𝑒𝑒 matrix. Not enough information to 
justify storing as dense matrix.

• Common theme in quantum chemistry.
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Propagation on the Grassmann manifold
• The Schrödinger gauge can be seen as

Φ 𝑡𝑡 = Ψ 𝑡𝑡 𝑋𝑋 𝑡𝑡 , 𝑋𝑋 𝑡𝑡 ≡ 𝐼𝐼

• Optimal choice of 𝑋𝑋(𝑡𝑡) at each time step, to yield slowest 
possible dynamics ⇒Optimization on the Grassmann 
manifold 

• Related work: dynamical low rank decomposition [Koch-
Lubich 2007; Lubich-Oseledets, 2014]
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Optimization of gauge choice
• Gauge transformed wavefunctions

Φ 𝑡𝑡 = Ψ 𝑡𝑡 𝑋𝑋 𝑡𝑡 , 𝑋𝑋∗ 𝑡𝑡 𝑋𝑋 𝑡𝑡 = 𝐼𝐼

• Goal:

min
𝑈𝑈(𝑡𝑡)

𝜕𝜕𝑡𝑡Φ(𝑡𝑡) 𝐹𝐹
2

• 𝑃𝑃 𝑡𝑡 Φ t = Φ(𝑡𝑡),  optimization at each time step
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Optimization of gauge choice
• Orthogonal decomposition

Φ̇ 𝐹𝐹
2 = 𝑃𝑃Φ̇ 𝐹𝐹

2 + (𝐼𝐼 − 𝑃𝑃)Φ̇ 𝐹𝐹
2

• After some derivation
(𝐼𝐼 − 𝑃𝑃)Φ̇ 𝐹𝐹

2 = Tr �̇�𝑃2𝑃𝑃

• Optimizer (parallel transport condition)
𝑃𝑃Φ̇ = 0

• Also induce a parallel transport propagator
𝑖𝑖𝜕𝜕𝑡𝑡𝒯𝒯 = 𝑖𝑖𝜕𝜕𝑡𝑡𝑃𝑃,𝑃𝑃 𝒯𝒯, 𝒯𝒯 0 = 𝐼𝐼, Φ 𝑡𝑡 = 𝒯𝒯 𝑡𝑡 Ψ0

15
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Parallel transport (PT) dynamics
• Schrödinger dynamics

𝑖𝑖𝜕𝜕𝑡𝑡Ψ = 𝐻𝐻Ψ, Ψ 0 = Ψ0
• Parallel transport dynamics

𝑖𝑖𝜕𝜕𝑡𝑡Φ = 𝐻𝐻Φ−Φ Φ∗𝐻𝐻Φ , Φ 0 = Ψ0

 Gauge implicitly defined by the dynamics
 Only one additional mixing term needed, simple to implement
 Optimal gauge among all possible choices
 Mixing term 𝑂𝑂 𝑁𝑁3 cost
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[An, L., arXiv:1804.02095 ]
[Jia, An, Wang, L., J. Chem. Theory Comput., 2018]



How PT dynamics works
• Boring Hamiltonian:  𝐻𝐻 𝑡𝑡 ≡ 𝐻𝐻0, 𝐻𝐻0Ψ0 = Ψ0Λ0, Φ0 = Ψ0
• 𝐻𝐻Φ−Φ Φ∗𝐻𝐻Φ = 0 ⇒ 𝑖𝑖𝜕𝜕𝑡𝑡Φ = 0

Same behavior as density matrix

• 1D time-dependent Schrödinger:
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Implicit time integrator
• PT dynamics can be discretized with any integrator

• Smooth dynamics ⇒ Larger time

• Implicit integrator: Allow 𝐻𝐻Δ𝑡𝑡 ≫ 1
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Implicit time integrator
• Example: PT-CN (Crank-Nicolson scheme, a.k.a. 

trapezoidal rule)

• Φ𝑛𝑛+1 needs to be solved self-consistently.  Preconditioner. 
Mixing.

• Natural to combine with Ehrenfest dynamics

• Many others are possible
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Analysis
• Near-adiabatic regime, singularly perturbed (𝜀𝜀 ≪ 1)

𝑖𝑖𝜀𝜀𝜕𝜕𝑡𝑡𝜓𝜓 = 𝐻𝐻(𝑡𝑡)𝜓𝜓
𝑖𝑖𝜀𝜀𝜕𝜕𝑡𝑡𝜑𝜑 = 𝐻𝐻 𝑡𝑡 𝜑𝜑 − 𝜑𝜑(𝜑𝜑∗𝐻𝐻 𝑡𝑡 𝜑𝜑)

Theorem [An-L., 2018] symplectic integrator of order 𝑘𝑘, up 
to 𝑇𝑇 ∼ 𝑂𝑂(1), 

error ∼ �
Δ𝑡𝑡𝑘𝑘

𝜀𝜀𝑘𝑘+1
, Schrödinger

Δ𝑡𝑡𝑘𝑘

𝜀𝜀𝑘𝑘
, parallel transport
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Proof sketch
Key: Refined adiabatic theorem

Lemma There exists decomposition 

𝜑𝜑 𝑡𝑡 = 𝜑𝜑𝐴𝐴 𝑡𝑡 + 𝜀𝜀𝜑𝜑𝑅𝑅(𝑡𝑡)

up to 𝑇𝑇 ∼ 𝑂𝑂(1).  𝜑𝜑𝐴𝐴 𝑡𝑡 is eigenstate of 𝐻𝐻(𝑡𝑡) and is 𝜀𝜀-
independent (including phase factor). 𝜑𝜑𝑅𝑅(𝑡𝑡) 2 is bounded 
𝜀𝜀-independent. 
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Implementation in electronic structure 
software packages

• DGDFT / PWDFT

• Octopus (most widely used package for TDDFT, in 
progress)
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Absorption spectrum
• Anthracene (C14H10)
• Compare RT-TDDFT (PWDFT) and linear response 

TDDFT (Quantum ESPRESSO). 
• PT-CN 8 times faster than S-RK4
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[Jia, An, Wang, L., J. Chem. Theory Comput., 2018]



Ultrafast dynamics
• Benzene
• Slow laser (800 nm wavelength)
• PT-CN 32 times faster than S-RK4
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[Jia, An, Wang, L., J. Chem. Theory Comput., 2018]



Ultrafast dynamics
• Fast laser (250 nm wavelength)
• PT-CN 10 times faster than S-RK4
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[Jia, An, Wang, L., J. Chem. Theory Comput., 2018]



Efficiency
• Silicon from 32 to 1000 atoms, ~10 times faster
• Parallel implementation up to 2000 cores.
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Ion collision
• Cl− ion through graphene nanoflake (113 atoms)
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Ion collision

28

S-RK4 Δ𝑡𝑡: 0.5 as,  78 hours, 228 cores
PT-CN Δ𝑡𝑡: 50 as,   5.2 hours, 228 cores



Hybrid functional RT-TDDFT
• For the first time, practical hybrid functional RT-TDDFT 

calculations with a large basis set
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[Jia, L., Comput. Phys. Commun. 2019]



GPU acceleration on Summit
• No. 1 supercomputer in the Top500 list in November, 2018

• Silicon with 1536 atoms

• Scale to 768 GPUs

• 34 x times faster than 
CPU with 3072 cores

• 1.5 hr per femtosecond (fs)
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[Jia, Wang, L., submitted]



Conclusion
• Parallel transport dynamics: optimal gauge choice

• Cost            ∼ Schrödinger dynamics (wavefunction)
Time step    ∼ von Neumann dynamics (density matrix)

• Implicit time integrators demonstrated to be effective for 
TDDFT for the first time (c.f. Pueyo et al JCTC 2018). 
Significantly improved efficiency.
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Electron localization

Selected columns of density matrix



Localization problem
• Ψ: Kohn-Sham orbitals

dense, unitary matrix of size 𝑁𝑁𝑔𝑔 × 𝑁𝑁𝑒𝑒 𝑁𝑁𝑔𝑔 ≫ 𝑁𝑁𝑒𝑒

• 𝜀𝜀-sparse representation
Φ−ΨU 𝐹𝐹 ≤ 𝜀𝜀

 Each column of Φ is sparse.
 𝑋𝑋 is an 𝑁𝑁𝑒𝑒 × 𝑁𝑁𝑒𝑒 unitary matrix.
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Wannier functions
• Maximally localized Wannier function (MLWF) [Marzari-

Vanderbilt, Phys. Rev. B 1997].  

• Reason for the existence of MLWF for insulating systems 
[Kohn, PR 1959] [Nenciu, CMP 1983] [Panati, AHP 2007], 
[Brouder et al, PRL 2007] [Benzi-Boito-Razouk, 
SIAM Rev. 2013] etc
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Silicon Graphene



Application of Wannier functions
• Analysis of chemical bonding
• Band-structure interpolation
• Basis functions for DFT calculations (representing 

occupied orbitals 𝜓𝜓𝑖𝑖)
• Basis functions for excited state calculations (representing 

Hadamard product of orbitals 𝜓𝜓𝑖𝑖 ⊙ 𝜓𝜓𝑗𝑗)
• Strongly correlated systems (DFT+U)
• Phonon calculations
• etc

[Marzari et al. Rev. Mod. Phys. 2012]
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Maximally localized Wannier functions
• Geometric intuition: Minimization of “spread” or second 

moment.  

min
Φ=Ψ𝑈𝑈,
𝑈𝑈∗𝑈𝑈=𝐼𝐼

Ω Φ

Ω Φ = �
𝑗𝑗=1

𝑁𝑁𝑒𝑒

� 𝜙𝜙𝑗𝑗 𝑥𝑥
2𝑥𝑥2 𝑑𝑑𝑥𝑥 − � 𝜙𝜙𝑗𝑗 𝑥𝑥

2𝑥𝑥 𝑑𝑑𝑥𝑥
2

• 𝑋𝑋: gauge degrees of freedom
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Maximally localized Wannier functions
Robustness

• Initialization: Nonlinear optimization and possible to get 
stuck at local minima.

• Entangled band: Localization in the absence of band gap.  

Both need to be addressed for high throughput 
computation.
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Density matrix perspective
Ψ is unitary, then

𝑃𝑃 = ΨΨ∗

is a projection operator, and is gauge invariant.

𝑃𝑃 = ΨΨ∗ = Φ(𝑋𝑋∗𝑋𝑋)Φ∗ = ΦΦ∗

is close to a sparse matrix.

• Can one construct sparse 
representation directly from 
the density matrix?
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Algorithm: Selected columns of the density 
matrix (SCDM)
Code (MATLAB. Psi: matrix of size 𝑁𝑁𝑔𝑔 × 𝑁𝑁𝑒𝑒)

[U,R,perm] = qr(Psi', 0);

Phi = Psi * U;

• Very easy to code and to parallelize!
• Deterministic, no initial guess.
• perm encodes selected columns of the density matrix

39

Pivoted QR

GEMM

[Damle-L.-Ying,  JCTC, 2015] 



k-point
• Strategy: find columns using one “anchor” k-point (such 

as Γ), and then apply to all k-points
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SCDM: A flexible framework
• Molecular or periodic systems

• Isolated or entangled bands

• Variational formulation

[Damle-L., MMS 2018]
[Damle-L.-Levitt, MMS 2019]
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SCDM in software packages
• MATLAB/Julia code

https://github.com/asdamle/SCDM
https://github.com/antoine-levitt/wannier

• Quantum ESPRESSO [I. Carnimeo, S. Baroni, P. 
Giannozzi, arXiv: 1801.09263]

• Wannier90 [V. Vitale et al] (starting from v3.0)
http://www.wannier.org/
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Entangled bands

43

Entangled case 1 (metal, valence + conduction):

Entangled case 2 (near Fermi energy):



Examples of SCDM orbitals (Γ-point)
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Silicon Water



Examples of SCDM orbitals (k-point)
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Cr2O3.  k-point grid 6 × 6 × 6
Initial spread from SCDM: 17.22 Å2

MLWF converged spread:  16.98 Å2



Example: band interpolation
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Si Cu



Band structure interpolation: Al

47

SCDM spread: 
18.38 Å2

10x10x10 k-points, 6 bands ⇒ 4 bands (no disentanglement)

Wannier: optimized spread: 
12.42 Å2

Smaller spread Better interpolation



Implementation in Wannier 90

Credit: Dr. Valerio Vitale (APS March meeting 2019)
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Implementation in Wannier 90

Credit: Dr. Valerio Vitale (APS March meeting 2019)
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Conclusion
• Extract information from the gauge-invariant density 

matrix

• Selected columns of the density matrix (SCDM) is a 
simple, robust and deterministic method to find localized 
orbitals.  Alternative method to the Maximally Localized 
Wannier functions. 

• Wannier localization can be robustly initialized with SCDM 
(already in Wannier90). High-throughput materials 
simulation
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Kohn-Sham density functional theory

Projected commutator DIIS



Kohn-Sham density functional theory

52

𝐻𝐻 𝜌𝜌 𝜓𝜓𝑖𝑖 𝑥𝑥 = −
1
2
Δ + 𝑉𝑉𝑒𝑒𝑒𝑒𝑡𝑡 𝑥𝑥 + 𝑉𝑉𝐻𝐻𝑒𝑒𝐻𝐻 𝑃𝑃 (𝑥𝑥) 𝜓𝜓𝑖𝑖 𝑥𝑥 = 𝜀𝜀𝑖𝑖𝜓𝜓𝑖𝑖 𝑥𝑥

𝑃𝑃 𝑥𝑥, 𝑥𝑥′, 𝑡𝑡 = �
𝑖𝑖=1

𝑁𝑁𝑒𝑒

𝜓𝜓𝑖𝑖(𝑥𝑥, 𝑡𝑡)𝜓𝜓𝑖𝑖∗(𝑥𝑥′, 𝑡𝑡) ,

�𝑑𝑑𝑥𝑥 𝜓𝜓𝑖𝑖∗ 𝑥𝑥 𝜓𝜓𝑗𝑗 𝑥𝑥 = 𝛿𝛿𝑖𝑖𝑗𝑗 , 𝜀𝜀1 ≤ 𝜀𝜀2 ≤ ⋯ ≤ 𝜀𝜀𝑁𝑁𝑒𝑒

• In principle exact many body ground state energy.

• Most widely used electronic structure theory for condensed matter 
systems and molecules

• [Hohenberg-Kohn,1964], [Kohn-Sham, 1965], Nobel Prize in 
Chemistry, 1998



Self consistent field / Fixed point problem

𝑥𝑥 = 𝑓𝑓(𝑥𝑥)

Kohn-Sham density functional theory

𝑃𝑃 = ℱ[𝑃𝑃]

More precisely

𝐻𝐻 P 𝜓𝜓𝑖𝑖 = 𝜓𝜓𝑖𝑖𝜆𝜆𝑖𝑖 , 𝑃𝑃 = �
𝑖𝑖

𝜓𝜓𝑖𝑖𝜓𝜓𝑖𝑖∗
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SCF: Fixed point problem
• Fixed point iteration 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘).  Diverges quickly.

• Simple mixing. 𝑥𝑥𝑘𝑘+1 = 𝛼𝛼𝑓𝑓 𝑥𝑥𝑘𝑘 + 1 − 𝛼𝛼 𝑥𝑥𝑘𝑘. Often works 
but can be very slow

• Broyden-type methods: method of choice for practical 
calculations.

• Direct Inversion of the iterative subspace (DIIS) [Pulay
1980; 1982] (another equivalent version is Anderson 
acceleration [Anderson 1965])
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SCF: Quantum chemist’s viewpoint
• commutator-DIIS (c-DIIS).  Most widely used method in 

quantum chemistry software packages

• Residual
𝑅𝑅 𝑃𝑃 = 𝐻𝐻 𝑃𝑃 ,𝑃𝑃 = 𝐻𝐻 𝑃𝑃 𝑃𝑃 − 𝑃𝑃𝐻𝐻[𝑃𝑃]

• Necessary condition for SCF convergence

𝑅𝑅 𝑃𝑃 = 0

55

[Pulay CPL 1982; Kudin-Scuseria-Cances JCP 2002; Kudin-Scuseria M2AN 2007]
[T. Rohwedder, R. Schneider, JMC 2011]



C-DIIS
• Extrapolate the Fock matrix

• Obtain coefficients by minimizing the residual

• Equivalent to a version of Broyden’s method

56



Convergence of C-DIIS

57

Comparison of SCF convergence patterns for (CH3)2CHOH with the Huckel
guess at the RHF/6-31G(d) level of theory.  [Kudin-Scuseria M2AN 2007]



C-DIIS is not suitable for large basis set
• Large basis: planewaves, finite elements, wavelets etc

𝑃𝑃 = ΨΨ∗ ∈ ℂ𝑁𝑁𝑔𝑔×𝑁𝑁𝑔𝑔 , Ψ ∈ ℂ𝑁𝑁𝑔𝑔×𝑁𝑁𝑒𝑒

• 𝑁𝑁𝑔𝑔 ∼ 1000𝑁𝑁𝑒𝑒. Cannot store 𝐻𝐻,𝑅𝑅,𝑃𝑃
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Projected commutator DIIS
• Project to a set of gauge fixing orbitals Φ𝑟𝑟𝑒𝑒𝑟𝑟 ∈ ℂ𝑁𝑁𝑔𝑔×𝑁𝑁𝑒𝑒

with full column rank
Φ = 𝑃𝑃Φ𝑟𝑟𝑒𝑒𝑟𝑟

• Use Φ as the mixing variable (gauge-invariant)
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[Hu-L.-Yang, JCTC, 2017 ]



Projection
• Φ⟺ 𝑃𝑃, if Φ has full column rank

𝑃𝑃 = Φ Φ∗Φ −1Φ∗

• Use projected commutator
𝑅𝑅Φ = 𝐻𝐻 𝑃𝑃 𝑃𝑃Φ𝑟𝑟𝑒𝑒𝑟𝑟 − 𝑃𝑃𝐻𝐻 𝑃𝑃 Φ𝑟𝑟𝑒𝑒𝑟𝑟

• Enables C-DIIS for large basis set for the first time
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[Hu-L.-Yang, JCTC, 2017 ]



PC-DIIS
• Minimize

min
∑𝑗𝑗 𝛼𝛼𝑗𝑗=1

�
𝑗𝑗=𝑘𝑘−𝑙𝑙

𝑘𝑘

𝛼𝛼𝑗𝑗𝑅𝑅Φ
𝑗𝑗

𝐹𝐹

• Update

�Φ = �
𝑗𝑗=𝑘𝑘−𝑙𝑙

𝑘𝑘

𝛼𝛼𝑗𝑗Φ𝑘𝑘

• Compute

Φ𝑘𝑘+1 = �Φ �Φ∗�Φ −1 �Φ∗Φ𝑟𝑟𝑒𝑒𝑟𝑟
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PC-DIIS
Projected commutator

𝑅𝑅Φ = 𝐻𝐻 𝑃𝑃 𝑃𝑃Φ𝑟𝑟𝑒𝑒𝑟𝑟 − 𝑃𝑃𝐻𝐻 𝑃𝑃 Φ𝑟𝑟𝑒𝑒𝑟𝑟

• If Φ𝑟𝑟𝑒𝑒𝑟𝑟 = Ψ
𝑅𝑅Φ = 𝐻𝐻 𝑃𝑃 Ψ −ΨΛ

⇒ Residual of eigenvalue problem.

• All operations are limited to matrices of size 𝑁𝑁𝑔𝑔 × 𝑁𝑁𝑒𝑒
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Accuracy
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Efficiency

64

Si 1000 atom on 2000 cores



Ab initio molecular dynamics
• Wavefunction extrapolation with fixed gauge
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Conclusion
• Projected C-DIIS enables C-DIIS for large basis set by a 

gauge fixing procedure.

• Recent usage in quantum embedding theory (joint work 
with Garnet Chan)

• Remark: Convergence in the nonlinear setup for DIIS is 
very much missing
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