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Kohn-Sham density functional theory

• Efficient: Always solve an equation in 𝑅𝑅3, regardless of the 
number of electrons 𝑁𝑁.

• Accurate: Exact ground state energy for exact 𝑉𝑉𝑥𝑥𝑥𝑥[𝜌𝜌], 
[Hohenberg-Kohn,1964], [Kohn-Sham, 1965]

• Best compromise between efficiency and accuracy.  Most 
widely used electronic structure theory for condensed 
matter systems and molecules

• Nobel Prize in Chemistry, 1998
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𝐻𝐻 𝜌𝜌 𝜓𝜓𝑖𝑖 𝑥𝑥 = −
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𝜓𝜓𝑖𝑖 𝑥𝑥 2 , ∫ 𝑑𝑑𝑑𝑑 𝜓𝜓𝑖𝑖∗ 𝑥𝑥 𝜓𝜓𝑗𝑗 𝑥𝑥 = 𝛿𝛿𝑖𝑖𝑖𝑖 , 𝜀𝜀1 ≤ 𝜀𝜀2 ≤ ⋯
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Density functional theory

[S. Redner, Citation Statistics from 110 Years of Physical Review]
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Density functional theory

[S. Redner, Citation Statistics from 110 Years of Physical Review]
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Self Consistent Field Iteration
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𝐻𝐻[𝜌𝜌𝑖𝑖𝑖𝑖]𝜌𝜌𝑖𝑖𝑖𝑖

𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜

Discretization

EvaluationIteration
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Self Consistent Field Iteration

6

𝐻𝐻[𝜌𝜌𝑖𝑖𝑖𝑖]𝜌𝜌𝑖𝑖𝑖𝑖

𝜌𝜌𝑜𝑜𝑜𝑜𝑜𝑜

Discretization

EvaluationIteration

1) Very costly step.
2) Limiting practical calculations 

to hundreds of atoms
3) Almost always treated by 

solving a linear eigenvalue 
problem
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Cubic scaling of KSDFT
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• KS orbitals (eigenfunctions) are delocalized 
in the global domain.

• N atoms.  𝑂𝑂(𝑁𝑁) grid points.  𝑂𝑂(𝑁𝑁) KS orbitals.

• Orthogonalization of an 𝑂𝑂 𝑁𝑁 × 𝑂𝑂(𝑁𝑁) matrix ⇒ 𝑂𝑂 𝑁𝑁3

scaling, regardless of what eigensolver is being used.  

• Conclusion: DO NOT directly treat KS orbitals that are 
delocalized in the global domain.
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Evaluation: Alternatives?
• Linear scaling algorithms
 Near-sightedness [Kohn, PRL 1996]

[Benzi-Boito-Razouk, SIAM Rev. 2013]
 Truncation based algorithm: 

hard to balance efficiency and accuracy
 Only applicable to insulators.

[Bowler and Miyazaki, Rep. Prog. Phys 2012]
“…The second challenge is that of metallic systems: there is
no clear route to linear-scaling solution for systems with low or zero 
gaps and extended electronic structure…”

• Difficult task: 
 Accurate and efficient
 Applicable to insulators, semiconductors and metals
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Δ𝑉𝑉(𝑟𝑟′)
Δ𝜌𝜌(𝑟𝑟)

𝑟𝑟′ − 𝑟𝑟
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Alterative solution?
Linear scaling methods 

• Truncation (KS orbital, 1-dm).  
Near-sightedness.

• Costly for metals (large 
preconstant)

• Complicated user-interface
(select truncation region)

[Yang, 1991], [Kohn, 1996]. 
Review: [Goedecker, 1999]. 
[Bowler-Miyazaki, 2012].

What we propose

• No truncation. Not based on 
near-sightedness. 

• Applicable to insulator, 
semiconductor and metal.

• Black-box user-inteface.

• Scales at most 𝑂𝑂(𝑁𝑁2). 

• Localized basis and relatively 
small number of basis functions 
per atom.
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Outline

PEXSI: Pole EXpansion and Selected Inversion

• Pole Expansion

• Selected Inversion

• From model problem to practice
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PEXSI at work
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C-BN Bilayer (12770 atoms)

Lin Lin

SIESTA-PEXSI. [LL-Garcia-Huhs-Yang, 2014]

Phospherene nanoribbon (10800 atoms)

DGDFT-PEXSI. [Hu-LL-Yang, 2015]

Fast Algorithms for Electronic Structure



KSDFT: Matrix point of view

𝜌𝜌 𝑥𝑥 = 2�
𝑖𝑖=1

𝑁𝑁/2

𝜓𝜓𝑖𝑖 𝑥𝑥 2

= 𝜓𝜓1(𝑥𝑥) … 𝜓𝜓𝑁𝑁𝑡𝑡(𝑥𝑥)
𝜒𝜒(𝜀𝜀1 − 𝜇𝜇)

⋱
𝜒𝜒(𝜀𝜀𝑁𝑁𝑡𝑡 − 𝜇𝜇)

𝜓𝜓1(𝑥𝑥)
⋮

𝜓𝜓𝑁𝑁𝑡𝑡(𝑥𝑥)
= 𝜒𝜒(𝐻𝐻 𝜌𝜌 − 𝜇𝜇𝜇𝜇) 𝑥𝑥,𝑥𝑥

• 𝜇𝜇 : Chemical potential such that #{𝜎𝜎 𝐻𝐻 ≤ 𝜇𝜇} = 𝑁𝑁/2

• 𝜒𝜒 : Heaviside function satisfying  𝜒𝜒 𝑥𝑥 = �2, 𝑥𝑥 ≤ 0,
0, 𝑥𝑥 > 0

𝜌𝜌 = diag 𝜒𝜒(𝐻𝐻 𝜌𝜌 − 𝜇𝜇𝜇𝜇)

12Lin Lin Fast Algorithms for Electronic Structure



Finite temperature: Fermi operator

𝜌𝜌 = diag
2

1 + 𝑒𝑒𝛽𝛽(𝐻𝐻[𝜌𝜌]−𝜇𝜇𝜇𝜇)

• 𝛽𝛽 = 1/𝑘𝑘𝐵𝐵𝑇𝑇: inverse temperature
• 𝜇𝜇: Chemical potential

• Finite temperature,  Fermi-Dirac
• Zero temperature, Heaviside
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Fermi operator expansion

• Δ𝐸𝐸 = 𝜎𝜎(𝐻𝐻 − 𝜇𝜇𝜇𝜇).
• Fermi operator expansion: solving KSDFT without 

diagonalization

• [Goedecker, 1993], 𝑃𝑃 ∼ 𝑂𝑂 𝛽𝛽Δ𝐸𝐸
• [Ceriotti et al, 2008], Q ∼ 𝑂𝑂 𝛽𝛽Δ𝐸𝐸 ; other work

𝜌𝜌 = diag
2

1 + 𝑒𝑒𝛽𝛽(𝐻𝐻[𝜌𝜌]−𝜇𝜇𝜇𝜇) = diag
2

1 + 𝑒𝑒𝛽𝛽Δ𝐸𝐸
𝐻𝐻[𝜌𝜌]−𝜇𝜇𝜇𝜇
Δ𝐸𝐸

≈ diag �
𝑙𝑙=1

𝑃𝑃

𝑐𝑐𝑙𝑙
𝐻𝐻 𝜌𝜌 − 𝜇𝜇𝜇𝜇

Δ𝐸𝐸

𝑙𝑙

+ �
𝑙𝑙=1

𝑄𝑄
𝜔𝜔𝑙𝑙

𝑧𝑧𝑙𝑙𝐼𝐼 −
𝐻𝐻 𝜌𝜌 − 𝜇𝜇𝜇𝜇

Δ𝐸𝐸
𝑞𝑞𝑙𝑙
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Pole expansion
• [LL-Lu-Ying-E, 2009] 𝑄𝑄 ∼ 𝑂𝑂 log 𝛽𝛽Δ𝐸𝐸

𝜌𝜌 ≈ diag�
𝑖𝑖=1

𝑄𝑄
𝜔𝜔𝑖𝑖

𝐻𝐻 − 𝑧𝑧𝑖𝑖𝐼𝐼

• 𝑧𝑧𝑖𝑖 ,𝜔𝜔𝑖𝑖 ∈ ℂ are complex shifts and complex weights
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Contour integral technique

Fermi-Dirac

𝜌𝜌 𝜉𝜉 =
1
2𝜋𝜋𝜋𝜋

�
Γ

𝜌𝜌 𝑧𝑧
𝑧𝑧 − 𝜉𝜉

𝑑𝑑𝑑𝑑 ≈
1
2𝜋𝜋𝜋𝜋

�
𝑖𝑖=1

𝑄𝑄
𝜌𝜌 𝑧𝑧𝑖𝑖 𝑤𝑤𝑖𝑖
𝑧𝑧𝑖𝑖 − 𝜉𝜉
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Contour integral technique

Fermi-Dirac

𝜌𝜌 𝜉𝜉 =
1
2𝜋𝜋𝜋𝜋

�
Γ

𝜌𝜌 𝑧𝑧
𝑧𝑧 − 𝜉𝜉

𝑑𝑑𝑑𝑑 ≈
1
2𝜋𝜋𝜋𝜋

�
𝑖𝑖=1

𝑄𝑄
𝜌𝜌 𝑧𝑧𝑖𝑖 𝑤𝑤𝑖𝑖
𝑧𝑧𝑖𝑖 − 𝜉𝜉

Simpler problem

[Hale, Higham and Trefethen, 2008]

𝜌𝜌 𝜉𝜉 − 𝜌𝜌𝑄𝑄 𝜉𝜉 ∼ 𝑂𝑂(𝑒𝑒−𝐶𝐶𝐶𝐶/ log(𝑀𝑀/𝑚𝑚))
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Pole expansion
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Numerical result

19Lin Lin

Model tight binding problem
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Outline

PEXSI: Pole EXpansion and Selected Inversion

• Pole Expansion

• Selected Inversion

• From model problem to practice

20Lin Lin Fast Algorithms for Electronic Structure



Selected inversion

𝜌𝜌 ≈ diag�
𝑖𝑖=1

𝑄𝑄
𝜔𝜔𝑖𝑖

𝐻𝐻 − 𝑧𝑧𝑖𝑖𝐼𝐼

• All the diagonal elements of an inverse matrix.
• 𝐻𝐻 is a sparse matrix, but 𝐻𝐻 − 𝑧𝑧𝑖𝑖𝐼𝐼 −1 is a full matrix.
• Naïve approach: 𝑂𝑂 𝑁𝑁3 .
• Need selected inversion.
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Selected inversion: basic idea
• 𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇 factorization

𝐴𝐴 =
𝐴𝐴11 𝐴𝐴21𝑇𝑇

𝐴𝐴21 𝐴̂𝐴22
= 1 0

𝐿𝐿21 𝐼𝐼
𝐴𝐴11 0

0 𝑆𝑆22
1 𝐿𝐿21𝑇𝑇
0 𝐼𝐼

𝐿𝐿21 = 𝐴𝐴21𝐴𝐴11−1, 𝑆𝑆22 = 𝐴̂𝐴22 − 𝐴𝐴21𝐿𝐿21𝑇𝑇

• Inversion

𝐴𝐴−1 = 𝐴𝐴11−1 + 𝐿𝐿21𝑇𝑇 𝑆𝑆22−1𝐿𝐿21 −𝐿𝐿21𝑇𝑇 𝑆𝑆22−1

−𝑆𝑆22−1𝐿𝐿21 𝑆𝑆22−1

22

Observation:
If 𝐿𝐿21 is sparse, 𝐿𝐿21𝑇𝑇 𝑆𝑆22−1𝐿𝐿21 only require rows and columns 
of 𝑆𝑆22−1 corresponding to the sparsity pattern of 𝐿𝐿21.
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Recursive relation
𝑆𝑆22 =

𝐴𝐴22 𝐴𝐴32𝑇𝑇

𝐴𝐴32 𝐴̂𝐴33

𝐴𝐴 = 1 0
𝐿𝐿21 𝐼𝐼

1 0 0
0 1 0
0 𝐿𝐿32 𝐼𝐼

𝐴𝐴11 0 0
0 𝐴𝐴22 0
0 0 𝐴̂𝐴33

1 0 0
0 1 𝐿𝐿32𝑇𝑇
0 0 𝐼𝐼

1 𝐿𝐿21𝑇𝑇
0 𝐼𝐼

𝐴𝐴−1 =
𝐴𝐴11−1 + 𝐿𝐿21𝑇𝑇 𝑆𝑆22−1𝐿𝐿21 −𝐿𝐿21𝑇𝑇 𝑆𝑆22−1

−𝑆𝑆22−1𝐿𝐿21
𝐴𝐴22−1 + 𝐿𝐿32𝑇𝑇 𝑆𝑆33−1𝐿𝐿32 −𝐿𝐿32𝑇𝑇 𝑆𝑆33−1

−𝑆𝑆33−1𝐿𝐿32 𝑆𝑆33−1
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Selected inversion
• 𝐴𝐴 = 𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇: 𝐴𝐴−1 restricted to the non-zero pattern of 𝐿𝐿 is “self-

contained”: Only compute 𝐴𝐴𝑖𝑖𝑖𝑖−1 𝐿𝐿𝑖𝑖𝑖𝑖 ≠ 0 𝑜𝑜𝑜𝑜 𝐿𝐿𝑗𝑗𝑗𝑗 ≠ 0 .

• Exact method with exact arithmetic.

• For KS Hamiltonian discretized by local basis set, the cost of selected 
inversion is 𝑂𝑂(𝑁𝑁) for 1D systems, 𝑂𝑂 𝑁𝑁1.5 for 2D systems, and 𝑂𝑂(𝑁𝑁2)
for 3D systems.

• Combined with pole expansion: At most 𝑂𝑂 𝑁𝑁2 scaling for solving 
Kohn-Sham problem.

• Idea of selected inversion dates back to [Erisman and Tinney, 1975], 
[Takakashi et al 1973]; For electronic structure [LL-Lu-Ying-Car-E, 
2009]; For quantum transport [Li, Darve et al, 2008, 2012]
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Complexity of selected inversion
• For 𝑑𝑑 > 1, asymptotic cost usually dominated by the 

inversion of largest Schur complement.

25

1D: 𝑂𝑂(𝑁𝑁) 2D:𝑂𝑂 𝑁𝑁0.5 3 = 𝑂𝑂(𝑁𝑁1.5) 3D:𝑂𝑂 𝑁𝑁2/3 3 = 𝑂𝑂(𝑁𝑁2)
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SelInv: Numerical results
SelInv: a selected inversion package for general sparse 
symmetric matrix written in FORTRAN.
[LL-Yang-Meza-Lu-Ying-E, 2011]
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Outline

PEXSI: Pole EXpansion and Selected Inversion

• Pole Expansion

• Selected Inversion

• From model problem to practice
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Challenges from 
Physicists/Chemists/Materials Scientists

• Nonorthogonal basis

• Various physical quantities

• Parallel scalability
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Force

29

𝐹𝐹𝐼𝐼 = −𝑇𝑇𝑇𝑇 𝛾𝛾
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝐼𝐼

+ 𝑇𝑇𝑇𝑇 𝛾𝛾𝐸𝐸
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝐼𝐼

• Including both the Hellmann-Feynman force and the Pulay force 

• Energy density matrix
𝛾𝛾𝐸𝐸 = 𝐶𝐶𝑓𝑓𝐸𝐸 Ξ − 𝜇𝜇 𝐶𝐶𝑇𝑇
𝑓𝑓𝐸𝐸 𝑥𝑥 − 𝜇𝜇 = 𝑥𝑥𝑥𝑥(𝑥𝑥 − 𝜇𝜇)

• Pole expansion with the same shift
but different weight

• The same selected elements of 
𝐻𝐻 − 𝑧𝑧𝑖𝑖𝑆𝑆 −1

• Similar treatment for other physical quantities

[LL-Chen-Yang-He, 2013]
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Two level parallelization strategy

Pole 1 Pole 2 Pole P-1 Pole P⋅ ⋅ ⋅

Example:
80 poles × 1024 procs per pole = 81920 procs.

PSelInv

Embassingly 
parallel

PSelInv: Distributed memory parallel selected inversion for 
general sparse symmetric matrices

[Jacquelin-LL-Yang, 2014] [Jacquelin-LL-Wichmann-Yang, 2015] 
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http://www.pexsi.org/
• Work with sparse H, S matrices in 

distributed compressed sparse 
column (CSC) format 

• Return density matrix etc in the 
same format 

• Allow integration with different 
electronic structure software 
packages

• Integrated with SIESTA, CP2K 
and DGDFT
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Test systems

32Lin Lin

DNA Graphene-Boron Nitride

Water
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Accuracy of energy and SCF convergence

SiH (Metal) DNA (Insulator)
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Accuracy: Density of  States

3874 atoms 17875 atoms
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Efficiency: Wall clock time

Speedup (4096 cores):
168

Speedup (4096 cores):
14

Speedup (4096 cores):
18
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Electronic structure of large-scale 
graphene nanoflakes

Unprecedented size: 11700 atoms
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Geometry optimization: BNNT

37

Truncated Boron Nitride Nanotube (BNNT).  504 B atoms, 504 N atoms, 16 H atoms

Lin Lin

[LL-Chen-Yang-He, 2013]
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DGDFT-PEXSI
Adaptive local basis functions in a discontinuous Galerkin 
framework (DGDFT) 

[LL-Lu-Ying-E 2012] 

Lin Lin 38

Basis (discontinuous) Density (nearly continuous)
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DGDFT-PEXSI
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Empty: DIAG
Filled:  PEXSI

[Hu-LL-Yang, 2015] [Hu-LL-Yang, in preparation]

Most recent: scale to > 100,000 cores



Edge reconstruction of phospherene
nanoribbon
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CP2K-PEXSI
CP2K: Gaussian orbital based 
electronic structure code

Lin Lin 41

[Seewald, Master thesis, 2015]
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ELSI Software Interface Layer (Planned)
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Conclusion
• Pole Expansion and Selected Inversion (PEXSI) method for 

KSDFT at large scale.

• Based on the sparsity of Hamiltonian and overlap matrix.  
Require local basis set with small number of basis per atom 
(such as NAO and GTO, not applicable to PW)

• Accurate calculation of density, total energy, free energy and 
force (no truncation) for insulating and metallic systems.

• 𝑂𝑂(𝑁𝑁) for quasi-1D system, 𝑂𝑂(𝑁𝑁1.5) for quasi-2D system, and 
𝑂𝑂(𝑁𝑁2) for 3D bulk systems.

• Black-box: suitable for all codes localized basis set such atomic 
orbitals.
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Future work
• Quantum transport
 Parallel selected inversion for asymmetric matrices
 Heterogeneous computational architecture

• Green’s function for handling complex boundary 
conditions in materials
 QM/QM coupling
 QM/MM coupling [Nobel prize 2013]
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