Fast Algorithms for Electronic Structure Analysis

Berkelev

Lin Lin

Lin Lin

Department of Mathematics, UC Berkeley; Computational Research Division, LBNL

> PACM Colloquium, Princeton, April, 2015

Kohn-Sham density functional theory

$$H[\rho]\psi_i(x) = \left(-\frac{1}{2}\Delta + \int dx' \frac{m(x') + \rho(x')}{|x - x'|} + V_{xc}[\rho]\right)\psi_i(x) = \varepsilon_i\psi_i(x)$$

$$\rho(x) = 2\sum_{i=1}^{N/2} |\psi_i(x)|^2, \qquad \int dx \,\psi_i^*(x)\psi_j(x) = \delta_{ij}, \qquad \varepsilon_1 \le \varepsilon_2 \le \cdots$$

- Efficient: Always solve an equation in R^3 , regardless of the number of electrons N.
- Accurate: Exact ground state energy for exact $V_{xc}[\rho]$, [Hohenberg-Kohn,1964], [Kohn-Sham, 1965]
- Best compromise between efficiency and accuracy. Most widely used electronic structure theory for condensed matter systems and molecules
- Nobel Prize in Chemistry, 1998

Berkelev

Lin Lin

Density functional theory

Berkelev

Lin Lin

Table 1. Physical Review Articles with more than 1000 Citations Through June 2003

Publication	# cites	Av. age	Title	Author(s)
PR 140, A1133 (1965)	3227	26.7	Self-Consistent Equations Including Exchange and Correlation Effects	W. Kohn, L. J. Sham
PR 136, B864 (1964)	2460	28.7	Inhomogeneous Electron Gas	P. Hohenberg, W. Kohn
PRB 23, 5048 (1981)	2079	14.4	Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems	J. P. Perdew, A. Zunger
PRL 45, 566 (1980)	1781	15.4	Ground State of the Electron Gas by a Stochastic Method	D. M. Ceperley, B. J. Alder
PR 108, 1175 (1957)	1364	20.2	Theory of Superconductivity	J. Bardeen, L. N. Cooper, J. R. Schrieffer
PRL 19, 1264 (1967)	1306	15.5	A Model of Leptons	S. Weinberg
PRB 12, 3060 (1975)	1259	18.4	Linear Methods in Band Theory	O. K. Anderson
PR 124, 1866 (1961)	1178	28.0	Effects of Configuration Interaction of Intensities and Phase Shifts	U. Fano
RMP 57, 287 (1985)	1055	9.2	Disordered Electronic Systems	P. A. Lee, T. V. Ramakrishnan
RMP 54, 437 (1982)	1045	10.8	Electronic Properties of Two-Dimensional Systems	T. Ando, A. B. Fowler, F. Stern
PRB 13, 5188 (1976)	1023	20.8	Special Points for Brillouin-Zone Integrations	H. J. Monkhorst, J. D. Pack
PR, Physical Review; P	RB, Phy	sical Rev	iew B; PRL, Physical Review Letters; RMP, Reviews of Modern Physics.	

[S. Redner, Citation Statistics from 110 Years of Physical Review]

Density functional theory

Table 1. Physical Review Articles with more than 1000 Citations Through June 2003

Publication	# cites	Av. age	Title	Author(s)	
PR 140, A1133 (1965)	3227	26.7	Self-Consistent Equations Including Exchange and Correlation Effects	W. Kohn, L. J. Sham	
PR 136, B864 (1964)	2460	28.7	Inhomogeneous Electron Gas	P. Hohenberg, W. Kohn	
PRB 23, 5048 (1981)	2079	14.4	Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems	J. P. Perdew, A. Zunger	
PRL 45, 566 (1980)	1781	15.4	Ground State of the Electron Gas by a Stochastic Method	D. M. Ceperley, B. J. Alder	
PR 108, 1175 (1957)	1364	20.2	Theory of Superconductivity	J. Bardeen, L. N. Cooper, J. R. Schrieffer	
PRL 19, 1264 (1967)	1306	15.5	A Model of Leptons	S. Weinberg	
PRB 12, 3060 (1975)	1259	18.4	Linear Methods in Band Theory	O. K. Anderson	
PR 124, 1866 (1961)	1178	28.0	Effects of Configuration Interaction of Intensities and Phase Shifts	U. Fano	
RMP 57, 287 (1985)	1055	9.2	Disordered Electronic Systems	P. A. Lee, T. V. Ramakrishnan	
RMP 54, 437 (1982)	1045	10.8	Electronic Properties of Two-Dimensional Systems	T. Ando, A. B. Fowler, F. Stern	
PRB 13, 5188 (1976)	1023	20.8	Special Points for Brillouin-Zone Integrations	H. J. Monkhorst, J. D. Pack	
PR, Physical Review; PRB, Physical Review B; PRL, Physical Review Letters; RMP, Reviews of Modern Physics.					

[S. Redner, Citation Statistics from 110 Years of Physical Review]

Self-consistent equations including exchange and correlation effects

W Kohn, LJ Sham - Physical Review, 1965 - APS

Berkelev

Lin Lin

Abstract From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. These methods are exact for systems of slowly varying or high density. For the ground state, they lead to self-consistent ... Cited by 35282 Related articles All 23 versions Web of Science: 24040 Import into BibTeX

Self Consistent Field Iteration

Berkelev

Lin Lin

Self Consistent Field Iteration

Berkelev

Lin Lin

Cubic scaling of KSDFT

Lin Lin

Berkelev

- KS orbitals (eigenfunctions) are delocalized in the global domain.
- N atoms. O(N) grid points. O(N) KS orbitals.
- Orthogonalization of an $O(N) \times O(N)$ matrix $\Rightarrow O(N^3)$ scaling, regardless of what eigensolver is being used.
- Conclusion: DO NOT directly treat KS orbitals that are delocalized in the global domain.

O(N)

Evaluation: Alternatives?

Linear scaling algorithms

Lin Lin

Berkelev

- Near-sightedness [Kohn, PRL 1996]
 [Benzi-Boito-Razouk, SIAM Rev. 2013]
- Truncation based algorithm:

hard to balance efficiency and accuracy

Only applicable to insulators.

[Bowler and Miyazaki, Rep. Prog. Phys 2012]

"...The second challenge is that of metallic systems: there is no clear route to linear-scaling solution for systems with low or zero gaps and extended electronic structure..."

Difficult task:

- Accurate and efficient
- Applicable to insulators, semiconductors and metals

Alterative solution?

Linear scaling methods

Lin Lin

Kerkelev

- Truncation (KS orbital, 1-dm). Near-sightedness.
- Costly for metals (large preconstant)
- Complicated user-interface (select truncation region)

[Yang, 1991], [Kohn, 1996]. Review: [Goedecker, 1999]. [Bowler-Miyazaki, 2012]. What we propose

- No truncation. Not based on near-sightedness.
- Applicable to insulator, semiconductor and metal.
- Black-box user-inteface.
- Scales at most $O(N^2)$.
- Localized basis and relatively small number of basis functions per atom.

Outline

Lin Lin

Berkelev

PEXSI: Pole EXpansion and Selected Inversion

- Pole Expansion
- Selected Inversion
- From model problem to practice

Lin Lin

Berkelev

C-BN Bilayer (12770 atoms)

SIESTA-PEXSI. [LL-Garcia-Huhs-Yang, 2014]

Phospherene nanoribbon (10800 atoms)

DGDFT-PEXSI. [Hu-LL-Yang, 2015]

KSDFT: Matrix point of view

Berkeley

Lin Lin

$$\begin{split} \rho(x) &= 2 \sum_{i=1}^{N/2} |\psi_i(x)|^2 \\ &= (\psi_1(x) \quad \dots \quad \psi_{N_t}(x)) \begin{pmatrix} \chi(\varepsilon_1 - \mu) & & \\ & \ddots & \\ & & \chi(\varepsilon_{N_t} - \mu) \end{pmatrix} \begin{pmatrix} \psi_1(x) \\ \vdots \\ \psi_{N_t}(x) \end{pmatrix} \\ &= \{\chi(H[\rho] - \mu I)\}_{x,x} \end{split}$$

• μ : Chemical potential such that $\#\{\sigma(H) \le \mu\} = N/2$

• χ : Heaviside function satisfying $\chi(x) = \begin{cases} 2, & x \leq 0, \\ 0, & x > 0 \end{cases}$

$$\rho = \operatorname{diag} \chi(H[\rho] - \mu I)$$

Finite temperature: Fermi operator

$$\rho = \text{diag} \frac{2}{1 + e^{\beta(H[\rho] - \mu I)}}$$

Berkelev

Lin Lin

- Finite temperature, Fermi-Dirac
- Zero temperature, Heaviside

- $\beta = 1/k_BT$: inverse temperature
- μ : Chemical potential

Fermi operator expansion

$$\rho = \operatorname{diag} \frac{2}{1 + e^{\beta(H[\rho] - \mu I)}} = \operatorname{diag} \frac{2}{1 + e^{\beta\Delta E} \frac{H[\rho] - \mu I}{\Delta E}}$$
$$\approx \operatorname{diag} \left\{ \sum_{l=1}^{P} c_l \left(\frac{H[\rho] - \mu I}{\Delta E} \right)^l + \sum_{l=1}^{Q} \frac{\omega_l}{\left(z_l I - \frac{H[\rho] - \mu I}{\Delta E} \right)^{q_l}} \right\}$$

•
$$\Delta E = \sigma(H - \mu I).$$

Lin Lin

Berkelev

- Fermi operator expansion: solving KSDFT without diagonalization
- [Goedecker, 1993], $P \sim O(\beta \Delta E)$
- [Ceriotti et al, 2008], $Q \sim O(\sqrt{\beta \Delta E})$; other work

Pole expansion

Lin Lin

Berkeley

• [LL-Lu-Ying-E, 2009] $Q \sim O(\log(\beta \Delta E))$

$$\rho \approx \text{diag} \sum_{i=1}^{Q} \frac{\omega_i}{H - z_i I}$$

• $z_i, \omega_i \in \mathbb{C}$ are complex shifts and complex weights

Contour integral technique

Fermi-Dirac

Lin Lin

Berkelev

$$\rho(\xi) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{\rho(z)}{z - \xi} dz \approx \frac{1}{2\pi i} \sum_{i=1}^{Q} \frac{\rho(z_i) w_i}{z_i - \xi}$$

Contour integral technique

Fermi-Dirac

Lin Lin

Berkelev

$$\rho(\xi) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{\rho(z)}{z - \xi} dz \approx \frac{1}{2\pi i} \sum_{i=1}^{Q} \frac{\rho(z_i) w_i}{z_i - \xi}$$

Simpler problem

[Hale, Higham and Trefethen, 2008]

 $\left\|\rho(\xi) - \rho_Q(\xi)\right\| \sim \mathcal{O}(e^{-CQ/\log(M/m)})$

Pole expansion

Lin Lin

Berkeley

Numerical result

Lin Lin

Berkelev

Model tight binding problem

Outline

Lin Lin

Berkelev

PEXSI: Pole EXpansion and Selected Inversion

- Pole Expansion
- Selected Inversion
- From model problem to practice

Selected inversion

Lin Lin

Berkelev

$$\rho \approx \operatorname{diag} \sum_{i=1}^{Q} \frac{\omega_i}{H - z_i I}$$

- All the diagonal elements of an inverse matrix.
- *H* is a sparse matrix, but $(H z_i I)^{-1}$ is a full matrix.
- Naïve approach: $O(N^3)$.
- Need selected inversion.

Selected inversion: basic idea

• *LDL^T* factorization

Lin Lin

Berkelev

$$A = \begin{pmatrix} A_{11} & A_{21}^T \\ A_{21} & \hat{A}_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ L_{21} & I \end{pmatrix} \begin{pmatrix} A_{11} & 0 \\ 0 & S_{22} \end{pmatrix} \begin{pmatrix} 1 & L_{21}^T \\ 0 & I \end{pmatrix}$$

$$L_{21} = A_{21}A_{11}^{-1}, \qquad S_{22} = \hat{A}_{22} - A_{21}L_{21}^{T}$$

Inversion

$$A^{-1} = \begin{pmatrix} A_{11}^{-1} + L_{21}^T S_{22}^{-1} L_{21} & -L_{21}^T S_{22}^{-1} \\ -S_{22}^{-1} L_{21} & S_{22}^{-1} \end{pmatrix}$$

Observation:

If L_{21} is sparse, $L_{21}^T S_{22}^{-1} L_{21}$ only require rows and columns of S_{22}^{-1} corresponding to the sparsity pattern of L_{21} .

Recursive relation

Lin Lin

Berkeley

$$S_{22} = \begin{pmatrix} A_{22} & A_{32}^T \\ A_{32} & \hat{A}_{33} \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ L_{21} & I \end{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & L_{32} & I \end{bmatrix} \begin{pmatrix} A_{11} & 0 & 0 \\ 0 & A_{22} & 0 \\ 0 & 0 & \hat{A}_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & L_{32}^T \\ 0 & 0 & I \end{bmatrix} \begin{pmatrix} 1 & L_{21}^T \\ 0 & I \end{bmatrix}$$

$$A^{-1} = \begin{pmatrix} A_{11}^{-1} + L_{21}^T S_{22}^{-1} L_{21} & -L_{21}^T S_{22}^{-1} \\ -S_{22}^{-1} L_{21} & A_{22}^{-1} + L_{32}^T S_{33}^{-1} L_{32} & -L_{32}^T S_{33}^{-1} \\ -S_{33}^{-1} L_{32} & S_{33}^{-1} \end{pmatrix}$$

Selected inversion

Lin Lin

Berkelev

- $A = LDL^T$: A^{-1} restricted to the non-zero pattern of L is "selfcontained": Only compute $\{A_{ij}^{-1} | L_{ij} \neq 0 \text{ or } L_{ji} \neq 0\}$.
- Exact method with exact arithmetic.
- For KS Hamiltonian discretized by local basis set, the cost of selected inversion is O(N) for 1D systems, O(N^{1.5}) for 2D systems, and O(N²) for 3D systems.
- Combined with pole expansion: At most $O(N^2)$ scaling for solving Kohn-Sham problem.
- Idea of selected inversion dates back to [Erisman and Tinney, 1975], [Takakashi et al 1973]; For electronic structure [LL-Lu-Ying-Car-E, 2009]; For quantum transport [Li, Darve et al, 2008, 2012]

Complexity of selected inversion

Berkelev

Lin Lin

 For d > 1, asymptotic cost usually dominated by the inversion of largest Schur complement.

Sellnv: Numerical results

Berkelev

Lin Lin

Sellnv: a selected inversion package for general sparse symmetric matrix written in FORTRAN. [LL-Yang-Meza-Lu-Ying-E, 2011]

Problems from Harwell-Boeing Test Collection and the University of Florida Matrix Collection.

problem	п	selected inversion	direct inversion	speedup
		time	time	
bcsstk14	1,806	0.01 sec	0.13 sec	13
bcsstk24	3,562	0.02 sec	0.58 sec	29
bcsstk28	4,410	0.02 sec	0.88 sec	44
bcsstk18	11,948	0.24 sec	5.73 sec	24
bodyy6	0.19,366	09 sec	5.37 sec	60
crystm03	24,696	0.78 sec	26.89 sec	34
wathen120	36,441	0.34 sec	48.34 sec	142
thermal1	82,654	0.44 sec	95.06 sec	216
shipsec1	140,874	17.66 sec	3346 sec	192
pwtk	217,918	14.55 sec	5135 sec	353
parabolic_fem	525,825	20.06 sec	7054 sec	352
tmt_sym	726,713	13.98 sec	> 3 hours	> 772
ecology2	999,999	16.04 sec	> 3 hours	> 673
G3_circuit	1,585,478	218.7 sec	> 3 hours	> 49

Outline

Lin Lin

Berkelev

PEXSI: Pole EXpansion and Selected Inversion

- Pole Expansion
- Selected Inversion
- From model problem to practice

Challenges from Physicists/Chemists/Materials Scientists

Nonorthogonal basis

Lin Lin

Berkelev

- Various physical quantities
- Parallel scalability

Berkelev

Lin Lin

$$F_{I} = -Tr\left[\gamma \frac{\partial H}{\partial R_{I}}\right] + Tr\left[\gamma^{E} \frac{\partial S}{\partial R_{I}}\right]$$

- Including both the Hellmann-Feynman force and the Pulay force
- Energy density matrix $\gamma^E = Cf^E(\Xi - \mu)C^T$ $f^E(x - \mu) = xf(x - \mu)$
- Pole expansion with the same shift but different weight
- The same selected elements of $(H z_i S)^{-1}$
- Similar treatment for other physical quantities

[LL-Chen-Yang-He, 2013]

Two level parallelization strategy

Berkeley

Lin Lin

Example: 80 poles \times 1024 procs per pole = 81920 procs.

PSelInv: Distributed memory parallel selected inversion for general sparse symmetric matrices

[Jacquelin-LL-Yang, 2014] [Jacquelin-LL-Wichmann-Yang, 2015]

http://www.pexsi.org/ PEXSI

 Work with sparse H, S matrices in distributed compressed sparse column (CSC) format

Lin Lin

- Return density matrix etc in the same format
- Allow integration with different electronic structure software packages
- Integrated with SIESTA, CP2K and DGDFT

PEASI					
Main Page	Classes	Files			

Main Page

Welcome to the documentation of PEXSI (current version: v0.7.3)

- Introduction
 - Overview
 - License
 - Citing PEXSI
 - Change Log
- Download
- Installation
 - Dependencies
 - Build PEXSI
- Tutorial
 - Using plans
 - Parallel selected inversion for a real symmetric matrix
 - Parallel selected inversion for a complex symmetric matrix
 - Solving Kohn-Sham density functional theory: I
 - Solving Kohn-Sham density functional theory: II
- Core Functionality
 - Basic
 - Data type
 - Pole expansion
 - Factorization
 - Selected Inversion
 - C/C++ interface
 - FORTRAN interface
- Frequently asked questions
- Troubleshooting

Test systems

Lin Lin

Berkeley

DNA

Graphene-Boron	Nitride
----------------	---------

Example	Atoms	Ν	$s_H(\%)$	$s_{LU}(\%$	b) <i>l</i> (nm)
DNA-1	715	7183	6.8	23	3.1
DNA-4	2860	28732	1.7	6.2	12
DNA-9	6435	64647	0.75	2.9	28
DNA-16	11440	114928	0.42	1.7	49
DNA-25	17875	179575	0.27	1.1	76
C-BN _{2.3}	1988	25844	5.9	36	5.5
C-BN _{1.43}	3874	50362	3.0	24	7.7
C-BN _{0.57}	7988	103844	1.5	15	11
C-BN _{0.00}	12770	166010	0.91	11	14
H_2O-8	1536	11776	2.3	28	2.5
$H_{2}O-27$	5184	39744	0.69	18	3.7
$H_{2}O-64$	12288	94208	0.29	12	5.0
$H_{2}O-125$	24000	184000	0.15	8.4	6.2
AĪ	512	6656	36	94	1.6
SiH	65	833	74	97	1.1

Water

Accuracy of energy and SCF convergence

System	Р	tol _{NE}	err _E (eV/atom)	err _F (eV Å ⁻¹)
DNA-1	50	10-4	2×10^{-8}	2×10^{-6}
C-BN _{2.3}	40	10^{-3}	3×10^{-6}	2×10^{-5}
H_2O-8	40	10^{-4}	3×10^{-6}	6×10^{-5}
AĪ	40	10^{-3}	6×10^{-6}	2×10^{-6}
SiH	40	10^{-3}	10^{-4}	7×10^{-5}
SiH	60	10^{-4}	6×10^{-6}	7×10^{-5}

Berkelev

Lin Lin

DNA (Insulator)

SiH (Metal)

Accuracy: Density of States

Berkeley

Lin Lin

17875 atoms

Efficiency: Wall clock time

Speedup (4096 cores): 168

Berkeley

Lin Lin

Speedup (4096 cores): 14

Speedup (4096 cores): 18

Electronic structure of large-scale graphene nanoflakes

Lin Lin

Berkeley

Unprecedented size: 11700 atoms

Geometry optimization: BNNT

Truncated Boron Nitride Nanotube (BNNT). 504 B atoms, 504 N atoms, 16 H atoms

[LL-Chen-Yang-He, 2013]

Berkelev

Lin Lin

DGDFT-PEXSI

Lin Lin

Berkelev

Adaptive local basis functions in a discontinuous Galerkin framework (DGDFT)

[LL-Lu-Ying-E 2012]

Basis (discontinuous)

Density (nearly continuous)

DGDFT-PEXSI

Lin Lin

Berkelev

Empty: DIAG Filled: PEXSI

[Hu-LL-Yang, 2015] [Hu-LL-Yang, in preparation]

Most recent: scale to > 100,000 cores

Edge reconstruction of phospherene nanoribbon

Berkeley

Lin Lin

CP2K-PEXSI

Lin Lin

Berkelev

CP2K: Gaussian orbital based electronic structure code

(a) Aluminium surface with 3 atomic layers, DZVP basis

(b) Monolayer graphene, DZVP basis

[Seewald, Master thesis, 2015]

ELSI Software Interface Layer (Planned)

Berkeley

Lin Lin

Conclusion

Lin Lin

Kerkelev

- Pole Expansion and Selected Inversion (PEXSI) method for KSDFT at large scale.
- Based on the sparsity of Hamiltonian and overlap matrix. Require local basis set with small number of basis per atom (such as NAO and GTO, not applicable to PW)
- Accurate calculation of density, total energy, free energy and force (no truncation) for insulating and metallic systems.
- O(N) for quasi-1D system, $O(N^{1.5})$ for quasi-2D system, and $O(N^2)$ for 3D bulk systems.
- Black-box: suitable for all codes localized basis set such atomic orbitals.

Future work

Lin Lin

Berkelev

- Quantum transport
 - Parallel selected inversion for asymmetric matrices
 - Heterogeneous computational architecture
- Green's function for handling complex boundary conditions in materials
 - > QM/QM coupling
 - QM/MM coupling [Nobel prize 2013]

Acknowledgment

Mathematics

Berkelev

Weinan E, Princeton Jianfeng Lu, Duke Chao Yang, LBNL Lexing Ying, Stanford

Lin Lin

Computer Science

Mathias Jacquelin, LBNL Georg Huhs, BSC Juan Meza, UC Merced Nathan Wichmann, Cray Inc

Physics/Chemistry/Materials

Roberto Car, Princeton Mohan Chen, Princeton Alberto Garcia, ICMAB Lixin He, USTC Wei Hu, LBNL Joost Vandevondele, ETH Zurich Jinlong Yang, USTC

Support from DOE Alvarez fellowship, SciDAC, CAMERA funding