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Example of compressed representation
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Example of compressed representation

- Delocalized eigenfunction
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- Compressed (localized) representation. Unitary
transformation of eigenfunctions. Equivalent information.
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General concepts of localization

- Eigenfunctions (Molecular orbitals) are in general
delocalized across the whole molecule / solids.

- Chemical properties are often localized. Why?

- In guantum physics, a class of sparse representation are
given by the Wannier functions [Wannier, 1937], [Marzari
et al., Rev. Mod. Phys. 2012] [Kohn, Phys. Reuv. Lett.
1996]. In quantum chemistry this is often referred to as
the localized molecular orbitals, or Boys orbitals [Boys
1960]
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Wannier functions

- Maximally localized Wannier function (MLWF) [Marzari-
Vanderbilt, Phys. Rev. B 1997]. Examples below from
[Marzari et al. Rev. Mod. Phys. 2012]

/#\ :

-

Silicon Graphene

- Reason for the existence of MLWF for insulating systems
[Kohn, Phys. Rev. 1959] [Nenciu, Comm. Math. Phys.
1983] Many others



Berkeley  Lin Lin Compressed Kohn-Sham Orbitals

Application of Wannier functions

- Analysis of chemical bonding
- Band-structure interpolation

- Basis functions for DFT calculations (representing
occupied orbitals ;)

- Basis functions for excited state calculations (representing
Hadamard product of orbitals y; O ;)

- Strongly correlated systems (DFT+U)
- Phonon calculations
- etc
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(Somewhat non-traditional) setup of the

problem

- ¥: Kohn-Sham orbitals
dense, unitary matrix of size m x n (m > n)

- £-Sparse representation
¥ — PCl|r < ¢

» Each column of @ is sparse.
» CIs an n X n unitary matrix.

- Goal: find ®
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Maximally Localized Wannier functions

- [Vanderbilt-Marzari, PRB 1997]

- Geometric intuition. lterative minimization of the sum of
second moments of all localized functions.
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L1 minimization
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s.t. C*C =1

- L minimization promotes sparsity, and each function can
be compactly supported.

- Similar approach taken by [Ozlins-Lai-Caflisch-Osher,
PNAS 2013] (see below)
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Fig. 1. A quasi-localized Wannier function for 1D Laplace operator. Fig. 2. Theoretical y, in the 1D free-electron model (Eq. 6) for different

values of p.
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Density matrix

- W is unitary, then
P =YYy
IS a projection operator.

P=YY¥Y* =9CC"P" = P~

IS sparse.

- Decay properties of spectral ‘o
projector [Benzi-Boito-Razouk, so [
SIAM Rev. 2013] 06
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Density matrix could be a more powerful

tool

- [Panati, AHP 2007], [Brouder et al, Phys. Rev. Lett. 2007]
points out that the exponential decay of Wannier functions
cannot hold for Chern insulators (insulators with non-

vanishing Chern invariant)

0CC

l
C= 2_ dkE <(7kunk| X ‘(?kuﬂk>

T JBZ n

- The density matrix may still exhibit exponential decay
even for Chern insulators [Thonhauser, Vanderbilt PRB

2006].
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Algorlthm Selected columns of the density
matrix (SCDM)

Pseudocode (MATLAB. Psi: matrix of size m*n, m>>n)

[Q,R,perm] = qgr(Psi', 0); _ Rank revealing QR
Pc = Psi * Psi(perm(1:n),:)’; ammm  GEMM

Pc are columns of the density matrix and are localized orbitals!

The following three lines give orthogonal, localized obitals.

Pcc = Pc(perm(1:n),:);
L = chol(Pcc, 'lower');
Phi=Pc/ L}

Very easy to code and to parallelize!
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Columns of the density matrix

- P Is a rank-n matrix of size m X m. m > n so the matrix is
low-rank.

- In principle, any n linearly independent columns would be
sparse and span the same subspace as V.

- Arbitrary choice of columns can be poorly conditioned.
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Interpolative Decomposition

- Treat columns of density matrix as an over-complete
dictionary for .

- Find a set of columns C (|C| = n), permutation II,
transformation matrix T, so that
PIl1 = P.¢[IT]

IT ||z is small.

- Note that PII. ,.,, corresponds to the columns P. .. We only
need the permutation matrix Il to get the columns C.
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Rank-revealing QR

Theorem [Gu-Eisenstat, 1996] Let A be an m X n matrix, [ = min(m,n),and
k is an integer such that 1 < k < [. Then there is a factorization
All = QR
where I is an n X n permutation matrix, Q i1s an m X [ matrix with
orthonormal columns, and R is an [ X n upper triangular matrix.
Furthermore, if
Qll QlZ] ’Rll RlZ]
= ) R =
2= on on 0 R

Q.1,R{; are of size k X k, then

ox(R11) = 0y (4)

J1+k(n—k)
01(Ry2) < 041 (A1 + k(n — k)
|RTT Rez||, < VE(n = k)
Here o, (A) is the k-th largest singular value of the matrix A.
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Rank-revealing QR

- Apply RRQR to the matrix P (size m X m). Since P Is
exactly of rank n,
PIl = QR

Here Q i1s a matrix of size m X n, and
R =|R1 R;]

IS a matrix of size n X m.

PIl = QR [I R7'R,]) = P,c[IT]

ITllF = ||RT R ||, < yn(m —n)
- Cost: 0(m*n), which is too costly.
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Rank-revealing QR

- Consider 3
W* = QR
then
PNl = W¥*1 = (¥Q)N1
Since

(wQ) (wQ) =00 =1
we find the ID for P via the RRQR decomposition for ¥*

- Cost: 0(mn?), affordable since ¥ is a dense matrix to
start with.
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Recovering the density matrix
Pe=W(¥.)

P =P cDP

Find the matrix D
PeeDPee = Pee
Here Pe ¢ Is Invertible (otherwise we have rank less than n).
Also Pe e = Pee
D = Pi
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Recovering the unitary matrix

» Pc e = LL* Cholesky factorization
- D = P:,C(L*)_l

« P = dP" = PP, then d is unitary (P Is a projection
operator).

¥ =&C, C = "W is unitary.
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Algorlthm Selected columns of the density
matrix (SCDM)

Pseudocode (MATLAB. Psi: matrix of size m*n, m>>n)

[Q,R,perm] = qgr(Psi', 0); _ Rank revealing QR
Pc = Psi * Psi(perm(1:n),:)’; ammm  GEMM

Pc are columns of the density matrix and are localized orbitals!

The following three lines give orthogonal, localized obitals.

Pcc = Pc(perm(1:n),:);
L = chol(Pcc, 'lower');
Phi=Pc/ L}

Very easy to code and to parallelize!
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Numerical examples

Silicon Water

SCDM (orthonormalized) computed using Kohn-Sham density functional theory.
Delocalized wavefunctions solved from Quantum ESPRESSO.

Pe ¢ I1s well-conditioned. Condition number is 3.18 for Si and 2.83 for Water.
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Exponential decay

Si

Compressed Kohn-Sham Orbitals

0. 4 ‘ ___ Water
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nnz%: percentage of non-zero entries
g: relative truncation error

Exponential decay: exp(—Cd) ~ &, d ~ (nnz%)/3
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Time for computing the orthogonalized SCDM for a Si system
(dimension: 777600*1024)

Other QR strategies available [Demmel-Grigori-Gu-Xiang, 2013]
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Linear scaling Hartree-Fock calculation
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Conclusion

- Selected columns of the density matrix (SCDM) is a
simple, robust and deterministic method to find localized
orbitals. Alternative method to the Maximally Localized
Wannier functions.

- Straightforward implementation when Kohn-Sham orbitals
are represented on real space grid. It can be easily used
In any electronic structure code

- Very easy to parallelize and highly parallelizable. Can
accelerate Hartree-Fock and hybrid functional
calculations.
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Conclusion

[Damle-LL-Ying, Compressed representation of Kohn-
Sham orbitals via selected columns of the density matrix,

J. Chem. Theory Comput. 11, 1463, 2015 ]

Thank you for your attention!
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