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Example of compressed representation

• 𝐻𝐻 = −1
2
Δ + 𝑉𝑉(𝑥𝑥).  Periodic potential.  Insulating system

𝐻𝐻𝜓𝜓𝑖𝑖 = 𝜀𝜀𝑖𝑖𝜓𝜓𝑖𝑖
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Example of compressed representation
• Delocalized eigenfunction

• Compressed (localized) representation. Unitary 
transformation of eigenfunctions.  Equivalent information.
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General concepts of localization
• Eigenfunctions (Molecular orbitals) are in general 

delocalized across the whole molecule / solids.

• Chemical properties are often localized.  Why?

• In quantum physics, a class of sparse representation are 
given by the Wannier functions [Wannier, 1937], [Marzari
et al., Rev. Mod. Phys. 2012] [Kohn, Phys. Rev. Lett. 
1996].  In quantum chemistry this is often referred to as 
the localized molecular orbitals, or Boys orbitals [Boys 
1960]
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Wannier functions
• Maximally localized Wannier function (MLWF) [Marzari-

Vanderbilt, Phys. Rev. B 1997].  Examples below from 
[Marzari et al. Rev. Mod. Phys. 2012]

• Reason for the existence of MLWF for insulating systems 
[Kohn, Phys. Rev. 1959] [Nenciu, Comm. Math. Phys. 
1983] Many others
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Application of Wannier functions
• Analysis of chemical bonding
• Band-structure interpolation
• Basis functions for DFT calculations (representing 

occupied orbitals 𝜓𝜓𝑖𝑖)
• Basis functions for excited state calculations (representing 

Hadamard product of orbitals 𝜓𝜓𝑖𝑖 ⊙ 𝜓𝜓𝑗𝑗)
• Strongly correlated systems (DFT+U)
• Phonon calculations
• etc
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(Somewhat non-traditional) setup of the 
problem
• Ψ: Kohn-Sham orbitals

dense, unitary matrix of size 𝑚𝑚 × 𝑛𝑛 𝑚𝑚 ≫ 𝑛𝑛

• 𝜀𝜀-sparse representation
Ψ−Φ𝐶𝐶 𝐹𝐹 ≤ 𝜀𝜀

 Each column of Φ is sparse.
 𝐶𝐶 is an 𝑛𝑛 × 𝑛𝑛 unitary matrix.

• Goal: find Φ
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Maximally Localized Wannier functions
• [Vanderbilt-Marzari, PRB 1997]

• Geometric intuition.  Iterative minimization of the sum of 
second moments of all localized functions.

min
Ψ=Φ𝐶𝐶,
𝐶𝐶∗𝐶𝐶=𝐼𝐼

Ω Φ

Ω Φ = �
𝑗𝑗=1

𝑛𝑛

� 𝜙𝜙𝑗𝑗 𝑥𝑥
2𝑥𝑥2 𝑑𝑑𝑥𝑥 − �𝜙𝜙𝑗𝑗 𝑥𝑥 𝑥𝑥𝑑𝑑𝑥𝑥

2
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𝐿𝐿1 minimization

min
Φ,C

1
𝜇𝜇

Φ 1 + Ψ−Φ𝐶𝐶 𝐹𝐹
2

𝑠𝑠. 𝑡𝑡. 𝐶𝐶∗𝐶𝐶 = 𝐼𝐼
• 𝐿𝐿1 minimization promotes sparsity, and each function can 

be compactly supported.
• Similar approach taken by [Ozlins-Lai-Caflisch-Osher, 

PNAS 2013] (see below)
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Density matrix
• Ψ is unitary, then

𝑃𝑃 = ΨΨ∗

is a projection operator.

𝑃𝑃 = ΨΨ∗ = Φ𝐶𝐶𝐶𝐶∗Φ∗ = ΦΦ∗

is sparse.

• Decay properties of spectral 
projector [Benzi-Boito-Razouk, 
SIAM Rev. 2013]

• Can one construct sparse 
representation directly from 
the density matrix?
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Density matrix could be a more powerful 
tool
• [Panati, AHP 2007], [Brouder et al, Phys. Rev. Lett. 2007] 

points out that the exponential decay of Wannier functions 
cannot hold for Chern insulators (insulators with non-
vanishing Chern invariant)

• The density matrix may still exhibit exponential decay 
even for Chern insulators [Thonhauser, Vanderbilt PRB 
2006].  
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Algorithm: Selected columns of the density 
matrix (SCDM)
Pseudocode (MATLAB. Psi: matrix of size m*n, m>>n)

[Q,R,perm] = qr(Psi', 0);
Pc = Psi * Psi(perm(1:n),:)';

Pc are columns of the density matrix and are localized orbitals!   

The following three lines give orthogonal, localized obitals.

Pcc = Pc(perm(1:n),:);
L = chol(Pcc, 'lower');
Phi = Pc / L';

Very easy to code and to parallelize!
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Columns of the density matrix
• 𝑃𝑃 is a rank-𝑛𝑛 matrix of size 𝑚𝑚 × 𝑚𝑚.  𝑚𝑚 ≫ 𝑛𝑛 so the matrix is 

low-rank.

• In principle, any 𝑛𝑛 linearly independent columns would be 
sparse and span the same subspace as Ψ.

• Arbitrary choice of columns can be poorly conditioned.
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Interpolative Decomposition
• Treat columns of density matrix as an over-complete 

dictionary for Ψ.

• Find a set of columns 𝒞𝒞 ( 𝒞𝒞 = 𝑛𝑛), permutation Π, 
transformation matrix 𝑇𝑇, so that

𝑃𝑃Π = 𝑃𝑃:,𝒞𝒞[𝐼𝐼 𝑇𝑇]
𝑇𝑇 𝐹𝐹 is small.  

• Note that PΠ:,1:𝑛𝑛 corresponds to the columns 𝑃𝑃:,𝒞𝒞. We only 
need the permutation matrix Π to get the columns 𝒞𝒞.
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Rank-revealing QR
Theorem [Gu-Eisenstat, 1996] Let 𝐴𝐴 be an 𝑚𝑚 × 𝑛𝑛 matrix, 𝑙𝑙 = min(𝑚𝑚,𝑛𝑛),and 
𝑘𝑘 is an integer such that 1 ≤ 𝑘𝑘 ≤ 𝑙𝑙.  Then there is a factorization

𝐴𝐴Π = 𝑄𝑄𝑄𝑄
where Π is an 𝑛𝑛 × 𝑛𝑛 permutation matrix, 𝑄𝑄 is an 𝑚𝑚 × 𝑙𝑙 matrix with 
orthonormal columns, and 𝑄𝑄 is an 𝑙𝑙 × 𝑛𝑛 upper triangular matrix.  
Furthermore, if

𝑄𝑄 = 𝑄𝑄11 𝑄𝑄12
𝑄𝑄21 𝑄𝑄22

, 𝑄𝑄 = 𝑄𝑄11 𝑄𝑄12
0 𝑄𝑄22

𝑄𝑄11,𝑄𝑄11 are of size 𝑘𝑘 × 𝑘𝑘, then 

𝜎𝜎𝑘𝑘 𝑄𝑄11 ≥ 𝜎𝜎𝑘𝑘 𝐴𝐴
1

1 + 𝑘𝑘 𝑛𝑛 − 𝑘𝑘
,

𝜎𝜎1 𝑄𝑄22 ≤ 𝜎𝜎𝑘𝑘+1 𝐴𝐴 1 + 𝑘𝑘(𝑛𝑛 − 𝑘𝑘)
𝑄𝑄11−1𝑄𝑄12 𝐹𝐹 ≤ 𝑘𝑘(𝑛𝑛 − 𝑘𝑘)

Here 𝜎𝜎𝑘𝑘(𝐴𝐴) is the k-th largest singular value of the matrix 𝐴𝐴.
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Rank-revealing QR
• Apply RRQR to the matrix 𝑃𝑃 (size 𝑚𝑚 × 𝑚𝑚).  Since 𝑃𝑃 is 

exactly of rank 𝑛𝑛, 
𝑃𝑃Π = 𝑄𝑄𝑄𝑄

Here 𝑄𝑄 is a matrix of size 𝑚𝑚 × 𝑛𝑛, and 
𝑄𝑄 = 𝑄𝑄1 𝑄𝑄2

is a matrix of size 𝑛𝑛 × 𝑚𝑚.

𝑃𝑃Π = 𝑄𝑄𝑄𝑄1 𝐼𝐼 𝑄𝑄1−1𝑄𝑄2 ≡ 𝑃𝑃:,𝒞𝒞 𝐼𝐼 𝑇𝑇

𝑇𝑇 𝐹𝐹 = 𝑄𝑄1−1𝑄𝑄2 𝐹𝐹 ≤ 𝑛𝑛(𝑚𝑚 − 𝑛𝑛)

• Cost: 𝑂𝑂 𝑚𝑚2𝑛𝑛 , which is too costly.

Lin Lin 19Compressed Kohn-Sham Orbitals



Rank-revealing QR
• Consider

Ψ∗Π = �𝑄𝑄𝑄𝑄
then

𝑃𝑃Π = ΨΨ∗Π = Ψ �𝑄𝑄 Π
Since

Ψ �𝑄𝑄 ∗ Ψ �𝑄𝑄 = �𝑄𝑄∗ �𝑄𝑄 = 𝐼𝐼

we find the ID for 𝑃𝑃 via the RRQR decomposition for Ψ∗

• Cost: 𝑂𝑂(𝑚𝑚𝑛𝑛2), affordable since Ψ is a dense matrix to 
start with.
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Recovering the density matrix
𝑃𝑃:,𝒞𝒞 = Ψ Ψ𝒞𝒞,:

∗

𝑃𝑃 = 𝑃𝑃:,𝒞𝒞𝐷𝐷𝑃𝑃:,𝒞𝒞
∗

Find the matrix 𝐷𝐷
𝑃𝑃𝒞𝒞,𝒞𝒞𝐷𝐷𝑃𝑃𝒞𝒞,𝒞𝒞

∗ = 𝑃𝑃𝒞𝒞,𝒞𝒞

Here 𝑃𝑃𝒞𝒞,𝒞𝒞 is invertible (otherwise we have rank less than 𝑛𝑛).  
Also 𝑃𝑃𝒞𝒞,𝒞𝒞

∗ = 𝑃𝑃𝒞𝒞,𝒞𝒞
𝐷𝐷 = 𝑃𝑃𝒞𝒞,𝒞𝒞

−1
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Recovering the unitary matrix
• 𝑃𝑃𝒞𝒞,𝒞𝒞 = 𝐿𝐿𝐿𝐿∗ Cholesky factorization
• Φ = 𝑃𝑃:,𝒞𝒞 𝐿𝐿∗ −1

• 𝑃𝑃 = ΦΦ∗ = ΨΨ∗, then Φ is unitary (𝑃𝑃 is a projection 
operator).

• Ψ = Φ𝐶𝐶, 𝐶𝐶 = Φ∗Ψ is unitary.
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Algorithm: Selected columns of the density 
matrix (SCDM)
Pseudocode (MATLAB. Psi: matrix of size m*n, m>>n)

[Q,R,perm] = qr(Psi', 0);
Pc = Psi * Psi(perm(1:n),:)';

Pc are columns of the density matrix and are localized orbitals!   

The following three lines give orthogonal, localized obitals.

Pcc = Pc(perm(1:n),:);
L = chol(Pcc, 'lower');
Phi = Pc / L';

Very easy to code and to parallelize!

Lin Lin 23

Rank revealing QR
GEMM

Compressed Kohn-Sham Orbitals



Outline
• Introduction

• Previous methods

• Selected columns of density matrix

• Numerical examples

• Conclusion

Lin Lin 24Compressed Kohn-Sham Orbitals



Numerical examples
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SCDM (orthonormalized) computed using Kohn-Sham density functional theory.
Delocalized wavefunctions solved from Quantum ESPRESSO.

𝑃𝑃𝒞𝒞,𝒞𝒞 is well-conditioned.  Condition number is 3.18 for Si and 2.83 for Water.

Silicon Water
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Exponential decay
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𝑛𝑛𝑛𝑛𝑛𝑛𝑛: percentage of non-zero entries
𝜀𝜀: relative truncation error

Exponential decay: exp −𝐶𝐶𝑑𝑑 ∼ 𝜀𝜀, 𝑑𝑑 ∼ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛 1/3
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Parallelization
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Other QR strategies available [Demmel-Grigori-Gu-Xiang, 2013] 

Time for computing the orthogonalized SCDM for a Si system 
(dimension: 777600*1024)
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Linear scaling Hartree-Fock calculation
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5𝑛 error in energy calculation
300 times speed-up

0.4𝑛 error in energy calculation
90 times speed-up
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Conclusion
• Selected columns of the density matrix (SCDM) is a 

simple, robust and deterministic method to find localized 
orbitals.  Alternative method to the Maximally Localized 
Wannier functions. 

• Straightforward implementation when Kohn-Sham orbitals 
are represented on real space grid. It can be easily used 
in any electronic structure code 

• Very easy to parallelize and highly parallelizable.  Can 
accelerate Hartree-Fock and hybrid functional 
calculations.
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Conclusion
[Damle-LL-Ying, Compressed representation of Kohn-
Sham orbitals via selected columns of the density matrix,
J. Chem. Theory Comput. 11, 1463, 2015 ]

Thank you for your attention!
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