DENSITY FUNCTIONAL THEORY
AND

NUCLEAR QUANTUM EFFECTS

Lin LN

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE PROGRAM IN

APPLIED AND COMPUTATIONAL MATHEMATICS

ADVISERS: ROBERTO CAR AND WEINAN E

SEPTEMBER, 2011

(© Copyright by Lin Lin, 2011.
All Rights Reserved

Abstract

This dissertation consists of two independent parts: density functional theory (Part
I), and nuclear quantum effects (Part II).

Kohn-Sham density functional theory (KSDFT) is by far the most widely used
electronic structure theory in condensed matter systems. The computational time
of KSDFT increases rapidly with respect to the number of electrons in the system,
which hinders its practical application to systems of large size. The central quanti-
ties in KSDFT are the electron density and the electron energy, which can be fully
characterized by the diagonal elements and the nearest off-diagonal elements of the
single particle density matrix. However, methods that are currently available require
the calculation of the full density matrix. This procedure becomes highly inefficient
for systems of large size. Part I of this dissertation develops a new method for solving
KSDFT, which directly targets at the calculation of the diagonal and the nearest off-
diagonal elements of the single particle density matrix. The new method is developed
under the framework of Fermi operator expansion. The new method achieves the
optimal expansion cost in the operator level. The electron density and the electron
energy is then evaluated from a serires of Green’s functions by a new fast algorithm
developed in this dissertation. This dissertation also develops a novel method for
discretizing the Hamiltonian of the system that achieves high accuracy with a very
small number of basis functions. Combining all these components together, we ob-
tain a unified, accurate, efficient method to solve KSDFT for insulating and metallic
systems.

Nuclear quantum effects play an important role in a large variety of hydrogen
bonded systems such as water and ice due to the small mass of protons (the nuclei
of hydrogen atoms). The equilibrium proton dynamics is reflected in the quantum
momentum distribution and is the focus of intense research. The standard open path

integral formalism for computing the quantum momentum distribution requires the

1l

calculation of quantum momentum distribution for one particle at a time, which is
an inefficient process especially when the potential energy surface is generated from
Kohn-Sham density functional theory. The information of the proton dynamics is
reflected in the momentum distribution in a highly averaged way and the interpre-
tation of the momentum distribution can involve significant amount of ambiguity.
Part II of this dissertation develops the displaced path integral formalism which al-
lows the computation of quantum momentum distribution for all particles at the
same time and therefore greatly enhances the computational efficiency. Part II of
this dissertation unambiguously interprets the quantum momentum distribution in
two representative systems: ice Ih and high pressure ice. For ice Th in which the
potential is quasi-harmonic, this disseration clarifies the previously unclear relation
between anisotropic and anharmonic effects in shaping the momentum distribution
by analyzing the 3D proton momentum distribution and the associated vibrational
dynamics. For high pressure ice in which the potential is strongly anharmonic and
proton tunneling occurs, this dissertation assesses the important role of proton corre-
lation effects by means of spectral decomposition of the single particle density matrix.
The concerted proton tunneling process directly observed and quantified in this study
reduces significantly the number of ionized configurations, and avoids the ionization
catastrophe predicted by the mean field theory, which was used in previous studies

to interpret the path integral simulation results.

v

Acknowledgements

I would like to thank my thesis advisers Professor Roberto Car and Professor Weinan
E. Without their guidance and encouragement, I cannot imagine how I would over-
come the problems and difficulties in my research. They have taught me how to ask
questions, how to solve problems, and how to think as an applied mathematician and
as a computational scientist. Their thoughts have deeply influenced me in the past
four years.

I would like to thank my collaborators: Professor Carla Andreani, Professor
Weiguo Gao, Dr. Juan Meza, Dr. Joseph Morrone, Professor Michele Parrinello,
Dr. Antonino Pietropaolo, Dr. Amit Samanta, Dr. Roberto Senesi, and Dr. Chao
Yang. Special thanks are given to Dr. Jianfeng Lu and Professor Lexing Ying for their
numerous support and the fruitful work and discussions we had together. Without
their help, my achievements would not be possible.

I would also like to thank the tremendous support and encouragement I re-
ceived from other professors at Princeton University, especially from Professor Robert
Calderbank and Professor Ingrid Daubechies.

Last but not least, my wife Dongxu Lu holds all my gratitude for her patience
and for the love that she gives to me every day in my life. This thesis is dedicated to
her, together with my beloved parents, my mother Xiaolan Liu and my father Chao

Lin.

Contents

Abstract iii
Acknowledgements v

I Density functional theory 21
1 Introduction 22
1.1 Overview e 22
1.2 Quantum many body problem and electronic structure 26
1.3 Kohn-Sham Density functional theory (KSDFT) 30
1.4 KSDFT: pseudopotential framework 36
1.5 Mathematical properties of KSDFT 38
1.6 Existing methods and software packages for solving KSDFT 42
1.6.1 Cubic scaling methods 42

1.6.2 Linear scaling methods 44

1.6.3 All-electron methods 46

1.7 Unified, accurate and efficient method for solving KSDFT 47

2 Discretization of the Hamiltonian matrix: adaptive local basis func-
tions 52

2.1 Introduction 52

vi

2.2 Discontinuous Galerkin framework for Kohn-Sham density functional
theory L 55
2.3 Basis functions adapted to the local environment 58
2.4 Implementation details 0L 63
2.4.1 Grids and interpolationo L 63
2.4.2 Implementation of the discontinuous Galerkin method 65
2.4.3 Parallelizationo oo 66
2.5 Numerical examples Lo 68
251 Setup 69
2.5.2 Periodic Quasi-1D system 0oL 71
2.5.3 Quasi-1D system with random perturbation 73
2.5.4 Quasi-2D and 3D Bulk system 74
2.5.5 The penalty parameter 76
2.5.6 Computational efficiency 78
2.6 Conclusion 80
Representation of the Fermi operator: Pole expansion 82
3.1 Imtroduction 82
3.2 Multipole expansion 84
3.2.1 Formulation o L o 84
3.2.2 Numerical calculation and error analysis 88
3.2.3 Numerical examples 91
3.3 Poleexpansion oo 96
3.3.1 Pole expansion: basicidea 96
3.3.2 Gapped case: insulating system L. 98
3.3.3 Gapless case: metallic system 100
3.3.4 Numerical examples 104
3.4 Discussion 108

vii

3.5 Conclusion 112

Evaluation of the Fermi operator: Selected inversion 113
4.1 Introduction 113
4.2 Selected inversion: Basicideao 116
4.2.1 Dense matrixo 116
4.2.2 Sparse matrix 119

4.3 Sellnv — An algorithm for selected inversion of a sparse symmetric matrix122

4.3.1 Block Algorithms and Supernodes 122
4.3.2 Implementation details 125
4.3.3 Performance 130
4.3.4 Application to electronic structure calculation of aluminum . . 135
4.4 Parallel selected inversion algorithm 137
4.4.1 Algorithmic and implementation 137
4.4.2 Performance of the parallel selected inversion algorithm 148

4.4.3 Application to electronic structure calculation of 2D rectangu-

lar quantum dots 159

4.5 Conclusion 161
Fast construction of H matrix 164
5.1 Imtroduction 164
5.1.1 Motivation and applications 165
5.1.2 Randomized singular value decomposition algorithm 166
5.1.3 Top-down construction of H-matrix 167
5.1.4 Related workso oo 172

5.2 Algorithm 175
5.2.1 Geometric setup and notations 175
5.2.2 Hierarchical matrix 178

viil

5.2.3 Peeling algorithm: outline and preparation 181

5.2.4 Peeling algorithm: details 185

5.2.5 Peeling algorithm: variants 192

5.3 Numerical results L 193
5.4 Conclusion 199

6 Conclusion of Part I 202
II Nuclear quantum effects 205
7 Introduction 206
8 Displaced path integral formalism 212
8.1 Introduction 212
8.2 Displaced path integral formalism 216
8.3 Application of the displaced path integral formalism to water 228
8.4 A new way of interpreting the momentum distribution 231
8.5 Semiclassical limit of displaced path integral formalism 235
8.6 A new kinetic estimator 244
8.7 Displaced path formalism for bosons 252
8.8 Conclusion 254

9 Momentum distribution, vibrational dynamics and the potential of

mean force in ice 256
9.1 Imtroduction 256
9.2 Momentum distribution and the potential of the mean force 258
9.3 Vibrational dynamicso oL 263
9.4 Conclusion 272

1X

10 Quantum proton in hexagonal ice: interpretation of a new experi-

ment

10.1 Introduction
10.2 DINS Experiment setup
10.3 Data analysis by parametric estimation
10.4 Nonparametric uncertainty quantification

10.5 Conclusion

11 Correlated tunneling in hydrogen bonds
11.1 Imtroductiono
11.2 Simulation details
11.3 Simulation results
11.4 Reduced longitudinal model
11.5 Proton correlations
11.6 Effective proton potential 00

11.7 Conclusion s,

12 Conclusion of Part 11

274
274
275
277
281
283

285
285
292
294
300
306
309
314

320

List of Figures

1.1

1.2

2.1

2.2

Heaviside function (black line) and Fermi-Dirac function at finite tem-
perature (red line).
Flowchart of the unified, accurate and efficient method developed in

this dissertation for solving KSDFT.

Electron density on a (001) slice of a mono-crystalline silicon sys-
tem passing through two Si atoms. The two Si atoms are located
at (2.57,2.57) au and at (7.70,7.70) au in this plane, respectively. The
electron density shows oscillatory behavior near the nuclei of Si atoms
and becomes smooth in the interstitial region.
(a) The unit cell for Na. (b) The unit cell for Si. (¢) A quasi-1D
Na system with 4 unit cells extended along the z direction. The red
area represents one of the elements E,. The corresponding extended
element ()5 consists of both the red area and the blue area. The buffer
size is 1.0 unit cell along the z direction, and is 0.0 along the x and y

directions.,

41

o1

99

2.3

24

2.5

(a) The error of the total energy per atom (the y axis) for a periodic
quasi-1D sodium system consisting of 4 unit cells, with respect to the
number of adaptive local basis functions per atom (the x axis). The
buffer sizes are chosen to be 0.25 (red triangle with solid line), 0.50
(black diamond with solid line), and 0.75 (blue star with solid line).
(b) The error of the total energy per atom for a periodic quasi-1D
silicon system consisting of 4 unit cells, with respect to the number of
adaptive local basis functions per atom (the z axis). The legend is the
same as in (a). The black dashed horizontal line refers to the target
accuracy which is 1072 au per atom.
The error of the total energy per atom for a quasi-1D sodium system
with respect to the length of the global domain along the z direction
in €2 . The buffer size is fixed to be 0.50. We present the results with 3
basis functions per atom (blue diamond with dashed line) and 5 basis
functions per atom (red triangle with solid line), respectively.
The error of the total energy per atom (the y axis) with respect to
the number of basis functions per atom (the x axis), for a disordered
quasi-1D sodium system (red diamond with solid line) and a disordered
quasi-1D silicon system (blue diamond with dashed line). The buffer
size is fixed to be 0.50. The black dashed horizontal line refers to the

target accuracy which is 1073 au per atom.

73

74

2.6

2.7

2.8

3.1

(a) The error of the total energy per atom (the y axis) for a quasi-2D
sodium system with respect to the number of basis functions per atom
(the x axis). The buffer size is chosen to be 0.50 (red triangle with
solid line), and 1.00 (blue triangle with dashed line), respectively. (b)
The error of the total energy per atom for a bulk 3D sodium system
(the y axis) with respect to the number of basis functions per atom
(the x axis). The buffer size is chosen to be 0.50 (red diamond with
solid line), and 1.00 (blue diamond with dashed line), respectively.
The black dashed horizontal line refers to the target accuracy which is
1073 au per atom.
The error of the total energy per atom (the y axis) with respect to the
penalty parameter « (the x axis), for a quasi-1D sodium system (red
triangle with solid line) and a quasi-1D silicon system (blue diamond
with dashed line). The number of basis functions per atom for sodium
and silicon is 5 and 6, respectively. The buffer size is fixed to be 0.50.
The wall clock time for solving the adaptive local basis functions in
the extended elements (blue diamond with dashed line), for solving
the DG eigenvalue problem using ScaLAPACK (red triangle with solid
line), and for the overhead in the DG formalism (black circle with dot
dashed line). The x axis is the number of atoms for different bulk
3D sodium systems. The slope of the small red triangle illustrates the
ideal quadratic scaling (z?) for the wall clock time cost for the DG

eigenvalue solver in parallel.

Tlustration of the pole decomposition (3.12). From 2" to 2" —1 poles
are grouped together as shown in the figure. The spectrum is indicated

by the red line on the real axis.

77

3.2

3.3

3.4

3.5

3.6

3.7

The function Sv (m — 1 4+ Lz)(red circle), i.e. the remainder of the
pole expansion in Eq. (3.12) is compared with the function arctan ((2o
(blue solid line) form =10.o
Linear-log plot of the number of matrix matrix multiplications nym
versus SAe. nyyv depends logarithmically on SAe with a small con-
stant prefactor.
A typical configuration of the poles on a two-loop contour. @ = 30,
E,=0.2, Eyy =4 and 8 = 1000. The red line indicates the spectrum.
The inset shows the poles close to the origin. The x-axis is £ — pu with
E the eigenvalue of H. The poles with negative imaginary parts are
not explicitly calculated. 0oL
A typical configuration of the poles for zero temperature (f = oo).
Q =30, E;, = 0.2 and Ey = 4. The red line indicates the spectrum.
The inset zooms into the poles that is close to the origin. The x-axis is
E — p with E the eigenvalue of H. The poles with negative imaginary
parts are not explicitly calculated.o
A typical configuration of the poles on a dumbbell-shaped contour.
Q =30, B, =0, Epy = 4 and 8 = 1000. The inset zooms into the
part close to the origin. The red line indicates the spectrum. The
black crosses indicate the positions of the poles of tanh function on
the imaginary axis. The poles with negative imaginary parts are not
explicitly calculated. L
The map from the rectangular domain [-3K, K| x [0, K’] to the upper-
half of the domain U. The map is constructed in three steps: t — u —

z — &. The boundaries are shown in various colors and line styles. . .

2m—1)m

)

87

93

99

100

102

103

3.8

3.9

3.10

3.11

4.1

4.2
4.3

4.4

4.5

The lin-log plot of the L! error of electronic density per electron with
respect to Npole. The energy gap E, ~ 107°. The contour integral
representation for gapped system at zero-temperature is used for cal-
culation.o
Log-lin plot of N,qe with respect to SAE. The contour integral rep-
resentation for gapless system is used for the calculation.
A typical configuration of the poles in the multipole representation
type algorithm. M, = 512 and P = 16 is used in this figure. The
poles with negative imaginary parts are not explicitly shown. The inset
shows the first few poles. The first 16 poles are calculated separately
and the starting level isn=5.
log-lin plot of Npe with respect to SAE. The multipole representation

is used for the calculation.,

The lower triangular factor L of a sparse 10 x 10 matrix A and the
corresponding elimination tree.
A supernode partition of L.
The partition of the nonzero rows in Sy and the matrix elements
needed in Ag0%49,30:49 for the computation of A§0%49730:49L30:39727;29. C
A schematic drawing that illustrates how indmap is used in Steps 9
and 10 in the first outer iteration of Algorithm 4 for J = 26 in the
example given in Figure 4.3.o
(a)3D isosurface plot of the electron density together with the electron
density restricted to z = 0 plane. (b) The electron density restricted

toz=0plane.

106

107

110

111

121
124

127

130

4.6

4.7

4.8

4.9

4.10

4.11

4.12
4.13
4.14

5.1

5.2

The separator tree associated with the nested dissection of the 15 x 15
grid shown in Fig. 4.7a can also be viewed as the elimination tree
associated with a block LD L factorization of the 2D Laplacian defined
onthat grid. 139
The nested dissection of a 15 x 15 grid and the ordering of separators
and subdomains associated with this partition. 139
Task parallelism expressed in terms of parallel task tree and corre-
sponding matrix to processor mapping. 144
Log-log plot of total wall clock time and total Gflops with respect to
number of processors, compared with ideal scaling. The grid size is
fixed at 2047 x 2047. 151
Log-log plot of total wall clock time and total Gflops with respect to
number of processors, compared with ideal scaling. The grid size starts
from 1023 x 1023, and is proportional to the number of processors. . 154
The number of flops performed on each processor for the selected in-
version of A~! defined on a 4,095 x 4,095 grid. 155
Communication profile for a 16-processor run on a 4,095 x 4,095 grid. 157
Communication overhead and memory usage profile 157

A contour plot of the density profile of a quantum dot with 32 electrons. 160

[lustration of the computational domain at level 3. Z3.5 3 is the black
box. The neighbor list NL(Zs.5 3) consists of 8 adjacent light gray boxes
and the black box itself, and the interaction list IL(Z3.33) consists of
the b5 dark gray boxes. oL o 176
[lustration of the computational domain at level 4. Z,.5 5 is the black
box. The neighbor list NL(Zy5 5) consists of 8 adjacent light gray boxes
and the black box itself, and the interaction list IL(Z,55) consists of

the 27 dark gray boxes. 177

5.3

5.4

8.1

8.2

8.3

8.4

8.5

Ilustration of the set Ss5 at level 4. This set consists of four black boxes
{Zu:55,Lu135, La;513, La1s13). The light gray boxes around each black
box are in the neighbor list and the dark gray boxes in the interaction
list. . o

Comparison of the time and memory costs for the #!, the uniform H*

and the H? versions with optimal level L, for N = 32,64, 128, 256, 512.

The x-axis (N) is set to be in logarithmic scale.

The end-to-end distribution of a particle in a double well potential
at 300K obtained from exact diagonalization (red solid line), from
displaced path method (black dashed line), and from the open path
integral method (blue dot dashed line).
The potential of the mean force of a particle in a double well potential
at 300K. Red solid line: exact result. Black dashed line: displaced
path formulation with 30ps data. Blue dot dashed line: open path
simulation with 30ps data. The potential of the mean force is in the
unit of kgT'.
Red solid line: momentum distribution n(p). Black dashed line: envi-
ronmental part of the momentum distribution n(p), where the quantum
effect is amplified.o oo
The potential of the mean force of a particle in a double well potential
at 100K, obtained from the exact diagonalization method (red solid
line), and from the displaced path method (black dashed line). The
unit of the potential of the mean force is kgT'.
The momentum distribution of a particle in a double well potential at
100K. Red solid line: exact result. Black dashed line: displaced path
formula with 300ps data. An inset with the same legend is included to

describe difference in the second shoulder.

188

197

220

221

222

223

8.6

8.7

8.8

8.9

8.10

The variance of N'(z; 0) for double well model at 300K (left panel) and
at 100K (right panel). L
The momentum distribution of a particle in a double well potential at
100K using Eq. (8.19). Red solid line: exact result obtained by diag-
onalization of the Hamiltonian matrix. Black dashed line: displaced
path formula (8.19). An inset with the same legend is included for
better illustration of the tail of the momentum distribution.
The potential of the mean force of a particle in a double well potential
at 100K. Red solid line: exact result. Black dashed line: Displaced

path formula (8.19). The potential of the mean force is in the unit of

The variance for estimating the end-to-end distribution for 100K dou-
ble well model using Eq. (8.19). The discontinuity indicates the inter-
mediate points to enhance the sampling efficiency.
Comparison of (a) the end-to-end distribution and (b) the potential of
mean force in SPC/F2 water. In both figures, the red line is computed
by a 268ps open path integral simulation. The thick blue line is cal-
culated using the displaced path estimator (8.14), with the thickness
indicating the 95% confidence interval. The noise near » = 0 in both
insets for open path simulation is due to the 7? weight in the spherical
integration, while the displaced path gives correct small » behavior by

definition.

225

226

227

227

8.11

8.12

8.13

8.14

8.15

Top panel: the momentum distribution of the protons in ice Ih resulting
from an anisotropic harmonic model (see text). Both the spherical and
the directional distribution along the c-axis are shown. Bottom panel:
the corresponding spherical and directional mean force projected along
the c-axis. The curves are plotted as a function of the end-to-end
distance. The mean force enhances the differences between spherical
and directional distributions.o 000
(a) The mean force corresponding to a double well model at 7" = 30K,
for different barrier heights A = 1263K (black solid line), A = 3789K
(red dashed line), and A = 6315K (blue dot-dashed line). (b) Potential
energy surface for A = 1263K (blue solid line), and the first five energy
levels (red dashed line). (c¢) (d) the same as (b), but with A = 3789K
and A = 6315K respectively. oL
The mean force corresponding to a double well model at A = 3789K
for different temperatures 100K (red solid line), 300K (blue triangle),
500K (black dot-dashed line), 1000K (magenta dashed line), and 2000K
(blue €ross).
The end-to-end distribution corresponding to the double well potential
at 800K. Red solid line: the exact result. Black dot dashed line: the
result from the new semiclassical estimator 8.56. Magenta dot dashed
line: the result from the isotropic estimator 8.30. Green dashed line:
classical Maxwell-Boltzmann distribution.
The end-to-end distribution corresponding to the double well potential
at 300K. Red solid line: the exact result. Black dot dashed line:
the result from the semiclassical estimator 8.56. Magenta dot dashed
line: the result from the isotropic estimator 8.30. Green dashed line:

classical Maxwell-Boltzmann distribution.

232

235

236

243

8.16

8.17

8.18

8.19

8.20

8.21

9.1

9.2

Comparison of the kinetic energy estimator based on displaced path
formula (upper panel) and virial estimator (lower panel) for the har-
monic potential at 300K.o
The correlation function Vc(olr)r(u) along the imaginary time axis for the
harmonic potential at 300K.
Comparison of the kinetic energy estimator based on displaced path
formula (upper panel) and virial estimator (lower panel) for the double
well at 300K.o
The correlation function Vc(olr)r(u) along the imaginary time axis for the
double well potential at 300K.
Comparison of the kinetic energy estimator based on displaced path
formula (upper panel) and virial estimator (lower panel) for the double
well at T00K.
The correlation function Vc(olr)r(u) along the imaginary time axis for the

double well potential at 100K.

The Quantile-quantile plot between the end-to-end distribution along
the bond direction and the normal distribution is depicted in the left
panel. The distributions are shown in the right panel. The end-to-
end distribution along the bond direction is very close to a normal
distribution, but with small deviation at the tail. The quantile-quantile
plot indicates that the potential of the mean force along the bond

direction is well modeled by a quasi-harmonic potential.

(a) The spherical end-to-end distribution directly collected from PICPMD

249

data (red dashed line) compared with that reconstructed by the anisotropic

fit (blue line). (b) Comparison of the spherical momentum distribution
of the harmonic crystal (black dot-dashed line) with anisotropic (blue

line) and isotropic (red dashed line) fits.

10

9.3

9.4

9.5

9.6

10.1

(a) “Environmental part” of the end-to-end distribution corresponding
to one individual proton projected in the basal plane of ice Th plotted
in logarithmic scale. (b) “Environmental part” of the end-to-end dis-
tribution corresponding to the superposition of all protons projected
in the basal plane of ice Th plotted in logarithmic scale. The super
positioned end-to-end distribution reflects the symmetry of the oxygen
sub-lattice. The blurring of the contour lines reflects the disorder effect
detected in the phonon calculation.
(a) Density of states of the phonon spectrum. (b) The population
function for the principal axes corresponding to w; (blue dot-dashed
line), ws (red solid line) and w3 (black dashed line). Network modes
below 500cm ™! contribute non-negligibly to all principal frequencies. .
Normal modes for symmetric stretching (left), asymmetric stretching
(middle) and bending modes (right). Big ball: oxygen. Small ball:
hydrogen.
The potential energy surface of the proton in ice Th along the bond
direction (blue solid line), the cubic fitting potential (black dashed

line) and the corresponding ground state wavefunction |¥?|(red solid

Experimental Neutron Compton Profile for ice at T = 271 K averaged
over the whole set of the scattering angles (F(y)=< Fi(y,q) >;) (blue
dots with error bars). The angle-averaged best fit is reported as a red

dashed line for the M1 model (see text for details). The fit residuals

are reported as a black continuous line.

11

263

264

266

271

10.2

10.3

11.1

11.2

11.3

Experimental radial momentum distribution obtained using model M1
(blue solid line), M2 (black dots) and PICPMD (red dashed line) with
error bars. Errors on the radial momentum distribution for M1 and
M2 are determined from the uncertainty in the measured coefficients,
through their correlation matrix calculated by the fitting program. . . 281
Mean force calculated directly from the experimental asymptotic Comp-
ton profile, Fra(y) (blue solid line), M2 (black dots) and PICPMD

analysis (red dashed line) with error bars. 282

Cartoon depicting the understanding established in the literature. As
pressure is increased the bond undergoes a transition from single welled
(ice VIII) to a high-barrier (HBHB, ice VII) and then low-barrier
(LBHB, ice X) double welled potentials until a unimodal form cen-
tered at the midpoint (highest pressure, ice X) persists. 288
A schematic of the atoms involved in a single hydrogen bond in the
three high pressure ice phases presently under study. The gray cir-
cles represent oxygen atoms and the white circles represent hydrogen.
As the pressure upon the system increases the average oxygen-oxygen
distance decreases, which has important consequences for the state of
the proton. This may be covalently bonded (Ice VIII), tunnel between
wells (Ice VII) or lie in a symmetric state between the oxygen atoms
(TIece X). o oo 295
The first peak of the oxygen-oxygen radial distribution function in
System 1 (solid curve), System 2 (dot-dashed curve) and System 3
(dashed curve). As one would expect, as the molar volume is decreased,

the nearest neighbor oxygen-oxygen distance is as well. 296

12

11.4

11.5

11.6

11.7

11.8

The oxygen-hydrogen radial distribution function in System 1 (solid
curve), System 2 (dot-dashed curve) and System 3 (dashed curve).
Whereas in System 3 there is a distinction between covalent and hy-
drogen bonding distances, the two peaks have merged in System 1.
The distance distribution of the proton along the oxygen-oxygen direc-
tion in System 1 (solid curve), System 2 (dot-dashed curve) and System
3 (dashed curve). This direction is analogous to the hydrogen bonding
axis. One may note that the distribution of System 2 is delocalized
across two wells.o
The proton momentum distribution in the oxygen-oxygen (OO) direc-
tion in System 1 (solid curve), System 2 (dot-dashed curve) and System
3 (dashed curve). It is in this orientation that the distinctions between
phases occur.
The proton momentum distribution perpendicular to the oxygen-oxygen
direction (denoted “x”) in System 1 (solid curve), System 2 (dot-dashed
curve) and System 3 (dashed curve). Also plotted are the proton mo-
mentum distributions in the mutually orthogonal direction (denoted
“y”) in System 1 (triangles pointing downward), System 2 (triangles
pointing upward) and System 3 (circles). The differences in widths of
these curves indicates the relative pressure upon each system.

The first 5 eigenvalues of the longitudinal density matrix for ice Ih,
VIII, VII and X. Within the accuracy of the simulation, P(1) = 1 for
ice Ih and ice VIII, P(1), P(2), and P(3) are different from zero for
ice VII, P(1) and P(2) are different from zero for ice X. The ice Th
trajectory is shorter and the corresponding eigenvalues are affected by

larger error bars than the three high pressure phases.

13

297

299

11.9 The optimized quartic double well potential that reproduces the lowest
two states of the longitudinal density matrix. The horizontal dashed
lines indicate the ground and the first excited state of this potential,
respectively. L

11.10(a) The largest singular vector of the longitudinal density matrix (red
solid line) and the ground state of the quartic potential in Eq. (11.5)
(blue dashed line). (b) The second largest singular vector of the lon-
gitudinal density matrix (red solid line) and the first excited state of
the quartic potential in Eq. (11.5) (blue dashed line).

11.11The distribution of local charge density in Ice VII according to the
3-state model discussed in the text (gray bars). This result can be
seen to be in stark contrast to the randomly distributed set of charged
species predicted by the mean field approximation (dashed, red bars).

11.12The probability of a ring configuration having a consecutive block of
N, F, or C states of length L (black dashed line with circles and
error bars). The red dashed line with squares is the resultant random
distribution where the probability of drawing an N or F' on a bond
along the ring is twice that of drawinga C..

11.13The effective cubic potential for ice Ih (red solid line) and ice VIII
(black dashed line) along hydrogen bond direction.

11.14(a) The position distribution of ice Ih obtained from the PICPMD
simulation (blue solid line) and that reconstructed from the cubic po-
tential (blue triangle), together with the end-to-end distribution of ice
Ih obtained from the PICPMD simulation (red dashed line) and that
reconstructed from the cubic potential (red cross); (b) The position

and the end-to-end distributions in ice VIII. The legend is the same as

14

305

306

309

310

311

11.15(a) The position distribution of ice VII obtained from the PICPMD
simulation (blue solid line) and that reconstructed from a double well
potential (blue triangle), together with the end-to-end distribution of
ice VII obtained from the PICPMD simulation (red dashed line) and
that reconstructed from the same double well potential (red cross). A
unique potential cannot accurately fit position and end-to-end distri-
butions of ice VII. (b) The position distribution of ice VII obtained
from the PICPMD simulation (blue solid line) and that reconstructed
from a three-state potential ensemble (blue triangle), together with the
end-to-end distribution of ice VII obtained from the PICPMD simula-
tion (red dashed line) and that reconstructed from the same three-state
potential ensemble (red cross). 314

11.16Three-state potential ensemble for ice VII. The two tilted potentials
(black and red lines) have equal weights wy = wp = 0.40, the double
well potential (dashed blue line) has weight we = 0.20. 315

11.17The position distribution of ice X obtained from the PICPMD simula-
tion (blue solid line) and that reconstructed from a three-state potential
ensemble (blue triangle), together with the end-to-end distribution of
ice VII obtained from the PICPMD simulation (red dashed line) and

that reconstructed from the same three-state potential ensemble (red

15

11.18Classification of H bonds established in this chapter: The proton in
ice VIII (and in ice Th) is in a pure quantum state and experiences
an asymmetric single well potential that keeps it localized on one side
of the bond. The proton in ice VII (HBHB) and in ice X (LBHB) is
in a mixed quantum state and experiences a potential ensemble that
depends on its location on the bond. Dominant potentials are indi-
cated by full lines and less dominant ones by dashed lines. The proton
distribution is symmetric and bimodal in ice VII and symmetric and

unimodal in ice X.

16

List of Tables

2.1 The comparison of the cost of the computational time using the planewave

3.1

3.2

3.3

discretization (the LOBPCG solver directly applied in the global do-
main) and that using the adaptive local basis functions (the DG eigen-
value solver using ScaLAPACK). The systems under study are the bulk
3D sodium system with 4 x 4 x 4 unit cells (128 Na atoms), and with

6 X 6 X 6 unit cells (432 Na atoms), respectively.

One dimensional Hamiltonian model with large spectral gap. Relative
energy error Ae, and relative L' density error Ap,q for a large range
of values of SAe and several valuesof D.
Three dimensional periodic tight binding model. Number of matrix
matrix multiplications nypy, relative energy error A€, and relative
L' density error Ap.q. For g = 0, the algorithm achieves machine
accuracy for the absolute error of the density function as a consequence
of symmetry.
Three dimensional Anderson model with on-site disorder. Number of
matrix matrix multiplications nypy, relative energy error Ae,, and

relative L' density error Apper.o

17

80

94

95

3.4

3.5

3.6

4.1
4.2
4.3

4.4

4.5

4.6

4.7

4.8

Npole and L' error of electronic density per electron with respect to
various JAE. The energy gap E, ~ 0.01. The contour integral rep-

resentation for gapped system at finite temperature is used for the

calculation. The performance of the algorithm depends weakly on SAFE.105

N,

ole and L1 error of electronic density per electron with respect to

various SAE. E, = 0. The contour integral representation for gapless
system is used for the calculation.
The number of poles calculated Npole, the order of Chebyshev expan-
sion for the tail part Ncyep, and the L! error of electronic density per
electron with respect to various SAFE. The number of poles excluded

in the tail part M, is chosen to be proportional to SAE.

Test problems
Characteristic of the test problems
The time cost, and flops result for factorization and selected inversion

process respectively. The last column reports the average flops reached

Timing comparison between selected inversion and direct inversion.
The speedup factor is defined by the direct inversion time divided by
the selected inversion time.o L
Single processor performance
The scalability of parallel computation used to obtain A~! for A of a
fixed size (n =2047 x 2047.)
The scalability of parallel computation used to obtain A~! for A for
increasing system sizes. The largest grid size is 65,535 x 65,535 and
corresponding matrix size is approximately 4.3 billion.

Communication cost as a percentage of the total wall clock time. . . .

18

107

112

133
134

4.9

5.1

5.2

5.3

5.4

9.5

9.1

Timing comparison of electron density evaluation between Octopus and
PCSellnv for systems of different sizes. The multiplication by 80 in the

last column accounts for the use of 80 pole.

matvec numbers and time cost per degree of freedom (DOF) for the
H!, the uniform H! and the H? representations with different grid
point per dimension N and low rank compression level L. The matvec
numbers are by definition the same in the three algorithms.
Memory cost per degree of freedom (DOF) for the H?!, the uniform #*
and the H? versions with different grid point per dimension N and low
rank compression level L.
Absolute and relative 2-norm errors for the H!, the uniform H' and

the H? algorithms with different grid point per dimension N and low

161

196

197

rank compression level L. The 2-norm is estimated using power method.198

Comparison of the average rank at different levels between the H?, the
uniform H!, and the H? algorithms, for N =256.
The number of matvec, and the absolute and relative 2-norm errors
for the H? representation of the matrix (=V - (aV) 4+ V)™ with N =
64, L = 4 and two choice of potential function V. The 2-norm is

estimated using power method.

Average proton principal frequencies and kinetic energies obtained
from PICPMD and phonon calculations. The error bars reflect statis-
tical errors and physical effect of disorder in the PICMD and phonon

data, respectively.

19

199

11.1

11.2

11.3

11.4

Characteristic values that relay the size of each 16 molecule high pres-
sure ice cell are given in the table above. The pressure is approximated
from the equation of state given by Hemley et al. [123] The value of d53,
is the most probable oxygen-oxygen distance between nearest neighbor,
hydrogen bonded molecules.
Spearman’s rank correlation coefficient for the end-to-end vector dis-
tance along and orthogonal to the hydrogen bonding direction in ice
Ih, VIII, VIT and X.
Parameters for the cubic potential in Eq. (11.6) for ice Ih and ice VIII.
a, is given in meV/ A"and zgisgivenin A.
Parameters for the three-state potential ensemble for ice VII and ice

X. apis given inmeV/A". ..o

20

Part 1

Density functional theory

21

Chapter 1

Introduction

1.1 Overview

The arrangement of the electrons characterizes the microscopic structure of molecules
and systems in condensed phases in chemistry, biology, and material science. The
arrangement of the electrons is described by the electronic structure theory. The
various forms of the electronic structure theory differ by orders of magnitude from
each other in terms of accuracy and efficiency. Among the different formalisms of the
electronic structure theory, Kohn-Sham density functional theory (KSDFT) achieves
the best compromise between accuracy and efficiency, and is by far the most widely
used electronic structure theory. Nonetheless, the computational cost of KSDFT still
increases rapidly with respect to the number of electrons in the system, which hinders
the application of KSDFT to systems of large size. Reducing the computational
cost of KSDFT requires combined knowledge of mathematics, physics and computer
science. Part I of this dissertation explores the mathematical properties of KSDFT,
and develops an accurate and efficient algorithm for applying KSDFT to systems of
large scale.

The scale of the system, i.e. the number of the electrons is a crucial parameter

22

in many applications in chemistry, biology, and material science. It is desirable to
have the same number of electrons in the numerical simulation as that in the real
system. However, even a water droplet contains more than 10%° electrons. This
overwhelmingly large magnitude is out of the scope of any of the existing simulation
technique, and samples of smaller size has to be used in practice. The small sample
size introduces a systematic error to the numerical simulation, called the size effect,
which is non-negligible in many applications. For example, the diffusion constant of
a polymer chain is underestimated by 2 ~ 3 times due to the size effect [79]; Crack
propagation [1] involves tens of thousands to millions of atoms and electrons by its
nature, and cannot be observed with samples of smaller sizes. Systems with millions
of electrons are usually treated by classical mechanics with empirical potential. The
empirical potential energy surfaces have achieved success in describing a large class of
phenomena provided that the empirical parameters are carefully optimized. On the
other hand, the potential energy surfaces directly generated from quantum mechanics,
such as from KSDFT, have the advantage that the computational result depends
only on a small number of universal parameters, including atomic species, atomic
positions, and a few parameters in the energy functional which do not depend on the
specific setup of the system. As a result, simulations with potential energy surfaces
generated from KSDFT are called “first principle” simulations, and are capable of
treating bond-forming, bond-breaking, cracking, and other complicated chemical and
mechanical processes without extra tuning of the parameters. It is thus desirable
to directly apply KSDFT to study systems consisting millions of electrons, but this
is far beyond the current capability of the KSDFT. In the standard methods for
solving KSDFT, the computational cost increases as O(N?) where N is the number of
electrons in the system. Although the standard algorithm has been highly optimized
in the past two decades to reduce the computational cost in practice [94,145,182,256],

the cubic scaling still limits the application of KSDFT to systems with at most tens

23

of thousands of electrons.

Various efforts have been devoted to reduce the cubic scaling of KSDFT in the
past two decades. The major breakthrough is achieved by the algorithms with linear
scaling, i.e. O(N) scaling [88,89,91,98,99,101,102,154,184,193,229,252]. Such linear
scaling algorithms relies on the “nearsightedness” property of the electrons [142,212],
which means that the density perturbation induced by a local change in the external
potential dies off exponentially with respect to the distance from the place where the
perturbation was applied. According to DF'T the ground state energy is a functional of
the density, then the effect of a local perturbation on the density is also local because
of nearsightedness, and the energy should not have a very long-range dependence on
the density. The nearsightedness property allows one to divide the entire system into
many pieces. The size of each piece has fixed size, and the total number of pieces
is proportional to the number of electrons in the entire system. The computational
cost for solving KSDFT in each piece is fixed, and the total computational cost is
therefore proportional to the number of electrons in the entire system. Therefore,
O(N) scaling is achieved.

The nearsightedness property is not valid for all systems, but is only valid for a
class of materials called insulating systems, including sulfur, glass, paper, large or-
ganic molecules such as DNA and protein, most of the common salts and oxides, to
name a few. The nearsightedness property is violated in metallic systems, namely
the density perturbation induced by a local change in the external potential exhibits
algebraic and oscillatory decay (called the Friedel oscillation [87]) with respect to
the distance from the place where the perturbation was applied. Two thirds of the
elements in the periodic table can directly form metallic systems, such as aluminum,
lithium, copper, and iron. Non-metallic elements can also form metallic systems,
e.g. graphene and carbon nanotube which only consists of carbon. Due to the vi-

olation of the nearsightedness property, the O(N) scaling algorithm is not directly

24

applicable to metallic systems. The nearsightedness property can be recovered by
introducing an artificial finite temperature in the system, and the decay rate of the
density perturbation induced by a local change in the external potential becomes ex-
ponential again with the exponent depending on the artificial temperature [100,140].

However, it is not easy to take into account the nearsightedness in practical algo-
rithms. First, the nearsightedness is not so precisely defined in practice, and particu-
larly the nearsightedness decay length is difficult to be predicted in advance. Second,
although the accuracy of the linear scaling methods can be systematically improved
by increasing the size of each piece (usually characterized by a truncation radius R),
the truncation radius R can still be quite large if high numerical accuracy is to be
achieved. This is especially the case for metallic system where the truncation ra-
dius depends explicitly on the artificial temperature. The magnitude of the artificial
temperature should be chosen carefully in order to balance the accuracy and the
computational cost. Third, it is not a trivial step to implement the nearsightedness
if the nearsightedness is imposed as a constraint on the Kohn-Sham orbitals or the
Kohn-Sham single particle density matrix. As a result, the O(N?3) scaling methods
are still the best uniform solution for applying KSDFT to insulating systems and to
metallic systems. The important question remains open: whether it is possible to
improve the O(N?) scaling uniformly for all the systems without encountering the
difficulties in nearsightedness algorithms?

This open question is positively answered in Part I of this dissertation. Instead
of using the nearsightedness property, this dissertation focuses on the mathematical
properties of KSDFT that are uniformly valid for insulating systems and metallic
systems, at low and at high temperature. As a result, this dissertation develops
algorithms with improved computational scaling over O(N?) scaling methods for all
systems. To be more specific, the amount of improvement depends on the dimension

of the system. The computational cost of the present algorithm is O(N) for one

25

dimensional systems, O(N'®) for two-dimensional systems, and O(N?) for three-
dimensional systems. Furthermore, the present algorithm can be combined with the
nearsightedness property, and achieves O(N) scaling at all dimensions for insulating
systems and for metallic system at high temperature.

This chapter provides the minimum amount of prerequisite knowledge for Part
I of this dissertation. The rest of this chapter is organized as follows: Section 1.2
briefly introduces the quantum many body problem, and the electronic structure
problem with the Bohr-Oppenheimer approximation, followed by Section 1.3 for the
basic components of the Kohn-Sham density functional theory. The pseudopotential
framework for KSDF'T is introduced in Section 1.4. In Section 1.5 the mathematical
properties of the KSDFT which are essential for the new method developed in Part
I of this dissertation are discussed. Section 1.6 reviews the existing methods and the
most widely used software packages for solving KSDFT. Finally Section 1.7 outlines
the various components of the new method that will be discussed in detail in the rest

of the Chapters in Part I.

1.2 Quantum many body problem and electronic
structure

The microscopic properties of electrons in chemistry, biology and material science are
accurately described by the many body Hamiltonian of the Schrodinger equation. The
many body Hamiltonian associated with a system with N,,. atoms and N electrons
is

Nnuc PIQ

N 2

p,
H=3 > L+ V(R,....R TN 11
o 2M[+ 9 + (1 s LNy L1, ’[L’N) ()

i=1

Atomic units are used throughout this dissertation. Namely, without further specifi-

cation, the unit of energy is Hartree, the unit of length is Bohr, the unit of mass is the

26

electron mass m., the unit of charge is the electron charge e, and the Planck constant
h equals to 1. Moreover, M; is the mass of the I-th nucleus, R; is the position of the
I-th nucleus, and z; is the position of the i-th electron. The momentum operator of
the nucleus and the electron are denoted by Py, p; as p; = —tV,,, Pr = —iVg,. Spin
is neglected at the moment. V is the interaction energy between the nuclei and the

electrons, given by

YAV, 1 1 Jr
V(le"'7RNnucjxl7“" a T T A~ "
N T R e

(1.2)

The charge of the I-th nucleus is Z;. The three terms in Eq. (1.2) represent the
Coulomb interactions among nuclei-nuclei, electron-electron and nuclei-electron, re-
spectively.

The many body Hamiltonian (1.1) contains all the information of systems, but
all the information does not have equal importance in practice. In many cases, the
important information is only contained in the most stable state of the system. This
most stable state is characterized by the ground state of the many body Hamiltonian,

1.e. the smallest eigenvalue and eigenvector of the many body Hamiltonian.
HY(Ry,...,Rn; %1y sxn) = EV(Ry, ..., RNy i %1, -, TN)- (1.3)

Eq. (1.3) is referred to as the quantum many body problem. E is called the ground
state energy of the many body system, and W is called the ground state wavefunction.
U should satisfy certain symmetry condition determined by the statistics of both
electrons and nuclei. Especially, ¥ is an antisymmetric function with respect to the

coordinates for the electrons (xy,---,xy). ¥ changes sign if any pair of coordinates

27

x; and x; are interchanged:

‘I’(Rl,~~~,RN,,HC;1’1,~~~,%,~~~,$j,---,$N)

:—\D(Rl,...,RNnuC;ZL’l,...,Z’j,...,l’i,...,l’N), 1 §Z<] < N. (14)

The many body problem (1.3) can be analytically solved for a hydrogen atom
which contains only one nucleus and one electron. The solution of (1.3) is already
much more complicated in an Hy molecule which contains two electrons and two nu-
clei. The solution becomes generally intractable for more than 20 particles even with
the help of numerical methods and increasingly more powerful computers. The reason
for this enormous complexity is that the dimension of the ground state wavefunction
is 3(Nyue + V). Even if each spatial coordinate is discretized by 10 points, 103(NmuetN)
real numbers will be immediately required just to record one state of the system.
Although the quantum many body problem is in principle an exact theory, it exhibits
exponential complexity and is intractable without further theoretical approximation.
The enormous complexity of the quantum many body problem was well summarized
by Dirac in 1929 [73]: “The fundamental laws necessary to the mathematical treat-
ment of large parts of physics and the whole of chemistry are thus fully known, and
the difficult lies only in the fact that application of these laws leads to equations that
are too complex to be solved.”

The first step to reduce the complexity of the quantum many body problem is
the Born-Oppenheimer approximation [38], which separates the complexity due to
the electrons and that due to the nuclei. The mass of the electron is more than a
thousand times smaller than the mass of the nuclei of the lightest element in the
periodic table, i.e. hydrogen. The Born-Oppenheimer approximation recognizes that
the electrons should therefore move much faster than the nuclei, and the state of

the electrons is “slaved” to the motion of nuclei. More specifically, for fixed nuclei

28

positions (Ry, ..., Ry,,.), the state of the electrons is described by the ground state

of the many body Hamiltonian of the electrons:

1
H, = _52% +Z%xt(zi)+%e(:ﬂ1,...,zzv). (1.5)

The nuclei-electron interaction Vi and the electron-electron interaction V.. are de-

fined as

1 1
ext Z |LE — R[ee(l’l, e ,I’N) = 5 ; 7|x2 — l’j‘. (]_6)

Compared to Eq. (1.2), the nuclei-nuclei interaction is excluded from H., since the

nuclei-nuclei interaction

Z1Z,y
Vin(Ry, ..., Rn,) = E (1.7)
20 [Rr = Ry|
is a constant term for fixed nuclei positions (Ry, ..., Ry,,.)-

The ground state of the many body Hamiltonian of the electrons is defined by

HY (ry,...,rn; Ry, ..., Ry,) = Ee(Ray .o Ry)Ve(ry, - yrns Rey ooy R),
(1.8)
E. is called the ground state energy of the electrons. W, is called the ground state
wavefunction of the electrons, and is an antisymmetric function.

The ground state energy E.(Ri, ..., Ry,,.) has important physical meaning. The
ground state energy together with the nuclei-nuclei interaction V,,, form the effective
inter-atomic potential Veg(Ry, ..., Ry,,.) = Ee(R1, ..., Ryny.) + Vin(R1, ..., Rn,..)-
This inter-atomic potential is completely determined by the atomic species and the
atomic positions, and has great advantage over the classical inter-atomic poten-

tial characterized by empirical parameters. Therefore, the ground state energy F.

29

carries most of the information of the arrangements of the electrons. Calculating
E.(Ry,...,Ry,,.) from fixed nuclei positions (R1, ..., Ry,,.) is called the electronic
structure problem.

After solving the electronic structure problem, the motions of the nuclei can be

approximated by classical mechanics

Ve (Ry, ..., Rn,,.)

! OR

(1.9)

The approximation (1.9) can be improved by more sophisticated techniques such as
path integrals formulation [83], which will be discussed in detail in Part II of this
dissertation.

From now on we focus on the electronic structure problem, and we drop the
subscript e in the ground state energy FE. and in the ground state wavefunction W,

without causing ambiguity.

1.3 Kohn-Sham Density functional theory (KSDFT)

Born-Oppenheimer approximation reduces the quantum many body problem (1.3)
to the electronic structure problem. The electronic structure problem still exhibits
exponential complexity with respect to the number of electrons N, and it is neces-
sary to make further approximations. Compared to the common acceptance of the
Born-Oppenheimer approximation, less agreement is achieved on the approximation
of the electronic structure problem. Various electronic structure theories with dif-
ferent accuracy and efficiency have been proposed, including Hartree-Fock [152,159],
configuration interaction [237], coupled cluster [63], Mgller-Plesset perturbation the-
ory [187], quantum Monte Carlo [51,85], and density functional theory [125,143], to
name a few. After decades of development, density functional theory is commonly

found to achieve the best compromise between accuracy and efficiency, and has be-

30

come the most widely used electronic structure theory.

The foundation of the density functional theory is the Hohenberg-Kohn theo-
rem [125]. Hohenberg-Kohn theorem proves that the ground state electron energy E
is uniquely determined by the electron density p up to a shift of a trivial constant.
This dependence is denoted by the density functional E[p]. Given the N-body wave

function ¥, the electron density is defined as
p(x) :N/|\I/(x,x2,...,xN)\2dx2~-~ day, (1.10)

p(x) represents the probability of finding any of the N electrons at point z. The
electron density p(x) is a function of three coordinates rather than 3N coordinates.
Therefore density functional theory remarkably reduces the complexity of the elec-
tronic structure problem.

If the exact form of the energy functional E|p| is known, the ground state energy
can be readily obtained by a minimization procedure over a three-dimensional func-
tion p with respect to the energy functional E[p]. However, Hohenberg-Kohn theorem
only claims the existence of such energy functional without predicting the full detail
of its actual form. Furthermore, the energy functional carefully chosen for one system
can fail drastically for another system in principle.

The ground-breaking work is provided by Kohn and Sham [143]. Kohn and Sham
approximated the energy functional of interacting electrons by an energy functional
of non-interacting electrons together with a correction term. The energy functional
of non-interacting electrons can be written analytically and contributes to most part
of the ground state energy. The remaining correction term, which is called exchange-
correlation functional, remains unknown but is relatively easy to be approximated
roughly.

The Kohn-Sham density functional theory can be formally written down as fol-

31

lows [143]. The rigorous derivation, however, should follow the Levy-Lieb approach
of constrained minimization [158]. First, the ground state energy of an interacting

inhomogeneous system can be written as [125]

Bl = [Vestalpta) ot 5 [[8D qwayvcp,)

where the first term (Vi) characterizes the nuclei-electron interaction and the second
term gives the electron-electron interaction. GJ[p] is a universal functional of the
electron density. The Kohn-Sham density functional theory then approximates G|[p]
as

Glp] = Ex[p] + Exclpl, (1.12)

where Ex|p] is the kinetic energy of N non-interacting electrons. FEi.[p] is defined
to be the exchange-correlation energy, which takes into account all the remaining
ground state energies that are not represented by the previous terms. The many body

wavefunction of N non-interacting electrons takes the form of the Slater determinant

¢1(I1) e ¢1($N)
det : . : : (1.13)

¢N(I1) e ¢N($N)

where the three-dimensional wavefunctions ; are called the electron orbitals. The

electron orbitals satisfy the orthonormal condition

The electron density is reconstructed from the electron orbitals according to the

relation

p($)2=::£:ld%($)F- (1.15)

32

The kinetic energy for the non-interacting electrons is

By [{wi}il] = Z/\V%de (1.16)

As a result, the Kohn-Sham energy functional is given by

Exs [{0}] = Ex [{wi}] + (/ Voa(@)pl() de + = /]‘|) 4w dy + Exl). (1.17)

To find the ground state energy, the energy functional (1.17) should be optimized
over all possible electron orbitals {¢;}¥,, and hence over all possible electron den-
sity p satisfying [p(z)dx = N. On the other hand, if p minimizes Kohn-Sham
energy (1.17), the corresponding electron orbitals are also determined by the mini-
mization procedure. Therefore the ground state energy of the Kohn-Sham density
functional theory depends only on the electron density p. This issue will become
clearer in Section 1.5.

The choice of the exchange-correlation functional remains unknown. Fortunately,
it turned out that even the crudest approximation of exchange-correlation functional,
namely the local density approximation (LDA) [52,206] is often surprisingly accurate
for systems with slowly varying charge densities. For example, the bond lengths and
bond angles can be predicted by LDA within a few percent for many systems. More
sophisticated exchange-correlation functionals such as generalized gradient approx-
imation (GGA) [22,149,204], and hybrid exchange-correlation functionals [23,205]
further extend the applicability of KSDFT to a large class of molecules and systems
in condensed phase. Without much loss of generality, in the following we will use the

LDA form for exchange-correlation functional, i.e.

@mzf%wmm. (1.18)

33

To sum up, the Kohn-Sham density functional theory solves the following mini-

mization problem over the electron orbitals {¢;}.

Fys = %}éfj Jivpda s [Vaopao 5 [[E22 8 qray+ [edpaan
st /@D,-(:E)@Dj(:c) dr =6y, ij=1,....N,
pla) = iwi@)ﬁ
- (1.19)

Here p(z) is a function of {¢;}, and the minimization problem (1.19) is a nonlinear
optimization problem. Eq. (1.19) can be solved directly using nonlinear optimization
techniques [6,25,145,207,244,250]. However, in practice it is more popular to solve
the Euler-Lagrange equation associated to (1.19), which is called the self-consistent
iteration. The self-consistent iteration method is used in this dissertation, and the
basic procedure is summarized as follows.

The Euler-Lagrange equation corresponding to the minimization problem (1.19)

is

N
<—%A + Veff[p]) Ui =D i,
j=1

@) = i)

We denote the effective potential by Veg[p]:

Verr[p) () = Vexs (%) + / P (_y>y| dy + € [p(x)]. (1.21)

|

{\;i} are the Lagrange multipliers corresponding to the orthonormal constraints of

34

the electron orbitals. Eq. (1.20) is invariant under unitary transformations of the

electron orbitals. As a result Eq. (1.20) can be simplified as

(—%A + Veff[p]) i = e,

o) = S l(@).

In order to minimize (1.19) only the lowest N eigenvalues and eigenvectors are to
be computed. The lowest N eigenvalues {¢;}Y | are called the occupied Kohn-Sham
eigenvalues, and the corresponding lowest N eigenvectors {1;}~, are called the oc-
cupied Kohn-Sham orbitals. The minimization problem (1.19) is nonlinear, and as a
result the eigenvalue problem (1.22) is a nonlinear eigenvalue problem.

The Euler-Lagrange equation (1.22) can be solved by fixing the electron density
p = pin in the potential energy term Veg[p]. Then the Kohn-Sham Hamiltonian
H = —%A + Ve [p] is a fixed linear operator. The corresponding lowest N eigenvalues
and eigenvectors can therefore be computed by a standard linear eigenvalue procedure
such as ARPACK [151]. The consequence of fixing the electron density in the Kohn-
Sham Hamiltonian is that the output electron density pou: given by Eq. (1.15) does
not necessarily match the input electron density p;,. In such case, a new density p is
generated based on py, and pgy. This new density p is used as the new input density
for the eigenvalue problem (1.22). This procedure is repeated until py, = pout. Since
the self-consistent electron density is obtained iteratively, this procedure is called the
self-consistent iteration.

When the self-consistent electron density p is obtained, the ground state electron

energy can be calculated from the Kohn-Sham energies ¢; and the electron density p

35

according to:

—Ne-—1 Mm exclp(x)]dz — | €. [p(x)]p(z)dz
P = e g [[G700 dway s [aulp@lar — [dlpwlpar. a2

1.4 KSDFT: pseudopotential framework

So far KSDFT is introduced as an all electron theory. Namely all the electrons are
taken into account in the calculation. In quantum chemistry, the electrons are divided
into two categories: core electrons and valence electrons. For most of the systems,
only the valence electrons participate in the interstitial bonding region and in the
chemical reactions, and the core electrons do not participate in the chemical reac-
tions. However, the electron orbitals of the core electrons are highly non-smooth
and the treatment of the core electrons requires a large number of basis functions
per atom or a fine mesh for numerical integration. Therefore it is desirable to re-
move the core electrons and represent the core electrons effectively in the potential
energy surface. This idea is achieved in the pseudopotential framework [241,245].
The pseudopotential framework only involves valence electrons. The number of basis
functions per atom to describe the valence electrons is also much smaller than that in
the all electron framework, and there is no singularity in the electronic wavefunctions.
Pseudopotential framework will be used throughout this dissertation to describe the
Kohn-Sham Hamiltonian unless otherwise specified. We remark that similar results
can be achieved by projected augmented wavefunctions method (PAW) [34]. The
extensions to other frameworks such as PAW and the all-electron framework will be
the work in future.

In the past three decades, a vast number of types of pseudopotentials have been
developed. The most widely used pseudopotentials include the norm-conserving pseu-

dopotential [120,241], the dual-space pseudopotential [104,121] and the ultrasoft pseu-

36

dopotential [245]. For a more detailed discussion and comparison of the pseudopo-
tential theories, we refer the readers to the review article [59]. The Troullier-Martins
pseudopotential [241] is one of the most popular norm-conserving pseudopotential.
In what follows, the Troullier-Martins pseudopotential will be used for illustration
purpose.

The Kohn-Sham energy functional in the Troullier-Martins pseudopotential frame-

work is given by:

c({1i}) Z/IW |2dx+/ ot (dx+ZwZI/bZ z) da?

// |z — dg”der/Exc[p(fE)]dx, (1.24)

In (1.24), we have taken the Kleinman-Bylander form of the pseudopotential [138].
For each ¢, b, is a function supported locally in the real space around the position of
one of the atoms, and ~, = +1.

The Kohn-Sham equation, or the Euler-Lagrange equation associated with (1.24)

reads

Heglplth; = (—1A + Viglp] —i—ZWV?z (be|)0s = ey, (1.25)

where the effective one-body potential Vg is given by

Varlgl) = V() + [2200y - Elpto] (1.20

After obtaining the self-consistent electron density, the total energy of the system can

be expressed using the eigenvalues {¢;} and p

EKS_Z@ 5 [dway+ [eddotolds - [dpolplorar. (2

In each step of the self-consistent iteration, we find p from a given effective po-

37

tential Vg

plr) = ZI%IQ(SK),

where the {1;}’s are the first N eigenfunctions of Hg.
Hegthi = (=38 + Vag + > velbe) (be)i = €ty
¢

The {1,}’s also minimize the variational problem

(1.28)

(1.29)

Ea({v) = 33 [Vl do+ [Valalp(a)do+ 3 Y ltbe vl (130)

with the orthonormality constraints (1;, ;) = d;;.

1.5 Mathematical properties of KSDFT

In the self-consistent iteration framework for KSDFT, there are two major steps:

1. Given an input electron density pi,, calculate the output electron density pous.

This is done by solving the Kohn-Sham energies {¢;} and the Kohn-Sham elec-

tron orbitals {1;} of H|[pin).

2. Form a new input electron density from p;, and poyt.

In the standard method for solving KSDFT, the complexity of step 1 is O(N?), and

the complexity of step 2 is O(N). Therefore step 1 dominates the computational cost

for solving KSDFT, and is the major bottleneck in order to reduce the complexity.

Step 1 essentially defines a map from p;, to pout, which is referred to as the

Kohn-Sham map. Step 1 involves a diagonalization process of H[p,] which is a

nonlinear process. Therefore the Kohn-Sham map is a nonlinear map. Kohn-Sham

map contains all the information of step 1. The mathematical properties of the

38

Kohn-Sham map are essential in order to achieve an accurate and efficient method
for solving KSDFT.

In order to study the mathematical properties of the Kohn-Sham map, it is desir-
able to have the explicit form of the Kohn-Sham map, rather than the implicit form
as defined in step 1. The explicit form of the Kohn-Sham map is as follows. For
simplicity we assume the temperature is zero. The Hamiltonian matrix is denoted by
H = H|p] which is discretized into a N, x N, matrix. {¢;}Y, and {¢;}}, are all
the eigenvalues and eigenvectors of the Hamiltonian matrix H. The output electron

density can be rewritten in an alternative form:

pout(x) = Z|¢Z(x)|2

x(e1 —) Yi(z) | (1.31)
= <¢1(I) ¢Nt(9«“)> :

X(gNt - :u) th (ZL’)

Here x(z) is the Heaviside function that satisfies

x(z) = (1.32)

p is called the chemical potential. For a discretized system, p is chosen to be in the
range (ex,€ny1) as long as eyy1 > ey. Eq. (1.31) can be written in a more compact

form using the notation of matrix function:

pout(@) = [x (Hlpw] — ul)],., = diag x(H[pw] —). (1.33)

Here x is a matrix function and I is the identity matrix of size N; x N;. Eq. (1.33)

clearly shows that the Kohn-Sham map is nothing but the diagonal elements of the

39

matrix Heaviside function x(H [py] — pl).

However, the value of the Heaviside function y is either 0 or 1 on the spectrum
of the Hamiltonian matrix. The Heaviside function is a not a smooth function, and
the matrix Heaviside function is not well-defined for all systems. Here the important
characteristic quantity is €yi1 — €xn, which is referred to as the energy gap of the
system. It can be shown that as the number of electrons N — oo, the energy gap is
always finite for insulating systems, and becomes zero for metallic systems [12]. As a
result, the matrix Heaviside function is only well defined for insulating system, and
is ill-defined for metallic systems.

The flaw of the matrix Heaviside function can be amended by a more generalized
function called the matrix Fermi-Dirac function, which takes into account the finite

temperature effect [186]

1
1+ exp(B(H — p))

p = diag = diag f(H) (1.34)
Fermi-Dirac function is closely related to the Heaviside function: If is finite, the
Fermi-Dirac function is a smooth function across the spectrum of the Hamiltonian
H, and is well-defined regardless of the value of the energy gap. When § — oo,
Fermi-Dirac function converges to the Heaviside function (see Fig. 1.1). The physical
meaning of 5 is the inverse of the temperature of the system, and f§ — oo implies
that the temperature is zero. Therefore the matrix Heaviside function is also called
the zero temperature limit of the Fermi-Dirac function.

The ground state energy Fxs can be written in terms of f(H) as well. For insu-

lating systems, we have
N

> e =Tr[Hy(H — pI)], (1.35)

i=1
and this relation can be directly generalized to both insulating systems and metallic

systems as Tr [H f(H)]. Thus, the matrix function f(H) is of central importance

40

v

Figure 1.1: Heaviside function (black line) and Fermi-Dirac function at finite temper-
ature (red line).

in KSDFT, and is referred to as the density matriz of the system. KSDFT can be

written explicitly only using density matrix:

p =ding [(H[p). (1.36)
Ercs =T [Hlplf(HA)) - 5 [[520wy

+/%wmm~/QM@Mww. (1.37)

The density matrix f(H) is a N; X Ny matrix. Eq. (1.37) shows the remarkable
property that not all the elements of the density matrix are required in KSDFT.
Electron density p only requires the diagonal elements of the density matrix. The
Hamiltonian matrix H contains the Laplacian operator, and the nearest off-diagonal
elements of the density matrix are needed to calculate Tr[H f(H)] in the ground state
energy. In summary, KSDFT only requires the diagonal elements and the nearest off-
diagonal elements of the density matriz. This property is essential in order to achieve
an accurate and efficient method for solving KSDFT.

Although this mathematical property has been observed for a long time [101], it
is not at all reflected in the existing methods for KSDFT calculation. The direct

reason is that it is not straightforward to calculate the diagonal and nearest off-

41

diagonal elements of a complicated matrix function. Before introducing the new
method developed in this dissertation that directly calculates the diagonal and nearest
off-diagonal elements of the density matrix, we first discuss the existing methods for

solving KSDFT.

1.6 Existing methods and software packages for

solving KSDFT

Most of the existing methods for solving KSDFT can be categorized into two types:
cubic scaling methods and linear scaling methods. Within each category there are a
large number of software packages available. In this section we mainly discuss two
types of algorithms in the pseudopotential framework. To facilitate readers who are
unfamiliar with this subject, a short list of the capabilities for the most versatile
software packages is given at the end of the discussion. The URL address of each
software package is provided for readers who are interested in further details. Finally,
for completeness of the discussion we also mention some software packages for all-

electron calculations.

1.6.1 Cubic scaling methods

Cubic scaling method is implemented in most of the popular software packages for KS-
DFT calculation. The cubic scaling methods include the direct diagonalization meth-
ods such as the Davidson method [69], the conjugate gradient method (CG) [239], and
the direct inversion in the iterative subspace (DIIS) method [214]. Other variants that
also fall into this category include the Car-Parrinello method [49] and the Chebyshev
filtering method [256], to name a few. The variants of the diagonalization methods
result in different preconstant in front of the asymptotic cubic scaling. However, the

orthogonalization step is inevitable in order to obtain the electron density and the

42

ground state energy, and leaves the cubic scaling unchanged.

Take the diagonalization method for instance, the lowest N eigenvalues where
N = N for insulating system or N > N for metallic system (to include the finite
temperature effect) are directly computed. The Kohn-Sham map is then evaluated

as

p(x) = Z; %WIW (1.38)
Since the diagonalization method constructs all the occupied electron orbitals {t;}
explicitly, the entire density matrix f(H) is essentially constructed. It does not
take advantage of the mathematical property that only the diagonal elements and
nearest off-diagonal elements of the density matrix are needed in KSDFT calculation.
The diagonalization method involves an orthogonalization step of the subspace ¥ =
(Y1, , 5] In the discrete case, the length of each vector 1); is proportional to N
and the total number of electrons is V. Therefore the orthogonalization step scales as
O(N?) with respect to the number of electrons in the system, and the computational
cost of KSDFT becomes very high for large number of electrons.

Below are some representative software packages for electronic structure calcula-

tion using cubic scaling methods:

e ABINIT: Diagonalization method with planewave basis functions.

http://www.abinit.org/

e BigDFT: Diagonalization method with a two-level wavelet basis functions.
http://inac.cea.fr/L_Sim/BigDFT/

e CASTEP: Diagonalization method with planewave basis functions.

http://www.castep.org/

e CP2K: Diagonalization method with mixed Gaussian and planewave basis func-

tions.

43

http://cp2k.berlios.de/

CPMD: Diagonalization method as well as Car-Parrinello method with planewave
basis functions.

http://www.cpmd.org/

OPENMX (Open source package for material explorer): Diagonalization method
with planewave basis functions and numerical atomic orbitals.
http://www.openmx-square.org/

PASRSEC (Pseudopotential Algorithm for Real-Space Electronic Calculations):

Diagonalization method and Chebyshev filtering method with finite difference

discretization.

http://parsec.ices.utexas.edu/index.html

Quantum ESPRESSO: Diagonalization method as well as Car-Parrinello method
with planewave basis functions.

http://www.quantum-espresso.org/

VASP (Vienna Ab-initio Simulation Package): Diagonalization method with
planewave basis functions.

http://cms.mpi.univie.ac.at/vasp/

1.6.2 Linear scaling methods

The major breakthrough that reduces the O(N?3) in the past two decades is the lin-

ear scaling methods. The linear scaling methods use the nearsightedness property,

which means that the density perturbation induced by a local change in the external

potential decays off exponentially with respect to the distance from the place where

the perturbation was applied, and also that the off-diagonal elements of the density

44

matrix decay exponentially [142,212]. The nearsightedness property is valid for in-
sulating systems and metallic systems at finite temperature. The nearsightedness
property is not valid for metallic systems at zero temperature due to the well-known
Friedel oscillation [87]. Due to the fast decay of the density matrix along the off-
diagonal direction, the density matrix can be truncated beyond a certain range along
the off-diagonal direction for insulating systems. Various methods have been pro-
posed based on different perspectives of the nearsightedness property (for a detailed
review, see [101]). We review briefly some representative linear scaling methods as
below. The linear scaling methods are mainly divided into two classes.

The first class of linear scaling algorithms are based on the localization of elec-
tron orbitals and subspaces of electron orbitals. In the orbital minimization approach
(OM) [88,184], the truncation of the electron orbitals is imposed by adding an ad-
ditional confining potential to the Hamiltonian. Orbital minimization approach can
have multiple minima [136]. The orbital minimization method can be combined with
the localization procedure (OML) [89] to eliminate the multiple minima problem.
The localized subspace iteration method (LSI) [91] localizes the subspace consisting
several electron orbitals, and obtains the optimal truncation radius.

The second class of linear scaling algorithms are based on the localization of the
density matrix directly. In the divide-and-conquer method (D&C) [251], the elec-
tron density is divided into a set of loosely coupled subsystems. Each subsystem is
solved separately by standard diagonalization methods and linear scaling is achieved.
The density matrix minimization method (DMM) [154,229] achieves linear scaling
by directly truncating the density matrix beyond a predetermined truncation radius,
with the help of the McWeeny purification transformation [185]. The density matrix
is then optimized using nonlinear conjugate gradient method. The Fermi operator
expansion method (FOE) [19,99] expands the Fermi-Dirac matrix function into sim-

ple matrix functions that can be directly evaluated without diagonalization of the

45

Hamiltonian. These simple matrix functions can be polynomials or rational functions
of the Hamiltonian matrix. Each simple matrix function is only evaluated within the
truncation range of the density matrix along the off-diagonal direction, and the FOE
method achieves linear scaling.

Several widely used linear scaling methods for the electronic structure calculation

of insulating systems include:

e CONQUEST: b-spline basis functions and Pseudo-atomic orbitals (PAO). Lin-

ear scaling is achieved by McWeeny’s purification method [185].

http://hamlin.phys.ucl.ac.uk/NewCQWeb/bin/view

e ONETEP (Order-N Electronic Total Energy Package): Non-orthogonal gener-
alized Wannier functions (NGWF). Linear scaling is achieved by density kernel
optimization method which is a variant of the density matrix minimization

method [154].
http://www2.tcm.phy.cam.ac.uk/onetep/
e SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms):

Numerical atomic orbitals. Linear scaling is achieved by orbital minimization

method [184].

http://www.icmab.es/siesta/

1.6.3 All-electron methods

As opposed to the pseudopotential framework which only involves valence electrons,
all electron methods treat the core electrons and the valence electrons on the same
footing. All electron methods can avoid the numerical error caused by the limited
transferability in the pseudopotentials, but the computational cost of the all-electron

methods is generally significantly larger than that of the pseudopotential methods.

46

The increased computational cost is mainly due to the fact that the electron orbitals
are non-smooth at the positions of the nuclei (satisfying the cusp condition [134]) and
are much more oscillatory around the positions of the nuclei. As a result, analytic
or semi-analytic forms of basis functions are generally used in the all-electron calcu-
lations, such as Slater-type orbitals (STO), Gaussian-type orbitals (GTO) and nu-
merical atomic orbitals (NAO). Several widely used software packages for all-electron

calculation include:

e ADF (Amsterdam Density Functional): Diagonalization methods with Slater-
type orbitals (STO).

http://www.scm.com/

e GAUSSIAN: Diagonalization methods with Gaussian-type orbitals (GTO).

http://www.gaussian.com/

e FHI-aims: Diagonalization methods with numerical atomic orbitals (NAO).

https://aimsclub.fhi-berlin.mpg.de/

e WIEN2k: Diagonalization methods with full-potential (linearized) augmented
plane-wave (FP-LAPW) plus local orbitals (LO) basis functions.

http://www.wien2k.at/

1.7 Unified, accurate and efficient method for solv-
ing KSDFT

Section 1.6 summarizes the most widely used numerical schemes for solving KSDFT.
Cubic scaling methods involve the orthogonalization step which is intrinsically of
O(N?) scaling and is difficult to be improved in general. Linear scaling methods uses

the nearsightedness property for insulating systems and metallic systems at finite

47

temperature. However, the performance of the linear scaling methods relies crucially
on the truncation radius. The truncation radius can be quite large if high numer-
ical accuracy is to be achieved, especially for metallic system where the truncation
radius depends explicitly on the artificial temperature. Therefore linear scaling al-
gorithms typically exhibit advantage only for systems with a very large number of
electrons [101]. Moreover, linear scaling methods still construct the entire density
matrix, and they do not aim at calculating the diagonal elements and nearest off-
diagonal elements of the density matrix directly. In order to avoid the difficulties
in the linear scaling methods, it is desirable to design a method that does not use
nearsightedness, and that calculates the diagonal elements and nearest off-diagonal
elements of the density matrix directly. Part I of this dissertation achieves this goal
under the framework of Fermi operator expansion (FOE).

FOE expands the Fermi-Dirac matrix function into simple matrix functions. Each
simple matrix function is calculated directly without diagonalization process, and
thus FOE does not involve the orthogonalization step. In calculating simple matrix
functions, FOE does not necessarily require the nearsightedness property. As a result
FOE has none of the previously mentioned drawbacks. The new method is accurate,
efficient, and is applicable to both insulating and metallic systems at low or at high
temperature. First we discuss the basic procedure of FOE.

FOE expands the Fermi-Dirac matrix function f(H) into simple matrix functions
{fi(H)}, i.e. .,
f(H)~ Y fi(H), (1.39)
i=1

48

and the electron density and the ground state energy can be calculated as

pr) diag fi(Hpl), (1.40)
Ercs ST HARHI) - 5 [[722 oy

+/%wmmH/émmwmm. (1.41)

Therefore under the framework of FOE, only the diagonal elements and nearest off-
diagonal elements of each matrix function f;(H) are to be calculated. The calculation
of fi(H) for different i are independent from each other.

Each simple matrix function f;(H) should take certain form in order to be evalu-
ated directly without diagonalization. To be more specific, f;(H) can only be polyno-
mial matrix function or rational matrix function. FOE based on both the polynomial
expansion [16,99,102,155,156] and the rational expansion [19,103, 144,160, 164,199,
227] have been developed. FOE based on the polynomial expansion requires calcu-
lating the powers of H. FOE based on the rational expansion requires calculating
the inverse of H. Both operations are O(N?) without further simplification, and
FOE does not exhibit advantage over diagonalization methods for metallic systems.
As a result, FOE is only mentioned sporadically in literature for certain classes of
systems [144,227].

Part 1T of this dissertation develops FOE to be an accurate and efficient method
for solving KSDFT in all systems. The new method achieves uniform improvement
over the O(N?) method for systems under all dimensions. The asymptotic scaling of
the new method is O(N) for one dimensional system, O(N'5) for two-dimensional
system, and O(N?) for three-dimensional system. Furthermore, the new method
can be combined with the nearsightedness property to achieve O(N) scaling at all

dimensions for insulating systems and for metallic systems at high temperature.

49

We also expect that the new method should not only exhibit improved asymptotic
scaling but also have a relatively small preconstant. To this end it is necessary to sys-
tematically study all the phases of FOE. In this dissertation, the complete flowchart
of FOE is divided into four phases (see Fig. 1.2): Discretize the Hamiltonian opera-
tor H into a matrix of finite size (discretization); Represent the Fermi-Dirac matrix
function f(H) into appropriate simple matrix functions {f;(H)} (representation);
Evaluate the diagonal and nearest off-diagonal elements of each {f;(H)} (evalua-
tion); Self-consistent iteration (iteration). Part I of this dissertation develops a novel
scheme, named the adaptive local basis functions for the discretization step. The
adaptive local basis functions achieve high accuracy (below 1072 Hartree/atom) with
a very small number of basis functions. This dissertation presents the optimal strat-
egy for the representation step, which represents the Fermi-Dirac operator in terms
of a simple rational expansion called the pole expansion. This dissertation further de-
velops a fast algorithm for evaluating the diagonal and nearest off-diagonal elements
of each rational function, called the selected inversion algorithm. The computational
scaling of the selected inversion algorithm to evaluate each rational function is O(N)
for one dimensional systems, O(N'?) for two-dimensional systems, and O(N?) for
three-dimensional systems. Self-consistent iteration is an important component in
the KSDFT calculation. However, the self-consistent iteration does not cause the
O(N?) scaling problem and is a relatively separate issue. The self-consistent itera-
tion is not discussed in this dissertation, but will be studied in the future work.

The rest of Part I of this dissertation is organized as follows. Chapter 2 discusses
the discretization technique for KSDFT, and introduces the novel adaptive local ba-
sis functions. Chapter 3 discusses various representation methods of the Fermi-Dirac
operator, and presents the optimal strategy for representing the Fermi-Dirac opera-
tor in terms of rational expansion. Chapter 4 introduces a new methodology named

selective inversion for evaluating the diagonal elements and nearest off-diagonal ele-

20

Discretization

Pin > H | pin]

Iteration Representation

Pout <—— diag Zfil

Evaluation

Wi
Hpin]—z;

Figure 1.2: Flowchart of the unified, accurate and efficient method developed in this
dissertation for solving KSDFT.

ments of each simple matrix function. The work of selected inversion also inspired us
developing a fast algorithm for the construction of hierarchical matrices [161]. This is
illustrated in Chapter 5. Finally, Chapter 6 concludes Part I of the dissertation with

open questions and further work.

o1

Chapter 2

Discretization of the Hamiltonian
matrix: adaptive local basis

functions

2.1 Introduction

In order to study the electronic structure using KSDFT with numerical methods, the
first step is to discretize the Kohn-Sham Hamiltonian into a matrix of finite size.
If space is uniformly discretized, the Kohn-Sham Hamiltonian generally requires a
basis set with a large number of degrees of freedom per atom. For most chemical
systems, the kinetic energy cutoff typically ranges from 15Ry to 90Ry for standard
planewave discretization in the norm-conserving pseudopotential framework [241],
which amounts to about 500 ~ 5000 basis functions per atom. The required number
of basis functions per atom is even larger for uniform discretization methods other
than planewaves, such as the finite difference method [2,58] and the finite element
method [201,202,242].

The large number of basis functions per atom originates from the rapid oscillation

52

of the Kohn-Sham electron orbitals. The Kohn-Sham orbitals oscillate rapidly around
the nuclei and become smooth in the interstitial region of the nuclei. Physical intuition
suggests that the rapid oscillations around the nuclei are inert to changes in the
environment. A significant part of the rapid oscillations can already be captured by
the orbitals associated with isolated atoms. These orbitals are called atomic orbitals.
Numerical methods based on atomic orbitals or similar ideas have been designed
based on this observation [14,35,71,81,132,135,141,198]. Environmental effect is not
built into the atomic orbitals directly, but can only be approximated by fine tuning
the adjustable parameters in these atomic orbitals. The values of the adjustable
parameters therefore vary among different chemical elements, and sometimes vary
among the different ambient environment of atoms. The quality of the atomic orbitals
is difficult to be improved systematically, but relies heavily on the knowledge of the
underlying chemical system.

Atomic orbitals and uniform discretization methods can be combined, as in the
mixed basis methods [4,34,230,236]. The quality of the basis functions can therefore
be systematically improved. However, fine tuning the adjustable parameters is still
necessary due to the absence of the environmental effect in the basis functions, and
in certain circumstances the number of basis functions per atom is still large.

In this chapter, we propose a novel discretization method to build the environ-
mental effects into the basis set to achieve further dimension reduction of the basis
set. The basis functions are constructed adaptively and seamlessly from the atomic
configuration in local domains, called elements. The basis functions are discontinuous
at the boundary of the elements, and they form the basis set used in the discontinuous
Galerkin (DG) framework. The discontinuous Galerkin framework has been widely
used in numerical solutions of partial differential equations (PDE) for more than four
decades, see for example [7,8,15,64,66,247] and the references therein. One of the

main advantages of the DG method is its flexibility in the choice of the basis func-

23

tions. The flexibility of the DG framework allows us to employ these discontinuous
basis functions to approximate the continuous Kohn-Sham orbitals, and allows us
to achieve high accuracy (below 1072 Hartree/atom) in the total energy calculation
with the number of basis functions per atom close to the minimum possible number
of basis functions for the electronic structure calculation, namely the number of basis
functions used by the tight binding method [81,231]. Our method is implemented in
parallel with a rather general data communication framework, and the current im-
plementation is able to calculate the total energy for systems consisting thousands of
atoms.

The novel discretization scheme developed in this chapter can be applied to both
the diagonalization methods and the Fermi operator expansion method that are go-
ing to be discussed in Chapter 3 and Chapter 4. To simplify the discussion the
diagonalization method will be used in the current chapter.

The idea of constructing basis functions adaptively from the local environment has
also been explored in other circumstances in numerical analysis such as reduced basis
method [48,62,174,175] and multi-scale discontinuous Galerkin method [246,254,255]
for solving PDE. In the current context, we apply the DG algorithm to solve eigenvalue
problems with oscillatory eigenfunctions, and the basis functions are constructed by
solving auxiliary local problems numerically.

This chapter is organized as follows. Section 2.2 introduces the discontinuous
Galerkin framework for Kohn-Sham density functional theory. The construction of
the adaptive local basis functions is introduced in Section 2.3. Section 2.4 discusses
implementation issues in more detail. The performance of our method is reported in
Section 2.5, followed by the discussion and conclusion in Section 2.6. Materials in

this chapter have been presented in [165].

o4

2.2 Discontinuous Galerkin framework for Kohn-
Sham density functional theory

The discontinuous Galerkin (DG) methods have been developed for different types
of partial differential equations [7,8,15,64,66,247]. One of the main advantages of
the DG method is its flexibility in the choice of the approximation space, as the
DG method does not require the continuity condition of the basis functions across
the interfaces of the elements. This flexibility is important for constructing effective
discretization schemes for Kohn-Sham density functional theory.

We present in the following a DG method for the evaluation of the electron den-
sity. Among the different formalisms in the DG framework, we will use the interior
penalty method [7,15]. Other DG methods, such as the local DG method (LDG)
can be employed as well [65]. The interior penalty method naturally generalizes the
variational principle (1.30).

We denote by €2 the computational domain with the periodic boundary condition.
Q) is also referred to as the global domain in the following discussion. Bloch boundary
conditions can be taken into account as well without essential modification. Let T

be a collection of quasi-uniform rectangular partitions of €:
T:{ElyEQa"' 7EM}a (21)

and S be the collection of surfaces that correspond to 7. Each E} is called an element
of Q. For a typical choice of partitions used in practice, the elements are chosen to be
of the same size. For example, for a crystalline material, elements can be chosen as
integer multiples of the conventional cell of the underlying lattice. As a result, unlike

the usual finite element analysis, the element size will remain the same. !

n the language of finite element method, we will not use the h-refinement.

25

In the following discussion, we use extensively the inner products defined as below

(v,wW)p = /Ev*(x)w(x) dz, (2.2)
(v,w)s = /S'v*(:v) ~w(x)ds(x), (2.3)

(v, w)7 = 3 (v, w), (2.4)
(v, w)s = Z<’U,’w>s- (2.5)

In the interior penalty method, the discretized energy functional corresponding to

(1.30) is given by

N

Foa({4:}) = 5 S (Vi Vi) - L Tv [Ds + War by

=1 i=1
N
Z [[:]] ﬁZle be, Vi) rl®. (2.6)

?IQ

Here the last term comes from the non-local terms in Eq. (1.30), and {{ : }} and
[[. ﬂ are the average and the jump operators across surfaces, defined as follows. For
S € §° the set of interior surfaces, we assume S is shared by elements K; and K.
Denote by n; and ns the unit normal vectors on S pointing exterior to K; and Ko,

respectively. With u; = u|sg,, i = 1,2, we set

[[U:H = Uiny1 + Usng ON S. (27)

For S € 8% where S? is the union of the surfaces on the boundary, we set

[u]] =un on S, (2.8)

o6

where n is the outward unit normal vector. For vector-valued function ¢, we define

{a}} =Ha+@) onSeS, (2.9)

where ¢; = q|sk,, and

{{a}} =q omS5es’ (2.10)

Note that in the current context S = S§° since we assume periodic boundary condition
for the computational domain, and every surface is an interior surface. The constant o
n (2.6) is a positive penalty parameter, which penalizes the jumps of functions across
element surfaces to guarantee stability. The choice of a will be further discussed in
Section 2.5.

Assume that we have chosen for each element Fj, a set of basis functions {¢y ;}7* punp
where Jj, is the total number of basis functions in Ej. We extend each ¢y ; to the

whole computational domain €2 by setting it to be 0 on the complement set of Fj.

Define the function space V as
V=span{ygy;, Er €T,j=1,---,Ji}. (2.11)

We minimize (2.6) for {¢);} C V. The energy functional (2.6) in the approximation

space V leads to the following eigenvalue problem for {1;}¥ . For any v € V,

<W V)T [[[{Veiths =5 {{W}} [w:l)s + ([, [wDs
+ (0, Vo)1 + Y 700, be) 7 (e, i) = Niv, o) 7. (2.12)

Setting v = ¢y j» and

Jk
= Z Zci;k,jgok,j, (213)

EkET j:1

57

we arrive at the following linear system

z((Vs Vhedr — 5([Fes] (T Fes s

k?j

~3 {{ka' 1 [Feall)s 9([[fk,,j,]}, [FrslDs + (Frogrs VesrFig) 7
+Z’W T g1 o)1 (be, Frg) T)Czkj Ai Z fer ity fej)Ciny (2.14)

We define A to be the matrix with entries given by the expression in the parentheses,
B to be the matrix with entries (fi 7, fx.;), and ¢; to be the vector with components

(Cisk,j)k;- We have the following simple form of generalized eigenvalue problem
ACZ' =)\chz

fori =1,2,..., N. Following the standard terminologies in the finite element method,
we call A the (DG) stiffness matrix, and B the (DG) mass matrix. In the special
case when the DG mass matrix B is equal to the identity matrix, we have a stan-
dard eigenvalue problem Ac; = A\;¢;. Once {¢;} are available, the electron density is

calculated by

N Jk
=Y D cinsonsl™ (2.15)

i=1 ELeT j=1

2.3 Basis functions adapted to the local environ-
ment

The proposed framework in the previous section is valid for any choice of basis func-
tions. To improve the efficiency of the algorithm, it is desirable to use less number
of basis functions while maintaining the same accuracy. In order to achieve this goal,

the choice of the functions {¢py ;} is important. In this section, we discuss a way to

o8

construct the basis functions {¢y ;} that are adapted to the local environment.

The starting point is the observation as follows. The Kohn-Sham orbitals {1;}
exhibit singularities around the nuclei. In an all electron calculation, the nuclei charge
density is the summation of delta functions located at the positions of the nuclei (or
numerical delta function after discretization) and the Kohn-Sham orbitals have cusp
points at the positions of the atoms. In the pseudopotential framework which involves
only valence electrons, one can still see that the Kohn-Sham orbitals and the electron
density are much more oscillatory near the atom cores than in the interstitial region,
as illustrated in Fig. 2.1. In the setting of the real space method or the planewave
method, in order to resolve the Kohn-Sham orbitals around the atom cores where the
derivatives of Kohn-Sham orbitals become large, one has to use a uniform fine mesh.
Therefore, the number of mesh points becomes huge even for a small system. This

makes the electronic structure calculation expensive.

0.05
0.04
a 0.03
0.02
0.01

x(au)

Figure 2.1: Electron density on a (001) slice of a mono-crystalline silicon system
passing through two Si atoms. The two Si atoms are located at (2.57,2.57) au and
at (7.70,7.70) au in this plane, respectively. The electron density shows oscillatory
behavior near the nuclei of Si atoms and becomes smooth in the interstitial region.

29

In order to reduce the cost, we note that the Kohn-Sham orbitals are smooth away
from the atoms and the uniform fine discretization is not efficient enough. A natural
idea would be to use adaptive mesh refinement techniques, which is just started to
be explored in electronic structure calculations [68,82].

Our approach builds the oscillatory behavior of the Kohn-Sham orbitals near the
atom cores directly into the basis functions. Hence, a small number of basis functions
are enough to characterize the Kohn-Sham orbitals. This idea is not entirely new. For
example, the philosophy of pseudopotential techniques is quite similar, though the
reduction is done at the analytic level. On the side of numerical methods, the current
idea is closely related to atomic orbital basis and numerical atomic orbitals [35,81].

The main difference from the previous approaches is that instead of predetermining
basis functions based on the information from isolated atoms, our approach builds the
information from the local environment into the basis functions as well. Thanks to the
flexibility of the discontinuous Galerkin framework, this can be done in a seamless
and systematic way. The basis functions form a complete basis set in the global
domain). The basis set is therefore efficient, and at the same time the accuracy can
be improved systematically. This is an important difference between this approach
and the previous methods along the same line.

The basis functions {¢y ;} are determined as follows. Given the partition 7 and
the effective potential Vig, let us focus on the construction of {¢y;}, j =1,---,Jp
for one element Ej, € T. As discussed above, our approach is to adapt {¢y ;} to the
local environment in E.

For each element Ej, we take a region Qy D Eji. Q) is called the extended element
associated with the element Ej. The set Q\E} is called the buffer area. We assume
that Q) extends symmetrically along the +x(y, z) directions from the boundary of Ej.
The length of the buffer area extended beyond the boundary of Ej along the +z(y, 2)

direction is called the “buffer size along the x(y, z) direction”. We restrict the effective

60

Hamiltonian on @) by assuming the periodic boundary condition on 9Q); and denote
by Heg g, the restricted Hamiltonian. Heg g, is discretized and diagonalized, and the
corresponding eigenfunctions are denoted by {@y ;}, indexed in increasing order of
the associated eigenvalues. We restrict the first Jj, eigenfunctions {@y ;} from Q) to
E), denoted by {¢;}. Each ¢y ; is therefore defined locally on Ej. As discussed
before we extend each ¢y ; to the global domain € by setting the value to be 0 on
the complement of Ej. The resulting functions, still denoted by {¢y ;} are called the
adaptive local basis functions. Numerical result suggests that we can take very small
Ji to achieve high accuracy.

The reason why we choose the periodic boundary condition on @)}, for the restric-
tion Heg g, is twofold. On one hand, the periodic boundary condition captures better
the bulk behavior of the system (than the Dirichlet boundary condition for example);
On the other hand, the periodic boundary condition makes the solution of Heg g,
more easily adapted to existing DFT algorithms and packages, as most of them can
treat periodic boundary conditions. Other choices such as the Neumann boundary
condition are possible, and the optimal choice of boundary conditions remains to be
an open question.

The basis functions constructed from the buffer region well capture the local sin-
gular behavior of Kohn-Sham orbitals near the nuclei. Hence, the approximation
space formed by {¢x ;} gives an efficient and accurate discretization to the problem,
as will be illustrated by numerical examples in Section 2.5. Note that the {¢y ;}’s
are the eigenfunctions of the self-adjoint operator Heg g, on (i, and therefore form
a complete basis set on)y when .J, — oo. This implies that after restriction, the
functions {y ;} also form a complete basis set on Ej as J; — oco. The accuracy can
therefore be systematically improved in the electronic structure calculation.

Eq. (2.14) proposes a generalized eigenvalue problem. From numerical point of

view it would be more efficient if we can choose {¢y, ;} such that the DG mass matrix

61

is an identity matrix and that Eq. (2.14) becomes a standard eigenvalue problem.
Moreover, as Jj increases, the basis functions {¢j ;} can be degenerate or nearly
degenerate, which increases the condition number of the DG stiffness matrix. Both
problems can be solved at the same time by applying a singular value decomposition

(SVD) filtering step, resulting in an orthonormal basis set {¢py ;}:
1. For each k, form a matrix My = (©x1, Pr2, " » Pk,) With @ ;;

2. Calculate SVD decomposition UDV™* = M,
D = diag (Ar1, Ak2s 5 Akgy)s

where)\ ; are singular values of M), ordered decreasingly in magnitude;

3. For a threshold 4, find J; such that |, 5 | > & and [\, 7 | <0 (Jp = J; if all
singular values are larger than the threshold). Take U; be the j-th column of
Uv.jzlv"' 7'};67

4. Set J, j;ﬂ and @y ;< Upjfor j=1,---, J.

Remark 1. Although the threshold § can avoid numerical degeneracy of the basis
functions, the numerical degeneracy is not observed for the cases studied in section 2.5.

In other words, J, = jk

After constructing the basis functions {¢y ;}, we then apply the discontinuous
Galerkin framework to solve the {¢;} and hence p corresponding to Hg. The overall

algorithm can be summarized as follows:

1. Set n = 0, let T be a partition of into elements, and py be an initial trial

electron density;

2. Form the effective potential Vg [p,| and the effective Hamiltonian Heg|[py;

62

3. For each element Ej € T, calculate the eigenfunctions {yy;},7 = 1,---,Ji
corresponding to the Hamiltonian Heg g, on the extended element @)y, and

obtain the orthonormal adaptive local basis functions {¢y ;}.

4. Solve (2.14) to obtain the coefficients {c; ;} for the Kohn-Sham orbitals and

reconstruct the electron density p by (2.15);

5. Mixing step: Determine p,.; from p, and p. If ||p, — p|| < 0, stop; otherwise,

go to step (2) with n <~ n + 1.

We remark that due to the flexibility of the DG framework one can supplement the
functions {¢py ;} constructed above by other functions in Ej, such as local polynomials
in Fj, Gaussian functions restricted to Ej, and other effective basis functions based
on physical and chemical intuition. From practical point of view, we find that the

adaptive basis set constructed above already achieves satisfactory performance.

2.4 Implementation details

This section explains the implementation details for the adaptive local basis functions.
This section is mostly written for the readers who are less familiar with the DG

implementation.

2.4.1 Grids and interpolation

The adaptive local basis functions involve three types of domains: the global domain
Q, the extended elements {Q}, and the elements {F}}. Quantities defined on these

domains are discretized with different types of grids.

e On (), the quantities such as p and Vg are discretized with a uniform Cartesian
grid with a spacing fine enough to capture the singularities and oscillations in

these quantities.

63

e The grid on @ is simply the restriction of the uniform grid of €2 on Q). This
is due to the consideration that all quantities on @)y are treated as periodic and

hence a uniform grid is the natural choice.

e The grid on EJ is a three-dimensional Cartesian Legendre-Gauss-Lobatto (LGL)
grid in order to accurately carry out the operations of the basis functions {¢y ;}

such as numerical integration and trace operator for each element FEj.

Transferring various quantities between these three grids requires the following inter-

polation operators.

o () to (. This is used when we restrict the density p, and the effective potential
Veg to the extended element (). Since the grid on @)y is the restriction of the

grid on €2, this interpolation operator simply copies the required values.

e (), to Ej. This is used when one restricts {¢ ;} and their derivatives to Ej.
As the grid on @)}, is uniform, the interpolation is done by Fourier transform.
Due to the fact that both grids are Cartesian, the interpolation can be carried

out dimension by dimension, which greatly improves the efficiency.

e [to Q. This is used when one assembles the Kohn-Sham orbitals {¢;} from the
coefficients {c; . ;} of the elements. The interpolation from the LGL grid to the
uniform grid is done by Lagrange interpolation, again carried out dimension by
dimension. Averaging is performed for the grid points of {2 shared by multiple

elements.

The non-local pseudopotentials are used both in solving {¢y ;} on each @) and in
the numerical integration step on the LGL grid of each Fj. In our implementation,
the non-local pseudopotentials are directly generated in real space on) and on Ej

without further interpolation between the grids.

64

2.4.2 Implementation of the discontinuous Galerkin method

We use planewaves in each extended element (), to discretize the local effective Hamil-
tonian Heg o, and the LOBPCG algorithm [139] with the preconditioner proposed
in [239] to diagonalize the discretized Hamiltonian. The resulting eigenfunctions
{&k,j};»]il of Heg g, are restricted to Ej and interpolated onto its LGL grid. Within
the SVD filtering step, the inner product that we adopt is the discrete weighted /s
product with the LGL weights inside Ej. The main advantage of the SVD filter-
ing step is that the discontinuous Galerkin method results in a standard eigenvalue
problem.

The assembly of the DG stiffness matrix follows (2.14) strictly and consists of the

following steps.

e For the first term %<ka/7j/, V fi ;)7 and the fifth term (fi 7, Vg fi j) 7, their
contributions are non-zero only when k& = £’ since otherwise two basis functions
have disjoint support. Hence, for each fixed k, we compute (V fi 1, V i) g,
and (fy . Ve fr ;) .- The integration is done numerically using the LGL grid
on Ej. Part of the stiffness matrix corresponding to these two terms clearly has

a block diagonal form.

e For the second, third, and fourth terms of (2.14), one needs to restrict basis
functions and their derivatives to element faces. As the one-dimensional LGL
grid contains the endpoints of its defining interval, this is done simply by re-
stricting the values of the three-dimensional LGL grid to the element faces. One
then calculates these three terms using numerical integration on these resulting
two-dimensional LGL grids. Since the integral is non-zero only when FEj and
E) are the same element or share a common face, part of the stiffness matrix

corresponding to these three terms is again sparse.

o The last term of (2.14) is >, ve(fw 7, be)7(be, fij)7. The integration is again

65

approximated using the LGL grids of the elements. Notice that the contribution
is non-zero iff fi/j and f; ; overlap with the support of a common b,. Since
each b, is localized around a fixed atom, f;; and fir ;7 need to be sufficiently
close for this term to be non-zero. As a result, part of the stiffness matrix

corresponding to this last term is also sparse.

Though the DG stiffness matrix A is sparse, this property is not yet exploited in
the current implementation. The eigenvalues and eigenvectors of the DG stiffness
matrix are calculated using the pdsyevd routine of ScaLAPACK by treating it as a
dense matrix. We plan to replace it with more sophisticated solvers that leverage the

sparsity of A in future.

2.4.3 Parallelization

Our algorithm is fully implemented for the message-passing environment. To simplify
the discussion, we assume that the number of processors is equal to the number of
elements. It is then convenient to index the processors { P} with the same index
k used for the elements. In the more general setting where the number of elements
is larger than the number of processors, each processor takes a couple of elements
and the following discussion will apply with only minor modification. Each processor
Py locally stores the basis functions {f; ;} for j = 1,2,...,J; and the unknowns
{cig;} for i =1,2,...,N and j = 1,2,...,J,. We further partition the non-local
pseudopotentials {b,} by assigning b, to the processor P if the atom associated to by
is located in the element E.

The eigenfunctions of the local Hamiltonian Hg g, are calculated on each pro-
cessor P. In order to build the local Hamiltonian Heg ¢, , the processor Py needs to
access all the non-local pseudopotentials of which the associated atoms are located
in Q. This can be achieved by communication among FEj and its nearby elements.

Once these pseudopotentials are available locally, the eigenfunctions of Hg g, are

66

computed in parallel without any extra communication between the processors.
The parallel implementation for assembling the DG stiffness matrix is more com-

plicated:

e For the calculation of the first and the fifth terms of the DG stiffness matrix A
in Eq. (2.14), each processor P performs numerical integration on Ej. Since
the local basis functions { fj ;} are only non-zero on Ej, this step is carried out

fully in parallel.

e To calculate the second, third, and fourth terms, each processor P, computes
the surface integrals restricted to the left, front, and bottom faces of Ej. This

requires the basis functions of the left, front, and bottom neighboring elements.

e To calculate the sixth term, each processor P, computes the parts associated
with the non-local pseudopotentials {b,;} located on P;. This requires the access

to the basis functions of all elements that overlap with b,.

To summarize, each processor P, needs to access the basis functions from its neighbor-
ing elements and from the elements that overlap with the support set of the non-local
pseudopotentials located on the elements associated with P,. Due to the locality of
the non-local pseudopotentials, these elements are geometrically close to Pj. Since
the size of the elements is generally equal to or larger than one unit cell, the support
set of the non-local pseudopotentials are generally within the range of the neighboring
elements. Therefore, the number of the non-local basis functions required by Py is
bounded by a small constant times the typical number of the basis functions in an
element.

The use of the pdsyevd routine of ScaLAPACK for solving the eigenvalue problem
(2.14) results in another source of communication. ScaLAPACK requires A to be
stored in its block cyclic form. The block cyclic form is quite different from the form

of which the DG stiffness matrix is assembled (as mentioned above). As a result, one

67

needs to redistribute A into this block cyclic form before calling pdsyevd and then
redistribute the eigenfunctions afterwards.

In order to support these two sources of data communication, we have imple-
mented a rather general communication framework that only requires the program-
mer to specify the desired non-local data. This framework then automatically fetches
the data from the processors that store them locally. The actual communication is

mostly done using asynchronous communication routines MPI_Isend and MPI_Irecv.

2.5 Numerical examples

In order to illustrate how our method works in practice, we present numerical results
for the ground state electronic structure calculation, using sodium (Na) and silicon
(Si) as characteristic examples for metallic and insulating systems, respectively. We
find that high accuracy (below 107 Hartree/atom) is achieved by using only a small
number of adaptive local basis functions for one, two, and three dimensional systems
under a variety of conditions. Because of the small number of basis functions per atom,
our DG algorithm already shows significant reduction in computational time for a
small system with 128 Na atoms. We demonstrate that the current implementation is
able to solve systems with thousands of atoms, and that the algorithm has a potential
to be applied to much larger systems with a more advanced implementation.

This section is organized as follows: section 2.5.1 introduces the setup of the test
systems and the criterion for the quantification of the error. Section 2.5.2 discusses the
simplest case with the mono-crystalline quasi-1D system, followed by the discussion
on the disordered quasi-1D system in section 2.5.3. We illustrate in section 2.5.4 the
performance of the adaptive local basis functions under the DG framework for the
quasi-2D and bulk 3D systems. We discuss how to choose the penalty parameter

a in section 2.5.5. Finally we demonstrate the computational performance of our

68

implementation of the DG method in section 2.5.6.

2.5.1 Setup

We use the local density approximation (LDA) [52,206] for the exchange-correlation
functional and the Troullier-Martins pseudopotential [241]. More sophisticated pseu-
dopotentials and exchange-correlation functionals can also be used without changing
the structure of the implementation. All quantities are reported in atomic units (au).
All calculations are carried out on the Ranger system maintained at Texas Advanced
Computing Center (TACC) under NSF TeraGrid program. Ranger is a distributed-
memory parallel system with 3,936 16-way SMP compute nodes and a total of 15,744
AMD Opteron quad-cores processors. Each compute node has a theoretical peak
performance of 9.2 gigaflops per second (Gflops) per core, and has 32 gigabyte (GB)
of memory (2 GB per core). InfiniBand technology is used for the interconnection
between all nodes that ensures high data communication performance.

Fig. 2.2 (a) and (b) illustrate one unit cell of the crystalline Na and Si system,
respectively. Na has a body centered cubic (bce) unit cell, with 2 atoms per cell and
a lattice constant of 7.994 au. Si has a diamond cubic unit cell, with 8 atoms per
cell and a lattice constant of 10.261 au. Fig. 2.2 (c¢) shows a quasi-1D Na system
with 4 unit cells extended along the z direction. The global domain is partitioned
into 4 elements {E;}{_, with one unit cell per element. The red area represents one
of the elements F5, and the corresponding extended element ()5 consists of both the
red area and the blue area. We recall that the buffer size along the z(y, z) direction
refers to the length of the buffer area extended beyond the boundary of the element
Ej along the z(y, z) direction. We use the number of unit cells as the unit of the
buffer size. Fig. 2.2 shows the case with the buffer size of 1.0 (unit cell) along the z
direction, and 0.0 along the x and y directions. The application of the adaptive local

basis functions is not restricted to the study of mono-crystalline systems, and the

69

potential function in each extended element does not necessarily satisfy the periodic
boundary condition. Mono-crystalline systems will be studied first to illustrate how
the adaptive local basis functions work in practice. Disordered system, as well as
cases with fractional buffer size will also be studied below.

To facilitate the comparison between different systems and parameters, we mea-
sure in all the examples the error of the total energy per atom. To be more specific,
we obtain first the self-consistent electron density and the corresponding total energy
in the global domain as in Eq. (1.27). This self-consistent electron density is used
as the input electron density to construct the Hamiltonian H.g. The output electron
density is then evaluated using the DG method, and the corresponding total energy
given by the DG method is compared to that calculated in the global domain. Com-
paring the error of the total energy in a single evaluation step allows us to assess the
numerical error even when the number of the basis functions is not sufficient. For
the case with sufficient number of the basis functions, it is found that the error of
the total energy per atom with additional mixing steps is consistent with the error
in the single evaluation step. Here we set the target accuracy to be 1073 au per
atom. The real space grid size in the global domain and in the extended elements is
set to be 0.50 au and 0.43 au for Na and Si, respectively. This grid size guarantees
that the uncertainty in the total energy in the global domain €2 is below the target
accuracy. The number of LGL grids inside each element is 16 and 24 along all the
three dimensions for Na and Si, respectively, which ensures the accuracy of numerical
integration.

We remarked in the end of section 2.3 that the DG framework is very flexible
and can incorporate not only the adaptive local basis functions but also other basis
functions such as local polynomials. In practice we find that the adaptive local
basis functions are computationally more efficient than polynomials. Therefore in

the following discussion only adaptive local functions will be used in the basis set.

70

The number of adaptive local functions per atom is also referred to as the degrees of

freedom (DOF) per atom.

2.5.2 Periodic Quasi-1D system

Fig. 2.3 (a) shows the error of the total energy per atom with respect to different
buffer sizes and different numbers of basis functions per atom (DOF per atom), for
the quasi-1D periodic sodium system in Fig. 2.2 (c¢). The element size is fixed to be
one unit cell. The penalty parameter « is 20. The error decreases systematically with
respect to the increase of the buffer size. The target accuracy 1072 au is plotted as
the black dashed horizontal line. For a small buffer size of 0.25 (red triangle with
solid line) the target accuracy is not yet reached with 20 basis functions per atom.
For a buffer size of 0.50 (black diamond with solid line) only 5 basis functions per
atom is needed to reach the target accuracy. For a larger buffer size of 0.75 (blue star
with solid line), the error is already far below the target accuracy with merely 2 basis
functions per atom. The potential function in the extended element does not satisfy
the periodic boundary condition along the z direction in the case with the buffer size
of 0.75, but the numerical results indicate that this violation does not much affect
the quality of the resulting basis functions in each element.

Similar behavior of the error is also found in the silicon system. Fig. 2.3 (b)
shows the error of the total energy per atom for the quasi-1D periodic silicon system
with four unit cells extended along the z direction, and with element size being one
unit cell. For a buffer size of 0.25 (red triangle with solid line) the number of basis
functions per atom needed to reach the target accuracy is more than 12. For a buffer
size of 0.50 (black diamond with solid line) and 0.75 (blue star with solid line) the
DOF per atom needed to reach the target accuracy is 6 and 5, respectively. Physical
intuition suggests that the minimum number of basis functions is 4, which reflects

one 2s and three 2p atomic orbitals. 20 ~ 40 number of basis functions per atom

71

Figure 2.2: (a) The unit cell for Na. (b) The unit cell for Si. (¢) A quasi-1D Na
system with 4 unit cells extended along the z direction. The red area represents one
of the elements F5. The corresponding extended element ()5 consists of both the red
area and the blue area. The buffer size is 1.0 unit cell along the z direction, and is
0.0 along the x and y directions.

is generally required to achieve good accuracy if Gaussian type orbitals or numerical
atomic orbitals are to be used [35]. Therefore for the quasi-1D system, our algorithm
achieves nearly the optimal performance in terms of the number of basis functions
per atom.

The behavior of the error found above does not depend on the length of the quasi-
1D system. Fig. 2.4 compares the error of the total energy per atom of the quasi-1D
mono-crystalline sodium system with respect to the length of the global domain (in

the unit of unit cell numbers), for 3 DOF per atom (blue diamond with dashed line),

72

x 10" x 10~

S 8
4
= =6
8 8
g3 £
(@] (@]
< <4
S 2 S
L . L 5
01"—11‘{ . . 0 . .
5 10 15 20 4 6 8 10 12
DOF/Atom DOF/Atom

(a) (b)

Figure 2.3: (a) The error of the total energy per atom (the y axis) for a periodic quasi-
1D sodium system consisting of 4 unit cells, with respect to the number of adaptive
local basis functions per atom (the x axis). The buffer sizes are chosen to be 0.25
(red triangle with solid line), 0.50 (black diamond with solid line), and 0.75 (blue star
with solid line). (b) The error of the total energy per atom for a periodic quasi-1D
silicon system consisting of 4 unit cells, with respect to the number of adaptive local
basis functions per atom (the x axis). The legend is the same as in (a). The black
dashed horizontal line refers to the target accuracy which is 1072 au per atom.

and 5 DOF per atom (red triangle with solid line), respectively. The element size is
fixed to be one unit cell. The buffer size is 0.50, and penalty parameter o = 20. The

error exhibits stable behavior with respect to the length of the global domain.

2.5.3 Quasi-1D system with random perturbation

The application of the adaptive local basis functions is not restricted to the mono-
crystalline systems. It can also be applied to disordered system as well. To elucidate
this fact we add a random perturbation uniformly distributed between [—0.1,0.1] au
to each Cartesian component of the atomic positions of the quasi-1D sodium system

and silicon system studied above. The global domain is kept the same, and so is

73

2.5

15

Error/Atom (au)

Unit Cell #

Figure 2.4: The error of the total energy per atom for a quasi-1D sodium system with
respect to the length of the global domain along the z direction in €2 . The buffer
size is fixed to be 0.50. We present the results with 3 basis functions per atom (blue
diamond with dashed line) and 5 basis functions per atom (red triangle with solid
line), respectively.

the partition of the elements and the corresponding extended elements. Fig. 2.5
illustrates the error of the total energy per atom with the disordered sodium system
(red diamond with solid line) and the disordered silicon system (blue diamond with
dashed line), respectively. The buffer size is 0.50 and the penalty parameter o = 20. 4

and 6 DOF per atom is needed to reach the target accuracy for Na and Si, respectively.

The number of the basis functions is comparable to that presented in Fig. 2.3.

2.5.4 Quasi-2D and 3D Bulk system

Now we study the dimension dependence of the behavior of the error. Our implemen-
tation of the DG method is also able to calculate the total energy for the quasi-2D
and bulk 3D systems. Fig. 2.6 (a) shows the behavior of the error for a quasi-2D
sodium system with the buffer size of 0.50 (red triangle with solid line) and of 1.00

(blue triangle with dashed line), respectively. Fig. 2.6 (b) shows the behavior of the

74

x 10

N
N U1 W
«

Error/Atom (au)
H
= (6]

o
a1

DOF/Atom

Figure 2.5: The error of the total energy per atom (the y axis) with respect to the
number of basis functions per atom (the z axis), for a disordered quasi-1D sodium
system (red diamond with solid line) and a disordered quasi-1D silicon system (blue
diamond with dashed line). The buffer size is fixed to be 0.50. The black dashed
horizontal line refers to the target accuracy which is 1073 au per atom.

error for 3D bulk sodium system using the buffer size of 0.50 (red diamond with solid
line) and 1.00 (blue diamond with dashed line), respectively. The buffer area extends
beyond the element only along the y and z directions in the quasi-2D case, and the
buffer area extends along all the three directions in the bulk 3D case. With increased
dimensionality, the number of sodium atoms in each element remains the same, but
the number of sodium atoms in the extended element increases with the volume of the
buffer area. For example, the numbers of the sodium atoms in the extended element
with a buffer size of 1.00 are 4, 18,54 for quasi-1D, quasi-2D and 3D bulk systems,
respectively. The increased number of atoms in the extended elements leads to more
eigenfunctions in the extended elements, and therefore more basis functions per atom
in the elements. For a buffer size of 0.50, 15 and 35 basis functions per atom are
required to reach target accuracy for the quasi-2D and bulk 3D sodium systems, re-

spectively. By increasing the buffer size to 1.00, the required DOF per atom decreases

75

to 5 and 20 for the quasi-2D and bulk 3D sodium systems, respectively.

-3

x 10 « 10—3
5
3 L

/3\ 2-5 i 1 —~ 4

8 3

g 7 E

< <

g 1.5¢ 12

= O 2&

w | o S~
1 - A -

0.5¢ O L
5 10 15 15 20 25 30 35
DOF/Atom DOF/Atom

() (b)

Figure 2.6: (a) The error of the total energy per atom (the y axis) for a quasi-
2D sodium system with respect to the number of basis functions per atom (the x
axis). The buffer size is chosen to be 0.50 (red triangle with solid line), and 1.00
(blue triangle with dashed line), respectively. (b) The error of the total energy per
atom for a bulk 3D sodium system (the y axis) with respect to the number of basis
functions per atom (the x axis). The buffer size is chosen to be 0.50 (red diamond
with solid line), and 1.00 (blue diamond with dashed line), respectively. The black
dashed horizontal line refers to the target accuracy which is 1073 au per atom.

2.5.5 The penalty parameter

The interior penalty formulation of the discontinuous Galerkin method contains an
important parameter « for stability reason. a = 20 has been applied uniformly to all
the examples studied above. Fig. 2.7 shows the a-dependence of the error of the total
energy per atom for the quasi-1D sodium system (red triangle with solid line) and the
quasi-1D silicon system (blue diamond with dashed line), respectively. The buffer size
is 0.50, and the DOF per atom used is 5 and 6 for sodium and silicon, respectively.

There exists a threshold value of « for both sodium and silicon, and in this case the

76

threshold value of « is slightly below 20. The error increases dramatically if « is below
this threshold value, since the inter-element continuity of the Kohn-Sham orbitals is
not effectively enforced by the penalty term. After passing this threshold value the
error increases much slower, but is still visible especially for very large value of «.
This is because the penalty term is included in the variational formulation (2.14) and
therefore is also reflected in the eigenvalues and eigenvectors. The rate of increase for
the error can be system dependent, and in this case the rate of increase for the error
in the silicon system is larger than that in the sodium system. Fig. 2.7 indicates that
the penalty parameter « plays an important role in the stability of the algorithm,
but the particular choice of the value of « is not crucial. The algorithm is stable with

respect to a large range of a values.

N\
\
\
0.1} ‘\
§ \
= \
e |
g \
= N
g \ S
W 0.004¢ | o
0.002} o
0.001} g
N . .
2 20 100 500 4000 32000

[of

Figure 2.7: The error of the total energy per atom (the y axis) with respect to
the penalty parameter a (the x axis), for a quasi-1D sodium system (red triangle
with solid line) and a quasi-1D silicon system (blue diamond with dashed line). The
number of basis functions per atom for sodium and silicon is 5 and 6, respectively.
The buffer size is fixed to be 0.50.

7

2.5.6 Computational efficiency

The small number of the adaptive basis functions per atom can lead to significant
saving of the computational time. We illustrate the efficiency of our algorithm using a
bulk 3D mono-crystalline sodium system with the buffer size of 1.00 and with 20 basis
functions per atom. Fig. 2.6 suggests that this choice of the parameters leads to the
target accuracy. The size of the global domain €2 ranges from 4 x 4 x 4 unit cells with
128 Na atoms to 12 x 12 x 12 unit cells with 3456 atoms. Each element is chosen to
be one unit cell. The number of processors used is proportional to the number of unit
cells, and 1, 728 processors are used in the problem with 12 x 12 x 12 unit cells. We
compare the wall clock time for a single evaluation step of the electron density with a
typical number of 10 LOBPCG iterations for solving the adaptive basis functions in
the extended elements. Fig. 2.8 compares the wall clock time for solving the adaptive
basis functions in the extended elements (blue diamond with dashed line), for solving
the DG eigenvalue problem using ScaLAPACK (red triangle with solid line), and for
the overhead in the DG method (black circle with dot dashed line). Since both the
size of the extended elements and the number of basis functions per atom are fixed,
the computational time for solving the adaptive basis functions does not depend on
the global domain size. The overhead in the DG method includes SVD filtering of
the basis functions, numerical integration, and data communication. All numerical
integrations are localized inside each element and its neighboring elements. Our
implementation ensures that the data communication is restricted to be within nearest
neighboring elements. Therefore the time for the overhead increases mildly with
respect to the global system size. For system size smaller than 1,000 atoms, solving
the adaptive local basis functions in the extended elements is more time consuming
than the DG eigensolver. The complexity of the DG eigensolver scales cubically with
respect to global system size, and starts to dominate the cost of computational time for

system size larger than 1,000 atoms. Since the number of processors is proportional to

78

the number of elements, the ideal wall clock time for the DG solver scales quadratically
with respect to the number of atoms. This quadratic scaling is illustrated by the slope
of the small red triangle in Fig. 2.8. Numerical result shows that up to 3,456 atoms,
the performance of ScaLAPACK is still in good correspondence with respect to the

ideal scaling. In this case the matrix size of the DG Hamiltonian matrix is 69, 120.

4

10

Wall Clock Time (sec)

128 432 1024 2000 3456
Atom #

Figure 2.8: The wall clock time for solving the adaptive local basis functions in the
extended elements (blue diamond with dashed line), for solving the DG eigenvalue
problem using ScaLAPACK (red triangle with solid line), and for the overhead in the
DG formalism (black circle with dot dashed line). The x axis is the number of atoms
for different bulk 3D sodium systems. The slope of the small red triangle illustrates
the ideal quadratic scaling (2%) for the wall clock time cost for the DG eigenvalue
solver in parallel.

The efficiency due to the dimension reduction of the adaptive basis functions
can be illustrated by the comparison between the cost of the computational time
of the LOBPCG eigensolver directly in the global domain with a planewave basis
set (Global) , and that of the DG eigenvalue problem with the adaptive basis func-
tions (DG), as reported in Table 2.1. The global solver uses a typical number of 10
LOBPCG iteration steps. On a single processor, the global solver costs 2,235 sec for
the bulk 3D sodium system with 128 atoms, and 53, 395 sec for the bulk 3D sodium

79

system with 432 atoms. By assuming that the global solver can be ideally paral-
lelized, the third column of Table 2.1 reports the computational time measured on a
single processor divided by the number of processors used in the corresponding DG
eigensolver. The fourth column reports the wall clock time for the DG eigensolver
executed in parallel. We remark that the computational time for solving the adaptive
local basis functions is not taken into account, since we are comparing the saving of
the computational time due to the dimension reduction of the basis functions. It is
found that the saving of the computational time is already significant even when the

system size is relatively small.

Atom# | Proc# | Global (sec) | DG (sec)
128 64 35 4
432 216 248 35

Table 2.1: The comparison of the cost of the computational time using the planewave
discretization (the LOBPCG solver directly applied in the global domain) and that
using the adaptive local basis functions (the DG eigenvalue solver using ScalLAPACK).
The systems under study are the bulk 3D sodium system with 4 x 4 x 4 unit cells
(128 Na atoms), and with 6 x 6 x 6 unit cells (432 Na atoms), respectively.

2.6 Conclusion

In this chapter we proposed the adaptive local basis method for discretizing the Kohn-
Sham Hamiltonian operator. We demonstrated that the adaptive local basis functions
are efficient for calculating the total energy and electron density, and can reach high
accuracy (below 1073 Hartree/atom) with complexity comparable to tight binding
method. The adaptive local basis functions are discontinuous in the global domain,
and the continuous Kohn-Sham orbitals and electron density are reconstructed from
these discontinuous basis functions using the discontinuous Galerkin (DG) framework.
The environmental effect is automatically built into the basis functions, thanks to the

flexibility provided by the DG framework.

80

In order to generalize the current framework to the force calculation and further
to the geometry optimization and the ab initio molecular dynamics simulation, the
adaptive local basis functions and their derivatives with respect to the positions of
the atoms (called Pulay force [213]) should be both accessible. Our preliminary
result suggests that the effect of the Pulay force can be systematically reduced. This
generalization will be studied in detail in the near future.

The current implementation of the DG method is already able to perform the total
energy calculation for systems consisting of thousands of atoms. We are aware of the
fact that calculations of this range is already achievable with several existing software
packages using plane wave basis functions with iterative methods. However, the
performance of the DG method with adaptive local basis functions can be improved
by taking into account the block sparsity of the DG stiffness matrix. Furthermore,
the local nature of the adaptive basis functions allows us to incorporate the recently
developed pole expansion and selected inversion type fast algorithms [164, 169, 170]
into the DG framework. The capability of the resulting algorithm is expected to be
greatly enhanced compared to the current implementation. This is also within our

scope in the near future.

81

Chapter 3

Representation of the Fermi

operator: Pole expansion

3.1 Introduction

In this chapter we study the decomposition of the Fermi operator, which represents

the finite temperature density matrix p:

2
" 1+ exp(B(H — p))

—1- tanh<§(H - M)), (3.1)

p=f(H)

where Here tanh is the hyperbolic tangent function. As opposed to the formula-
tion (1.34) in Chapter 1, we add the factor 2 in the numerator accounts for the spin
degeneracy of the electrons.

The Fermi operator is a complicated matrix-valued function, and cannot be di-
rectly computed without further simplification. The Fermi operator expansion frame-

work expands the Fermi operator into a series of simple functions

f(H) ~ Z fi(H). (3.2)

82

Each simple function f;(H) is a polynomial or a rational function of H, and can be
calculated without diagonalization. The number of simple functions (P) to approx-
imate the Fermi operator reflects the representation cost of Fermi operator. In
practice it is desirable to have the representation cost P as small as possible.

The representation cost of the Fermi operator is a function of SAFE (for metallic
system at finite temperature) or AE/E, (for insulating systems) [101], where AFE is
the spectral width of the discretized Hamiltonian matrix, and Ej is the spectrum gap
of the Hamiltonian around the chemical potential. If polynomials are used to expand
the Fermi operator for the metallic system with £, = 0, the representation cost scales
as O(BAE). Therefore the number of polynomials P can be thousands or more if
the temperature is low or the spectrum width AF is large. The representation cost
can be reduced by means of rational functions to O(BAE)"? [53,199]. However, the
optimal representation cost remains unclear.

This dissertation develops two novel strategies, the multipole expansion and the
pole expansion, to reduce the computational cost. Both the multipole expansion and
the pole expansion techniques reduce the representation cost of Fermi operator down
to logarithmic scaling O(ln(ﬁAE)). Numerical examples show that the logarithmic
scaling enables accurate and efficient representation of the Fermi operator even for
BAEFE being in the order of millions. Since the scaling of the representation cost is the
same in the multipole expansion and in the pole expansion, the difference between the
two methods is in the preconstant. Numerical example shows that the preconstant
in the pole expansion is smaller than that in the multipole expansion, and therefore
the pole expansion is computationally more efficient. Pole expansion will be used in
designing accurate and efficient algorithms for the evaluation of the electron density
in Chapter 4.

The rest of this chapter is organized as follows. Section 3.2 introduces the multi-

pole expansion, the pole expansion is described in Section 3.3. The relation between

83

the multipole expansion and the pole expansion is discussed in Section 3.4, followed
by the conclusion given in Section 3.5. The multipole expansion and the pole expan-
sion use different mathematical techniques and are both interesting from numerical
analysis point of view. Readers who are more interested in the main flow of the new
method for solving KSDFT can directly read Section 3.3 and then go to Chapter 4.

Materials in this chapter have been presented in [160, 164].

3.2 Multipole expansion

3.2.1 Formulation

The multipole expansion of the Fermi operator starts from the Matsubara represen-

tation [176]

_1—4%§:6 %_1) (3.3)

The summation in (3.3) can be seen as a summation of residues contributed from the
poles {(2{ — 1)wi}, with [a positive integer, on the imaginary axis. This suggests
to look for a multipole expansion of the contributions from the poles, as done in the
fast multipole method (FMM) [107]. To do so, we use a dyadic decomposition of the
poles, in which the n-th group contains terms from [= 2" ! to [= 2" — 1, for a
total of 277! terms (see Figure 3.1 for illustration). We decompose the summation in

Eq.(3.3) accordingly, with z = S(H — p) for simplicity

oo oo 2"—1
D D D ST
= n=1 |=2n—1

The basic idea is to combine the simple poles into a set of multipoles at [= [,,,

where [,, is taken as the midpoint of the interval [2"~1 2" — 1]

o]
= % (3.5)

84

Figure 3.1: Illustration of the pole decomposition (3.12). From 2" to 2" — 1 poles
are grouped together as shown in the figure. The spectrum is indicated by the red
line on the real axis.

Then the S, term in the above equation can be written as

2" —1

1
Sn = Z x— (20, — Dmi —2(1 — 1,)mi

J=2n—1

-y S (A

B x—(2l — Dmi x — (2, —1)m
- v=0 3.6)
2n—1 P-1 (

- Z x—(2l —1)mi (:L’E(EQLLL)?{;W)V

[=2n—1 v=0

- Z x— (20— 1)mi <:B —(EQ;,LZ—) 1)7rz'>P

|=92n—1

—_

In deriving Eq. (3.6) we used the result for the summation of a geometric series.

Using the fact that x is real, the second term in Eq. (3.6) can be bounded by

2n 1 B . 2l P

Z) H 2(l = 1,)mi) < Z 1 ‘2(1 ln) < 11

S — 2[— Dmille — (21, — 1)mi 5 (2l —)|l 20, — 1 27 37
(3.7)

Therefore, we can approximate the sum S, by the first P terms, and the error decays

85

exponentially with P:

2n 1 P-

Sn(@) = Z l — 1)mi (l;l— 1)7”>V

|=2n— v=0

,_.

< —— .
~ 2w 3P’ (3:8)

uniformly in x. The overall philosophy here is similar to the fast multipole method
[107]: Given a preset error tolerance, one selects P, the number of terms to retain in
Sn, according to Eq. (3.8).

Interestingly, the remainder of the summation in Eq. (3.3) from [= m to oo has

an explicit expression

1 1 s
— X _ _
:E 2l i 5 S (m 5 + x) , (3.9)

where 1 is the digamma function ¢(z) = I"(z)/I'(2). It is well known [131] that the

digamma function has the following asymptotic expansion

1 1 1
~ S — — < . .
P(z) ~ In(z) 55 " 102 +(9(Z4>, larg z| < 7 and |z| = oo (3.10)
Therefore
1 ’ 1 ' 1
Sy m—-+-—z)~Sn|(m-=——z —i—(?(—)
2 7 2 7 2
(3.11)

2x 1
= arctan | ——— | + (’)(—) m — 00.
(2m —)7 2

Figure 3.2 shows that the asymptotic approximation (3.11) is already rather accurate
when m = 10.

Eq. (3.11) also shows the effectiveness of the multipole representation from the

viewpoint of traditional polynomial approximations. At zero temperature, the Fermi-

Dirac function is a step function that cannot be accurately approximated by any finite

order polynomial. At finite but low temperature, it is a continuous function with a

86

_2 " " ")
-1000 -500 0 500 1000

Figure 3.2: The function Iy (m — % + %x) (red circle), i.e. the remainder of the pole
expansion in Eq. (3.12) is compared with the function arctan <(2m27f1)7r) (blue solid

line) for m = 10

very large derivative at x = 0, i.e. when the energy equals the chemical potential
1. The magnitude of this derivative becomes smaller and, correspondingly, the Fermi
function becomes smoother as the temperature is raised. One can use the value of the
derivative of the Fermi function at x = 0 to measure the difficulty of an FOE. After
eliminating the first m terms in the expansion, Eq. (3.11) shows that asymptotically

the derivative is multiplied by the factor ﬁ, which is equivalent to a rescaling

2m
of the temperature by the same factor. In particular, if we explicitly include the first
2N terms in the multipole representation of the Fermi operator, we are left with a
remainder which is well approximated by Eq. (3.11), so that, effectively, the difficulty
is reduced by a factor 2. As a matter of fact standard polynomials approximations,
such as the Chebyshev expansion, can be used to efficiently represent the remainder

in Eq. (3.9) even at very low temperature.

In summary, we arrive at the following multipole representation for the Fermi

87

operator

2" —1 P-1 l . l) v
_1_4%21;1611) — 2l -1 m%((2ln—1)m')
%w (zN % QLﬂ(H)) +ON/3P). (3.12)

The multipole part is evaluated directly as discussed below, and the remainder is

evaluated with the standard polynomial method.

3.2.2 Numerical calculation and error analysis

To show the power of the multipole expansion, we discuss a possible algorithm to
compute the Fermi operator in electronic structure calculations and present a de-
tailed analysis of its cost in terms of SAe. Given the Hamiltonian matrix H, it is
straightforward to compute the density matrix p from the multipole expansion if we
can calculate the Green’s functions By, = [3(H — p) — (21, — 1)mi]~" for different n.
A possible way to calculate the inverse matrices is by the Newton-Schulz iteration.
For any non-degenerate matrix A, the Newton-Schulz iteration computes the inverse

B=A"1!as
By, =2B; — B, AB,. (3.13)

The iteration error is measured by the spectral radius, i.e. the eigenvalue of largest
magnitude, of the matrix I — AB,, where I is the identity matrix. In the following
we denote the spectral radius of the matrix A by o(A). Then the spectral radius at

the k-th step of the Newton-Schulz iteration is Ry = I — AB), and
o(Ris1) = o(Ry)? = o(Rp)> . (3.14)

Thus the Newton-Schulz iteration has quadratic convergence. With a proper choice

88

of the initial guess (see [53]), the number of iterations required to converge is bounded
by a constant, and this constant depends only on the target accuracy.

The remainder, i.e. the term associated to the digamma function in Eq. (3.12),
can be evaluated by standard polynomial approximations such as the Chebyshev
expansion. The order of Chebyshev polynomials needed for a given target accuracy
is proportional to SAe/2N*! (see [16, Appendix]).

Except for the error coming from the truncated multipole representation, the main
source of error in applications comes from the numerical approximation of the Green’s
functions B;,. To understand the impact of this numerical error on the representation

of the Fermi operator, let us rewrite

2"—1 P-1 2" —1
=) BMZ 2(1— L)wiBy,)" =Y Byt > (=2(l —1,)wi)".
{=2n—1 v=0 [=2n—1

The factor) ,(—2(l — l,,)mi)” is large, but we can control the total error in S, in
terms of the spectral radius o(B,, — 1§1n)~ Here E’ln is the numerical estimate of B, .

The error is bounded by

B
L
’U
r—-

O’(Sn _ Sn) < 2n—1(2n—1ﬂ_)1/0,(Bl/+1 N §u+1> < (2n 1)1/+10_(Bu+1 . §y+1)’

v

Il
o
Il
o

v

(3.15)
where we have omitted the subscript [, in B;, and in E’ln. In what follows the

quantity S0 (27!) to (BT — E’”“) will be denoted by ep. Then we have

!
—

o
o)
Il

(2" '7)"*'o((B* — B")B + (B — B")(B — B) + B'(B — B))

<
Il
o

B
e
—

(2" 7)1 (0(B) + o(B — B))a(B" — B") + Y (2" 'n)""o(B)"o(B — B).

v

IN

N
Il
—_
Il
=)

(3.16)

Here we took into account the fact that the v = 0 term in the first summation is

equal to zero, and have used the properties 6(A+ B) < 0(A)+0(B), and 0(AB) <

89

o(A)o(B), respectively.
Noting that 2" '7o(By,) < 1/3 and changing v to v + 1 in the first summation,

we can rewrite ep as

P2 P-1

1 n— 1 n— 1 1/+1 v+1 Hu+1 1 n—1 o)
ep (3+2 VEZO 2 B — B)‘i‘;:o §2 7TO'(B—B)
1 n—1 D) 3 n—1 o)
< (g +2" 'ro(B — B))ep_1 + 52 mo(B — B)
1 3
= (g + 61)6p_1 + 561.

(3.17)
In the last equality, we used the fact that e; = 2"~'7o(B — B). Therefore, the error

ep satisfies the following recursion formula

3e1/2 1 3e1/2 1 P_1 3e1/2
BtV i e)< (2 TUE) (3.
Ep 61—2/3_(—|—€1)< +6P_1_2/3>_(3—|—€1) 61_'_61—2/3 (318)
Taking e; < %, we have

A~

ep < e =2""'ro(B — B). (3.19)

Therefore, using Eq. (3.14) we find that the number &k of Newton-Schulz iterations

~

must be bounded as dictated by the following inequality in order for the error o(.S,, —
S,) to be < 10~P/N.

10~P
N

2" 15 (Ry)? < (3.20)

Here we have used the fact that o(B;,) < 1/7 for any n. Each Newton-Schulz
iteration requires two matrix by matrix multiplications, and the number of matrix by

matrix multiplications needed in the Newton-Schulz iteration for B;, with n < N is

bounded by

Dlog,10 + N + log, N
2log2< 0g; 10+ NV + log,) (3.21)

— log, U(RO)

To obtain a target accuracy o(p — p) < 1072 for a numerical estimate p of the

90

density matrix, taking into account the operational cost of calculating the remainder
and the direct multipole summation in the FOE, the number of matrix by matrix

multiplications nyny is bounded by

nvM S 2N 10g2 N + ClN + 022_N_1BA€. (322)

Here we used the property: log,(z + y) < log, x 4 log, y when z,y > 2, and defined

the constant C; as follows:

N
2 Dlog, 10 + log, N
C,=— E log . 3.23

7N — 2 < —logza((RO)ln) ()

The dependence on 2 V"!3Ae in the last term on the right hand side of (3.22)
comes from Chebyshev expansion used to calculate the remainder. From numerical
calculations on model systems, the constant C; and Cs will be shown to be rather

small. Finally, choosing N o In(SA€), we obtain
nyy X (In SA€) - (Inln SA€) (3.24)

with a small prefactor.

3.2.3 Numerical examples

We illustrate the algorithm in three simple cases. The first is an off-lattice one
dimensional model defined in a supercell with periodic boundary conditions. In this
example, we discretize the Hamiltonian with the finite difference method, resulting in
a very broad spectrum with a width of about 2000eV, and we choose a temperature
as low as 32K. In the second example we consider a nearest neighbor tight binding
Hamiltonian in a three dimensional simple cubic lattice and set the temperature to

100K. In the third example we consider a three dimensional Anderson model with

91

random on-site energy on a simple cubic lattice at 100K.

One dimensional model with large spectral width

In this example, a one dimensional crystal is described by a periodic supercell
with 10 atoms, evenly spaced. We take the distance between adjacent atoms to be

a = 5.29A. The one-particle Hamiltonian is given by

1 02
H=— s +V. (3.25)

The potential V is given by a sum of Gaussians centered at the atoms with width
o = 1.32A and depth V, = 13.6eV. The kinetic energy is discretized using a simple 3-
point finite difference formula, resulting in a Hamiltonian H with a discrete eigenvalue
spectrum with lower and upper eigenvalues equal to e = 6.76eV and e, = 1959eV,
respectively. Various temperatures from 1024K to 32K were tried. Figure 3.3 reports
the linear-log graph of nyn, the number of matrix by matrix multiplications needed
to evaluate the density matrix using our FOE, versus SAe, with SAe plotted in a
logarithmic scale. The logarithmic dependence can be clearly seen. The prefactor
of the logarithmic dependence is rather small: when SAe is doubled, a number of
additional matrix multiplications equal to 17 is required to achieve two-digit accuracy
(D = 2), a number equal to 19 is needed for D = 4, and a number equal to 21 is
needed for D = 6, respectively. The observed D-dependence of the number of matrix
multiplications agrees well with the prediction in (3.22).

In order to assess the validity of the criterion for the number of matrix multipli-
cations given in Eq. (23), we report in Table 3.1 the calculated relative energy error
and relative density error, respectively, at different temperatures, when the number
of matrix multiplications is bounded as in formula (23) using different values for D.

The relative energy error, Ae,., measures the accuracy in the calculation of the total

92

350

30000 200000 700000
BAe

Figure 3.3: Linear-log plot of the number of matrix matrix multiplications nyn versus
BAe. nypy depends logarithmically on fAe with a small constant prefactor.

electronic energy corresponding to the supercell E = Tr(pH). It is defined as

~

|~ E]

AEI‘Cl = | E|

(3.26)
Similarly the relative L' error in the density function in real space is defined as
Apre) = ———. (3.27)

Because Tr p = N,, where NV, is the total number of electrons in the supercell, Ap,q is
the same as the L' density error per electron. Table 3.1 shows that for all the values
of 5Ae, our algorithm gives a numerical accuracy that is even better than the target
accuracy D. This is not surprising because our theoretical analysis was based on the
most conservative error estimates.

Periodic three dimensional tight-binding model

In this example we consider a periodic three dimensional single-band tight-binding
Hamiltonian in a simple cubic lattice. The Hamiltonian, which can be viewed as the

discretized form of a free-particle Hamiltonian, is given in second quantized notation

93

‘ BAe

T
\ H D=2 D= D=6
1024K | 2.22 x 10* || 1.64 x 107® | 5.98 x 107% | 3.31 x 10~®
512K | 4.44 x10* || 1.73 x 107® | 6.49 x 107% | 3.70 x 10~
256K | 8.89 x 10* | 1.78 x 107% | 6.83 x 107% | 3.96 x 10~®
128K | 1.78 x 10° || 1.74 x 107 | 6.55 x 107% | 3.75 x 10~®
64K | 3.56 x 10° || 1.75x 107 | 6.62 x 107% | 3.80 x 10~®
32K | 7.12x10° | 1.76 x 107 | 6.66 x 107% | 3.82 x 10~
T ‘ BAE H Aprel
| | D=2 D=4 D=6
1024K | 2.22 x 10* | 4.21 x 107* | 2.23 x 107% | 1.50 x 10~®
512K | 4.44 x 10* || 4.63 x 107* | 2.52 x 107% | 1.74 x 10~®
256K | 8.89 x 10 || 4.77 x 107* | 2.62 x 107% | 1.81 x 107®
128K | 1.78 x 10° || 5.04 x 107* | 2.80 x 107° | 1.95 x 10~®
64K | 3.56 x 10° | 4.92 x 107* | 2.70 x 107% | 1.86 x 10~
32K | 7.12x10° || 4.84 x 107* | 2.64 x 107% | 1.80 x 107®

Table 3.1: One dimensional Hamiltonian model with large spectral gap. Relative
energy error Ae, and relative L' density error Ap.q for a large range of values of
BAe and several values of D.

by:

H:—tZC;_Cj,

<i,7>

(3.28)

where the sum includes the nearest neighbors only. Choosing a value of 2.27eV
for the hopping parameter ¢ the band extrema occur at e, = 13.606eV, and at
€. = —13.606eV, respectively. In the numerical calculation we consider a periodically
repeated supercell with 1000 sites and chose a value of 100K for the temperature.
Table 3.2 shows the dependence of nyn, Aérr, and Ap on the chemical potential
w, for different D choices. Compared to the previous one dimensional example in
which SAe was as large as 7.12 x 10°, here 8Ae = 1600 due to the much smaller
spectral width of the tight-binding Hamiltonian. When g = 0 the chemical potential
lies exactly in the middle of the spectrum. This symmetry leads to a relative error as

low as 10719 for the density function.

94

[D14 | D=5
H nvm ‘ At ‘ Aprel ‘ nvm ‘ At ‘ Aprel

—10.88eV || 320 | 4.09 x 1072 | 2.31 x 1071° | 376 | 2.27 x 10713 | 2.37 x 107
—5.44eV || 308 | 1.48 x 1079 | 3.15 x 107 | 356 | 4.77 x 10713 | 2.52 x 1071°
0.00eV 305 | 1.55 x 107 | 6.26 x 107 | 357 | 2.98 x 107 | 6.26 x 10~
5.44eV 308 | 1.45x 1078 | 1.34 x 1072 | 356 | 5.36 x 10713 | 1.07 x 107'¢
10.88eV | 320 | 1.69 x 1078 | 1.78 x 10713 | 376 | 1.09 x 1072 | 1.80 x 1077

Table 3.2: Three dimensional periodic tight binding model. Number of matrix matrix
multiplications nypy, relative energy error Ae,, and relative L' density error Ap,.
For p = 0, the algorithm achieves machine accuracy for the absolute error of the
density function as a consequence of symmetry.

Three dimensional disordered Anderson model
In this example we consider an Anderson model with on-site disorder on a simple

cubic lattice. The Hamiltonian is given by

H=—t Z crej+ Z €ici ¢ (3.29)
<iyj> i

This Hamiltonian contains random on-site energies ¢; uniformly distributed in the in-
terval [—1.13eV, 1.13eV], and we use the same hopping parameter ¢ as in the previous
(ordered) example. In the numerical calculation we consider, as before, a supercell
with 1000 sites with periodic boundary conditions, and choose again a temperature of
100K. In one realization of disorder corresponding to a particular set of random on-
site energies, the spectrum has extrema at e, = 13.619eV and at e. = —13.676eV.
The effect of disorder on the density function is remarkable: while in the periodic
tight-binding case the density was uniform, having the same constant value at all the
lattice sites, now the density is a random function in the lattice sites within the su-
percell. Table 3.3 reports for the disordered model the same data that were reported
in Table 3.2 for the ordered model. We see that the accuracy of our numerical FOE
is the same in the two cases, irrespective of disorder. The only difference is that the

super convergence due to symmetry for g = 0 no longer exists in the disordered case.

95

[D=1 | D=¢
H MM ‘ At ‘ Aprel ‘ nvm ‘ At ‘ Aprel

—10.88eV || 320 | 5.16 x 1072 | 1.72 x 107! | 376 | 3.16 x 107** | 2.59 x 10~
—5.44eV || 308 | 4.75 x 1079 | 2.43 x 107" | 356 | 3.71 x 107 | 1.48 x 107*?
0.00eV || 305 | 8.08 x 107 | 9.50 x 107** | 357 | 1.76 x 107"* | 2.39 x 10~
5.44eV | 308 | 1.01 x107® | 1.22x 107*2 | 356 | 3.57 x 1073 | 8.05 x 1077
10.88eV || 320 | 1.30 x 107® | 1.56 x 107** | 376 | 9.56 x 1073 | 1.83 x 1077

Table 3.3: Three dimensional Anderson model with on-site disorder. Number of
matrix matrix multiplications nym, relative energy error Ae,, and relative L' density
error Apyel.

3.3 Pole expansion

3.3.1 Pole expansion: basic idea

Efficient representation of the Fermi-Dirac function can be achieved alternatively by

using the discretized contour integral in the complex plane:

_ 1 -1
Ha) =5 [£ =a) T a
P (3.30)
~Y ——, TERzE€LuwEL
r — z;

1=1

Here {z;} are the quadrature points on the complex contour I', and {w;} are the
quadrature weights. Each point z; is a single-pole on the complex plane, and Eq. (3.30)
is referred to as the pole expansion in the following discussion. The advantage of the
pole expansion is that when substituting H for z in Eq. (3.30), each term H“’T only
involves matrix-inversion but not matrix-matrix multiplication as in the multipole ex-
pansion. As shall be seen in Chapter 4, pole expansion (3.30) allows the development
of accurate and efficient algorithm for solving KSDFT. The representation cost of the
pole expansion developed in this section scales as O(log(BAFE)). The mathematical

technique used in the pole expansion originates from the idea in [118].

Let us first briefly recall the main idea of [118]. Consider a function f that is

96

analytic in C\(—o0, 0] and an operator A with spectrum in [m, M] C R*, one wants

to evaluate f(A) using a rational expansion of f by discretizing the contour integral

21

flA) = —/Ff(z)(z — A)ldz. (3.31)

The innovative technique in [118] was to construct a conformal map that maps the
stripe S = [-K, K] x [0, K'] to the upper half (denoted as Q%) of the domain Q =

C\((—o0, 0] U [m, M]). This special map from ¢t € S to z € QF is given by

. \/n@M(H), w=sn(t) = sn(tlk), k= ﬁ% (3.32)

Here sn(t) is one of the Jacobi elliptic functions and the numbers K and K’ are

complete elliptic integrals whose values are given by the condition that the map is
from S to QF.
Applying the trapezoidal rule with @ equally spaced points in (=K +iK'/2, K +
iK'/2),
iK' (j—-3K

tj=—K + - +2

;T2 1<j<@Q, (3.33)

we get the quadrature rule (denote z; = 2(t;))

folA) = (3.34)

—uw— L F(z)(z — A en(t)) dn(t))
; k: 1—sn(i))? '

Here cn and dn are the other two Jacobi elliptic functions in standard notation and the

factor en(t;) dn(t;) (k= — sn(t;)) "2vmM /k comes from the Jacobian of the function
z(t).

It is proved in [118] that the convergence is exponential in the number of quadra-

ture points () and the exponent deteriorates only logarithmically as M/m — oo:

I7(4) = Jo(A)]| = Ofe @/ esi/my) (3.35)

97

To adapt the idea to our setting with the Fermi-Dirac function or the hyperbolic
tangent function, we face with two differences: First, the tanh function has singular-
ities on the imaginary axis. Second, the operator we are considering, 5(H —), has

spectrum on both the negative and positive axis.

3.3.2 Gapped case: insulating system

We first consider the case when the Hamiltonian H has a gap in its spectrum around
the chemical potential i, such that dist(u,0(H)) = E,; > 0. Physically, this will be
the case when the system is an insulator.

Let us consider f(z) = tanh(£2'/?) acting on the operator A = (H — u)?. Now,
f(2) has singularities only on (—o0, 0] and the spectrum of A is contained in [E}, E3],
where

Ey = max |E— pl.
Eco(H)

We note that obviously Fy; < AFE. Hence we are back in the same scenario as

considered in [118] except that we need to take care of different branches of the
square root function when we apply the quadrature rule.

More specifically, we construct the contour and quadrature points z; in the z-plane

1/2

using parameters m = Eg and M = E%,. Denote g(£) = tanh(8¢/2), fji = +2,'7,

and B = H — p. The quadrature rule is then given by

go(B) =

—2Kv/mM i 9(&)(& — B) " en(t;) dn(t;)
TQk — F(k=1 —sn(ty))?

(&)& — B) ten(ty) dn(ty)
D ErTa)E) (339)

Jj=1

where the factors §J-i in the denominator come from the Jacobian of the map from z

to £. The number of poles to be inverted is Nyoe = 2Q). After applying (3.35), we

98

have a similar error estimate for g(B)
I9(B) = go(B)|| = Oe @/ @losP/Ea)), (3.37)

In Fig. 3.4, a typical configuration of the quadrature points is shown. The x-axis
is taken to be E — pu. We see that in this case the contour consists of two loops, one
around the spectrum below the chemical potential and the other around the spectrum

above the chemical potential.

5

02 +++ ++T
ht 7
i &
4+ 5 i
o=} i
& T
& T
& +
3 -0.2t,*

Im
N
:
i
i

Figure 3.4: A typical configuration of the poles on a two-loop contour. @ = 30,
E, = 0.2, Ey = 4 and 8 = 1000. The red line indicates the spectrum. The inset
shows the poles close to the origin. The x-axis is £ — p with E the eigenvalue of H.
The poles with negative imaginary parts are not explicitly calculated.

Note further that as the temperature goes to zero, the Fermi-Dirac function con-

verges to the step function:

2, £<0,
n(§) = (3.38)
0, £>0.
Therefore, the contribution of the quadrature points 5]* on the right half plane (§R§]+ >

99

0) is negligible when f is large. In particular, for the case of zero temperature, one
may choose only the quadrature points on the left half plane. The quadrature formula

we obtain then becomes

(3.39)

— m © (& -B)len ;) dn(t;
o) - Y (5 (6 B nl) it

TRk & (k=1 —sn(t;))?

=1

The number of poles to be inverted is then Ny = Q.
We show in Fig. 3.5 a typical configuration of the set of quadrature points. Only

one loop is required compared with Fig. 3.4.

3
+
0.2
2 + T+
+ +++ 0 j%
o *-0.2f4

Im
o
+ +

+
+
+

_1, I ++

+
+
+ +

-2 + 4 ++

-3 L

-6 -4 -2 0 2 4
Re

Figure 3.5: A typical configuration of the poles for zero temperature (5 = 00).
Q =30, £, = 0.2 and Ey; = 4. The red line indicates the spectrum. The inset zooms
into the poles that is close to the origin. The x-axis is £ — p with E the eigenvalue
of H. The poles with negative imaginary parts are not explicitly calculated.

3.3.3 Gapless case: metallic system

The more challenging case is when the spectrum of H does not have a gap, i.e. I/, =

0. Physically, this corresponds to the case of metallic systems. In this case, the

100

construction discussed in the last subsection does not work.

To overcome this problem, we note that the hyperbolic tangent function tanh(gz)
is analytic except at poles (2 — 1)7/fi, | € Z on the imaginary axis. Therefore,
we could construct a contour around the whole spectrum of H which passes through
the imaginary axis on the upper half plane between the origin and 7/ and also on
the lower half plane between the origin and —m/fi. Thus, we will have a dumbbell
shaped contour as shown in Fig. 3.6.

To be more specific, let us first construct the contour and quadrature points z;
in the z-plane as in the last subsection using parameters m = 72/4% and M =
E3 + 7w /3% Denote & = £(z; — 7%/8%)Y/2, g = tanh(B¢/2) and B = H — ji. The

quadrature rule takes the following form

9o(B) =

—2Kv/mM i 9(&) (& — B) " en(t;) dn(t;)
TQk — &5 (k=1 —sn(t;))?

5_ B) " en(ty) dn(t;)
n Z 9(§ S ——r) . (3.40)

Jj=1

When apply the quadrature formula, the number of poles to be inverted is Npole = 2Q).
Fig. 3.6 shows a typical configuration of quadrature points for) = 30. The map
£(2) = (z — m%/B*)Y/? maps the circle in the z-plane to a dumbbell-shaped contour
(put two branches together).

Actually, what is done could be understood as follows. Similar to [118], we have
constructed a map from the rectangular domain [—3K, K] x [0, K'] to the upper half

of the domain

U= {z| Sz > 0N\ ([=Ex, En] Uilr/B,0)).

The map is carried out in three steps, shown in Fig. 3.7. The first two steps use the

original map constructed in [118], however with extended domain of definition. First,

101

5
+ +
0.01 +ox o+
4 L
0
o,
+ +
3 _ + x4
0.01 4 4
-0.02 0 0.02
2 + +
+ + + +
+ +
+ +
= M ++ ++ M
o
: %
P
+ +
+ N N +
-1y + +
+ +
+ + + +
-2 + +
_3 1
6 -4 -2 0 2 4 6

Figure 3.6: A typical configuration of the poles on a dumbbell-shaped contour.) =
30, £y, =0, By = 4 and 8 = 1000. The inset zooms into the part close to the origin.
The red line indicates the spectrum. The black crosses indicate the positions of the
poles of tanh function on the imaginary axis. The poles with negative imaginary
parts are not explicitly calculated.

the Jacobi elliptic function

w=sn(t) = sn(tlk), k= ﬁ% (3.41)

maps the rectangular domain to the complex plane, with the ends mapping to [1, k7]
and the middle vertical line —K + [0, K’] to [k~', —1]. Then, the M&bius transfor-

mation

k=l —u

2= W(k_l * u) (3.42)

maps the complex plane to itself in such a way that [—k~!, —1] and [1, k'] are mapped

to [0, m] and [M, oo], respectively. Finally, the shifted square root function

€= (z—m)/? (3.43)

102

—3K +iK' —-K+iK' K+iK'

' '
' '
S — _——
' '

Figure 3.7: The map from the rectangular domain [—3K, K] x [0, K'] to the upper-
half of the domain U. The map is constructed in three steps: ¢t — u — z — £. The
boundaries are shown in various colors and line styles.

maps the complex plane to the upper-half plane (we choose the branch of the square
root such that the lower-half plane is mapped to the second quadrant and the upper-
half plane is mapped to the first quadrant), in such a way that [0, m] is sent to i[0, /m)]
and [M, 00) is sent to (—oo, —/M — m] U [v/M —m,c0). The map can be extended
to a map from [—7K, K] x [0, K’] to the whole U, in this case, the z-plane becomes
a double-covered Riemann surface with branch point at m.

Since the function ¢ is analytic in the domain U, the composite function g(t) =
g(&(2z(u(t)))) is analytic in the stripe in the t-plane, and therefore, the trapezoidal
rule converges exponentially fast. Using a similar analysis that leads to (3.35), it can

be shown that
lg(B) — go(B)| = O(e= @/ 10s3Fm)) (3.44)

where C' is a constant.
We remark that the construction proposed in this subsection also applies to the

gapped case. In practice, if the temperature is high (so that 5 is small) or the gap

103

around the chemical potential is small (in particular, for gapless system), the contour
passing through the imaginary axis will be favorable; otherwise, the construction in

the last subsection will be more efficient.

3.3.4 Numerical examples

We test the pole expansion described above using a two dimensional nearest neighbor
tight binding model for the Hamiltonian. The matrix components of the Hamiltonian

can be written as (in atomic units),

2""/2']" i/:iaj/:j>
Hyjrij = (3.45)

—1/24+V;, i'=ixl,j/=jori=ij =j+1.

The on-site potential energy V;; is chosen to be a uniform random number between
0 and 1073, The domain size is 32 x 32 with periodic boundary condition. The
chemical potential will be specified later. The accuracy is measured by the L' error

of the electronic density profile per electron

Tr|P — P

Aprel = .
N Electron

(3.46)

Contour integral representation: gapped case

The error of the contour integral representation is determined by N,qe. At finite
temperature Nyoe = 2¢), while at zero temperature Nyoe = (), with () being the
quadrature points on one loop of the contour. The performance of the algorithm
is studied by the minimum number of Ny such that Ap, (the L' error in the
electronic density per electron) is smaller than 107¢. For a given temperature, the

chemical potential pu is set to satisfy

Tr P = Ngjectron- (3.47)

104

BAE H Npolo ‘ Aprel

4,208 || 40 |5.68 x 1077
8,416 || 44 |3.86x 1077
16,832 | 44 |3.60 x 1077
33,664 || 44 |3.55x 1077
67,328 || 44 |3.57x 1077
134,656 || 44 | 3.47 x 1077
269,312 || 44 |3.55x 107

Table 3.4: Nyoe and L' error of electronic density per electron with respect to various
BAE. The energy gap E, ~ 0.01. The contour integral representation for gapped
system at finite temperature is used for the calculation. The performance of the
algorithm depends weakly on SAFE.

In our setup the energy gap F, ~ 0.01 Hartree = 0.27 eV and E); ~ 4 Hartree.
Therefore, this system can be regarded as a crude model for semiconductor with a
small energy gap. The number of N, and the error Ap,q are shown in Table 3.4 with
respect to SAFE ranging between 4,000 and up to 270,000. Because of the existence
of the finite energy gap, the performance is essentially independent of SAFE, as is
clearly shown in Table 3.4.

When the temperature is low and therefore when S is large, as discussed before
the finite temperature result is well approximated by the zero temperature Fermi
operator, i.e. , the matrix sign function. In such case the quadrature formula is given
by (3.39). Only the contour that encircles the spectrum lower than chemical potential
is calculated, and Ny = Q.

In order to study the dependence of Ap,e on the number of poles Npgle, we tune
artificially the chemical potential to reduce the energy gap to 10~¢ Hartree. Fig. 3.8
shows the exponential decay of Ap,q with respect to Npoe. For example, in order
to reach the 107% error criterion, Ny & 50 is sufficient. The increase in Npope 1S
very small compared to the large decrease of energy gap and this is consistent the

logarithmic dependence of Npqe on E,; given by (3.37).

105

c
1072}
=
o
=
Q
<
<) _
5 10
(o
—
o
—
B
~ 10_6,
10° ‘ ‘ ‘ Y
10 20 30 40 50 60 70

NPole

Figure 3.8: The lin-log plot of the L' error of electronic density per electron with
respect to Nyoe. The energy gap E, ~ 107°. The contour integral representation for
gapped system at zero-temperature is used for calculation.

Contour integral representation: gapless case

For gapless systems such as metallic systems, our quadrature formula in (3.40)
exploits the effective gap on the imaginary axis due to finite temperature. In the
following results the chemical potential is set artificially so that £, = 0. Ey =~
4 Hartree and the error criterion is still 107% as in the gapped case. Table 3.5 reports
the number of poles N, and the error Ap, with respect to SAE ranging from

4,000 up to 4 million. These results are further summarized in Fig. 3.9 to show the

logarithmic dependence of Npge on SAE, as predicted in the analysis of (3.44).

106

5AE H Npolo ‘ Aprel

4,208 58 | 1.90 x 1077
8,416 62 |5.32x 1077
16,832 66 | 8.28 x 1077
33, 664 72 | 3.55 x 1077
67,328 76 | 3.46 x 1077
134, 656 80 | 1.69 x 1077
269,312 84 |8.89x1078
538, 624 88 | 7.09x 1078
1,077,248 | 88 |8.94x 1077
2,154,496 | 88 | 4.25 x 1077
4,308,992 | 92 |3.43 x 1077

Table 3.5: Npole and L' error of electronic density per electron with respect to various
BAE. E, = 0. The contour integral representation for gapless system is used for the
calculation.

10 10° 10
BAE

Figure 3.9: Log-lin plot of Ny with respect to SAE. The contour integral repre-
sentation for gapless system is used for the calculation.

107

3.4 Discussion

Compared to the pole expansion, the multipole expansion has a disadvantage that
the inverse matrices should be multiplied in order to form multipoles. This makes it
difficult to apply the fast algorithms that will be introduced in Chapter 4. On the
other hand, it is also possible to find an expansion similar to (3.12) that uses only
simple poles. As we mentioned earlier, the key idea in deriving (3.12) is to combine
the poles in each group together to form multipoles as the distance between them and
the real axis is large. However, if instead we want an expansion that involves only
simple poles, it is natural to revisit the variants of FMM that only use simple poles,
for example, the version introduced in [253]. The basic idea there is to use a set of
equivalent charges on a circle surrounding the poles in each group to reproduce the
effective potential away from these poles.

Specifically, take the group of poles from | = 27! to [= 2" — 1 for example.
Consider a circle B,, with center ¢, = (3 -2""! — 2)7i and radius r, = 2" '7. It is
clear that the circle B, encloses the poles considered. Take P equally spaced points
{xpx}t_, on the circle B,. Next, one needs to place equivalent charges {p,x}5_, at
these points such that the potential produced by these equivalent charges match with
the potential produced by the poles inside B,, away from the circle. This can be done
in several ways, for example, by matching the multipole expansion, by discretizing
the potential on B, generated by the poles, and so on. Here we follow the approach
used in [253].

We simply take a bigger concentric circle B,, outside B, with radius R, = 2"
and match the potential generated on B, by the poles and by the equivalent charges

on B,,. For this purpose, we solve for p, ; the equations

m—1
1

P
Pn.k o
> = > T Y€ (3.48)

— T
k=1 y TL,k |=92n—1

108

Regularization techniques such as Tikhonov regularization are required here since this
is a first-kind Fredholm equation.

One can also prove that similar to the original version of the multipole representa-
tion, the error in the potential produced by the equivalent charges decay exponentially
in P, the details can be found in [253]. Putting these all together, we can write down

the following expansion of the Fermi-Dirac function

Neg P
Pn.k
p=1—4R E E :
o PH = p) = g,
2 1 1
_ Za - _ P
ﬂ-\f'l?D <Mpole + 9 + 27‘(‘6(H IU)) +O(NG/3) (349)

The number of poles that are effectively represented in the original Matsubara repre-
sentation is still Mpqe = 2Ne 1. Npole = NP simple poles are now to be calculated
in practice.

The tail part can be approximated using a Chebyshev polynomial expansion.
Similar to the analysis in [160], it can be shown that the complexity of the expansion
is O(log BAFE). As we pointed out earlier, the advantage of (3.49) over (3.12) is that
only simple poles are involved in the formula. This is useful when combined with fast
algorithms for extracting the diagonal of an inverse matrix.

Note that in (3.12) and (3.49), for 2"~! < P there would be no savings if we use P
terms in the expansion. They are written in this form just for simplicity. In practice
the first P simple poles will be calculated separately and the multipole expansion will
be used starting from the (P + 1)-th term and the starting level is n = log, P + 1.
We show in Fig. 3.10 a typical configuration of the set of poles in the multipole
representation type algorithm.

The approach (3.49) based on the multipole representation has three parts of error:
the finite-term multipole expansion, the finite-term Chebyshev expansion for the tail

part, and the truncated matrix-matrix multiplication in the Chebyshev expansion.

109

3500

N
+ +
3000+ + +
+ +
2500+
+ +
+ +
2000+
£ * * 300
= + N +
+ +
1500+ + n 250
+ + + . . +
N 4 200 L ++ 4
+ +
1000F * * 1500 + +
+ + + +
o
+++ + +
Ralian 100 tet
X
500+
+ i ﬁf 50
% S
0
-50 0 50
0 ‘ ‘ ‘ ‘ ‘
-1500 -1000 -500 0 500 1000 1500 2000

Re

Figure 3.10: A typical configuration of the poles in the multipole representation type
algorithm. M, = 512 and P = 16 is used in this figure. The poles with negative
imaginary parts are not explicitly shown. The inset shows the first few poles. The
first 16 poles are calculated separately and the starting level is n = 5.

The error from the multipole expansion is well controlled by P in (3.49). When
P =16, 1/3 ~ O(1078). The number of groups Ng is usually no more than 20,
and therefore the error introduced by multipole expansion is around O(1077), which
is much less than the error criterion 107°.

The number of terms in the Chebyshev expansion for the tail part Ngpep is

O(%), with Mpee being the number of poles that are excluded in the tail part

in the pole expansion. The truncation radius for the tail part is O(exp(—C J\B/Ifi))
In order to reach a fixed target accuracy, we set Mo to be proportional to SAE. Due
to the fact that My, &~ 2V6 ~ 2Neole/F | this requires Npoe to grow logarithmically
with respect to SAE.

The target accuracy for the Chebyshev expansion is set to be 10~7 and the trun-
cation radius for the tail is set to be 4 for the metallic system under consideration.

For SAFE = 4208, M, is set to be 512 so that the error is smaller than 107%. For

other cases, Mo scales linearly with SAE. The lin-log plot in Fig. 3.11 shows the

110

logarithmic dependence of Ny with respect to SAE. For more detailed results,
Table 3.6 measures Mpole, Npole, Ncheb, and Apye for SAE ranging from 4000 up to 1
million. For all cases, Ncnep is kept as a small constant. Note that the truncation ra-
dius is always set to be a small number 4, and this indicates the tail part is extremely

localized in the multipole representation due to the effectively raised temperature.

0
220} 1
200}

1801

NPole

1401

1201

100

10 10° 10
BAFE

Figure 3.11: log-lin plot of N,qe with respect to SAE. The multipole representation
is used for the calculation.

Table 3.6 indicates that the error exhibits some slight growth. We believe that
it comes from the growth of the number of groups in the multipole representation
(3.49) and also the extra loglog dependence on SAE. When compared with the
results reported in Table 3.5, we see that for the current application to electronic
structure, the pole expansion outperforms the multipole representation in terms of

both the accuracy and the number of poles used.

111

ﬁAE H Mpolo ‘ Npole ‘ NChob ‘ Aprol

4,208 512 96 22 | 4.61 x 1077
8,416 1,024 112 22 | 4.76 x 1077
16, 832 2,048 128 22 | 4.84 x 1077
33,664 4,096 144 22 | 4.88x 1077
67,328 8,192 160 22 | 4.90 x 1077
134,656 16,384 | 176 22 | 4.90 x 1077
269, 312 32,768 | 192 22 | 6.98 x 1077
538,624 65,536 | 208 22 | 3.20x 107
1,077,248 || 131,072 | 224 22 | 7.60 x 107¢

Table 3.6: The number of poles calculated Npge, the order of Chebyshev expansion
for the tail part Ncpen, and the L' error of electronic density per electron with respect
to various SAE. The number of poles excluded in the tail part M, is chosen to be
proportional to SAFE.

3.5 Conclusion

We have developed the multipole expansion and pole expansion techniques to expand
the Fermi operator into simple functions in section 3.2 and in section 3.3, respec-
tively. The two techniques originate from different mathematical observations. The
multipole expansion is similar to the fast multipole methods (FMM) which groups
the poles together using Taylor expansion. The pole expansion constructs the opti-
mal Cauchy contour integral and the optimal rule for numerical integration. Both
techniques achieve the optimal representation cost, i.e. the complexity is O(log SAE).

From practical point of view, the pole expansion is more advantageous. After the
detailed comparison in Section 3.4, we find that the preconstant of the pole expansion
is smaller. The pole expansion only requires the inversion of matrices, which enables

to apply the fast algorithms that will be introduced in Chapter 4.

112

Chapter 4

Evaluation of the Fermi operator:

Selected 1nversion

4.1 Introduction

The pole expansion developed in Chapter 3 expands the Fermi operator f(H) into

simple rational functions

fH)~ Y — le (4.1)

i=
The question remains to obtain all the diagonal elements and the nearest off-diagonal
elements of (H — zi)_l. Clearly, if the diagonal elements and the nearest off-diagonal
elements are extracted after directly inverting the matrix, the computational cost is
O(N?3), and there is no advantage in using the Fermi operator expansion method
compared to the standard diagonalization method.

There are two possible ways to reduce the computational complexity of calculating
the diagonal elements and the nearest off-diagonal elements of an inverse matrix.
The first way is to compress the matrix H — z;/ and invert the compressed matrix
directly with lower computational cost. The common techniques that fall into this

category include fast multiple method [107,253], hierarchical matrix [36, 114], fast

113

wavelet transform [31,33], discrete symbol calculus [72] (Update reference here),
to name a few. The second way is to avoid the full inverse, but to calculate the
diagonal elements, and as few as possible related elements of the inverse matrix. We
will discuss briefly the reason why the first way, i.e. the existing matrix compression
techniques do not apply to the electronic structure calculation. We will then introduce
the second way which is able to calculate the diagonal elements of the inverse matrix
accurately with reduced computational cost, which shall be referred to later as the
selected inversion technique.

For a typical electronic structure calculation with the domain taken to be a peri-
odic box [0,n]? (d is the dimension) after normalization, the potential function V (x)
generally oscillates on the O(1) scale, and j is often on the order of O(n?). As a result,
the operator (H — ul) is far from being positive definite. In many computations, the
Hamiltonian is sampled with a constant number of points per unit length. Therefore,
the discretization of H — 21, denoted by A, is a matrix of dimension N = O(n?).

For the case when A is a positive definite matrix, several ingenious approaches
have been developed to represent and manipulate the inverse matrix of A, denoted
by G efficiently. One strategy is to represent A and G using multi-resolution basis
like wavelets [31,33]. It is well known that for positive definite A, the wavelet ba-
sis offers an asymptotically optimal sparse representation for both A and G = A1,
Together with the Newton-Schulz iteration for inverting a matrix, it gives rise to
a linear scaling algorithm for calculating the inverse matrix G' from A. In one di-
mension, assuming that we use L levels of wavelet coefficients, and if we truncate
the matrix elements that correspond to the wavelets which are centered at locations
with distance larger than R, then the cost of matrix-matrix multiplication is roughly
O(R?*L3N). In 2D, a naive extension using the tensor product structure will lead
to a complexity of O(R*LSN). This has linear scaling, but the prefactor is rather

large: Consider a moderate situation with R = 10 and L = 8, R*L® is on the order of

114

10°. This argument is rather crude, but it does reveal a paradoxical situation with the
wavelet representation: Although in principle linear scaling algorithms can be derived
using wavelets, they are not practical in 2D and 3D, unless much more sophisticated
techniques are developed to reduce the prefactor.

Another candidate for positive definite A is to use the hierarchical matrices [36,
114]. The main observation is that the off-diagonal blocks of the matrix G are numer-
ically low-rank and thus can be approximated hierarchically using low rank factor-
izations. The cost of multiplying and inverting hierarchical matrices scales as O(N).
Therefore, by either combining with the Newton-Schulz iteration, or directly inverting
the hierarchical matrices with block LU decomposition, one obtains a linear scaling
algorithm.

Both of these two approaches are quite successful for A being positive definite.
Unfortunately as we pointed out earlier, for the application to electronic structure
analysis, our matrix A is far from being positive definite. In fact, the matrix elements
of GG are highly oscillatory due to the shift of chemical potential in the Hamiltonian.
Consequently, the inverse matrix G' does not have an efficient representation in either
the wavelet basis or the hierarchical matrix framework. The same argument applies to
other fast algorithms designed for elliptic operators, such as fast multiple method [107,
253] and discrete symbol calculus [72].

The selected inversion algorithm developed in this chapter follows the orthogonal
direction to the matrix compression approach. The selected inversion method does
not calculate all the elements of the inverse matrix GG, but only the diagonal elements
and the nearest off-diagonal elements of the inverse matrix, and as few as possible
other related elements. The selected inversion algorithm is able to accurately compute
the diagonal elements and the nearest off-diagonal elements of G with O(N) com-
plexity for quasi-1D systems, O(N'%) complexity for quasi-2D systems, and O(N?)

complexity for 3D bulk systems. The selected inversion method is applicable if the

115

Hamiltonian operator is discretized by localized basis functions, such as finite differ-
ence, finite element, spectral element, and adaptive local basis functions developed in
Chapter 2.

This chapter is organized as following. Section 4.2 introduces the basic idea of the
selected inversion and illustrates how selected inversion reduces the computational
cost for extracting the diagonals and the nearest off-diagonal elements for general
symmetric matrices. Section 4.3 introduces the Sellnv software which is a sequential
algorithm for performing the selected inversion for general symmetric matrices. A
parallel selected inversion for structured 2D matrices is developed in Section 4.4. The
discussion and future work is summarized in Section 4.5. Materials in this chapter

have been presented in [162,169, 170].

4.2 Selected inversion: Basic idea

4.2.1 Dense matrix

An obvious way to obtain selected components of A~! is to compute A~! first and
then simply pull out the needed entries. The standard approach for computing A~1
is to first decompose A as

A=LDL", (4.2)

where L is a unit lower triangular matrix and D is a diagonal or a block-diagonal
matrix. Equation (4.2) is often known as the LDL” factorization of A. For positive
definite matrices, D can always be kept as a diagonal matrix. For general symmetric
matrices, a block LDLT factorization that allows 2 x 2 block pivots [45,46] or partial
pivoting [96] may be used to achieve numerical stability in the factorization. Given

such a factorization, one can obtain A™! = (z1,2s,...,x,) by solving a number of

116

triangular systems

Ly=e;, Dw=y, L'z;=w, (4.3)

for j =1,2,...,n, where e; is the j-th column of the identity matrix /. The compu-
tational cost of such algorithm is generally O(n?), with n being the dimension of A.
However, when A is sparse, we can exploit the sparsity structure of L and e; to reduce
the complexity of computing selected components of A~!. We will examine this type
of algorithm, which we will refer to as direct inversion, further in Section 4.3.3 when
we compare the performance of direct inversion with that of our new fast algorithm.

The selected inversion algorithm which is summarized below also perform an
LDLT factorization of A first. However, the algorithm does not require solving (4.3)
directly. Before we present this algorithm, it will be helpful to first review the major
operations involved in the LDLT factorization of A.

Let

A= , (4.4)

be a nonsingular symmetric matrix. The first step of an LD LT factorization produces

a decomposition of A that can be expressed by

(1 A—bb" /o I

where « is often referred to as a pivot, ¢ = b/a and S = A — bb” /a is known as the
Schur complement. The same type of decomposition can be applied recursively to the

Schur complement S until its dimension becomes 1. The product of lower triangular

117

matrices produced from the recursive procedure, which all have the form

where /() = ¢ = b/a, yields the final L factor. At this last step the matrix in the
middle becomes diagonal, which is the D matrix.

To simplify our discussion, we assume here that all pivots produced in the LDL”
factorization are sufficiently large so that no row or column permutation (pivoting)
is needed during the factorization. The discussion can be readily generalized if D
contains 2 x 2 blocks.

The key observation is that A=! can be expressed by

a4+ sy st

A= : (4.5)
—S~ St

This expression suggests that once o and ¢ are known, the task of computing A~!
can be reduced to that of computing S~!.

Because a sequence of Schur complements is produced recursively in the LDLT
factorization of A, the computation of A~! can be organized in a recursive fashion too.
Clearly, the reciprocal of the last entry of D is the (n,n)-th entry of A=!. Starting
from this entry, which is also the 1 x 1 Schur complement produced in the (n — 1)-th
step of the LDL™ factorization procedure, we can construct the inverse of the 2 x 2
Schur complement produced at the (n — 2)-th step of the factorization procedure,
using the recipe given by (4.5). This 2 x 2 matrix is the trailing 2 x 2 block of A~
As we proceed from the lower right corner of L and D towards their upper left corner,
more and more elements of A~! are recovered. The complete procedure can be easily

described by a MATLAB script shown in Algorithm 1.

118

Algorithm 1 A MATLAB script for computing the inverse of a dense matrix A given
its LDL" factorization.
Input: A unit triangular matrix L and a diagonal matrix D such
that A= LDL",
Output: The inverse of A denoted by Ainv.
Ainv(n,n) = 1/D(n,n);
for j = n-1:-1:1
Ainv(j+1:n,j) = -Ainv(j+1:n,j+1:n)*L(j+1:n,j);
Ainv(j,j+1:n) = Ainv(j+1l:n,j)’;
Ainv(j,]j) 1/D(j,j) - L(j+1:n,j) ’*Ainv(j+1:n,j);
end;

For the purpose of clarity, we use a separate array Ainv in Algorithm 1 to store the
computed A~'. In practice, A~! can be computed in place. That is, we can overwrite
the array used to store L and D with the lower triangular and diagonal part of A~1

incrementally.

4.2.2 Sparse matrix

It is not difficult to observe that if A is a dense matrix, the complexity of Algorithm 1
is O(n?) because a matrix vector multiplication involving a j X j dense matrix is
performed at the j-th iteration of this procedure, and (n — 1) iterations are required
to fully recover A~!. Therefore, when A is dense, this procedure does not offer any
advantage over the standard way of computing A~!. Furthermore, all elements of
A1 are needed and computed. No computational cost can be saved if we just want
to extract selected elements (e.g., the diagonal elements) of A~

However, when A is sparse, a tremendous amount of savings can be achieved if
we are only interested in the diagonal components of A1, If the vector ¢ in (4.5)
is sparse, computing ¢ZS~1¢ does not require all elements of S~! to be obtained in
advance. Only those elements that appear in the rows and columns corresponding to
the nonzero rows of ¢ are required.

Therefore, to compute the diagonal elements of A~!, we can simply modify the

119

procedure shown in Algorithm 1 so that at each iteration we only compute selected
elements of A~! that will be needed by subsequent iterations of this procedure. It
turns out that the elements that need to be computed are completely determined by
the nonzero structure of the lower triangular factor L. To be more specific, at the
J-th step of the selected inversion process, we compute (A™');; for all i such that
L;; # 0. Therefore, our algorithm for computing the diagonal of A~ can be easily
illustrated by a MATLAB script (which is not the most efficient implementation)

shown in Algorithm 2.

Algorithm 2 A MATLAB script for computing selected matrix elements of A~ for
a sparse symmetric matrix A.

Input: A unit triangular matrix L and a diagonal matrix D such

that A = LDLT,
Output: Selected elements of A~! denoted by Ainv, i.e. the elements

(A_I)Lj such that Li,j 75 0.

Ainv(n,n) = 1/D(n,n);
for j = n-1:-1:1
% find the row indices of the nonzero elements in
% the j-th column of L
inz = j + find(L(j+1:n,j)"=0);
Ainv(inz,j) = -Ainv(inz,inz)*L(inz,j);
Ainv(inz,j)’;
1/D(j,j) - Ainv(j,inz)*L(inz,j);

Ainv(j,inz)
Ainv(j,j)
end;

To see why this type of selected inversion is sufficient, we only need to examine
the nonzero structure of the k-th column of L for all £ < j since such a nonzero
structure tells us which rows and columns of the trailing sub-block of A~! are needed
to complete the calculation of the (k, k)-th entry of A~!. In particular, we would like
to find out which elements in the j-th column of A~! are required for computing Al_,i
for any k < j and ¢ > j.

Clearly, when L;; = 0, the j-th column of A™! is not needed for computing the
k-th column of A~!. Therefore, we only need to examine columns %k of L such that

Lj, # 0. A perhaps not so obvious but critical observation is that for these columns,

120

(b) The elimina-
tion tree.

Figure 4.1: The lower triangular factor L of a sparse 10 x 10 matrix A and the
corresponding elimination tree.

If Lji # 0 and k& < j, then the node £ is a descendant of j in the elimination
tree. An example of the elimination tree of a matrix A and its L factor are shown
in Figure 4.1. Such a tree can be used to clearly describe the dependency among
different columns in a sparse LDL? factorization of A. In particular, it is not too

difficult to show that constructing the j-th column of L requires contributions from

121

descendants of j that have a nonzero matrix element in the j-th row [172].
Similarly, we may also use the elimination tree to describe which selected elements

within the trailing sub-block A~! are required in order to obtain the (4, j)-th element

of A=!. In particular, it is not difficult to show that the selected elements must belong

to the rows and columns of A~! that are among the ancestors of j.

4.3 Sellnv — An algorithm for selected inversion of

a sparse symmetric matrix

4.3.1 Block Algorithms and Supernodes

The selected inversion procedure described in Algorithm 1 and its sparse version can
be modified to allow a block of rows and columns to be modified simultaneously. A
block algorithm can be described in terms a block factorization of A. For example, if

A is partitioned as

A _ All Bgl

By Ag
its block LDLT factorization has the form

I An [LY,
L21 I A22 — BglAl_llBgl I

where Ly = 321A1_11 and S = Ay — BmAl_llBgl is the Schur complement. The

corresponding block version of (4.5) can be expressed by

e A+ L5 S'Ly —LL S
—S_ngl S-1

There are at least three advantages of using a block algorithm:

122

1. It allows us to use level 3 BLAS (Basic Linear Algebra Subroutine) to develop
an efficient implementation by exploiting the memory hierarchy in modern mi-

Croprocessors.

2. When applied to sparse matrices, it tends to reduce the amount of indirect

addressing overhead.

3. It allows 2 x 2 block pivots that can be used to overcome numerical instabilities

that may arise when A is indefinite.

When A is sparse, the columns of A and L can be partitioned into supernodes.
A supernode is a maximal set of contiguous columns {j,j + 1,...,7 + s} of L such
that they have the same nonzero structure below the (j + s)-th row and the lower
triangular part of L;.;1s j.j+s is completely dense. An example of a supernode partition
of the lower triangular factor L associated with a 49 x 49 sparse matrix A is shown
in Figure 4.2. The definition of a supernode can be relaxed to include columns whose
nonzero structures are nearly identical with adjacent columns. However, we will not
be concerned with such an extension in this chapter. We will use upper case script
letters such as J to denote a supernode. Following the convention introduced in [195],
we will interpret J either as a supernode index or a set of column indices contained
in that supernode depending on the context.

We should note here that the supernode partition of A or L is completely based
on the nonzero structure of A. Although it is desirable to create supernodes that
contain all 2 x 2 block pivots priori to numerical factorization of A, this is generally
difficult to do for sparse matrices. When the size of a supernode is larger than 1, we
can still use 2 x 2 block pivots within this supernode to improve numerical stability
of the LDL™ factorization. This type of strategy is often used in multifrontal solvers
[11,77].

We denote the set of row indices associated with the nonzero rows below the di-

123

Figure 4.2: A supernode partition of L.

agonal block of the J-th supernode by S7. These row indices are further partitioned
into n disjoint subsets Z,, 15, ..., Z,,, such that Z; contains a maximal set of contigu-
ous row indices and Z; C K for some supernode K > J. Here K > J means k > j
for all k € K and j € J. In Figure 4.3, we show how the nonzero rows associated
with one of the supernodes (the 26-th supernode which begins at column 27) are
partitioned. The purpose of the partition is to create dense submatrices of L that can
be easily accessed and manipulated. The reason we impose the constraint Z; C I,
which is normally not required in the LDL” factorization of A, will become clear in
Section 4.3.2. We should also note that, under this partitioning scheme, it is possible
that Z; and Z; belong to the same supernode even if ¢ # j.

The use of supernodes leads to a necessary but straightforward modification of the
elimination tree. All nodes associated with columns within the same supernode are
collapsed into a single node. The modified elimination tree describes the dependency
among different supernodes in a supernode LDLT factorization of A (see [195,221]).
Such dependency also defines the order by which selected blocks of A~! are computed.

Using the notion of supernodes, we can modify the selected inversion process de-

124

scribed by the MATLAB script shown in Algorithm 2 to make it more efficient. If
columns of L can be partitioned into n,, supernodes, a supernode based block se-

lected inversion algorithm can be described by the pseudocode shown in Algorithm 3.

Algorithm 3 A supernode-based algorithm for computing the selected elements of
AL

Input: (1) The supernode partition of columns of A: {1,2,...,ngp};
(2) A supernode LDLT factorization of A;
Output: Selected elements of A7, i.e. (A7!);; such that L;; # 0.

1: Compute A;slupvnsup = Dgslupvnsup;

2: for J = ngyp — L, Ngyp — 2,...,1 do

3: Identify the nonzero rows in the J-th supernode S 7;
4: Perform Y = Ag;’SJLS]J;

5 Calculalte A}:}j = D‘}:}J + YTLSJJ;

6 Set Agl ;¢ —V;

7: end for

4.3.2 Implementation details

We now describe some of the implementation details that allow the selected inver-
sion process described schematically in Algorithm 3 to be carried out in an efficient
manner.

We assume a supernode LDL?T factorization has been performed using, for ex-
ample, an efficient left-looking algorithm described in [195,221]. Such an algorithm
typically stores the nonzero elements of L in a contiguous array using the compressed
column format [76]. This array will be overwritten by the selected elements of A™'.
The row indices associated with the nonzero rows of each supernode are stored in a
separate integer array. Several additional integer arrays are used to mark the supern-
ode partition and column offsets.

As we illustrated in Algorithm 3, the selected inversion process proceeds backwards

from the last supernode n,, towards the first supernode. For all supernodes [J < 1y,

125

we need to perform a matrix-matrix multiplication of the form

Y = (A_1>SJ,SJLSJ7;77 (47)

where J serves the dual purposes of being a supernode index and an index set that
contains all column indices belonging to the [7-th supernode, and S; denotes the set
of row indices associated with nonzero rows within the 7-th supernode of L.

Recall that the row indices contained in S5 are partitioned into a number of
disjoint subsets 7,,Z5, ...,Z,, such that Z; C K for some supernode K > J. Such
a partition corresponds to a row partition of the dense matrix block associated with
the J-th supernode into ns submatrices. The same partition is applied to the rows
and columns of the submatrix (A™')g, s, except that this submatrix is not stored in

a contiguous array. For example, the nonzero row indices of the 26-th supernode in

Figure 4.2, which consists of columns 27, 28 and 29, can be partitioned as

Sas = {30} U {40,41} U {43, 44, 45},

This partition as well as the corresponding partition of the blocks in the trailing A~1
that are used in (4.7) is highlighted in Figure 4.3.

We carry out the matrix-matrix multiplication (4.7) by using Algorithm 4. The
outer loop (line 2) of this algorithm goes through each block column of (A™')g, s,
indexed by Z; € Sz, and accumulates (A™'), 7, Lz, 7 in the dense matrix Y stored
in a contiguous work array. The inner loop of this algorithm, which starts from line
6, simply goes through the nonzero blocks of (A7), 7, to perform (A™')z, 7 Lz, 7,
i = j+1,..,n7, one block at a time. Because A~! is symmetric, we store only
the selected nonzero elements in the lower triangular part of the matrix (except the
diagonal blocks in which both the upper and lower triangular parts of the matrix are

stored in a full dense matrix.) Hence, our implementation of (4.7) also computes the

126

Figure 4.3: The partition of the nonzero rows in Sy¢ and the matrix elements needed

contribution of (A_l)zzj Lz, 7 to Y as the Z;-th block column of A~ is accessed (step
10) in the inner loop of Algorithm 4.

An efficient implementation of Algorithm 4 requires each sub-block of Agisj
(within the storage allocated for L) to be identified quickly and the product of
(A™Y)z,z, and Lz, 7, as well as the product of [(A™')z,7,]" and Lz, 7, to be placed
at appropriate locations in the Y array. To achieve these goals, we use an integer
array indmap with n entries to record the relative row positions of the first row of
Z;in Y, for i = 2,3, ...,n7. (The relative positions of all other nonzero rows can be
easily calculated once the relative row position of the first row of Z; is determined,
because the row numbers in Z; are contiguous.) To be specific, all the entries of
indmap are initialized to be zero. If k is an element in Z; (all elements in Z; are sorted
in an ascending order), then indmap[k] is set to be the relative distance of row k
from the last row of the diagonal block of the J-th supernode in L. For example, in
Figure 4.3, the leftmost supernode Sos, which contains columns 27, 28, 29, contains 6

nonzero rows below its diagonal block. The nonzero entries of the indmap array for

127

Algorithm 4 Compute Y = (A™1)g, s, Lg, 7 needed in Step 4 of Algorithm 3.

Input: (1) The J-th supernode of L, Lg, 7, where Ss contains the
indices of the nonzero rows in 7. The index set S is par-
titioned into disjoint m s subsets of contiguous indices, i.e.
Sy ={T1,I,.... 1y, }:
(2) The nonzero elements of A~! that have been computed pre-
viously. These elements are stored in Lg,. x for all £ > J;
Output: Y = (A_l)sj,gjszJ;

1: Construct an indmap array for nonzero rows in the J-th supernode;

2: for j=1,2,....,n7 do

3: Identify the supernode K that contains Zj;

4: Let Ry = indmap(Z;);

) Calculate YR1,* — YRL* + (A_l)zj Z; LIJ-,J§

6 fori=4j+1,7+2,..n7 do

7 Use indmap to find the first nonzero row in the K-th supernode that
belongs to Z; so that (A_l)zhzj can be located;

8: Let Ro = indmap(Z;);

9: Calculate YRQ’* — YRQ’* + (A_l L‘,ZjLIj,j;
10: Calculate YR i« < YR« + [(A_l)ljhzj]TLL.“j;
11: end for
12: end for

13: Reset the nonzero entries of indmap to zero;

128

526 are

indmap[30] = 1,
indmap [40] = 2,
indmap[41] = 3,
indmap [43] = 4,
indmap[44] = 5,

indmap[45] = 6.

These entries of the indmap array are reset to zeros once the calculation of (4.7) is
completed for each J. A similar indirect addressing scheme is used in [195] for gath-
ering the contributions from the descendants of the [J-th supernode that have already
been updated in the previous steps of a left-looking supernodal LDL” factorization.
Our use of indirect addressing collects contributions from the ancestors of the J-th
supernode as (A™1)g_ 7 is being updated.

Once the indmap array is properly set up, the sub-block searching process indicated
in line 7 of the pseudocode shown in Algorithm 4 goes through the row indices k of
the nonzero rows of the K-th supernode (that contains 7;) until a nonzero indmap [k]
is found (step 7). A separate pointer p to the floating point array allocated for L
is incremented at the same time. When a nonzero indmap [k] is found, the position
in the floating point array pointed by p gives the location of (A_l)zi,zj required in
line 9 of the special matrix-matrix multiplication procedure shown in Algorithm 4.
Meanwhile, the value of indmap[k] gives the location of the target work array Y at
which the product of (A_I)Zi7Ij and Lgz; 7 is accumulated. After lines 9 and 10 are
executed in the inner loop of Algorithm 4, the remaining nonzero rows in the C-th
supernode are examined until the next desired sub-block in the IC-th supernode of
A1 is found or until all nonzero rows within this supernode have been examined.
Figure 4.4 shows of how the indmap array is used to place the product of (A™)z, (301

and Lysoy,06 as well as the product of (A‘l)g{%} and Lz, 96 in the Y array at lines 9

129

and 10 of Algorithm 4 for the example problem given in Figure 4.3.

,1)
P -1
indmap[30]=1 — 26.{30} (A)w o Ly,

AY
Y \
\
indmap[30]=1 %,
o o o AY
L \ Y
° 130,26 \
. — e . o
x [e
.
Y o o o
: —)Mo.m‘,‘uo: L.’40A4|:.26 o o o
. . o | « | transpose
_—
indmap[40]=2 .] X o o
> 1 e o o
.
transpose
indmap[43]=4 | °) e S ey PN
hd -1
— A7)45t 0
L*] (),74,\43...30‘ L s 26

(a) The use of indmap in Step 9. (b) The use of indmap in Step 10. The
dashed arrow indicates that L3} 26 pro-
vides only the index for the row of Y that
is modified.

Figure 4.4: A schematic drawing that illustrates how indmap is used in Steps 9 and
10 in the first outer iteration of Algorithm 4 for J = 26 in the example given in
Figure 4.3.

Before we copy Y to the appropriate location in the array that stores the [J-th
supernode of L, we need to compute the diagonal block of A~! within this supernode

by the following update:

(A N7r=AN77+Y"Ls, 7,

where (A™1)7 7, which is stored in the diagonal block of the storage allocated for
L, contains the inverse of the diagonal block D 7 (which may contain 2 x 2 pivots)

produced by the supernode LDL™ factorization before the update is performed.

4.3.3 Performance

Here we report the performance of our selected inversion algorithm Sellnv. Our per-

formance analysis is carried out on the Franklin Cray XT4 supercomputing system

130

maintained at NERSC!. Each compute node consists of a 2.3 GHz single socket quad-
core AMD Opteron processor (Budapest) with a theoretical peak performance of 9.2
GFlops/sec per core (4 flops/cycle if using SSE128 instructions). Each core has 2 GB
of memory. Our test problems are taken from the Harwell-Boeing Test Collection [76]
and the University of Florida Matrix Collection[70]. These matrices are widely used
benchmark problems for sparse direct methods. The names of these matrices as well
as some of their characteristics are listed in Table 4.1 and 4.2. All matrices are real
and symmetric. The multiple minimum degree (MMD) matrix reordering strategy
[171] is used to minimize the amount of nonzero fills in L. We used the supernodal
left-looking algorithm and code provided by the authors of [195] to perform the LD LT
factorization of A. Table 4.3 gives the performance result in terms of computational
time as well as floating point operations per second (flops) for both the factoriza-
tion and the selected inversion algorithms respectively. We also report the average
flops measured on-the-fly using PAPT [44]. The dimension of the matrices we tested
ranges from 2,000 to 1.5 million, and the number of nonzero elements in the L factor
ranges from 0.1 million to 0.2 billion. For the largest problem G3_circuit, the overall
computation takes only 350 seconds. Among these problems, the best performance
is obtained with the problem pwtk. For this particular problem, the factorization
part attains 26% of the peak performance of the machine, and the selected inversion
part attains 68% of the peak flops. The average (of the factorization and inversion)
flops ratio is 46%. The flops performance is directly related to the supernode size
distribution due to the reordering strategy. For pwtk, 90% of the supernodes have
sizes larger than 5. By contrast, the dimension of parabolic_fem is more than twice
the dimension of pwtk, but 81% of the supernodes contain only one column. Conse-
quently, Sellnv cannot take full advantage of level 3 BLAS when it is used to solve

this problem. As a result, its performance is worse on this problem than on pwtk.

Thttp://www.nersc.gov/

131

To demonstrate how much we can gain by using the selected inversion algo-
rithm, we compare the timing statistics of the selected inversion algorithm with
that of the direct inversion algorithm mentioned. In our implementation of the di-
rect inversion algorithm, we compute the diagonal elements of A~! using e]TA_lej =
(L7te;)' D~Y(L'e;), where e, is the j-th column of the identity matrix. When com-
puting y = L™ 'e; (via solving Ly = ¢;), we modify only the nonzero entries of y.
The positions of these entries can be predicted by the traversal of a directed graph
constructed from the nonzero structure of L [95]. This approach reduces the number
of floating point operations significantly compared to a naive approach that does not
take into account the sparsity of L or e;. However, it still has a higher asymptotic
complexity compared to the selected inversion algorithm we presented earlier. This
can be seen from the following example in which A is a discretized Laplacian operator
obtained from applying a five-point stencil on an m x m grid in 2D where m = n'/2.
Assuming A is ordered by nested dissection [92] so that the last m columns of A
corresponds to nodes in the largest separator, we can see that solving Ly = e;, for
j =mn—m+1,..n, would require a total of O(m?) = O(n) operations because
the lower triangular part of L,_,41.nn—m+1:n 15 completely dense. Because these
columns belong to a supernode that is at the root of the elimination tree, they are
all reachable from node j on the directed graph constructed from solving Ly = e,
for j = 1,2,...,n — m. Consequently, the overall complexity for solving Ly = e; for
j=1,2,...nis O((n —m)n+n) = O(n?). This is higher than the O(n*?) com-
plexity associated with selected inversion. Similarly, if A is a discretized Laplacian
operator obtained from applying a seven-point stencil on an m x m x m grid in 3D
where m = n!/?, the complexity of direct inversion becomes O(n”/3) because the
largest separator contains n*3 columns, whereas the complexity of selected inversion
is O(n?).

Although it is difficult to perform such analysis for a general sparse matrix, similar

132

problem ‘ description

besstk14 Roof of the Omni Coliseum, Atlanta.

besstk24 Calgary Olympic Saddledome arena.

besstk28 Solid element model, linear statics.

besstk18 R.E. Ginna Nuclear Power Station.

bodyy6 NASA, Alex Pothen.

crystm03 FEM crystal free vibration mass matrix.

wathen120 Gould,Higham,Scott: matrix from Andy Wathen, Oxford
Univ.

thermall Unstructured FEM, steady state thermal problem, Dani
Schmid, Univ. Oslo.

shipsecl DNV-Ex 4 : Ship section/detail from production run-
1999-01-17.

pwtk Pressurized wind tunnel, stiffness matrix.

parabolic_fem | Diffusion-convection reaction, constant homogeneous dif-
fusion.

tmt_sym Symmetric electromagnetic problem, David Isaak, Com-
putational EM_Works.

ecology?2 Circuitscape: circuit theory applied to animal /gene flow,
B. McRae, UCSB.

G3_circuit Circuit simulation problem, Ufuk Okuyucu, AMD, Inc.

Table 4.1: Test problems

difference in complexity should hold. To provide a more concrete comparison, we list
the timing measurements for both approaches in Table 4.4 as well as the speedup
factor. The speedup factor is defined by the time for selected inversion divided by the
time for direct inversion. In this comparison, selected inversion refers to the second
part of Sellnv, i.e., the time for LDL” factorization is not counted since factoriza-
tion is used in both algorithms. We also terminate the direct inversion algorithm if
its running time is larger than 3 hours. We observe that for the smallest problem
besstk14, the speedup factor is already 13. For larger problems, the speedup can be

several hundreds or more.

133

problem n | | Al |L|
besstk14 1,806 32,630 112,267
besstk24 3,562 81,736 278,922
besstk28 4,410 111,717 346,864
besstk18 11,948 80,519 662,725
bodyy6 19,366 77,057 670,812
crystm03 24,696 304,233 3,762,633
wathen120 36,441 301,101 2,624,133
thermall 82,654 328,556 2,690,654
shipsecl 140,874 | 3,977,139 | 40,019,943
pwtk 217,918 | 5,926,171 | 56,409,307
parabolic_fem | 525,825 | 2,100,225 | 34,923,113
tmt_sym 726,713 | 2,903,837 | 41,296,329
ecology?2 999,999 | 2,997,995 | 38,516,672
G3_circuit 1,585,478 | 4,623,152 | 197,137,253

Table 4.2: Characteristic of the test problems

problem factorization | factorization | selected selected average
time (sec) flops inversion | inversion | flops

(G/sec) time (sec) | flops (G/sec)

(G/sec)

besstk14 0.007 1.43 0.010 2.12 1.85
besstk24 0.019 1.75 0.020 3.65 2.71
besstk28 0.023 1.63 0.024 3.46 2.54
besstk18 0.080 1.80 0.235 1.54 1.60
bodyy6 0.044 1.49 0.090 1.68 1.61
crystm03 0.452 2.26 0.779 2.95 2.70
wathen120 0.251 2.12 0.344 3.47 2.90
thermall 0.205 1.53 0.443 1.66 1.62
shipsecl 18.48 2.38 17.66 5.45 3.88
pwtk 16.43 2.48 14.55 6.28 4.26
parabolic_fem | 6.649 2.34 20.06 1.91 2.02
tmt_sym 10.64 2.35 13.98 4.02 3.30
ecology?2 6.789 2.32 16.04 2.35 2.34
G3_circuit 136.5 2.24 218.7 3.27 2.88

Table 4.3: The time cost, and flops result for factorization and selected inversion
process respectively. The last column reports the average flops reached by Sellnv.

134

problem selected inversion | direct inversion | speedup
time time

besstk14 0.01 sec 0.13 sec 13
besstk24 0.02 sec 0.58 sec 29
besstk28 0.02 sec 0.88 sec 44
besstk18 0.24 sec 5.73 sec 24
bodyy6 0.09 sec 5.37 sec 60
crystm03 0.78 sec 26.89 sec 34
wathen120 0.34 sec 48.34 sec 142
thermall 0.44 sec 95.06 sec 216
shipsecl 17.66 sec 3346 sec 192
pwtk 14.55 sec 5135 sec 353
parabolic_fem 20.06 sec 7054 sec 352

tmt_sym 13.98 sec > 3 hours > 772

ecology?2 16.04 sec > 3 hours > 673

G3_circuit 218.7 sec > 3 hours > 49

Table 4.4: Timing comparison between selected inversion and direct inversion. The
speedup factor is defined by the direct inversion time divided by the selected inversion
time.

4.3.4 Application to electronic structure calculation of alu-
minum

Here we show how Sellnv can be applied to electronic structure calculations based on
the pole expansion introduced in Chapter 3. We need to compute the diagonal of the
inverse of a number of complex symmetric (non-Hermitian) matrices H —(z;+p)1 (i =
1,2,..., P). A fast implementation of the Sellnv algorithm described in Section 4.3.2
can be used to perform this calculation efficiently.

The example we consider here is a quasi-2D aluminum system with a periodic
boundary condition. For simplicity, we only use a local pseudopotential, i.e. Vise(7)
is a diagonal matrix. The Laplacian operator A is discretized using a second-order
seven-point stencil. A room temperature of 300K (which defines the value of) is
used. The aluminum system has a face centered cubic (FCC) crystal structure. We

include 5 unit cells along both = and y directions, and 1 unit cell along the 2z direction

135

in our computational domain. Each unit cell is cubic with a lattice constant of 4.05A.
Therefore, there are altogether 100 aluminum atoms and 300 valence electrons in
the experiment. The position of each aluminum atom is perturbed from its original
position in the crystal by a random displacement around 1072A so that no point
group symmetry is assumed in our calculation. The grid size for discretization is set
to 0.21A. The resulting Hamiltonian matrix size is 159, 048.

We compare the density evaluation performed by both PARSEC and the pole
expansion technique. In PARSEC, the invariant subspace associated with the smallest
310 eigenvalues is computed using ARPACK [151]. Each self-consistent iteration
step takes 2,490 seconds. In the pole expansion approach, we use 60 poles, which
gives a comparable relative error in electron density on the order of 107° (in L
norm.) The MMD reordering scheme is used to reduce the amount of fill in the
LDLT factorization. In addition to using the selected inversion algorithm to evaluate
each term, an extra level of coarse grained parallelism can be utilized by assigning
each pole to a different processor. The evaluation of each term takes roughly 1,950
seconds. Therefore, the total amount of time required to evaluate the electron density
for each self-consistent iteration step on a single core is 1,950 x 60 seconds. As a
result, the performance of the selected inversion based pole expansion approach is
only comparable to the invariant subspace computation approach used in PARSEC
if the extra level of coarse grained parallelism is used.

A 3D isosurface plot of the electron density as well as the electron density plot
restricted on the z = 0 plane are shown in Figure 4.5.

We also remark that the efficiency of selected inversion can be further improved
for this particular problem. One of the factors that has prevented the Sellnv from
achieving even higher performance for this problem is that most of the supernodes
produced from the MMD ordering of H contains only 1 column even though many of

these supernodes have similar (but not identical) nonzero structures. Consequently,

136

Figure 4.5: (a)3D isosurface plot of the electron density together with the electron
density restricted to z = 0 plane. (b) The electron density restricted to z = 0 plane.

both the factorization and inversion are dominated by level 1 BLAS operations. Fur-
ther performance gain is likely to be achieved if we relax the definition of a supernode
and treat some of the zeros in L as nonzero elements. This approach has been demon-

strated to be extremely helpful in [9].

4.4 Parallel selected inversion algorithm

4.4.1 Algorithmic and implementation

In this subsection, we present the algorithmic and implementation of a parallel pro-
cedure for selected inversion. Our algorithm is quite general as long as a block LDL”
factorization is available. We make use of the elimination tree and other structure
information that can be generated during a preprocessing step that involves both
matrix reordering and symbolic factorization. For illustration purpose, we use a 2D
Laplacian with nearest neighbor interaction, where the nearest neighbor is defined
in terms of a standard 5-point stencil, as an example in this section. However, the
techniques we describe here are applicable to other higher order stencils for both
2D and 3D systems and to irregular problems obtained from, e.g., a finite element

discretization. Although we have developed an efficient parallel implementation of a

137

supernodal LDLT factorization for 2D problems, we will focus our discussion on the

selected inversion procedure only.

The Sequential Algorithm Before we present the sequential algorithms for the
selected inversion process, we need to introduce some notations and terminologies
commonly used in the sparse matrix literature. We use the technique of nested dis-
section [92] to reorder and partition the sparse matrix A. The reordered matrix has
a sparsity structure similar to that shown in Fig. 4.6a. For 2D problems defined on
a rectangular grid, nested dissection corresponds to a recursive partition of the 2D
grid into a number of subdomains with a predefined minimal size. In the example
shown in Fig. 4.7a, this minimal size is 3 X 3. Each subdomain is separated from other
subdomains by separators that are defined in a hierarchical or recursive fashion. The
largest separator is defined to be a set of grid points that divides the entire 2D grid
into two subgrids of approximately equal sizes. Smaller separators can be constructed
recursively within each subgrid. These separators are represented as rectangular oval
boxes in Fig. 4.7a and are labeled in post order in Fig. 4.7b. The separators and
minimal subdomains can be further organized in a tree structure shown in Fig. 4.6b.
This tree is sometimes called a separator tree, which is also the elimination tree as-
sociated with a block LDL” factorization of the reordered and partitioned matrix
A. Each leaf node of the tree corresponds to a minimal subdomain. Other nodes
of the tree correspond to separators defined at different levels of the partition. For
general symmetric sparse matrices, separators and leaf nodes can be obtained from
the analysis of the adjacency graph associated with the nonzero structure of A [133].

We will denote a set of row or column indices associated with each node in the
separator tree by an uppercase typewriter typeface letter such as I. Each one of
these nodes corresponds to a diagonal block in the block diagonal matrix D produced

from the block LDL" factorization. A subset of columns in I may have a similar

138

nonzero structure below the diagonal block. These columns can be grouped together
to form what is known as a supernode or a relazed supernode. (See [77] for a more
precise definition of a supernode, and [9] for the definition of a relaxed supernode.)
Sparse direct methods often take advantage of the presence of supernodes or relaxed
supernodes in the reordered matrix A to reduce the amount of indirect addressing.
Because the nonzero matrix element within a supernode can be stored as a dense

matrix, we can take full advantage of BLAS3 when working with supernodes.
50 % “

A
Es

200 B b
. e Jﬁjﬁﬁﬁj
~ .. ~ N .
. A RN .
0 50 100 150 200
column @@

(a) The reordered and partitioned (b) The separator (or elimination)
matrix A tree in postorder

Figure 4.6: The separator tree associated with the nested dissection of the 15 x 15
grid shown in Fig. 4.7a can also be viewed as the elimination tree associated with a
block LDLY factorization of the 2D Laplacian defined on that grid.

Q (@) Q A — —
-
L] L) L]
@ e oje@ e sjoe e 900 e 9 Cs 7 s (2)
L] L) L]
lo/ . lo)
@0 e o0 0 oeeeoeeoeeo (Ts Y]] ;)
(@) . (o) M M
L] L) L]
@ o eje0 e oe@ 0 o009 Co D13 | [Czs Jfed(C22)
L] L) L]
i
o o o U U U
(a) Nested dissection par- (b) The ordering of separa-
tition and separators tors and subdomains.

Figure 4.7: The nested dissection of a 15 x 15 grid and the ordering of separators and
subdomains associated with this partition.

Once the separator tree and the block LD LT factorization of A become available,

139

we can use the pseudocode shown in Algorithm 5 to perform block selected inversion.
As we can see from this pseudocode that Ainv(J,K) is calculated if and only if
L(J,K) is a nonzero block. Such a calculation makes use of previously calculated

blocks Ainv(J,I), where both J and I are ancestors of the node K.

Algorithm 5 A selected inversion algorithm for a sparse symmetric matrix A given
its block LDL” factorization A = LDL".
for K = {separator tree nodes arranged in reverse post
order} do
for J € {ancestors of K} do
Ainv(J,K) < 0;
for I € {ancestors of K} do
Ainv(J,K) < Ainv(J,K) — Ainv(J, I) % L(I,K);
end for
Ainv(K,J) « Ainv(J,K)7;
end for
Ainv(K, K) « D(K,K)~1;
for J € {ancestors of K} do
Ainv(K,K) < Ainv(K,K) — L(J,K)T x Ainv(J,K);
end for
end for

The pseudocode in Algorithm 5 treats the matrix block L(J,I) as if it is a dense
matrix. As we can see from Fig. 4.6a, this is clearly not the case. In order to carry
out the matrix-matrix multiplication efficiently, we must take advantage of these
sparsity structures. In particular, we should not store the zero rows and columns in
L(I,K). Moreover, during the calculation of Ainv(J,K), selected rows and columns
of Ainv(J,I) must be extracted before the submatrix associated with these rows and
columns are multiplied with the corresponding nonzero rows and columns of L(I,K).
We place the extracted rows and columns in a Buffer array in Algorithm 6. The
Buffer array is then multiplied with the corresponding nonzero columns of L(I,K).
As a result, the product of the nonzero rows and columns of these matrices will have a
smaller dimension. We will call the multiplication of the nonzero rows and columns of
Buffer and L(I,K) a restricted matrix-matrix multiplication, and denote it by ®. The

row and column indices associated with the needed rows and columns of Ainv(J,I)

140

are called absolute indices. These indices can be predetermined by a symbolic analysis
procedure, and they are retrieved by calling the GetAbsIndex function in Algorithm 6

that shows how restricted multiplication is used in the selected inversion process.

Algorithm 6 Selected inversion of A with restricted matrix-matrix multiplication
given its block LDL” factorization.
subroutine SeqSelInverse
for K = {separator tree nodes arranged in reverse post order} do
for J € {ancestors of K} do
Ainv(J,K) « O;
for I € {ancestors of K} do
[IA,JA] « GetAbsIndex(L,K,I,J);
Buffer < selected rows and columns of Ainv(J,I) starting at (IA, JA);
Ainv(J,K) « Ainv(J,K) — Buffer ® L(I,K);
end for
Ainv(X,J) < transpose(Ainv(J,K));
end for
Ainv(K,K) < D(K,K)™';
for J € {ancestors of K} do
Ainv(K,K) < Ainv(K,K) — L(J,K)T @ Ainv(J,K);
end for
end for
return Ainv;
end subroutine

Parallelization The sequential algorithm described above is very efficient for prob-
lems that can be stored on a single processor. For example, we have used the algo-
rithm to compute the diagonal of a discretized Kohn-Sham Hamiltonian defined on
a 2047 x 2047 grid. The entire computation, which involves more than 4 million
degrees, took less than 2 minutes on an AMD Opteron processor.

For larger problems that we would like to solve in electronic structure calculation,
the limited amount of memory on a single processor makes it difficult to store the
L and D factors in-core. Furthermore, because the complexity of the computation
is O(n*?) in 2D [163], the CPU time required to complete a calculation on a single

processor will eventually become excessively long.

141

Thus, it is desirable to modify the sequential algorithm so that the selected in-
version process can be performed in parallel on multiple processors. The parallel
algorithm we describe below focuses on distributed memory machines that do not

share a common pool of memory.

Task parallelism and data distribution The elimination tree associated with
the block LDLT factorization of the reordered A (using nested dissection) provides
natural guidance for parallelizing the factorization calculation. It can thus be viewed
also as a parallel task tree. The same task tree can be used for carrying out selected
inversion.

We divide the computational work among different branches of the tree. A branch
of the tree is defined to be a path from the root to a node K at a given level ¢ as well
as the entire subtree rooted at K. The choice of ¢ depends on the number of processors
available. For a perfectly balanced tree, our parallel algorithm requires the number
of processors p to be a power of two, and ¢ is set to log,(p) + 1. Fig. 4.8a illustrates
the parallel task tree in the case of 4 processors.

In terms of tree node to processor mapping, each node at level ¢ or below is
assigned to a unique processor. Above level £, each node is shared by multiple pro-
cessors. The amount of sharing is hierarchical, and depends on the level at which the
node resides. For a perfectly balanced tree, a level-k node is shared by 2= processors.
We will use procmap(J) in the following discussion to denote the set of processors
assigned to node J. Each processor is labeled by an integer processor identification
(id) number between 0 and p — 1. This processor id is known to each processor as
mypid. In section 4.4.2, we show that this simple parallelization strategy leads to
good load balance for a 2D Hamiltonian defined on a rectangular domain and dis-
cretized with a five point stencil. For irregular computational domain or non-uniform

mesh partitioning strategy, more complicated task-to-processor mapping algorithms

142

should be used [210] to take into account the structure of the separator tree. It may
also be necessary to perform task scheduling on-the-fly [3].

The data distribution scheme used for selected inversion is compatible with that
used for LDLT factorization. We should emphasize that the matrix D(J,J) in our
implementation of the block LDL” factorization is not necessarily diagonal. Again,
we do not store the entire submatrix L(I,J), but only the nonzero subblock within
this submatrix as well as the starting location of the nonzero subblock.

In our parallel LDL™ factorization computation, the L(I,J) and D(J,J) subma-
trices associated with any J in an aggregated leaf node are stored on a single processor
p to which the aggregated leaf node is assigned. These matrices are computed using a
sequential sparse LD LT factorization algorithm on this processor. Furthermore, this
computation is done independently from that of other processors.

When J is an ancestor of an aggregated leaf node, computing L(I,J) and D(J,J)
requires the participation of all processors that are assigned to this node procmap (J).
As a result, it is natural to divide the nonzero subblock in L(I,J) and D(J,J)
into smaller submatrices, and distribute them among all processors that belong to
procmap(J). Fig. 4.8b illustrates how the columns of the L factor are partitioned and
distributed among 4 processors.

Distributing these smaller submatrices among different processors is also necessary
for overcoming the memory limitation imposed by a single processor. For example,
for a 2D Hamiltonian defined on a 16,383 x 16, 383 grid, the dimension of D(J,J) is
16, 383 for the root node J. This matrix is completely dense, hence contains 16, 3832
matrix elements. If each element is stored in double precision, the total amount of
memory required to store D(J,J) alone is roughly 2.1 gigabytes (GB). As we will see
in section 4.4.2, the distribution scheme we use in our parallel algorithm leads to only
a mild increase of memory usage per processor as we increase the problem size and

the number of processors in proportion.

143

To achieve a good load balanced, we use a 2D block cyclic mapping consistent with
that used by ScaLAPACK to distribute the nonzero blocks of L(I,J) and D(J,J) for
any J that is an ancestor of an aggregated leaf node. In our parallel selected inversion
algorithm, the distributed nonzero blocks of L(I,J) and D(J,J) are overwritten by

the corresponding nonzero blocks of Ainv(I,J) and Ainv(J,J).

e N N
|

@@ﬁ 0

ST T A A T N AT L T)

) Parallel task tree (b) Columns of the L factor are
partitioned and distributed among
different processors.

Figure 4.8: Task parallelism expressed in terms of parallel task tree and corresponding
matrix to processor mapping.

Parallel selected inversion algorithm Once the task-to-processor mapping and
the initial data distribution is established, the parallelization of the selected inversion
process can be described in terms of operations performed on different branches of
the parallel task tree simultaneously by different processors. As illustrated in the
subroutine ParSelInverse in Algorithm 8, each processor moves from the root of
the task tree down towards to an aggregated leaf node along a particular branch
identified by mybranch. At each node K, it first computes Ainv(J,K) for ancestors
J of K that satisfy L(J,K) # 0. This calculation is followed by the computation of
the diagonal block Ainv (K,K). These two operations are accomplished by the subrou-
tine ParExtract shown in the left column of Algorithm 8. Before moving one step
further along mybranch, all processors belonging to procmap (K) perform some addi-

tional data redistribution by calling the subroutine ParRestrict listed in the right

144

column of Algorithm 8, so that selected components of Ainv(J,K) that will be needed
in the subsequent calculation of Ainv(J,I) for all descendents I of K are placed at
appropriate locations in a Buffer array created for each child of K. This step is essen-
tial for reducing synchronization overhead and will be discussed in detail later. After
ParRestrict is called, no communication is required between the processors assigned
to different children of K. Finally, when each processor reaches an aggregated leaf node
K, it calls the sequential selected inversion subroutine SeqSelInverse (Algorithm 6)
to compute Ainv(J,I) for all descendents I of K. No inter-processor communication

is required from this point on.

Algorithm 7 Parallel algorithm from extracting selected elements of the inverse of
a symmetric matrix A.
subroutine ParSelInverse
K < root;
while (K is not an aggregated leaf node) do
Update Ainv(K,J) for all J = ancestor(K) by calling ParExtract (K) ;
Update Buffer by calling ParRestrict (K) ;
K < child(K) along mybranch;
end while
Call Sequential algorithm to obtain Ainv at the leaf node;
return Ainv;
end subroutine

Avoiding synchronization bottleneck Avoiding synchronization bottleneck is
the key to achieving scalable performance in selected inversion. Synchronization is
needed in selected inversion as each processor proceeds from the root of the parallel
task tree to an aggregated leaf node because the submatrix L(I,K) required at a
particular node K of the parallel task tree is distributed in a block cyclic fashion
among a larger group of processors that are mapped to the ancestors of K. Some of
these processors will not participate in the computation of Ainv(XK,K). Therefore,
data redistribution is required to move the required matrix elements from this larger
group of processors to the set of processors in procmap (K).

We use the ScaLLAPACK subroutine PDGEMR2D to perform such a data redistribution.

145

Algorithm 8 Parallel implementation of selected inversion of A given its block LD L™
factorization.

subroutine ParExtract (K) subroutine ParRestrict (K)
for J € {ancestors of K} do if (X is the root) then
Ainv(J,K) < 0; Buffer < D(K,K);
for I € {ancestors of K} end if
do for C € {children of K} do
Ainv(J,K) < Ainv(J,K)— for all I,J € {ancestors of K} do
Buffer(J,I) ® L(I,K); if L(J,C) # 0 and L(I,C) # 0)
end for then
Ainv(K,J) « [IR,JR] «
Ainv(J,K)T; GetRelIndex(C,X,I,J);
end for Restrict Buffer(J,I) to a sub-
Ainv(K,K) < D(K,K); matrix starting at (IR, JR).
for J € {ancestors of K} do end if
Ainv(K,K) < Ainv(K,K)— end for
L(J,X)" ® Ainv(J,K); end for
end for return Buffer;
return Ainv; end subroutine

end subroutine

When PDGEMR2D is called to redistribute data from a larger processor group A to a
smaller processor group B that is contained in A, all processors in A are blocked,
meaning that no processor in A can proceed with its own computational work until
the data redistribution initiated by processors in B is completed. This blocking
feature of PDGEMR2D, while necessary for ensuring data redistribution is done in a
coherent fashion, creates a potential synchronization bottleneck.

To be specific, when the selected nonzero rows and columns in Ainv(J,I) (Algo-
rithm &) are to be extracted from a large number of processors in procmap(I) and
redistributed among a subset of processors in procmap(X), a direct extraction and
redistribution via the use of PDGEMR2D will block all processors in procmap(I). If K is
several levels away from I, a communication bottleneck that involves all processors
in procmap(I) is created. This bottleneck makes the computation of Ainv(J,K) a
sequential process for all descendants K of I that are at the same level.

The strategy we use to overcome this synchronization bottleneck is to place se-

146

lected nonzero elements of Ainv(J,I) that would be needed for subsequent calcula-
tions in a Buffer array. Selected subblocks of the Buffer array will be passed further
to the descendants of I as each processor moves down the parallel task tree. The task
of extracting necessary data and placing it in Buffer is performed by the subroutine
ParRestrict shown in Algorithm 8. At a particular node I, the ParRestrict call
is made simultaneously by all processors in procmap(I), and the Buffer array is
distributed among processors assigned to each child of I so that the multiplication
of the nonzero subblocks of Ainv(J,I) and L(J,K) can be carried out in parallel (by
pdgemm). Because this distributed Buffer array contains all information that would
be needed by descendants of K, no more direct reference to Ainv(J,I) is required for
any ancestor I of K from this point on. As a result, no communication is performed
between processors that are assigned to different children of I once ParRestrict is
called at node I.

As each processor moves down the parallel task tree within the while loop of the
subroutine ParSelInverse in Algorithm 7, the amount of data extracted from the
Buffer array by the ParRestrict subroutine becomes smaller and smaller. The new
extracted data is distributed among a smaller number of processors also. Each call
to ParRestrict (I) requires a synchronization of all processors in procmap(I), hence
incurring some synchronization overhead. This overhead becomes smaller as each
processor gets closer to an aggregated leaf node because each ParRestrict call is
then performed within a small group of processors. When an aggregated leaf node is
reached, all selected nonzero rows and columns of Ainv(J,I) required in subsequent
computation are available in the Buffer array allocated on each processor. As a
result, no communication is required among different processors from this point on.

Since the desired data in the Buffer array is passed level by level from a parent to
its children, we only need to know the relative positions of the subblocks needed by

a child within the Buffer array owned by its parent. Such positions can be recorded

147

by relative indices that are obtained by the subroutine GetRelIndex in Algorithm 8.
They are used for data extraction in ParRestrict. The use of relative indices is
not necessary when each process reaches a leaf node at which the sequential selected

inversion subroutine SeqSelInverse is called.

4.4.2 Performance of the parallel selected inversion algorithm

In this subsection, we report the performance of our implementation of the selected
inversion algorithm for a discretized 2D Kohn-Sham Hamiltonian H using five-point
stencil with a zero shift, which we will refer to as PSellnv in the following. The
nested dissection procedure stops when the dimension of the subdomain is 3 x 3. We
analyze the performance statistics by examining several aspects of the implementa-
tion that affect the efficiency of the computation and communication. Our perfor-
mance analysis is carried out on the Franklin system maintained at National Energy
Research Scientific Computing (NERSC) Center. Franklin is a distributed-memory
parallel system with 9,660 compute nodes. Each compute node consists of a 2.3 GHz
single socket quad-core AMD Opteron processor (Budapest) with a theoretical peak
performance of 9.2 gigaflops per second (Gflops) per core. Each compute node has
8 gigabyte (GB) of memory (2 GB per core). Each compute node is connected to
a dedicated SeaStar2 router through Hypertransport with a 3D torus topology that
ensures high performance, low-latency communication for MPI. The floating point
calculation is done in 64-bit double precision. We use 32-bit integers to keep index
and size information.

Our implementation of the selective inversion achieves very high single processor
performance. In particular, when the grid size reaches 2,047, we are able to reach
67% (6.16/9.2) of the peak performance of a single Franklin core.

Here we will mainly focus on the parallel performance of our algorithm and im-

plementation. Our objective for developing a parallel selected inversion algorithm is

148

to enable us and other researchers to study the electronic structure of large quan-
tum mechanical systems when a vast amount of computational resource is available.
Therefore, our parallelization is aimed at achieving a good weak scaling. Weak scal-
ing refers to a performance model similar to that used by Gustafson [112]. In such
a model, performance is measured by how quickly the wall clock time increases as
both the problem size and the number of processors involved in the computation in-
crease. Because the complexity of the factorization and selected inversion procedures
is O(n*?), where n is the matrix dimension and m is the number of grids in one
dimension. We will simply call m the grid size in the following. Clearly n = m?2. We
also expect that, in an ideal scenario, the wall-clock time should increase by a factor
of two when the grid size doubles and the number of processor quadruples.

In addition to using MPI_Wtime () calls to measure the wall clock time consumed by
different components of our code, we also use the Integrated Performance Monitoring
(IPM) tool [228], the CrayPat performance analysis tool [129] as well as PAPI [44] to

measure various performance characteristics of our implementation.

Single Processor Performance We first report the performance of selected in-
version algorithm when it is executed on a single processor. The single processor
performance is measured in terms of the CPU time and the floating point operations
performed per second (flops). Table 4.5 lists the performance characteristic of single
processor calculations for Hamiltonians defined on square grids with different sizes.
We choose the grid size m to be m = 2¢ — 1 for some integer ¢ > 1 so that a perfectly
balanced elimination tree is produced from a nested dissection of the computational
domain.

The largest problem we can solve on a single processor contains 2, 047 x 2, 047 grid
points. The dimension of the corresponding matrix is over 4 million. The memory

requirement for solving problems defined on a larger grid (with ¢ > 11) exceeds what

149

grid size ‘ matrix dimension ‘ symbolic ‘ factorization ‘ inversion ‘ total ‘ Gflops

127 16,129 0.01 0.04 0.03 0.08 1.29
255 65,025 0.05 0.21 0.17 0.43 | 257
011 261,121 0.22 1.18 1.03 243 | 3.89
1023 1,046,529 0.93 7.29 6.76 15.0 | 5.12
2047 4,190,209 4.21 48.8 47.3 100.3 | 6.15

Table 4.5: Single processor performance

is available on a single node of the Franklin system. Thus they can only be solved in
parallel using multiple processors.

We can clearly see from Table 4.5 that the symbolic analysis of the LDLT fac-
torization takes a small fraction of the total time, especially when the problem is
sufficiently large. The selected inversion calculation (after a block LDLT factoriza-
tion has been performed) takes slightly less time to complete than that required by
the factorization. The total CPU time listed in the 6th column of the table confirms
the O(n3/%) complexity.

We also observe that a high flops rate is achieved for larger problems. In particular,
when the grid size reaches 2,047, we achieve 67% (6.16/9.2) of peak performance of
the machine. This is due to the fact that as the problem size increases, the overall
computation is dominated by computation performed on the dense matrix blocks
associated with large supernodes. Therefore the performance approaches that of

dense matrix-matrix multiplications.

Parallel Scalability We report the performance of our implementation when it is
executed on multiple processors. Our primary interest is in the weak scaling of the
parallel computation with respect to an increasing problem size and an increasing
number of processors. The strong scaling of our implementation for a problem of
fixed size is described in Table 4.6. We report the wall clock time (in seconds) for

selected inversion of A~! defined on a 2,047 x 2,047 grid. In the third column of the

150

table, we report also the speedup factor defined as 7 = t,/t,,, where t,, is the wall

clock time recorded for an n,-processor run.

Ny ‘ wall clock time ‘ speedup factor ‘ Gflops

1 100.1 1.0 6.2
2 52.2 1.9 11.8
4 30.2 3.3 20.2
8 16.8 6.0 33.5
16 9.5 10.5 55.9
32 2.7 17.6 90.0
64 3.3 30.3 156.2
128 2.3 42.3 226.4
256 1.8 55.6 281.7
512 1.7 58.9 294.2

Table 4.6: The scalability of parallel computation used to obtain A~! for A of a fixed
size (n = 2047 x 2047.)

10° & T r
—e— PSellnv —6— PSellnv
- = —ideal = = =ideal
A
N

,_‘
O»—-
&

wall clock time (sec)

=
[S)
©

10° 10" 107 10° 10" 10°
number of processors number of processors

(a) (b)

Figure 4.9: Log-log plot of total wall clock time and total Gflops with respect to
number of processors, compared with ideal scaling. The grid size is fixed at 2047 x
2047.

Figure 4.9 compares the performance of our algorithm, called PSellnv, with ideal
scaling in terms of total wall clock time and total Gflops. As we can clearly see
from Table 4.6 and Figure 4.9, for problem of this fixed size, deviation from the

ideal speedup begins to show up when the computation is performed in parallel on 4

151

processors. The performance barely improves in a 512-processor run compared to the
256-processor run. Beyond that point, communication overhead starts to dominate.
We will discuss the sources of communication overhead in the next few subsections.

In terms of weak scaling, PSellnv performs quite well with up to 4,096 processors
for problems defined on a 65, 535 x 65, 535 grid (with corresponding matrix dimension
around 4.3 billion). In Table 4.7, we report the wall clock time recorded for several
runs on problems defined on square grids of different sizes. To measure weak scaling,
we start with a problem defined on a 1,023 x 1,023 grid, which is solved on a single
processor. When we double the grid size, we increase the number of processors by
a factor of 4. In an ideal scenario in which communication overhead is small, we
should expect to see a factor of two increase in wall clock time every time we double
the grid size and quadruple the number of processors used in the computation. Such
prediction is based on the O(m?) complexity of the computation. In practice, the
presence of communication overhead will lead to a larger amount of increase in total
wall clock time. Hence, if we use t(m, n,) to denote the total wall clock time used in
an n,-processor calculation for a problem defined on a square grid with grid size m,
we expect the weak scaling ratio defined by 7(m,n,) = t(m/2,n,/4)/t(m,n,), which
we show in the last column of Table 4.7, to be larger than two. However, as we can
see from this table, deviation of 7(m,n,) from the ideal ratio of two is quite modest
even when the number of processors used in the computation reaches 4, 096.

A closer examination of the performance associated with different components of
our implementation reveals that our parallel symbolic analysis takes a nearly constant
amount of time that is a tiny fraction of the overall wall clock time for all configura-
tions of problem size and number of processors. This highly scalable performance is
primarily due to the fact that most of the symbolic analysis performed by each pro-
cessor is carried out within an aggregated leaf node that is completely independent

from other leaf nodes.

152

Table 4.7 shows that the performance of our block selected inversion subroutine
achieves nearly ideal weak scaling up to 4,096 processors. The scaling of flops and
wall clock time can be better viewed in Fig. 4.10, in which the code performance is
compared to ideal performance using a log-log plot. We should point out that the
performance of our implementation of the parallel LDL” factorization is comparable
to that achieved by the state-of-art sparse matrix software packages such as MUMPS
[3] on relatively small 2D problem used in our experiment even though our factor-
ization includes the additional computation of using the ScaLAPACK subroutines
pdgetri to invert the diagonal blocks of D. (We have not been able to use MUMPS
to factor problems that are discretized with 8191 x 8191 or more grid points.) From
Table 4.7, we can also see that the selected inversion time is significantly less than that
associated with factorization when the problem size becomes sufficiently large. This
is due primarily to the fact that selected inversion involves less amount of indirect
addressing, and almost all float point operations involved in block selected inversion

are dense matrix-matrix multiplications.

grid size | n, | symbolic | factorization | inversion | total | weak scaling
time time time time ratio
1,023 1 0.92 7.29 6.77 14.99 -
2,047 4 1.77 14.44 13.82 30.04 2.00
4,095 16 1.82 34.26 25.39 61.82 2.05
8,191 64 1.91 86.35 47.07 135.34 2.18
16,383 256 1.98 207.51 89.91 299.41 2.21
32,767 | 1024 2.08 474.94 174.57 651.59 2.17
65,535 | 4096 2.40 1109.09 348.13 | 1459.62 2.24

Table 4.7: The scalability of parallel computation used to obtain A~! for A for in-
creasing system sizes. The largest grid size is 65,535 x 65,535 and corresponding
matrix size is approximately 4.3 billion.

Load Balance To have a better understanding of the parallel performance of our
code, let us now examine how well the computational load is balanced among different

processors. Although we try to maintain a good load balance by distributing the

153

) , . . v
3| | —€— PSellnv 4|| —©— PSellnv ‘2
1077 - - - ideal L1 100 - - - ideal

™

wall clock time (sec)
=
o
A
N
Y
Gflops

10 10" 10° 10° 10° 10" 10° 10
number of processors number of processors

() (b)

3

Figure 4.10: Log-log plot of total wall clock time and total GHlops with respect to
number of processors, compared with ideal scaling. The grid size starts from 1023 x
1023, and is proportional to the number of processors.

nonzero elements in L(I,J) and D(J,J) as evenly as possible among processors in
procmap (J), such a data distribution strategy alone is not enough to achieve perfect
load balance as we will see below.

One way to measure load balance is to examine the flops performed by each
processor. We collected such statistics by using PAPI [44]. Fig. 4.11 shows the
overall flop counts measured on each processor for a 16-processor run of the selected
inversion for A defined on a 4,095 x 4,095 grid. There is clearly some variation in
operation counts among the 16 processors. Such variation contributes to idle time
that shows up in the communication profile of the run, which we will report in the
next subsection. Such variation can be explained by how the separator tree nodes are

order and its relationship with the 2D grid topology.

Communication Overhead A comprehensive measurement of the communication
cost can be collected using the IPM tool. Table 4.8 shows the overall communication
cost increases moderately as we double the problem size and quadruple the number

of processors at the same time.

154

number of floating point operations
o o 1 P @ &

&

°

o
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
processor number

Figure 4.11: The number of flops performed on each processor for the selected inver-
sion of A~! defined on a 4,095 x 4,095 grid.

grid size | n, | communication (%)

1,023 1 0

2,047 1 2.46
14,095 | 16 11.14
8,191 | 64 20.41
16,383 | 256 28.43
32,767 | 1024 34.46
65,535 | 4096 40.80

Table 4.8: Communication cost as a percentage of the total wall clock time.

155

As we discussed earlier, the communication cost can be attributed to the following

three factors:

1. Idle wait time. This is the amount of time a processor spends waiting for other
processors to complete their work before proceeding beyond a synchronization

point.

2. Communication volume. This is the amount of data transfered among different

Processors.

3. Communication latency. This factor pertains to the startup cost for sending a
single message. The latency cost is proportional to the total number of messages

communicated among different processors.

The communication profile provided by IPM shows that MPI_Barrier calls are the
largest contributor to the communication overhead. An example of such a profile
obtained from a 16-processor run on a 4,095 x 4,095 grid is shown in Fig. 4.12. In
this particular case, MPI_Barrier represents more than 50% of all communication
cost. The amount of idle time the code spent in this MPI function is roughly 6.3%
of the overall wall clock time.

The MPI_Barrier and BLACS Barrier (which shows up in the performance profile
as MPI Barrier) functions are used in several places in our code. In particular, the
barrier functions are used in the selected inversion process to ensure relative indices
are properly computed by each processor before selected rows and columns of the
matrix block associated with a higher level node are redistributed to its descendants.
The idle wait time spent in these barrier function calls is due to the variation of
computational loads. Using the call graph provided by CrayPat, we examined the
total amount of wall clock time spent in these MPI_Barrier calls. For the 16-processor
run (on the 4,095 x 4,095 grid), this measured time is roughly 2.6 seconds, or 56%

of all idle time spent in MPI_Barrier calls. The rest of the MPI_Barrier calls are

156

[name]
MPI_Barrier
MPI_Recv
MPI_Reduce
MPI_Send
MPI_Bcast
MPI_Allreduce
MPI_Isend
MPI_Testall
MPI_Sendrecv
MPI_Allgather
MPI_Comm_rank
MPI_Comm_size

[time]
67.7351
30.4719
16.6104
7.86273
5.86476

0.842473
0.261145
0.0563367
0.0225533
0.00237397
8.93647e-05
1.33585e-05

[calls]
960
55599
18260
25865
100408
320
29734
33515
1808
16

656

32

<%mpi>
.21
.49
.80
.06
.52
.65
.20
.04
.02
.00
.00
.00

= N O
N W N

O O O O O O OO

<Ywall>

6.
.84
.55
.73
.55
.08
.02
.01
.00
.00
.00
.00

O O OO O OO OO~ N

32

Figure 4.12: Communication profile for a 16-processor run on a 4,095 x 4,095 grid.

made in ScaLAPACK matrix-matrix multiplication routine pdgemm, dense matrix

factorization and inversion routines pdgetrf and pdgetri, respectively.

Fig. 4.13a shows that the percentage of wall clock time spent in MPI_Barrier

increases moderately as more processors are used to solve larger problems

increase is due primarily to the increase in the length of the critical path in both

the elimination tree and in the dense linear algebra calculations performed on each

separator.

Percentage of wall clock time used by MPI_Barrier

8

@

3

@

°

4 16 64 256
number of processors.

1024

4096

(a) The percentage of time spent in
MPI Barrier as a function of n, (and
the corresponding grid size m).

4 4 16 64 256 1024 4096
Number of processors

(b) The average memory usage per

Such

processor as a function of n, and m.

Figure 4.13: Communication overhead and memory usage profile

In addition to the idle wait time spent in MPI_Barrier, communication overhead

157

is also affected by the volume of data transfered among different processors and how
frequent these transfers occur. It is not difficult to show that the total volume of
communication should be proportional to the number of nonzeros in L and indepen-
dent from the number of processors used. Fig. 4.12 shows that the total amount of
wall clock time spent in MPI data transfer functions MPI_Send, MPI _Recv, MPI_ISend,
MPI_Reduce, MPI_Bcast and MPI_Allreduce etc. is less than 5% of the overall wall
clock time for a 16-processor run on a 4,095 x 4,095 grid. Some of the time spent in
MPI Recv and collective communication functions such as MPI_Reduce and MPI _Bcast
corresponds to idle wait time that are not accounted for in MPI_Barrier. Thus, the
actual amount of time spent in data transfer is much less than 5% of the total wall
clock time. This observation provides an indirect measurement of the relatively low
communication volume produced in our calculation.

In terms of the latency cost, we can see from Fig. 4.12 that the total number of MPI
related function calls made by all processors is roughly 258,000 (obtained by adding
up the call numbers in the third column). Therefore, the total number of messages
sent and received per processor is roughly 16,125. The latency for sending one message
on Franklin is roughly 8 microsecond. Hence, the total latency cost for this particular
run is estimated to be roughly 0.13 seconds, a tiny fraction of the overall wall clock

time. Therefore, latency does not contribute much to communication overhead.

Memory Consumption In addition to maintaining good load balance among dif-
ferent processors, the data-to-processor mapping scheme also ensures that the memory
usage per core only increases logarithmically with respect to the matrix dimension in
the context of weak scaling. This estimation is based on the observation that when
the grid size is increased by a factor of two, the dimension of the extra blocks associ-
ated with L and D to are proportional to the grid size, and the total amount of extra

memory requirement is proportional to the square of the grid size. Since the number

158

of processors is increased by a factor of four, the extra memory requirement stays
fixed regardless of the grid size. This logarithmic dependence is clear from Fig. 4.13b,
where the average memory cost per core with respect to number of processors is

shown. The x-axis is plotted in logarithmic scale.

4.4.3 Application to electronic structure calculation of 2D

rectangular quantum dots

We now show how the parallel selected inversion algorithm can be used to speed up
electronic structure calculations. The example we use here is a 2D electron quantum
dot confined in a rectangular domain, a model investigated in [216] with the local
density approximation (LDA) for the 2D exchange-correlation functional [13]. This
model is also provided in the test suite of the Octopus software [50], which we use for
comparison.

We calculate the electron density using the pole expansion introduced in sec-
tion 3.3. In this example, the Laplacian operator A is discretized using a five-point
stencil. The electron temperature is set to be 300K. The area of the quantum dot
is L2. In a two-electron dot, setting L = 1.66A and discretizing the 2D domain with
31 x 31 grid points yields an total energy error that is less than 0.002Ha. When the
number of electrons becomes larger, we increase the area of the dot in proportion so
that the average electron density is fixed. A typical density profile with 32 electrons
is shown in Fi. 4.14. In this case, the quantum dot behaves like a metallic system
with a tiny energy gap around 0.08eV.

We compare the density evaluation performed by both Octopus and the pole
expansion technique. In Octopus, the invariant subspace associated with the smallest
n./2 + ny, smallest eigenvalues of H is computed using a conjugate gradient (CG)
like algorithm, where n, is the number of electrons in the quantum dot and ny, is the

number of extra states for finite temperature calculation. The value of n;, depends

159

Figure 4.14: A contour plot of the density profile of a quantum dot with 32 electrons.

on the system size and temperature. For example, in the case of 32 electrons 4 extra
states are necessary for the electronic structure calculation at 300K. In the pole
expansion approach, we use 80 poles, which in general could give a relative error in
electron density on the order of 1077 (in L; norm) [164].

In addition to using the parallel algorithm to evaluate each term, an extra level of
coarse grained parallelism can be achieved by assigning each pole to a different group
of processors.

In Table 4.9, we compare the efficiency of the pole expansion technique for the
quantum dot density calculation performed with the standard eigenvalue calculation
approach implemented in Octopus. The maximum number of CG iterations for com-
puting each eigenvalue in Octopus is set to the default value of 25. We label the pole
expansion-based approach that uses the algorithm and implementation as PCSellnv,
where the letter C stands for complex. The factor 80 in the last column of Table 4.9
accounts for 80 poles. When a massive number of processors are available, this pole
number factor will easily result in a factor of 80 reduction in wall clock time for the
PCSellnv calculation, whereas such a perfect reduction in wall clock time cannot be
easily obtained in Octopus.

We observe that for quantum dots that contain a few electrons, the standard den-

sity evaluation approach implemented in Octopus is faster than the pole expansion

160

ne(#Electrons) | Grid | #proc | Octopus time(s) | PCSellnv time(s)

2 31 1 <0.01 0.01 x 80
8 63 1 0.03 0.06 x 80
32 127 | 1 0.78 0.03 x 80
195 oss |1 26.32 1.72 x 80
4 10.79 0.59 x 80

1 1091.04 9.76 x 80

iz e300 | 316x80
16 131.96 1.16 x 80

1 out of memory 60.08 x 80

2048 ‘ 1023 ‘ 4 ‘ out of memory ‘ 19.04 x 80
\ | 16 | 716798 | 5.60 x80

| | 64 | 181939 | 284 %80

Table 4.9: Timing comparison of electron density evaluation between Octopus and
PCSellnv for systems of different sizes. The multiplication by 80 in the last column
accounts for the use of 80 pole.

approach. However, when the number of electrons becomes sufficiently large, the
advantage of the pole expansion approach using the algorithms presented to compute
diag [H —(z;+p)I]~! becomes quite evident. This is because the computation cost as-
sociated with the eigenvalue calculation in Octopus is dominated by the computation
performed to maintain mutual orthogonality among different eigenvectors when the
number of electrons in the quantum dot is large. The complexity of this computation
alone is O(n?), whereas the overall complexity of the pole-based approach is O(n*?).
The crossover point in our experiment appears to be 512 electrons. For a quantum

dot that contains 2048 electrons, PCSellnv is eight times faster than Octopus.

4.5 Conclusion

This chapter has developed the selected inversion algorithm for extracting the di-
agonal elements and the nearest off-diagonal elements of symmetric matrices. The

selected inversion algorithm is numerically exact. The computational complexity of

161

the selected inversion algorithm is O(N) for quasi-1D systems, O(N'?) for quasi-
2D systems and O(N?) for 3D systems, where N is the number of electrons in the
system. Combined with the pole expansion developed in Chapter 3, the selected in-
version algorithm can be used for accurate and efficient calculation of solving KSDFT.
The asymptotic computational scaling is universally improved compared to the cubic
scaling for systems of all dimensions.

We have developed a sequential selected inversion algorithm, called Sellnv, for
solving the diagonal and nearest off-diagonal elements of a general symmetric matrix.
Sellnv is applied to a variety of benchmark problems with dimension as large as 1.5
million. Sellnv is already two orders of magnitude faster than the direct inversion
method for moderately large matrices. We have developed a parallel selected inversion
algorithm, called PSellnv, for solving the diagonal and nearest off-diagonal elements of
structured 2D matrices. PSellnv is able to solve problems defined on a 65, 535 x65, 535
grid with 4.3 billion degrees of freedom on 4, 096 processors, and exhibits an excellent
weak scaling property.

The selected inversion algorithm have also been applied to study the electronic
structure of quantum dots and aluminum. The quantum dots is a two-dimensional
system, and the new parallel selected inversion algorithm shows significant advan-
tage over the diagonalization method. Aluminum is a three-dimensional system, and
Sellnv is only marginally superior to the diagonalization method. The difference in
the performance is twofold. First, the asymptotic scaling of the selected inversion
algorithm is O(N'9) for two dimensional system, and O(N?) for three dimensional
system, due to the difference in the sparsity of the Cholesky factor of the Hamiltonian
matrix. The computational time of the selected inversion algorithm is expected to
be more expensive in two dimensional case than that in the three dimensional case.
Second, the selected inversion algorithm has a larger preconstant than that in the di-

agonalization method. The preconstant is largely determined by the number of basis

162

functions per atom, denoted by c. It can be shown that after taking into account the
pre-constant, the computational complexity of the diagonalization method is O(cN?),
while the computational complexity of the selected inversion algorithm is O(c3N) for
one dimensional system, O(c* N'*) for two dimensional system, and O(c*N?) for the
three dimensional case. Take the three dimensional system for example, asymptot-
ically the crossover between the selected inversion method and the diagonalization
method happens at N = 2. In the scenario studied in Section 4.3 for aluminum sys-
tem, finite difference method is used for the discretization of the Hamiltonian matrix.
It is well known that the finite difference discretization leads to a large number of
basis functions per atom. It is desirable to use a discretization scheme that leads to
small basis functions per atom. The adaptive local basis functions method developed
in Chapter 2 results in a small number of basis functions per atom, and is therefore
the natural choice of basis functions in the future work.

Another direction for future work is the parallel selected inversion algorithm for
general symmetric matrices. The selected inversion algorithm contains three phases:
symbolic analysis; LDLT factorization; selected inversion. The symbolic analysis can
be done in parallel relatively easily for 2D Hamiltonians discretized on a rectangular
domain by finite difference. For problems defined on irregular grids (e.g., problems
that are discretized by finite elements or some other techniques), a general parallel
symbolic analysis based on graph partitioning [133,210,257,257] should be used. The
LDLT factorization can in principle be performed by any of the existing sparse matrix
solvers [3,10,110,111,195,215,221,223]. The selected inversion based on supernodes
can be generalized to the parallel version using the same method as in Sellnv, once
the parallel symbolic analysis is available. This is an area of research we are currently

pursuing.

163

Chapter 5

Fast construction of 44 matrix

5.1 Introduction

In this chapter, we consider the following problem: Assume that an unknown sym-
metric matrix G has the structure of a hierarchical matrix (H-matrix) [37,115,116],
that is, certain off-diagonal blocks of G are low-rank or approximately low-rank (see
the definitions in Sections 5.1.3 and 5.2.2). The task is to construct G efficiently only
from a “black box” matrix-vector multiplication subroutine (which shall be referred
to as matvec in the following). In a slightly more general setting when G is not
symmetric, the task is to construct G from “black box” matrix-vector multiplication
subroutines of both G and GT. In this work, we focus on the case of a symmetric
matrix G. The proposed algorithm can be extended to the non-symmetric case in a
straightforward way.

This work is inspired from the work of selected inversion developed in Chapter 4,
and this chapter is relatively independent. Readers who are focusing on the main flow
of this dissertation can skip this chapter and directly go to the conclusion of Part I

in Chapter 6. Materials in this chapter have been presented in [161].

164

5.1.1 Motivation and applications

Our motivation is mainly for the situation that G is given as the Green’s function of
an elliptic equation. In this case, it is proved that G is an H-matrix under mild regu-
larity assumptions [20]. For elliptic equations, methods like preconditioned conjugate
gradient, geometric and algebraic multigrid methods, sparse direct methods provide
application of the matrix G on vectors. The algorithm proposed in this work then
provides an efficient way to construct the matrix G explicitly in the H-matrix form.

Once we obtain the matrix G as an H-matrix, it is possible to apply G on vectors
efficiently, since the application of an H-matrix on a vector is linear scaling. Of course,
for elliptic equations, it might be more efficient to use available fast solvers directly to
solve the equation, especially if only a few right hand sides are to be solved. However,
sometimes, it would be advantageous to obtain G since it is then possible to further
compress G according to the structure of the data (the vectors that G will be acting
on), for example as in numerical homogenization [80]. Another scenario is that the
data has special structure like sparsity in the choice of basis, the application of the
resulting compressed matrix will be more efficient than the “black box” elliptic solver.

Let us remark that, in the case of elliptic equations, it is also possible to use the H-
matrix algebra to invert the direct matrix (which is an H-matrix in e.g. finite element
discretization). Our method, on the other hand, provides an efficient alternative
algorithm when a fast matrix-vector multiplication is readily available, and is able
to compute the inverse of an H-matrix of dimension n x n with O(logn) matrix-
vector multiplications. We also remark that the preconstant in front of the O(logn)
scaling can be large, and this may hinder the application of the current version of the
algorithm in many scenarios. However, from a computational point of view, what is
probably more attractive is that our algorithm facilitates a parallelized construction
of the H-matrix, while the direct inversion has a sequential nature [115].

As another motivation, the purpose of the algorithm is to recover the matrix via

165

a “black box” matrix-vector multiplication subroutine. A general question of this
kind will be that under which assumptions of the matrix, one can recover the matrix
efficiently by matrix-vector multiplications. If the unknown matrix is low-rank, the
recently developed randomized singular value decomposition algorithms [119,157,248]
provide an efficient way to obtain the low-rank approximation through application of
the matrix on random vectors. Low-rank matrices play an important role in many
applications. However, the assumption is too strong in many cases that the whole
matrix is low-rank. Since the class of H-matrices is a natural generalization of the
one of low-rank matrices, the proposed algorithm can be viewed as a further step in

this direction.

5.1.2 Randomized singular value decomposition algorithm

A repeatedly leveraged tool in the proposed algorithm is the randomized singular
value decomposition algorithm for computing a low rank approximation of a given
numerically low-rank matrix. This has been an active research topic in the past
several years with vast literature. For the purpose of this work, we have adopted the
algorithm developed in [157], although other variants of this algorithm with similar
ideas can also be used here. For a given matrix A that is numerically low-rank, this

algorithm goes as following to compute a rank-r factorization.

Algorithm 9 Construct a low-rank approximation A ~ Uy MUy for rank r

1: Choose a Gaussian random matrix Ry € R™*("+¢) where ¢ is a small
constant;

2: Form AR; and apply SVD to AR;. The first r left singular vectors
give Uy;

3: Choose a Gaussian random matrix Ry € R"*("+¢).

4: Form R} A and apply SVD to ATRy. The first 7 left singular vectors
give Usy;

5. M = (RIU[RT(AR1)](US Ry)', where BT denotes the Moore-
Penrose pseudoinverse of matrix B [105, pp. 257-258].

The accuracy of this algorithm and its variants has been studied thoroughly by

166

several groups. If the matrix 2-norm is used to measure the error, it is well-known that
the best rank-r approximation is provided by the singular value decomposition (SVD).
When the singular values of A decay rapidly, it has been shown that Algorithm 9
results in almost optimal factorizations with an overwhelming probability [119]. As
Algorithm 9 is to be used frequently in our algorithm, we analyze briefly its complexity
step by step. The generation of random numbers is quite efficient, therefore in practice
one may ignore the cost of steps 1 and 3. Step 2 takes (r + ¢) matvec of matrix A and
O(n(r + ¢)?) steps for applying the SVD algorithms on an n x (r + ¢) matrix. The
cost of step 4 is the same as the one of step 2. Step 5 involves the computation of
RI(AR;), which takes O(n(r + c)?) steps as we have already computed AR; in step
2. Once R} (AR;) is ready, the computation of M takes additional O((r + ¢)?) steps.
Therefore, the total complexity of Algorithm 9 is O(r + ¢) matvecs plus O(n(r + ¢)?)

extra steps.

5.1.3 Top-down construction of H-matrix

We illustrate the core idea of our algorithm using a simple one-dimensional example.
The algorithm of constructing a hierarchical matrix G is a top-down pass. We assume
throughout the article that G is symmetric.

For clarity, we will first consider a one dimension example. The details of the
algorithm in two dimensions will be given in Section 2. We assume that a symmetric
matrix G has a hierarchical low-rank structure corresponding to a hierarchical dyadic
decomposition of the domain. The matrix G is of dimension n x n with n = 2fm
for an integer Lj;. Denote the set for all indices as Zy.;, where the former subscript
indicates the level and the latter is the index for blocks in each level. At the first level,
the set is partitioned into Zy,; and Z;., with the assumption that G(Z.1,Z;.2) and
G(Zy1.2,7y,1) are numerically low-rank, say of rank r for a prescribed error tolerance

€. At level [, each block Z;_1,; on the above level is dyadically decomposed into two

167

blocks Z;.0;—1 and Z;.9; with the assumption that G(Z;.0;—1, Z;.2;) and G(Zy.2:, Zy.2i-1) are
also numerically low-rank (with the same rank r for the tolerance ¢). Clearly, at level
[, we have in total 2! off-diagonal low-rank blocks. We stop at level Lj;, for which
the block Z,, ; only has one index {i}. For simplicity of notation, we will abbreviate
G(Zy;,L1,;) by Giij. We remark that the assumption that off-diagonal blocks are
low-rank matrices may not hold for general elliptic operators in higher dimensions.
However, this assumption simplifies the introduction of the concept of our algorithm.
More realistic case will be discussed in detail in Sections 5.2.3 and 5.2.4.

The overarching strategy of our approach is to peel off the off-diagonal blocks level
by level and simultaneously construct their low-rank approximations. On the first
level, G'1,12 is numerically low-rank. In order to use the randomized SVD algorithm
for G1.12, we need to know the product of G,12 and also GlT;12 = (1,21 with a collection

of random vectors. This can be done by observing that

G G Ryq G R

= , (5.1)
Gio1 G 0 Gio1 R
G G 0 Gra2R12

= , (5.2)
Gio1 G Ry G2 R

where Ry and R;» are random matrices of dimension n/2 x (r + ¢). We obtain
(GroRya)" = RElGl;lg by restricting the right hand side of Eq. (5.1) to Z;.» and
obtain Gy.19R;.9 by restricting the right hand side of Eq. (5.2) to Z;.;, respectively.

The low-rank approximation using Algorithm 9 results in
Gz ~ Giia = Upia MUy, (5.3)

Upi2 and Uygy are n/2 X r matrices and My.j0 is an r X r matrix. Due to the fact

that G is symmetric, a low-rank approximation of G.9; is obtained as the transpose

168

of Gl;lg.

Now on the second level, the matrix GG has the form

Go1 Gaao
G112
Gao1 Gao
Gazs Gasa
G121
Gouz Goua

The submatrices Go.12, G221, Ga;34, and Gaag are numerically low-rank, to obtain
their low-rank approximations by the randomized SVD algorithm. Similar to the first
level, we could apply G on random matrices of the form like (R4, 0,0,0)". This will
require 4(r+c¢) number of matrix-vector multiplications. However, this is not optimal:
Since we already know the interaction between Z;; and Z;., we could combine the
calculations together to reduce the number of matrix-vector multiplications needed.

Observe that

Gaon1 G, Ry, Ga.11Rap Ry3
211 Go12 G G
Goo1 Gaoo 0 Ga01 R 0
- (5.4)
Ga.g3 Gz Ro3 Ga.33Ra3 Ry
Gi1.a1 ’ T+ Gi1q 7
Gouz Goua 0 Ga.43Ra3 0
Denote
go_| 0 G (5.5)
Gio1 O

with @1;12 and @1;21 the low-rank approximations we constructed on the first level,

169

then

Ry, o R2;3
“t G1;12
~ 0 0
G = (5.6)
R2;3 ~ Rg;l
G1;21
0 0
Therefore,
R2;1 G2;11R2;1
(G _ a(l)) 0 ~ G2;21R2;1 ’ (57)
R2;3 G2;33R2;3
0 G2;43R2;3

so that we simultaneously obtain (Gaa1Re;1)" = Ry Gaa and (GousRas)" = Ry5Gasu
Similarly, applying G on (O,RQ;Q,O, R2;4)T pI‘OVidGS G2;12R2;2 and G2;34R2;4. We can
then obtain the following low-rank approximations by invoking Algorithm 9.

Gai2 = Goo = U2;12M2;12U2T;21,

. (5.8)
Gaoza ~ Gozg = U2;34M2;34U2T;43.

The low-rank approximations of G.2; and G453 are again given by the transposes of

the above formulas.

170

Similarly, on the third level, the matrix G has the form

Gsi1 G2
G2
Gso1 G
G112
G333 Gaza
Ga1
Gsus Gsua (5.9)
G3;55 G3;56 7
Ga;34
G365 G3iee
G
Gsr Gsrs
G2;43
G3;87 G3;88
and define
0 Gao
R 0
g | O . (5.10)
0 Goss
O A~

G2;43 0

We could simultaneously obtain the product of Gs.ia2, Gss4, Gs56 and Ggrzs with

random vectors by applying the matrix G with random vectors of the form
T T T T T
<R3;1707 R3;37O7R3;5707R3;770))

then subtract the product of GO + GO with the same vectors. Again invoking
Algorithm 9 provides us the low-rank approximations of these off-diagonal blocks.
The algorithm continues in the same fashion for higher levels. The combined
random tests lead to a constant number of matvec at each level. As there are log(n)
levels in total, the total number of matrix-vector multiplications scales logarithmically.
When the block size on a level becomes smaller than the given criteria (for exam-

ple, the numerical rank r used in the construction), one could switch to a deterministic

171

way to get the off-diagonal blocks. In particular, we stop at a level L (L < Lj;) such
that each Zr,; contains about r entries. Now only the elements in the diagonal blocks

G i need to be determined. This can be completed by applying G to the matrix

where [is the identity matrix whose dimension is equal to the number of indices in
Iy

Let us summarize the structure of our algorithm. From the top level to the bottom
level, we peel off the numerically low-rank off-diagonal blocks using the randomized
SVD algorithm. The matrix-vector multiplications required by the randomized SVD
algorithms are computed effectively by combining several random tests into one using
the zero pattern of the remaining matrix. In this way, we get an efficient algorithm

for constructing the hierarchical representation for the matrix G.

5.1.4 Related works

Our algorithm is built on top of the framework of the H-matrices proposed by Hack-
busch and his collaborators [20,37,115]. The definitions of the H-matrices will be
summarized in Section 5.2. In a nutshell, the H-matrix framework is an operational
matrix algebra for efficiently representing, applying, and manipulating discretizations
of operators from elliptic partial differential equations. Though we have known how
to represent and apply these matrices for quite some time [108], it is the contribu-
tion of the H-matrix framework that enables one to manipulate them in a general
and coherent way. A closely related matrix algebra is also developed in a more
numerical-linear-algebraic viewpoint under the name hierarchical semiseparable ma-
trices by Chandrasekaran, Gu, and others [56,57]. Here, we will follow the notations

of the H-matrices as our main motivations are from numerical solutions of elliptic

172

PDEs.

A basic assumption of our algorithm is the existence of a fast matrix-vector multi-
plication subroutine. The most common case is when G is the inverse of the stiffness
matrix H of a general elliptic operator. Since H is often sparse, much effort has
been devoted to computing u = Gf by solving the linear system Hu = f. Many
ingenious algorithms have been developed for this purpose in the past forty years.
Commonly-seen examples include multifrontal algorithms [78,92], geometric multi-
grids [41,43,115], algebraic multigrids (AMG) [42], domain decompositions methods
232, 240], wavelet-based fast algorithms [32] and preconditioned conjugate gradient
algorithms (PCG) [28], to name a few. Very recently, both Chandrasekaran et al [55]
and Martinsson [179] have combined the idea of the multifrontal algorithms with the
‘H-matrices to obtain highly efficiently direct solvers for Hu = f. Another common
case for which a fast matrix-vector multiplication subroutine is available comes from
the boundary integral equations where G is often a discretization of a Green’s function
restricted to a domain boundary. Fast algorithms developed for this case include the
famous fast multipole method [108], the panel clustering method [117], and others.
All these fast algorithms mentioned above can be used as the “black box” algorithm
for our method.

As shown in the previous section, our algorithm relies heavily on the randomized
singular value decomposition algorithm for constructing the factorizations of the off-
diagonal blocks. This topic has been a highly active research area in the past several
years and many different algorithms have been proposed in the literature. Here, for
our purpose, we have adopted the algorithm described in [157,248]. In a related but
slightly different problem, the goal is to find low-rank approximations A = CUR
where C' contains a subset of columns of A and R contains a subset of rows. Papers
devoted to this task include [74,75,106,177]. In our setting, since we assume no

direct access of entries of the matrix A but only its impact through matrix-vector

173

multiplications, the algorithm proposed by [157] is the most relevant choice. An
excellent recent review of this fast growing field can be found in [119].

In a recent paper [178], Martinsson considered also the problem of constructing the
‘H-matrix representation of a matrix, but he assumed that one can access arbitrary
entries of the matrix besides the fast matrix-vector multiplication subroutine. Under
this extra assumption, he showed that one can construct the H? representation of the
matrix with O(1) matrix-vector multiplications and accesses of O(n) matrix entries.
However, in many situations including the case of G being the inverse of the stiffness
matrix of an elliptic differential operator, accessing entries of G is by no means a trivial
task. Comparing with Martinsson’s work, our algorithm only assumes the existence
of a fast matrix-vector multiplication subroutine, and hence is more general.

As we mentioned earlier, one motivation for computing G explicitly is to further
compress the matrix G. The most common example in the literature of numerical
analysis is the process of numerical homogenization or upscaling [80]. Here the matrix
(G is often again the inverse of the stiffness matrix H of an elliptic partial differential
operator. When H contains information from all scales, the standard homogenization
techniques fail. Recently, Owhadi and Zhang [197] proposed an elegant method that
under the assumption that the Cordes condition is satisfied, upscales a general H
in divergence form using metric transformation. Computationally, their approach
involves d solves of form Hu = f with d being the dimension of the problem. On
the other hand, if G is computed using our algorithm, one can obtain the upscaled
operator by inverting a low-passed and down-sampled version of G. Complexity-wise,
our algorithm is more costly since it requires O(logn) solves of Hu = f. However,
since our approach makes no analytic assumptions about H, it is expected to be more

general.

174

5.2 Algorithm

We now present the details of our algorithm in two dimensions. In addition to a top-
down construction using the peeling idea presented in the introduction, the complexity
will be further reduced using the H? property of the matrix [37,116]. The extension
to three dimensions is straightforward.

In two dimensions, a more conservative partition of the domain is required to
guarantee the low-rankness of the matrix blocks. We will start with discussion of
this new geometric setup. Then we will recall the notion of hierarchical matrices and
related algorithms in Section 5.2.2. The algorithm to construct an H? representation
for a matrix using matrix-vector multiplications will be presented in Sections 5.2.3
and 5.2.4. Finally, variants of the algorithm for constructing the H' and uniform #*

representations will be described in Section 5.2.5.

5.2.1 Geometric setup and notations

Let us consider an operator G defined on a 2D domain [0, 1)? with periodic boundary
condition. We discretize the problem using an n = N x N uniform grid with /N being

a power of 2: N = 25M_ Denote the set of all grid points as
I():{(k‘l/N,k’g/N)|k’1,/€2€N,O§k’1,k2<N} (511)

and partition the domain hierarchically into L + 1 levels (L < Ljs). On each level [
(0 <1< L), we have 2! x 2! boxes denoted by Z;.;; = [(i—1)/2!,i/2") x [(j—1)/2',5/2")
for 1 <i,57 < 2! The symbol Z;;; will also be used to denote the grid points that
lies in the box Z;,;;. The meaning should be clear from the context. We will also use
Z,(or J;) to denote a general box on certain level [. The subscript [will be omitted,
when the level is clear from the context. For a given box Z; for [> 1, we call a box

Ji—1 on level [— 1 its parent if Z; C J;_1. Naturally, Z; is called a child of 7;_;. It is

175

clear that each box except those on level L will have four children boxes.

For any box Z on level [, it covers N/2! x N/2! grid points. The last level L can be
chosen so that the leaf box has a constant number of points in it (i.e. the difference
Ly — L is kept to be a constant when N increases).

For simplicity of presentation, we will start the method from level 3. It is also
possible to start from level 2. Level 2 needs to be treated specially, as for level 3. We

define the following notations for a box Z on level [(I > 3):

NL(Z) Neighbor list of box Z. This list contains the boxes on level [that are adjacent

to Z and also Z itself. There are 9 boxes in the list for each Z.

IL(Z) Interaction list of box Z. When [= 3, this list contains all the boxes on level 3
minus the set of boxes in NL(Z). There are 55 boxes in total. When > 3, this
list contains all the boxes on level [that are children of boxes in NL(P) with P

being Z’s parent minus the set of boxes in NL(Z). There are 27 such boxes.

Notice that these two lists determine two symmetric relationship: J € NL(Z) if and
only if Z € NL(7) and J € IL(Z) if and only if Z € IL(J). Figs. 5.1 and 5.2 illustrate

the computational domain and the lists for [= 3 and [= 4, respectively.

B Box I3;373
Adjacent

B Interaction

Figure 5.1: Illustration of the computational domain at level 3. Zj33 is the black
box. The neighbor list NL(Z3.5 3) consists of 8 adjacent light gray boxes and the black
box itself, and the interaction list IL(Z333) consists of the 55 dark gray boxes.

176

B DBox 1—4;575
Adjacent

B Interaction

Figure 5.2: Illustration of the computational domain at level 4. Z,55 is the black
box. The neighbor list NL(Z,;5 5) consists of 8 adjacent light gray boxes and the black
box itself, and the interaction list IL(Zy;55) consists of the 27 dark gray boxes.

For a vector f defined on the N x N grid Zy, we define f(Z) to be the restriction
of f to grid points Z. For a matrix G € RY “XN? that represents a linear map from Z,
to itself, we define G(Z, J) to be the restriction of G on Z x J.

A matrix G € RV has the following decomposition

G=ag® + el et el + D) (5.12)

Here, for each [, GY incorporates the interaction on level [between a box with its

interaction list. More precisely, G) has a 2% x 2% block structure:

GZ,J), ZT€lL(T) (eq- J €IL(T));
G(l)(I, j) —

0, otherwise

with Z and J both on level I. The matrix D® includes the interactions between

adjacent boxes at level L:

G(Z,TJ), ZeNL(T) (eq. J € NL(2));
D(L)(I, J) =

0, otherwise

177

with Z and J both on level L. To show that (5.12) is true, it suffices to prove that
for any two boxes Z and J on level L, the right hand side gives G(Z, 7). In the case
that Z € NL(7), this is obvious. Otherwise, it is clear that we can find a level [, and
boxes Z' and J' on level [, such that 7 € IL(J’'), Z C 7' and J C J', and hence
G(Z,J) is given through G(Z', J'). Throughout the text, we will use ||Al|s to denote

the matrix 2-norm of matrix A.

5.2.2 Hierarchical matrix

Our algorithm works with the so-called hierarchical matrices. We recall in this subsec-
tion some basic properties of this type of matrices and also some related algorithms.
For simplicity of notations and representation, we will only work with symmetric
matrices. For a more detailed introduction of the hierarchical matrices and their

applications in fast algorithms, we refer the readers to [115,116].

H! matrices

Definition 5.2.1. G is a (symmetric) H'-matriz if for any e > 0, there exists r(e) <
log(e™Y) such that for any pair (Z,J) with T € IL(J), there exist orthogonal matrices

Uz and Uzz with r(g) columns and matriz Mz, € R™©*7E) sych that

IG(Z,T) = UrgMzgUgzll2 < | G(T, T)l2- (5.13)

The main advantage of the H! matrix is that the application of such matrix
on a vector can be efficiently evaluated: Within error O(¢), one can use G(Z,.J) =
Uzr7Mz7U77, which is low-rank, instead of the original block G(Z, J). The algorithm
is described in Algorithm 10. It is standard that the complexity of the matrix-vector

multiplication for an H! matrix is O(N?log N) [115].

178

Algorithm 10 Application of a H!'-matrix G on a vector f.
1: u=0;
2: for | =3to L do
3: for Z on level | do

4: for 7 € IL(Z) do

: W) = u(Z) + Uzg (Mzg (U7 f(T)));
6: end for

7: end for

8: end for

9

: for 7 on level L do

10: for J € NL(Z) do

11: w(Z) = u() + GIZ, T)f(T);
12: end for

13: end for

Uniform H' matrix

Definition 5.2.2. G is a (symmetric) uniform H'-matriz if for any € > 0, there
exists ry(e) S log(e™!) such that for each box I, there exists an orthogonal matriz Uz

with ry(e) columns such that for any pair (Z,J) with T € IL(J)

IG(Z,T) = UrNz7Ugll2 < €| G(Z, T) |2 (5.14)

with Nzz € RruExru(),

The application of a uniform H! matrix to a vector is described in Algorithm 11.
The complexity of the algorithm is still O(N?log N). However, the prefactor is much
better as each Uz is applied only once. The speedup over Algorithm 10 is roughly
27r(e)/ry(e) [115].

H? matrices

Definition 5.2.3. G is an H? matriz if

e it is a uniform H' matriz;

179

Algorithm 11 Application of a uniform H!-matrix G on a vector f

1: u=0; 15: for I =3 to L do
2: for [=3 to L do 16: for Z on level [do
3: for J on level [do 17: uw(Z) = u(Z) + Urug;
4: fr=UZf(T); 18: end for
5: end for 19: end for
6: end for 20: for 7 on level L do
7: for [=3 to L do 21: for J € NL(Z) do
8: for Z on level | do 22: u(Z) = w(Z) +
9: ur = 0; G, J)f(T);
10: for 7 € IL(Z) do _ 23: end for
11: ur = ug + Nz7fr; 24: end for
12: end for
13: end for
14: end for

e Suppose that C is any child of a box I, then

1Uz(C,:) — UeTezll2 S €, (5.15)

for some matriz Tez € RTvE)xru(e),

The application of an H? matrix to a vector is described in Algorithm 12 and it
has a complexity of O(N?), Notice that, compared with H! matrix, the logarithmic

factor is reduced [116].

Remark 2. Applying an H? matriz to a vector can indeed be viewed as the matriz
form of the fast multipole method (FMM) [108]. One recognizes in Algorithm 12 that
the second top-level for loop corresponds to the M2M (multipole expansion to multipole
expansion) translations of the FMM; the third top-level for loop is the M2L (multipole
expansion to local expansion) translations; and the fourth top-level for loop is the L2L

(local expansion to local expansion) translations.

In the algorithm to be introduced, we will also need to apply a partial matrix
G® +GW 4+ ...+ G for some L' < L to a vector f. This amounts to a variant of

Algorithm 12, described in Algorithm 13.

180

Algorithm 12 Application of a H?-matrix G on a vector f

1: u=0; 18: for /=3 to L — 1 do

2: f0r~j on level L do 19: for 7 on level | do

3 fr=UJf(JT); 20: for each child C of 7 do
4: end for 21: uc = uc + Tezuz;

5: for [= L — 1 down to 3 do 22: end for

6: for~j on level [do 23: end for

T f7=0; 24: end for

8: forNeach ~(:hild C 0f~ J do 25: for 7 on level L do

9: fr=Ffr+ TchfC§ 26: u(Z) = Urug;
10: end for 27: end for

11: end for 28: for Z on level L do

12: end for 29: for J € NL(Z) do

13: for [=3 to L do 30: u(Z) = w(Z) +
14: for Z on level | do GZ,0)f(T);

15: uz = 0; 31: end for

16: for 7 €IL(Z) do _ 32: end for

17: uz = uz + Nzgf7;

18: end for

19: end for
20: end for

5.2.3 Peeling algorithm: outline and preparation

We assume that G is a symmetric H? matrix and that there exists a fast matrix-vector
subroutine for applying G to any vector f as a “black box”. The goal is to construct
an H? representation of the matrix G using only a small number of test vectors.
The basic strategy is a top-down construction: For each level [=3, ..., L, assume
that an H? representation for G® + ... 4 GU=1 is given, we construct G) by the

following three steps:

1. Peeling. Construct an H' representation for G) using the peeling idea and the

H? representation for G® + ... 4 GU-1,

2. Uniformization. Construct a uniform H' representation for G from its H!

representation.

3. Projection. Construct an H? representation for G® + ... + GO,

181

Algorithm 13 Application of a partial H*matrix G® + ... + G%) on a vector f

1: u=0; 18: for l=3to L' — 1 do
2: for J on level L' do 19: for Z on level [do

30 fr=Uf(J); 20: for each child C of 7 do
4: end for 21: uc = uc + Tezuz;
5: for | = L' — 1 down to 3 do 22: end for

6: forNJ on level [do 23: end for

7 fr=0; 24: end for

8: for each child C of 7 do 25: for Z on level L' do

9: fr=fr+ TCTch; 26: u(Z) = Uzug;
10: end for 27: end for

11: end for

12: end for

13: for [=3 to L' do

14: for 7 on level [do

15: uz = 0;

16: for 7 € IL(Z) do _

17: ur =uz + Nzgf7;

18: end for

19: end for
20: end for

The names of these steps will be made clear in the following discussion. Variants of
the algorithm that only construct an H! representation (a uniform H! representation,
respectively) of the matrix G can be obtained by only doing the peeling step (the
peeling and uniformization steps, respectively). These variants will be discussed in
Section 5.2.5.

After we have the H? representation for G®) + ... + G, we use the peeling
idea again to extract the diagonal part D). We call this whole process the peeling
algorithm.

Before detailing the peeling algorithm, we mention two procedures that serve as
essential components of our algorithm. The first procedure concerns with the uni-
formization step, in which one needs to get a uniform ' representation for G® from
its 7' representation, i.c., from G(Z,J) = UrsMz7U%; to G(T,TJ) = UrNz7UZ,

for all pairs of boxes (Z,J) with Z € IL(J). To this end, what we need to do is to

182

find the column space of

Uz Mzg, | Uz, Mz, | - -+ | Uzg, Mzg,], (5.16)

where J; are the boxes in IL(Z) and ¢ = |IL(Z)|. Notice that we weight the singular
vectors U by M, so that the singular vectors corresponding to larger singular values
will be more significant. This column space can be found by the usual SVD algorithm
or a more effective randomized version presented in Algorithm 14. The important left
singular vectors are denoted by Uz, and the diagonal matrix formed by the singular

values associated with Uz is denoted by S7.

Algorithm 14 Construct a uniform H' representation of G from the H' representa-
tion at a level [
1: for each box Z on level [do
2: Generate a Gaussian random matrix R € R("(€)xt)x(ru(e)+e),
3: Form product [Uzy, M1y, | --- | Uz, Mzz]|R and apply SVD to it.
The first ry7(e) left singular vectors give Uz, and the corresponding
singular values give a diagonal matrix Sz;

4: for J; € IL(Z) do
5: IIJJ. = UZTUIJJ.;
6 end for

7: end for

8: for each pair (Z,J) on level [with Z € IL(J) do
9: Nzg=IrgMzs1yy;
10: end for

Complexity analysis: For a box Z on level [, the number of grid points in Z is
(N/2')2. Therefore, Uzg, are all of size (N/2')? x r(e) and Mz are of size r(e) x r(e).
Forming the product [Uz;, Mzz, | -+ | Uzz, Mzz]R takes O((N/2)2r(e)(ry(e) + ¢))
steps and SVD takes O((N/2Y)2(ry () + ¢)?) steps. As there are 22 boxes on level [,
the overall cost of Algorithm 14 is O(N?(ry(g) + ¢)?) = O(N?). One may also apply
to [Uzn Mz, | -+ | Uz, Mz7,] the deterministic SVD algorithm, which has the same
order of complexity but with a prefactor about 27r(e)/(ry(e) + ¢) times larger.

The second procedure is concerned with the projection step of the above list, in

183

which one constructs an H? representation for G® 4 ... G, Here, we are given the
H? representation for G® + ... + G along with the uniform #H' representation
for G and the goal is to compute the transfer matrix Tp7 for a box Z on level [— 1

and its child C on level [such that

||UI(C, Z) — UCTCIH2 5 e.

In fact, the existing U matrix of the uniform H! representation may not be rich
enough to contain the columns of Uz(C, :) in its span. Therefore, one needs to update
the content of Ug as well. To do that, we perform a singular value decomposition for

the combined matrix

[Uz(c, Z)SI | UcSc]

and define a matrix V¢ to contain 7 () left singular vectors. Again Uz, Ue should be
weighted by the corresponding singular values. The transfer matrix 77 is then given
by

Ter =V, Uz(C,)

and the new Up¢ is set to be equal to V. Since Ue has been changed, the matrices
Nep for D € IL(C) and also the corresponding singular values Se need to be updated
as well. The details are listed in Algorithm 15.

Complexity analysis: The main computational task of Algorithm 15 is again the
SVD part. For a box C on level [, the number of grid points in Z is (N/2!)2. There-
fore, the combined matrix [Uz(C,:)S7 | UcSe] is of size (N/2')? x 2ry(g). The SVD
computation clearly takes O((N/2Y)%ry(e)?) = O((N/24)?) steps. Taking into the
consideration that there are 2% boxes on level [gives rise to an O(N?) estimate for

the cost of Algorithm 15.

184

Algorithm 15 Construct an H? representation of G from the uniform H! represen-
tation at level [
1: for each box Z on level [— 1 do
2: for each child C of Z do
3: Form matrix [Uz(C,:)Sz | UcSe] and apply SVD to it. The
first ry(e) left singular vectors give Vi, and the corresponding
singular values give a diagonal matrix We;

4 Ke = VCTUc;

5 Ter = VCTUz(C, Z);
6: Ue = Ve;

7 Se = We;

8 end for

9: end for

10: for each pair (C,D) on level | with C € IL(D) do
11: Nep = KcNCDKg;
12: end for

5.2.4 Peeling algorithm: details

With the above preparation, we are now ready to describe the peeling algorithm in
detail at different levels, starting from level 3. At each level, we follow exactly the

three steps listed at the beginning of Section 5.2.3.

Level 3

First in the peeling step, we construct the H' representation for G®. For each pair
(Z,J) on level 3 such that Z € IL(J), we will invoke randomized SVD Algorithm 9
to construct the low rank approximation of G'z ;7. However, in order to apply the
algorithm we need to compute G(Z, J)Rs and RIG(Z,J), where Ry and Ry are
random matrices with r(¢) + ¢ columns. For each box J on level 3, we construct a

matrix R of size N2 x (r(¢) + ¢) such that

R(J,)=R; and R(I,\J,:) = 0.

Computing GR using r(¢) 4+ ¢ matvecs and restricting the result to grid points Z €
IL(J) gives G(Z,J)Ry for each Z € IL(J).

185

After repeating these steps for all boxes on level 3, we hold for any pair (Z,J)
with Z € IL(J) the following data:

G(Z,J)Ry and R;G(Z,J)=(G(J.I)R:)".
Now, applying Algorithm 9 to them gives the low-rank approximation
G(Z,T) = Ury MysUZ;. (5.17)

In the uniformization step, in order to get the uniform H' representation for G*,

we simply apply Algorithm 14 to the boxes on level 3 to get the approximations
G(Z,J) = UrNz,UL. (5.18)

Finally in the projection step, since we only have 1 level now (level 3), we have
already the H? representation for G©).

Complexity analysis: The dominant computation is the construction of the H!
representation for G®). This requires r(g) + ¢ matvecs for each box Z on level 3. Since
there are in total 64 boxes at this level, the total cost is 64(r(¢) + ¢) matvecs. From
the complexity analysis in Section 5.2.3, the computation for the second and third

steps cost an extra O(N?) steps.

Level 4

First in the peeling step, in order to construct the H' representation for G, we need
to compute the matrices G(Z, J)Rs and RFG(Z,J) for each pair (Z,J) on level 4
with Z € IL(J). Here Rz and R are again random matrices with r(¢) 4 ¢ columns.

One approach is to follow exactly what we did for level 3: Fix a box J at this

186

level, construct R of size N? x (r(g) + ¢) such that

R(J,:)=R; and R(T\J,:) = 0.

Next apply G — G® to R, by subtracting GR and G® R. The former is computed
using r(¢) + ¢ matvecs and the latter is done by Algorithm 13. Finally, restrict the
result to grid points Z € IL(J) gives G(Z, J)R 7 for each Z € IL(J).

However, we have observed in the simple one-dimensional example in Section 5.1.3
that random tests can be combined together as in Eq. (5.6) and (5.7). We shall
detail this observation in the more general situation here as following. Observe that
G—-GO® =GW 4+ DWW and GW(J,Z) and DW(J,T) for boxes T and J on level
4 is only nonzero if Z € NL(J) U IL(J). Therefore, (G — G®)R for R coming from
J can only be nonzero in NL(P) with P being [J’s parent. The rest is automatically
zero (up to error € as G is approximated by its H? representation). Therefore, we
can combine the calculation of different boxes as long as their non-zero regions do
not overlap.

More precisely, we introduce the following sets S, for 1 < p, ¢ < 8 with

Spg = {Juij | i =p(mod 8), j = ¢ (mod 8)}. (5.19)

There are 64 sets in total, each consisting of four boxes. Fig. 5.3 illustrates one such

set at level 4. For each set Sy, first construct R with

Ry, J eS8,
R(T.) = J pq

0, otherwise.

Then, we apply G—G® to R, by subtracting GR and G® R. The former is computed

using r(¢) 4+ ¢ matvecs and the latter is done by Algorithm 13. For each J € S,

187

restricting the result to Z € IL(J) gives G(Z, J)R7. Repeating this computation for

all sets S, then provides us with the following data:
G(Z,J)R; and R;G(L,J)=(G(J,I)R:)",

for each pair (Z, J) with Z € IL(J). Applying Algorithm 9 to them gives the required
low-rank approximations

G(Z,T) = Ury Mz, UL, (5.20)

with Uz orthogonal.

M Sct 8575
Adjacent

B Interaction

Figure 5.3: Ilustration of the set Ss5 at level 4. This set consists of four black boxes
{Zs55, Za135, Las13. a1z 13 - The light gray boxes around each black box are in the
neighbor list and the dark gray boxes in the interaction list.

Next in the uniformization step, the task is to construct the uniform H! represen-
tation of G®. Similar to the computation at level 3, we simply apply Algorithm 14

to the boxes on level 4 to get
G(Z,J) = UsNz,UT. (5.21)

Finally in the projection step, to get H? representation for G® + G®W, we invoke
Algorithm 15 at level 4. Once it is done, we hold the transfer matrices Tyz between

any Z on level 3 and each of its children C, along with the updated uniform H!-matrix

188

representation of G®.

Complexity analysis: The dominant computation is again the construction of H!
representation for G®. For each group S,,, we apply G to () + ¢ vectors and apply
G®) to 7(g) + ¢ vectors. The latter takes O(N?) steps for each application. Since
there are 64 sets in total, this computation takes 64(r(¢) + ¢) matvecs and O(N?)

extra steps.

Level [

First in the peeling step, to construct the H' representation for G, we follow the

discussion of level 4. Define 64 sets S, for 1 < p, ¢ < 8 with

Spg = {Jij | i = p(mod 8), j = ¢ (mod 8)}. (5.22)

Each set contains exactly 2'/8 x 2'/8 boxes. For each set S,,, construct R with

RJa J € Spq;
R(T,:) =

0, otherwise.

Next, apply G — [G®) 4 ... 4+ G(=Y] to R, by subtracting GR and [G®) + ... +
GU=Y]R. The former is again computed using r () + ¢ matvecs and the latter is done
by Algorithm 13 using the H? representation of G 4. ..+ GU=Y. For each J € S,,,
restricting the result to Z € IL(J) gives G(Z, J)R7. Repeating this computation for

all sets S, gives the following data for any pair (Z, J) with Z € IL(J)

G(Z,J)R; and RIG(Z,J)=(G(J,I)R:)*.

189

Now applying Algorithm 9 to them gives the low-rank approximation
G(Z,T) = UrgMz;UL, (5.23)

with Uz orthogonal.
Similar to the computation at level 4, the uniformization step that constructs the
uniform H' representation of G simply by Algorithm 14 to the boxes on level .

The result gives the approximation
G(Z,J) = UrNz,UY. (5.24)

Finally in the projection step, one needs to compute an H? representation for
G® 4 ...+ GWU. To this end, we apply Algorithm 15 to level I.

The complexity analysis at level [follows exactly the one of level 4. Since we still
have exactly 64 sets Sp,, the computation again takes 64(r(g) 4 ¢) matvecs along with
O(N?) extra steps.

These three steps (peeling, uniformization, and projection) are repeated for each
level until we reach level L. At this point, we hold the H? representation for G®) +
G

Computation of D&

Finally we construct of the diagonal part
DB =G —(G® ...+ GW). (5.25)

More specifically, for each box J on level L, we need to compute G(Z,J) for Z €
NL(J).
Define a matrix E of size N2 x (N/2F)? (recall that the box J on level L covers

190

(N/2%)2 grid points) by

E(J,)=1 and E(Z)\J,:) =0,

where I is the (N/25)2 x (N/2%)? identity matrix. Applying G —(G® 4. .. +G®) to
E and restricting the results to Z € NL(J) gives G(Z,J) for Z € NL(J). However,
we can do better as (G — (G® +- .. 4+ GW))E is only non-zero in NL(J). Hence, one
can combine computation of different boxes J as long as NL(7) do not overlap.

To do this, define the following 4 x 4 = 16 sets Sy, 1 < p,q < 4

Spg = {JLij | i =p(mod 4), j = q(mod 4)}.

For each set S,,, construct matrix £ by

I, JeS,;
E(T,:) = "

0, otherwise.

Next, apply G — (G®) + ... + GW) to E. For each J € S,,, restricting the result
to Z € NL(J) gives G(Z,J)I = G(Z,J). Repeating this computation for all 16 sets
S,q gives the diagonal part D@,

Complexity analysis: The dominant computation is for each group §,, apply G
and G® + ... + G to E, the former takes (N/2)? matvecs and the latter takes
O((N/2)2N?) extra steps. Recall by the choice of L, N/2 is a constant. Therefore,
the total cost for 16 sets is 16(N/2%)%2 = O(1) matvecs and O(N?) extra steps.

Let us now summarize the complexity of the whole peeling algorithm. From the
above discussion, it is clear that at each level the algorithm spends 64(r(e)+c¢) = O(1)
matvecs and O(N?) extra steps. As there are O(log N) levels, the overall cost of the

peeling algorithm is equal to O(log N') matvecs plus O(N?log N) steps.

191

It is a natural concern that whether the error from low-rank decompositions on
top levels accumulates in the peeling steps. As observed from numerical examples in
Section 5.3, it does not seem to be a problem at least for the examples considered.

We do not have a proof for this though.

5.2.5 Peeling algorithm: variants

In this section, we discuss two variants of the peeling algorithm. Let us recall that

the above algorithm performs the following three steps at each level [.

1. Peeling. Construct an H' representation for G® using the peeling idea and the

H? representation for G® + ... 4 GU-1,

2. Uniformization. Construct a uniform H' representation for G® from its H!

representation.
3. Projection. Construct an H? representation for G® + ... + GO,

As this algorithm constructs the H? representation of the matrix G, we also refer to
it more specifically as the H? version of the peeling algorithm. In what follows, we

list two simpler versions that are useful in practice
e the H! version, and
e the uniform H! version.

In the H! version, we only perform the peeling step at each level. Since this
version constructs only the H! representation, it will use the H!' representation of
GO 4+ ...+ GW in the computation of (G®) + ...+ GW)R within the peeling step at
level [+ 1.

In the uniform H!' version, we perform the peeling step and the uniformization

step at each level. This will give us instead the uniform ' version of the matrix.

192

Accordingly, one needs to use the uniform H' representation of G® + ... + G® in
the computation of (G®) 4 --. + GW)R within the peeling step at level [+ 1.

These two simplified versions are of practical value since there are matrices that
are in the H! or the uniform H! class but not the H? class. A simple calculation
shows that these two simplified versions still take O(log N) matvecs but requires
O(N?log® N) extra steps. Clearly, the number of extra steps is log N times more
expensive than the one of the H? version. However, if the fast matrix-vector multi-
plication subroutine itself takes O(N?log N) steps per application, using the H! or
the uniform H' version does not change the overall asymptotic complexity.

Between these two simplified versions, the uniform H! version requires the uni-
formization step, while the H! version does not. This seems to suggest that the
uniform H! version is more expensive. However, because (1) our algorithm also uti-
lizes the partially constructed representations for the calculation at future levels and
(2) the uniform H! representation is much faster to apply, the construction of the
uniform H! version turns out to be much faster. Moreover, since the uniform #H!
representation stores one Uz matrix for each box Z while the H! version stores about
27 of them, the uniform H! is much more memory-efficient, which is very important

for problems in higher dimensions.

5.3 Numerical results

We study the performance of the hierarchical matrix construction algorithm for the
inverse of a discretized elliptic operator. The computational domain is a two dimen-
sional square [0, 1)? with periodic boundary condition, discretized as an N x N equis-
paced grid. We first consider the operator H = —A 4V with A being the discretized
Laplacian operator and the potential being V'(i,j) = 1 + W (i,j), 4,5 =1,...,N.

For all (,7), W(i, 7) are independent random numbers uniformly distributed in [0, 1].

193

The potential function V' is chosen to have this strong randomness in order to show
that the existence of H-matrix representation of the Green’s function depends weakly
on the smoothness of the potential. The inverse matrix of H is denoted by G. The
algorithms are implemented using MATLAB. All numerical tests are carried out on a
single-CPU machine.

We analyze the performance statistics by examining both the cost and the accu-
racy of our algorithm. The cost factors include the time cost and the memory cost.
While the memory cost is mainly determined by how the matrix G is compressed
and does not depend much on the particular implementation, the time cost depends
heavily on the performance of matvec subroutine. Therefore, we report both the
wall clock time consumption of the algorithm and the number of calls to the matvec
subroutine. The matvec subroutine used here is a nested dissection reordered block
Gauss elimination method [92]. For an N x N discretization of the computational
domain, this matvec subroutine has a computational cost of O(N?log N) steps.

Table 5.1 summarizes the matvec number, and the time cost per degree of free-
dom (DOF) for the H', the uniform H' and the H? representations of the peeling
algorithm. The time cost per DOF is defined by the total time cost divided by the
number of grid points N2. For the H! and the uniform H! versions, the error criterion
e in Eq. (5.13), Eq. (5.14) and Eq. (5.15) are all set to be 107S.

The number of calls to the matvec subroutine is the same in all three cases (as
the peeling step is the same for all cases) and is reported in the third column of
Table 5.1. It is confirmed that the number of calls to matvec increases logarithmically
with respect to NV if the domain size at level L, i.e. 26 ~F s fixed as a constant. For
a fixed IV, the time cost is not monotonic with respect to L. When L is too small the
computational cost of D) becomes dominant. When L is too large, the application
of the partial representation G® + ... + G5 to a vector becomes expensive. From

the perspective of time cost, there is an optimal L,y for a fixed N. We find that this

194

optimal level number is the same for H!, uniform H' and H? algorithms. Table 5.1
shows that Loy, = 4 for N = 32,64,128, Lo,y = 5 for N = 256, and L, = 6 for
N = 512. This suggests that for large N, the optimal performance is achieved when
the size of boxes on the final level L is 8 x 8. In other words, L = Lj; — 3.

The memory cost per DOF for the H!, the uniform H! and the H? algorithms
is reported in Table 5.2. The memory cost is estimated by summing the sizes of
low-rank approximations as well as the size of D" For a fixed N, the memory cost
generally decreases as L increases. This is because as L increases, an increasing part
of the original dense matrix is represented using low-rank approximations.

Both Table 5.1 and Table 5.2 indicate that uniform H! algorithm is significantly
more advantageous than H' algorithm, while the H? algorithm leads to a further
improvement over the uniform H! algorithm especially for large N. This fact can
be better seen from Fig. 5.4 where the time and memory cost per DOF for N =
32,64,128, 256,512 with optimal level number L, are shown. We remark that since
the number of calls to the matvec subroutine are the same in all cases, the time cost
difference comes solely from the efficiency difference of the low rank matrix-vector
multiplication subroutines.

We measure the accuracy for the H!, the uniform H! and the H? representations
of G with its actual value using the operator norm (2-norm) of the error matrix. Here,
the 2-norm of a matrix is numerically estimated by power method [105] using several
random initial guesses. We report both absolute and relative errors. According to
Table 5.3, the errors are well controlled with respect to both increasing N and L,
in spite of the more aggressive matrix compression strategy in the uniform H' and
the H? representations. Moreover, for each box Z, the rank ry(e) of the uniform
H! representation is only slightly larger than the rank r(e) of the H! representation.
This can be seen from Table 5.4. Here the average rank for a level [is estimated by

averaging the values of r(¢) (or r(¢)) for all low-rank approximations at level [. Note

195

that the rank of the H? representation is comparable to or even lower than the rank
in the uniform #H! representation. This is partially due to different weighting choices

in the uniformization step and H? construction step.

N | L | matvec | H!time | Uniform H' time | H? time
number | per DOF (s) per DOF (s) per DOF (s)
32 | 4] 3161 | 0.0106 | 0.0080 | 0.0084
64 | 4| 3376 0.0051 0.0033 0.0033
64 | 5| 4471 0.0150 0.0102 0.0106
128 | 4 | 4116 0.0050 0.0025 0.0024
128 | 5 | 4639 0.0080 0.0045 0.0045
128 | 6 | 5730 0.0189 0.0122 0.0125
256 | 4 7169 0.015 0.0054 0.0050
256 | 5 5407 0.010 0.0035 0.0033
256 | 6 | 5952 0.013 0.0058 0.0057
256 | 7| 7021 0.025 0.0152 0.0154
512 | 5| 8439 0.025 0.0070 0.0063
512 |1 6 | 6708 0.018 0.0050 0.0044
512 | 7| 7201 0.022 0.0079 0.0072

Table 5.1: matvec numbers and time cost per degree of freedom (DOF) for the H*,
the uniform H' and the H? representations with different grid point per dimension
N and low rank compression level L. The matvec numbers are by definition the same
in the three algorithms.

196

N | L H! memory Uniform H! memory H? memory
per DOF (MB) per DOF (MB) per DOF (MB)
32 |4 00038 | 0.0024 | 0.0024
64 | 4 0.0043 0.0027 0.0026
64 | 5 0.0051 0.0027 0.0026
128 | 4 0.0075 0.0051 0.0049
128 1 5 0.0056 0.0029 0.0027
128 | 6 0.0063 0.0029 0.0027
256 | 4 0.0206 0.0180 0.0177
256 | 5 0.0087 0.0052 0.0049
256 | 6 0.0067 0.0030 0.0027
256 | 7 0.0074 0.0030 0.0027
512 | 5 0.0218 0.0181 0.0177
512 | 6 0.0099 0.0053 0.0049
012 | 7 0.0079 0.0031 0.0027

Table 5.2: Memory cost per degree of freedom (DOF) for the H', the uniform H' and
the H? versions with different grid point per dimension N and low rank compression
level L.

x10”°

0.018F
0.016f [s O [e it T
. 1 .

0.014} |~ ¢~ Uniform Ht 8t 'O'U;\lform H .
’qo: ——H2 g ——H *
&2 r L
20012 7
Q a
5 0017 * Tg
° >
) I y
£ 0.008 gl , RPN
[5] J

D > 8
A) - —%
0.006¢ a
*
0.004} 3l
32 64 158 256 512 32 64 128 256 512
N N

Figure 5.4: Comparison of the time and memory costs for the H!, the uniform #*
and the H? versions with optimal level L,y for N = 32,64, 128,256, 512. The x-axis
(N) is set to be in logarithmic scale.

197

N ‘ L ‘ H! ‘ Uniform H* ‘ H?

Absolute | Relative | Absolute | Relative | Absolute | Relative
error error error error error error

32 | 4] 2.16e-07 | 3.22e-07 | 2.22e-07 | 3.31e-07 | 2.20e-07 | 3.28¢-07
64 | 4| 2.10e-07 | 3.15e-07 | 2.31e-07 | 3.47e-07 | 2.31e-07 | 3.46e-07
64 | 5| 1.96e-07 | 2.95e-07 | 2.07e-07 | 3.12e-07 | 2.07e-07 | 3.11e-07
128 | 4 | 2.16e-07 | 3.25e-07 | 2.26e-07 | 3.39¢-07 | 2.24e-07 | 3.37e-07
128 | 5 | 2.60e-07 | 3.90e-07 | 2.68e-07 | 4.03e-07 | 2.67e-07 | 4.02e-07
128 | 6 | 2.01e-07 | 3.01e-07 | 2.09e-07 | 3.13e-07 | 2.08e-07 | 3.11e-07
256 | 4 | 1.78e-07 | 2.66e-07 | 1.95e-07 | 2.92e-07 | 2.31e-07 | 3.46e-07
256 | 5 | 2.11e-07 | 3.16e-07 | 2.26e-07 | 3.39e-07 | 2.27e-07 | 3.40e-07
256 | 6 | 2.75e-07 | 4.12e-07 | 2.78e-07 | 4.18e-07 | 2.30e-07 | 3.45e-07
256 | 7| 1.93e-07 | 2.89¢-07 | 2.05e-07 | 3.08e-07 | 2.24e-07 | 3.36e-07
512 | 5 | 2.23e-07 | 3.35e-07 | 2.33e-07 | 3.50e-07 | 1.42¢-07 | 2.13e-07
512 | 6 | 2.06e-07 | 3.09e-07 | 2.17e-07 | 3.26e-07 | 2.03e-07 | 3.05e-07
512 | 7| 2.67e-07 | 4.01e-07 | 2.74e-07 | 4.11e-07 | 2.43e-07 | 3.65e-07

Table 5.3: Absolute and relative 2-norm errors for the H!, the uniform H! and the
H? algorithms with different grid point per dimension N and low rank compression
level L. The 2-norm is estimated using power method.

[H! Uniform H! H?
average rank | average rank | average rank

4 6 13 13

D 6 13 11

6 6 12 9

Table 5.4: Comparison of the average rank at different levels between the H!, the
uniform H!, and the H? algorithms, for N = 256.

198

The peeling algorithm for the construction of hierarchical matrix can be applied
as well to general elliptic operators in divergence form H = —V - (a(r)V) + V(7).
The computational domain, the grids are the same as the example above, and five-
point discretization is used for the differential operator. The media is assumed to be
high contrast: a(i,j) = 1+ U(4,), with U(, j) being independent random numbers
uniformly distributed in [0, 1]. The potential functions under consideration are (1)
V(i,7) = 1073W(4,5); (2) V(i,7) = 1070 (4,5). W(i,J) are independent random
numbers uniformly distributed in [0, 1] and are independent of U(7,j). We test the
H? version for N = 64, L = 4, with the compression criterion ¢ = 10~%. The number
of matvec is comparable to that reported in Table 5.1. The resulting L? absolute and
relative error of the Green’s function are reported in Table 5.5. The results indicate
that the algorithms work well in these cases, despite the fact that the off-diagonal
elements of the Green’s function have a slower decay than the first example. We also
remark that the small relative error for case (2) is due to the large 2-norm of H~*

when V is small.

Potential ‘ matvec ‘ Absolute error ‘ Relative error

V(i) = 1073W (i, 5) | 4420 5.91e-04 2.97e-07
V(i) = 107SW (i, 5) | 4420 3.60e-03 1.81e-09

Table 5.5: The number of matvec, and the absolute and relative 2-norm errors for
the H? representation of the matrix (=V - (aV) + V)" with N = 64, L = 4 and two
choice of potential function V. The 2-norm is estimated using power method.

5.4 Conclusion

In this work, we present a novel algorithm for constructing a hierarchical matrix
from its matrix-vector multiplication. One of the main motivations is the construc-
tion of the inverse matrix of the stiffness matrix of an elliptic differential operator.

The proposed algorithm utilizes randomized singular value decomposition of low-rank

199

matrices. The off-diagonal blocks of the hierarchical matrix are computed through a
top-down peeling process. This algorithm is efficient. For an n x n matrix, it uses
only O(logn) matrix-vector multiplications plus O(nlogn) additional steps. The
algorithm is also friendly to parallelization. The resulting hierarchical matrix repre-
sentation can be used as a faster algorithm for matrix-vector multiplications, as well
as for numerical homogenization or upscaling.

The performance of our algorithm is tested using two 2D elliptic operators. The
H!, the uniform H' and the H? versions of the proposed algorithms are implemented.
Numerical results show that our implementations are efficient and accurate and that
the uniform H' representation is significantly more advantageous over H' represen-
tation in terms of both the time cost and the memory cost, and H? representation
leads to further improvement for large N.

Although the algorithms presented require only O(log n) matvecs, the actual num-
ber of matvecs can be quite large (for example, several thousands for the example in
Section 5.3). Therefore, the algorithms presented here might not be the right choice
for many applications. However, for computational problems in which one needs to in-
vert the same system with a huge of unknowns or for homogenization problems where
analytic approaches do not apply, our algorithm does provide an effective alternative.

The current implementation depends explicitly on the geometric partition of the
rectangular domain. However, the idea of our algorithm can be applied to general
settings. For problems with unstructured grid, the only modification is to partition
the unstructured grid with a quadtree structure and the algorithms essentially require
no change. For discretizations of the boundary integral operators, the size of an
interaction list is typically much smaller as many boxes contain no boundary points.
Therefore, it is possible to design a more effective combination strategy with small
number of matvecs. These algorithms can also be extended to the 3D cases in a

straightforward way, however, we expect the constant to grow significantly. All these

200

cases will be considered in the future.

201

Chapter 6

Conclusion of Part 1

Part T of this dissertation has developed a novel method for solving KSDF'T which is
uniformly applicable to both insulating systems and metallic systems, at low temper-
ature and at high temperature. This method is accurate and efficient, and the key
element of the new method is that it focuses explicitly on the diagonal elements and
the nearest off-diagonal elements that are needed to calculate the electron density
and the ground state electron energy.

The new method is developed under the framework of Fermi operator expansion.
The Fermi operator expansion method expands the Fermi operator f(H) into simple
functions. The contribution of each simple function to the electron density, and the
ground state electron energy can be calculated directly without diagonalization. The

Fermi operator expansion method includes four phases:
1. Discretization: discretization of the Hamiltonian operator;
2. Representation: representation of the Fermi operator into simple functions;

3. Evaluation: evaluation of the electron density and the ground state electron

energy based on each simple function;
4. Tteration: self-consistent iteration of the electron density.

202

Part I of this dissertation has developed accurate and efficient methods for the dis-
cretization, the representation and the evaluation phases of Fermi operator expansion
for solving KSDFT. The adaptive local basis method developed in Chapter 2 can be
highly accurate with complexity comparable to tight binding method, i.e. the mini-
mum possible number of basis functions per atom to discretize the Hamiltonian oper-
ator. The pole expansion developed in Chapter 3 achieves the optimal representation
cost of the Fermi operator. The complexity of the pole expansion is O(log SAFE). The
selected inversion algorithm accurately calculates the electron density and the ground
state energy and achieves lower computational cost than the standard diagonaliza-
tion method uniformly for all dimensions. The complexity of the selected inversion
is O(N) for one dimensional system, O(N'%) for two dimensional system and O(N?)
for three dimensional systems.

In order to combine all the new methods developed in Part I of this dissertation
into a practical software for electronic structure calculation, a large amount of work
remains to be done.

The ground state electron energy calculated by the adaptive local basis functions
can reach high accuracy with a small number of basis functions. This property is ideal
for the selected inversion technique. By taking into account the block sparsity of the
DG stiffness matrix, the pole expansion method and the selected inversion method
can be combined to calculated the electron density and the ground state electron
energy in the DG framework. The capability of the resulting algorithm is expected to
be greatly enhanced compared to the current implementation as in either Chapter 2
or Chapter 4. To this end the selected inversion algorithm should be implemented
in parallel as well. The parallelization of the selected inversion algorithm for general
matrices has been addressed in the conclusion section of Chapter 4.

Besides the capability of the calculation of the ground state electron energy, an-

other important aspect of an electronic structure software is ab initio molecular dy-

203

namics simulation. In order to perform ab initio molecular dynamics simulation, the
derivatives of the basis functions with respect to the positions of the atoms (known
as the Pulay force [213]) have to be systematically studied. This work is currently in
progress.

The self-consistent iteration is a relative separate issue, since the self-consistent it-
eration does not directly contribute to the cubic scaling in the diagonalization method.
However, it is not clear yet how to control the number of iterations for general large
system, especially for general metallic systems. The self-consistent iteration will be

systematically studied in future.

204

Part 11

Nuclear quantum effects

205

Chapter 7

Introduction

Hydrogen bonded systems, including water and ice, are ubiquitous on earth. Hydro-
gen bond glues particles in soft matters, and the nature of the dynamics of protons
(the nuclei of hydrogen atoms) plays a critical role in the behavior of biological sys-
tems [24] and chemical systems [130]. The vast majority of the numerical simulations
for hydrogen bonded systems treat protons as classical particles. However, the be-
havior of protons is significantly affected by quantum mechanics even at ambient
temperature due to the small nuclear mass. The isotopic effect in water [67], the
quantum ferroelectric behavior of KH,PO, (KDP) [219], and the formation of ice
phases under high pressure [26], are just a few of the relevant phenomena where the
nuclear quantum effects play a crucial role. Therefore, investigating the impact of
nuclear quantum effects on molecular properties and equilibrium proton dynamics in
hydrogen bond systems is the focus of intense research. The proton dynamics is re-
flected in the momentum distribution of protons due to the non-commutative relation
between the momentum operator and the position operator in quantum mechanics.
The proton momentum distribution can be computed from numerical simulation by
means of path integral formalism [51,83,183,243] and can be measured directly from

Deep Inelastic Neutron Scattering (DINS) experiment [5,218,219].

206

The path integral formalism describes the equilibrium dynamics of nuclei by map-
ping a quantum system consisting of N particles to a equivalent classical system
consisting of NP particles (in the cases discussed here P ~ 30). Such mapping is
exact in the P — oo limit if exchange effects among atoms can be neglected. The
potential energy surface is then evaluated for P times compared to a classical sim-
ulation. If the potential energy surface is generated using first principle methods
such as Kohn-Sham density functional theory discussed in Part I of this dissertation,
the Kohn-Sham orbitals are also evaluated for P times. Given the high computa-
tional complexity in the evaluation of the potential energy surface, the computation
of quantum momentum distribution is a demanding task, and efficiency is a crucial
issue. However, the open path integral formalism can only evaluate the quantum
momentum distribution for one particle at a time, even if all the particles share the
same environment and are essentially equivalent with each other. One can choose to
evaluate the momentum distribution for multiple particles at the same time, but the
accuracy has to be sacrificed in a way that is difficult to control a priori.

Part II of this dissertation develops the novel displaced path integral formalism
which converts the problem of calculating quantum momentum distribution into a
problem of calculating free energy differences. The displaced path integral formalism
can therefore be combined with a large pool of free energy calculation techniques to
improve the computational efficiency. This dissertation demonstrates that when com-
bined with free energy perturbation method, the quantum momentum distributions
for all particles can be computed at the same time with a standard closed path inte-
gral simulation. The resulting formulation is shown to be more efficient than the open
path integral formalism when applied to a force-field water system. Furthermore, in
the displaced path integral formalism, the end-to-end distribution, ¢.e. the Fourier
transform of the momentum distribution factorizes into a free particle part and an

environmental part. This factorization facilitates the interpretation of the quantum

207

momentum distribution, since only the environmental part contains the information
of the potential energy surface. The displaced path integral formalism also gives rise
to a novel semiclassical analysis of the quantum momentum distribution, and provides
a new kinetic energy estimator.

After obtaining the quantum momentum distribution, it remains a difficult task
to extract the information of proton dynamics from the momentum distribution. The
proton dynamics is governed by the potential energy surface of the system. For a
system consisting of N atoms, the potential energy surface is a 3N dimensional func-
tion, while the momentum distribution is only a 3 dimensional quantity. In principle
there are infinite potential energy surfaces corresponding to the same momentum dis-
tribution. The interpretation of the momentum distribution can therefore be highly
ambiguous and controversial. This dissertation resolves such ambiguity in the inter-
pretation of the proton momentum distribution using two representative examples as
follows.

Recent DINS studies have observed a secondary feature in the tail of the spheri-
cally averaged distribution in confined water [90], and a large excess kinetic energy in
supercooled water [208]. Such features were attributed to quantum tunneling between
the two wells of an effective anharmonic 1D potential. However, anisotropy can mimic
features of a spherical distribution that one might associate to anharmonicity in a
1D model [233]. Even in a much simpler system such as monocrystalline ice Ih, the
relative importance of anisotropy and anharmonicity remains unclear. Most of the
current DINS experiments can only be performed on polycrystalline samples, where
only the spherically averaged momentum distribution could be measured. Most of
the path integral molecular dynamics simulations only report the spherical momen-
tum distribution but not the full 3D momentum distribution and the effect of the
anisotropicity. The unknown details of the full 3D momentum distribution due to the

spherical averaging operation severely increases the difficulty for the interpretation.

208

Part II of this dissertation clarifies the relation between anisotropy and anhar-
monicity in ice Th by analyzing the 3D proton momentum distribution obtained from
the ab initio path integral simulation. The proton momentum distribution is found
to be well described by an anisotropic Gaussian distribution originating from a quasi-
harmonic model for the potential of the mean force of protons. Anisotropy stemming
from the molecular orientations in the crystal has clearly a larger effect in shaping the
momentum distribution than anharmonicity. The large effect of molecular anisotropy
implies that it is not possible to unambiguously attribute features of the spherically
averaged distribution to anharmonicity. Part II of this dissertation reveals the direct
relation between the principal frequencies of the quantum momentum distribution
(i.e. the eigenvalues of the covariance matrix of the momentum distribution) and the
phonon spectrum in the vibrational dynamics. The full path integral simulation re-
sult is to a large extent in agreement with the vibrational dynamics, which supports
the quasi-harmonic form for the potential of the mean force. The remaining deviation
between the path integral simulation and the vibrational dynamics is mainly visible
along the hydrogen bond direction, indicating the anharmonic effect along the bond.

The proton dynamics becomes more challenging in the presence of proton tun-
neling which is beyond the quasi-harmonic regime. Proton tunneling is important in
phase transitions such as the ferroelectric to paraelectric transition in KDP and the
sequence of transitions leading to hydrogen bond symmetrization in high pressure ice.
In the case of high pressure ice, at large inter-oxygen distance such as doo ~ 2.53A
typically of ice VIII, the system is characterized by asymmetric hydrogen bonds and
satisfies the ice rule [29,203], which means that on the four hydrogen bonds connect-
ing an oxygen to its neighboring oxygens, two protons are near the central oxygen
and two are near the neighboring oxygens, as is required to keep the water molecules
intact. As the inter-oxygen distance decreases to doo ~ 2.45A typically of ice VII,

the protons become delocalized along the hydrogen bonds, accompanied by the ap-

209

pearance of ionized configurations such as H3O% and OH~ or H;O™* and O™~ which
locally break the ice rule. The standard picture to interpret path integral studies was
based on mean field theory [26,27], and proton correlation effects were not taken into
consideration. The mean field theory overestimates the number of ionized configura-
tions which is called the ionization catastrophe [235].

Part IT of this dissertation unambiguously assesses the important role of proton
correlation effects in high pressure ice by means of spectral decomposition of the single
particle density matrix, which contains the information of the momentum distribu-
tion as well as that of the spatial distribution. The correlation effects among protons
manifests themselves in the concerted proton tunneling process which is directly ob-
served in the simulation by the study of the centroid of the paths in imaginary time.
The total energy cost of a concerted proton tunneling process is lower than that of a
complete ionization catastrophe predicted by the mean field theory. Concerted proton
tunneling reduces the number of ionized configurations and the local charge neutral-
ity is partially restored. Finally, this dissertation demonstrates that the correlated
character of proton dynamics can be described in terms of an ensemble of potentials
of the mean force, which provides a more accurate description of the hydrogen bond
symmetrization transitions than that predicted by a single potential of the mean force
in the mean field theory.

Part II of this dissertation is organized as follows: Chapter 8 gives a short intro-
duction on the quantum momentum distribution, and develops the displaced path
integral formalism. Chapter 9 discusses the relative importance of anisotropy and
anharmonicity for the proton momentum distribution in ice Ih, and its relation to the
vibrational dynamics. This discussion is followed in Chapter 10 for the theoretical
interpretation of a recently performed DINS experiment on the proton momentum
distribution in ice Th. The correlation effect in hydrogen bonded systems with proton

tunneling is illustrated for ice under high pressure in Chapter 11. The conclusion of

210

Part II of this dissertation is given in Chapter 12.

211

Chapter 8

Displaced path integral formalism

8.1 Introduction

The momentum distribution of quantum particles conveys unique information of the
potential energy surface of the system and is of great interest in practice. The mo-
mentum distribution can be measured with Deep Inelastic Neutron Scattering exper-
iments (DINS), and calculated with computer simulation. In this chapter, we discuss
the computational methods for the quantum momentum distribution. To simplify
the notation, we first discuss the momentum distribution for a single particle under
an external potential as follows. The momentum distribution n(p) is expressed in

terms of the single particle density matrix p as

=(plplp)

_ / drdr! (p|7) (v |p| 7'} (+'|p)
(8.1)
drdr’ eﬁ)p(r r)

/dm eFP T

03

3

212

The end-to-end distribution n(x) defined in the last equality is the Fourier trans-
form of the momentum distribution. The end-to-end distribution characterizes the

information along the off-diagonal elements of the density matrix:

n(x)={(r—r =x)) = /drdr’é(’r —r' =x)p(r,r'). (8.2)

In a condensed system particles move in a high dimensional space and statistical
sampling is the only viable computational strategy for calculating the momentum
distribution. The statistical sampling is usually done using the Feynman path repre-
sentation [83]. The path integral discretization of the density matrix maps the quan-
tum system onto a set of P replicas (“beads”) that obey classical physics, thereby
allowing one to utilize the machinery of computational classical statistical mechan-
ics, namely Monte Carlo and molecular dynamics strategies. The discretized density

matrix takes the form

P—o0
r1=T
/
TP4+1=T

p(r,r') = lim / dry...drpe Plen (8.3)

P mP
Usg = ZW‘H—THﬂz
=1

v<r1>+wp+1 V()
+ +>_ 5

(8.4)

=2

In the limit P — oo, the density matrix may be written in the form of continuous

path integral as [51]

S (252 Vi) (8.5)

p(r,r’):/ Dr(r)e "
r(Bh)=r',r(0)=r

Eq. (8.4) and (8.5) are introduced under the single particle picture but can be easily

extended to multi-particle systems. If the system consists of M distinguishable par-

213

ticles, the momentum distribution corresponding to the [-th particle can be obtained
by sampling the single particle density matrix corresponding to the [-th particle:

m 22 T
pulr,) = DR(r)e il dr HEEHVIRE), (8.6)

/R(ﬁh):R’,R(O):R

Here we have used the compact notation

R(1) = (7“1(7'), ces i (7)), (7)), T (7)), ,er(T)),
and

R = ('rl,...,rl_l,r,rl+1,...,rM),

/ /
R = (T17"'7rl—17r7rl+17"’7rM)-

Note that only the path r;(7) is “open” with the condition that r,(0) = r, 7, (8h) = r’.
All other paths r4(7), k # | are “closed” with the condition that r(0) = ri(8h).

From Eq. (8.6) we can understand the challenge in computing the momentum
distribution in a condensed system. In order to calculate the momentum distribution
of the [-th particle, it is required to open the path for the [-th particle with all other
particles being represented by closed paths. However, in a bulk material with a large
number of particles of the same species, the momentum distribution can only be
garnered for one particle at a time. This leads to a very inefficient sampling process.
It has been shown that if the paths of multiple particles are “opened” and these paths
are sufficiently far apart from each other, the impact upon the resultant distribution
is negligible [192]. In general, this strategy requires one to balance two contradictory
requirements. On one hand the number of open paths has to be large enough to
obtain good statistics, while on the other hand it cannot be too large as the sampling
will become incorrect.

This dissertation develops a novel method, called the displaced path integral for-

214

malism that is more efficient in sampling the momentum distribution. In the dis-
placed path integral formalism, the momentum distribution can be garnered from
a post-processing step using the trajectory of a standard closed path integral sim-
ulation. Numerical examples using one dimensional model potentials as well as a
three-dimensional water system indicate that the new method is accurate and effi-
cient. The displaced path integral formalism is also conceptually advantageous. The
end-to-end distribution factorizes into a free particle part and an environmental part.
The information of the potential energy surface is completely contained in the environ-
mental part, which facilitates the interpretation of the simulation and experimental
result. Furthermore, the displaced path integral formalism allows a novel semiclassi-
cal analysis of the quantum momentum distribution. This semiclassical analysis is in
parallel to the Feynman-Hibbs analysis of the closed path integral formulation [83],
and is shown to be applicable to a large class of quantum systems. The displaced
path integral formalism also provides a new kinetic energy estimator for quantum
particles.

This chapter is organized as follows: Section 8.2 derives the displaced path in-
tegral formulation, and illustrates its performance in different regimes using a one
dimensional example. Section 8.3 applies the displaced path integral formalism to
water system using a force field model, and shows that the new method is accurate
and efficient in many body systems. The discussion is followed in Section 8.4 which
introduces a new quantity, called the mean force, for interpreting the quantum mo-
mentum distribution. The displaced path integral formalism also serves as a new tool
for the semiclassical analysis of the quantum momentum distribution, and we discuss
this in Section 8.5. In Section 8.6, the displaced path formalism also provides a new
kinetic energy estimator. Finally, the displaced path integral formalism is introduced
for distinguishable particles, but can also be extended to indistinguishable particles.

Section 8.7 generalizes the displaced path integral formalism to bosonic systems, fol-

215

lowed by the conclusion of this chapter in Section 8.8. Part of the materials in this

chapter have been presented in [166].

8.2 Displaced path integral formalism

To simplify the notation, we introduce the displaced path formalism in this section
for a single particle under an external potential. The end-to-end distribution n(x) is
the Fourier transform of the momentum distribution

fi(x) = Tr[e 1PeePH] /7 = @ (8.7)

and n(x) can be expressed in the open path integral formulation [51]

1
(@) 7z /drdr’5 (r—7" —x)p(r,r)
gt ar (i) 8.8
_f""(o)—’l"(ﬁh):m @']"(7)6 h JO (5) ()

- mr2(r
Dr(r)e §ar (4 Vir)

fr(ﬁﬁ):r(o)

As illustrated in Section 8.1, in a many particle system, Eq. (8.8) requires to open the
path for only one particle with all other particles being represented by closed paths.
Therefore one particle is marked as special among all the particles in the system,
even if all the particles are embedded in the same ambient environment, and the
momentum distribution can only be calculated one particle at a time. It is desirable
to find an alternative algorithm that can calculate the momentum distribution of all
particles at the same time. This objective essentially requires that all the paths have
to remain closed during the simulation.

One possible way to evaluate the end-to-end distribution from closed path integral
formalism is the perturbation method. In the discrete setup as in Eq. (8.3) and

(8.4), one can perturb the end point of the path v = rp,; by a small amount

216

away from the starting point of the path » = r;, and the end-to-end distribution
is calculated by sampling a corresponding estimator along the closed path integral
trajectory. However, as one refines the discretization along the imaginary time and
increases the number of beads P to infinity, the variance of this estimator must also
goes to infinity. Therefore, the simple perturbation method is problematic and does
not have a well-defined continuous limit. This resembles the scenario of the primitive
kinetic energy estimator where the variance of the estimator of the quantum kinetic
energy goes to infinity when P — oo [124].

The displaced path formalism developed in this dissertation solves the problem of
infinite variance mentioned above by means of a simple transform. The open path r(7)
is converted to a closed path 7(7) by applying a x-dependent linear transformation
in the path space:

r(r) =7r(7) +y(7)=, (8.9)

Here y(7) = C' — £ and C is an arbitrary constant. Then the numerator of (8.8)

becomes

_1 (Bhg. m2(r) -
/ Dr(rt)e "7 ‘ (7 Vi)})
r(0)—r(Bh)==

(8.10)

ma? _a g (MO iy (r
e o(r)e " (252 4vF o),
7(8h)=7(0)

77L(l?2

In Eq. (8.10), the term e 2672 corresponds to the exact end-to-end distribution
for a free particle system. This term comes naturally from the derivative of y(7).
The choice of the constant C' influences the variance of estimators for the end-to-
end distribution. It is found that the lowest variance is achieved when C' = 1/2,
since this choice has the smallest displacement from the closed path configuration.

Therefore under the displaced path integral formalism, the end-to-end distribution is

217

represented as

JDr(7) exp (—_ ﬁth (D4 Vir(r)+y(7)a:])>
iy eXp(o dr (%Jﬂ/[r(ﬂ])) |

(8.11)

mmz
where ng(x) = e 2677 is the end-to-end distribution corresponding to a free particle.

Computational advantages arise from the explicit factorization of ng(x) and the

remaining part, called the “environmental part”. It follows from Eq. (8.11) that,

having put Z(0) = Z, we can write g; ((“;)) = % as a ratio between two partition

functions. To calculate this ratio or its logarithm, called the “potential of the mean

Z(w)

Z(0)» one can apply all the methods avail-

force” or “excess free energy” U(x) = —In
able in standard statistical mechanics, and open path integral method [51] becomes
one of the many choices. Below we introduce two methods that are more efficient
than the open path integral method. The first method combines the displaced path
integral formalism with the free energy perturbation method [258], and the second
method combines the displaced path integral formalism with thermodynamic integra-
tion method [137].

The free energy perturbation method calculates the end-to-end distribution n(x)

by perturbation from the closed path configuration:

[Dr(r)N(z;0) exp (—— ﬁth (D+ Vir(r)])) (8.12)
[Dr(r)exp (Bth (% + V[r(7)])>
=no () (N (z;0))o,

=no(x)

The estimator for the environmental part of the end-to-end distribution is denoted

218

N (2;0) = o= 1 I3 dr (Vir(m+y(n)@] =V r(7)]) (8.13)

The free energy perturbation method only requires a standard closed path integral
simulation, and the end-to-end distribution can be calculated using a post-processing
step with the estimator in Eq. (8.13), which is the difference of the potential energy
between the displaced path configuration and the closed path configuration. The
variance of the estimator (8.13) is finite, and is small in many systems as will be
shown later. The potential of the mean force is calculated as the logarithm of the

environmental part of the end-to-end distribution
U(x) = —In (N (z;0)), - (8.14)

where the average is evaluated using the closed path distribution Z(0).
Now we apply the free energy perturbation method to study the momentum dis-

tribution of a single particle in an external double well potential

2
V= %ﬁ + Ae~@/? (8.15)

with w = 0.0050, b = 0.25 and A = 0.012 in atomic unit. The particle is assumed to
have proton mass m = 1836. This potential mimics the potential of the mean force
along the hydrogen bond direction in tunneling ice [190]. The barrier of this potential
is 2400K. 32 beads are used for discretizing the path along the imaginary time and
the length of the trajectory is 30ps. The end-to-end distribution obtained from the
displaced path formalism is compared with that from the open path integral method
(Figure 8.1). The exact end-to-end distribution obtained by directly diagonalizing the
Hamiltonian is also included for comparison. The results obtained from both the open

path integral method and the displaced path method are consistent with the exact

219

result, while the result in the open path integral method contains more noise than
that in the displaced path method. The potential of the mean force corresponding to
the double well model is also compared between the two methods (Fig. 8.2). Despite
the strong anharmonic feature in the potential energy surface, the displaced path
method is able to accurately calculate the potential of the mean force.

The displaced path method is already more efficient than the open path integral
method for a single particle. The reason is that the end-to-end distribution is a smooth
function, and the end-to-end distribution can be well approximated by its values at
a few points along the = axis. The displaced path formalism exactly calculates the
end-to-end distribution on a certain prescribed set of end-to-end distance x. On the
other hand, the open path integral samples the values of the end-to-end distribution
at all points. As a result the statistics on each point is less than that in the displaced

path formulation.

il.; —— Exact
1h At | = = = Displaced Path 30ps|]
N\ |~ — Open Path 30ps
c ARL
o 1 !
3 ron
= 0.8 g v
) g v
2
g i
2 i
c
[}
€ 0.61 ' 1
o 1 .
€ S
= i
£ : !
S
‘® 0.4F 4
] g
= . W
g "
3 ;
L 0.2]
\
d \
4
f \
0 ‘
-1 -0.5 0.5 1

0
x(angstrom)

Figure 8.1: The end-to-end distribution of a particle in a double well potential at
300K obtained from exact diagonalization (red solid line), from displaced path method
(black dashed line), and from the open path integral method (blue dot dashed line).

The natural factorization of the free particle part and the environmental part in

220

a1

—— Exact
= = =Displaced Path 30ps||
‘‘‘‘‘ Open Path 30ps

IN
T

~
a1
T
-_-"—-
=

w
2
T

=

w
-—’-"
=

l
L/
[/
L/
L/
L/
[/
u
L/
L/
L/
L/

Excess free energy
= N
= (&) N ul
: ‘ :
<

[
)
:
5

-1 -0.5 0 0.5
x(angstrom)

Figure 8.2: The potential of the mean force of a particle in a double well potential
at 300K. Red solid line: exact result. Black dashed line: displaced path formulation
with 30ps data. Blue dot dashed line: open path simulation with 30ps data. The

potential of the mean force is in the unit of kgT.
the end-to-end distribution also facilitates the visualization of the quantum effect in
the momentum distribution. Since the quantum effect is only included in the envi-

ronmental part, we can define the environmental part of the momentum distribution
as

H(p) = ;—h / AP (), (8.16)

The momentum distribution n(p) and the environmental part of the momentum dis-
tribution n(p) are compared in Fig. 8.3. The quantum effect is only indicated as the
extended tail in the momentum distribution, while the quantum effect is much more
amplified in the environmental part of the momentum distribution, which exhibits
a node point around 4A™". This existence of the node in the environmental part of
the momentum distribution indicates strong anharmonicity in the potential energy

surface.

The free energy perturbation method gives accurate description of the end-to-end

221

0.3

0.25¢

0.2

0.15¢

Momentum distribution

0.1r

0.05f

0
k(inverse angstrom)

Figure 8.3: Red solid line: momentum distribution n(p). Black dashed line: en-
vironmental part of the momentum distribution 72(p), where the quantum effect is
amplified.

distribution of the double well system even when the quantum effect is relatively large
(Fig. 8.3). However, in some cases the perturbation method can be less accurate. This
occurs when the system is at low temperature and 3 becomes large. As the variance
of the estimator (8.13) increases with 3, the free energy perturbation method becomes
increasingly inefficient. To illustrate this case, we use the double well potential (8.15)
again, but at a different temperature as 100K. The path integral is discretized with
64 beads and the length of the trajectory is 300ps. The potential of the mean force,
and the momentum distribution are calculated using the displaced path formulation
(Fig. 8.4 and Fig. 8.5, respectively). Compared to the exact potential of the mean
force and the momentum distribution using diagonalization method, we find that
the accuracy of the displaced path estimator is reduced when the system is at lower
temperature. The statistical accuracy can be improved with a longer trajectory,
however, it is desirable to design more efficient methods to calculate the momentum

distribution in this case.

222

——Exact
= = = Displaced Path 300ps|
T

Excess free energy
w

-1 -0.5 0 0.5 1
x(angstrom)

Figure 8.4: The potential of the mean force of a particle in a double well potential
at 100K, obtained from the exact diagonalization method (red solid line), and from
the displaced path method (black dashed line). The unit of the potential of the mean
force is kgT.

0.16

0.02

— Exact
= = = Displaced Path 300ps|

0.14r

0.12

0.1r

0.08

Momentum histribution

0.04r

0.02

0 . . .
-20 -15 -10 -5 0 5 10 15 20
k(inverse angstrom)

Figure 8.5: The momentum distribution of a particle in a double well potential at
100K. Red solid line: exact result. Black dashed line: displaced path formula with
300ps data. An inset with the same legend is included to describe difference in the
second shoulder.

223

For fixed trajectory length in simulation, the accuracy of the free energy pertur-
bation method is determined by the variance of the estimator A (z;0), which takes

the form

(N (:0)%)0 — (N (250))

2 rBh

(8.17)
—(em R A" A VIRVl ok 5 Vi@l -V)2,

The variance of N(x;0) at different 2 is computed for the double well potential
at 300K (left panel in Fig. 8.6) and at 100K (right panel in Fig. 8.6), respectively.
The variance of the estimator at 100K is about 25 times bigger than that at 300K.
For a general estimator A, the sampling statistical error 0?(A) can be expressed
as [86, Appendix D]

7*(4) ~ A4 — (4)?). (818)

Here t¢ is the characteristic decay time of the correlation function of A. Therefore the
sampling statistical error at 100K is much larger that than at 300K using a trajectory
of the same length, and the free energy perturbation method is not very efficient at
100K.

The discussion above indicates that the free energy perturbation method is mostly
suited for studying the momentum distribution of quantum systems at intermediate
temperature. If the system is at low temperature, or the potential energy surface of
the quantum system has a large fluctuation, the estimator in the free energy pertur-
bation method will have a large variance and the statistical error is difficult to reduce.
To overcome this problem, we note that the variance of N'(x;0) is not uniform along
x direction (see the right panel of Fig. 8.6). The variance is small when x is small
(Jz| < 0.1A) or large (]| > 1.0A). The largest variance occurs at intermediate dis-

placement |z| ~ 0.5A. The variance can be reduced by inserting an intermediate

224

501

=
3]
T
IN
(=)
T

i
T

N
o
T

Variance of excess free energy
Variance of excess free energy
w
o

0.5f

[
o
T

\

-15 -1 -0.5 0 0.5 1 15 —9.5 -1 -0.5 0 0.5 1 1.5
x(angstrom) x(angstrom)

Figure 8.6: The variance of N (z;0) for double well model at 300K (left panel) and
at 100K (right panel).

point 2’ in the free energy perturbation method as

[or(yesp (b [dr "0 V() + o)
Jor(r)exp (4 J7" dr "5 £ Vir(r) + y(ria))
(fﬁﬁ dr % + Vir(r) + y(T;x’)])

)

f@r(7)exp< 7 Bhd mr2(T + Vr(r])

(8.19)

The last equality in Eq. (8.19) also defines a new quantity A(x; '), which is the
estimator of the ratio of the end-to-end distribution at = to the end-to-end distribution
at /. When 2/ = 0, N'(z;0) is the end-to-end distribution and Eq. (8.19) is the same
as Eq. (8.13).

Instead of computing N (z;0) for all z, Eq. (8.19) first computes N (xz;0) for
0 < z < 2’ and then calculates NV (x; ') for x > x’. The variance of the estimator is

therefore reduced. Eq. (8.19) can be applied recursively by injecting multiple inter-

225

mediate points z’. In practice a few intermediate points is already able to accurately
calculate the momentum distribution. Take the double well potential at 100K for
instance. We apply Eq. (8.19) with intermediate points 2’ = 0,0.11,0.26,0.42, 0.53A,
respectively, with the sampling trajectory of 60ps at each intermediate points with
the path integral discretized by 64 beads. The total length of the trajectory is still
300ps. The accuracy of the momentum distribution and the potential of the mean
force is greatly improved (see Fig. 8.7 and Fig. 8.8). The variance of the estimator
N (z,z") is more than 25 times smaller than that of the free energy perturbation es-
timator (see Fig. 8.9). The discontinuity in Fig. 8.9 indicates the positions of the
intermediate points.

0.14

0.02 —— Exact
== =Umbrella Sampling

0.12r

0.1r

0.08

n(k)

0.06

0.04

0.02

0 , , ,
-20 -15 -10 -5 0 5 10 15 20
k(inverse angstrom)

Figure 8.7: The momentum distribution of a particle in a double well potential at
100K using Eq. (8.19). Red solid line: exact result obtained by diagonalization of
the Hamiltonian matrix. Black dashed line: displaced path formula (8.19). An inset
with the same legend is included for better illustration of the tail of the momentum
distribution.

226

Excess free energy(kBT)

0
x(angstrom)

Figure 8.8: The potential of the mean force of a particle in a double well potential at
100K. Red solid line: exact result. Black dashed line: Displaced path formula (8.19).
The potential of the mean force is in the unit of kgT'.

g
IS
T

o
©

Variance of excess free energy
o =
[=2) [N

N
IS

-15 -1 -0.5 0 0.5 1 15
x(angstrom)

Figure 8.9: The variance for estimating the end-to-end distribution for 100K double
well model using Eq. (8.19). The discontinuity indicates the intermediate points to
enhance the sampling efficiency.

227

We have demonstrated that the free energy perturbation method is very effective
even at low temperature by inserting several intermediate points 2’. It is natural
to ask what is the continuous limit of Eq. (8.19) by inserting infinite number of
intermediate points. This continuous limit is the thermodynamic integration formula
in statistical mechanics [137], which calculates the potential of the mean force by

integrating its gradient F'(x'):

Ulx) = /0m dx' - F(x'). (8.20)

The derivative quantity F'(a’), called the mean force, can be sampled directly from

the path integral simulation according to the intermediate partition function Z(x’)

F(a) = <% /Oﬁh dr V,V[r(r) + y(T)m']y(T)> (8.21)

wl

We remark that both Eq. (8.19) and the thermodynamic integration formula (8.21) re-
quire inserting intermediate points 2’ which leads to open paths. However, Eq. (8.19)
and Eq. (8.21) are more accurate methods for calculating the momentum distribution,
and can be applied in a fully controlled way. The computation of the potential of
mean force has analogies with non-Boltzmann sampling methods. Modern techniques
for enhanced sampling, such as metadynamics [128] and well-tempered metadynam-
ics [18] can be applied to improve the statistical accuracy. This work is currently in

progress.

8.3 Application of the displaced path integral for-
malism to water

The displaced path formalism is introduced in Section 8.2 under the single particle

picture, and it can be readily generalized to distinguishable many particle systems.

228

Following the notation of Eq. (8.6), the end-to-end distribution of the I-th particle of

a many body system takes the form under the displaced path formalism as

(@) = 2 / DR(r)e— i I dr MO AVIRE) i) (8.22)
Z) R(pr)=FR(0)
with the compact notation
R(1) = ('rl(T), ces i (7)), (7)), T (7)), ,’rM(T)), (8.23)

and Y;(7) is a M-dimensional function with the only nonzero entry at the I-th com-

ponent as

Yi(r) = (0,...,y(1),...,0). (8.24)

Again we find that displaced path formalism does not introduce any special par-
ticle among all the particles and the formulation is exact. We can sample the mo-
mentum distribution using all particles in the system, and thus can greatly enhance
the sampling efficiency. The displaced path algorithm is tested with a flexible model
for water [173]. The simulation box contains 32 water molecules. The temperature is
set to be 296K. Both protons and oxygens are treated by quantum mechanics, and
are represented by 64 classical beads. The end-to-end distribution takes the spherical
averaged form in water. The quantum effect for protons in water at room tempera-
ture is relatively small [191], which allows us to use free energy perturbation (8.14)
and compare the results with open path integral simulation [192]. In the latter case,
in principle one proton path should be opened and all other paths should be closed
as discussed in Section 8.1. However, the resulting statistics would be poor. In order
to boost statistics one proton path per water molecule was opened, as it was found
that this approximation leads to a negligible error in the momentum distribution

due to the relatively weak interaction between protons belonging to different water

229

molecules [192]. The displaced path integral formulation allows one to compute the
end-to-end distribution without opening any proton path, and therefore all the pro-
tons can be included in the calculation of the end-to-end distribution without any
approximation. We show the end-to-end distribution calculated both from a 268 ps
open path simulation and from a 12 ps displaced path simulation that utilizes the
estimator given by Eq. (8.14) in Fig. 8.10 (a), and the comparison of the potential
of mean force in Fig. 8.10 (b). In both simulations, the time step is 0.24 fs. Two
consecutive steps contain highly correlated information, and the free energy pertur-
bation estimator may be computed every 20 steps. Thus with only a small increase in
computational overhead in comparison to an open path simulation of the same length,

the displaced path formulation has a large gain in terms of sampling efficiency.

(a) (b)

8
0.2
6 0
-0.2
T 4} -04
> 0 01 02
2
0
0 0.5 1

Figure 8.10: Comparison of (a) the end-to-end distribution and (b) the potential of
mean force in SPC/F2 water. In both figures, the red line is computed by a 268ps
open path integral simulation. The thick blue line is calculated using the displaced
path estimator (8.14), with the thickness indicating the 95% confidence interval. The
noise near r = 0 in both insets for open path simulation is due to the r? weight in
the spherical integration, while the displaced path gives correct small r behavior by
definition.

230

8.4 A new way of interpreting the momentum dis-
tribution

The thermodynamic integration approach given in Eq. (8.21) is not only computa-
tionally advantageous, but also provides one with the potential of mean force U(x),
and its gradient F'(x). Both U(x) and F(x) are key quantities for interpreting the
physics underlying the momentum distribution n(p). We first note that the kinetic
energy K is given by K = %V - F(x) Y + % = Ky + % Since 3/2[is the free
particle contribution, the non-classical contribution is completely included in the ex-
cess kinetic energy term Ky, and is determined by the zero point curvature of U(x).
Secondly, if the momentum distribution of an individual particle is accessible (as is
possible e.g. in simulations) and the underlying potential energy surface is harmonic,
the end-to-end distribution follows a Gaussian distribution and the mean force is
given by a straight line. Any deviation of ¢ - F(x) from linearity signals anharmonic
behavior along the g direction.

In experiments, the spherically averaged momentum distribution is accessible in
liquids, and amorphous and polycrystalline solids, while the directional distribution is
accessible in monocrystalline materials. The latter distribution provides more infor-
mation about the underlying potential energy surface. However, in single crystals the
total momentum distribution is the sum of the contributions of individual particles
participating in bonds with different orientations. As a consequence the difference
between directional and spherical momentum distribution is usually very small as
shown in the top panel of Fig. 8.11. This figure is based on an anisotropic harmonic
model with three distinct principal frequencies fitted from the ab initio path integral
simulation for ice Ih [191]. The bottom panel of the same figure clearly shows that
the distinction between the spherical and directional distributions is enhanced when

comparing the mean forces. It is therefore of great interest to link directly the mean

231

force to the experimental data, i.e. to the Compton profile. The Compton profile is
given by

J(q,y) = /n(p)5(y —p-q)dp. (8.25)

g indicates the direction of the neutron detector [218].

[1 T

o -
5 —— spherical
2 - - - directional
@
©

= 0.5¢

p=}
c

(0]

IS
S 0 ‘

0 5 . 10 15
P(A)
10 -7

© -

4

Ke]

g 5 .

= —— spherical

- - —directional
0 ! ! ! !
0 0.2 0.4 0.6 0.8 1

Figure 8.11: Top panel: the momentum distribution of the protons in ice Ih resulting
from an anisotropic harmonic model (see text). Both the spherical and the directional
distribution along the c-axis are shown. Bottom panel: the corresponding spherical
and directional mean force projected along the c-axis. The curves are plotted as a
function of the end-to-end distance. The mean force enhances the differences between
spherical and directional distributions.

We define ; = x - q, and denote by x; the x component orthogonal to q.

Correspondingly p| = p - g, and p, is the p component orthogonal to q. One has

. 1 ~ ipm .
J(q,y) = o) /dwdp n(x)er?*(y —p- q)
1 ~ i tip @
= W /da:”dacldp”dpl n(x)er®IPITRPLTLE(y -p) (8.26)
1 i
- Tz d)er Iy
onh d:l:'” n(:)s”q)ef .

232

Given the end-to-end distribution can be expressed as

— mm2

n(x) = e 2 V@ (8.27)

the potential of mean force U(x) can be obtained from the Compton profile as

mxﬁ

2832

U(z)q) = - ln/dy J(q.y)e 7Y, (8.28)

The mean force F'(x) is the gradient of U(x). Taking into account that J(q,y) is an

even function of y one obtains

may I dy ysin(zyy/h)J(q,y)

q-F(zq) = - Br* h [dy cos(zyy/h)J(q,y)

(8.29)

In the bottom panel of Fig. 8.11 the slope of the mean force, either spherical or
directional, at » = 0 is equal to the excess kinetic energy Ky divided by the con-
stant % This is an exact result that originates from the symmetry property of ice
Ih. In general the spherical and directional mean force can have different slopes at
r = 0. The deviation of the spherical and directional forces from linearity at finite r
results from the averaging process and is not a sign of anharmonicity. Thus in the
interpretation of the experimental Compton profile, which results from the contri-
bution of many particles, one must distinguish the case of an anisotropic harmonic
potential energy surface from that of an anharmonic potential energy surface. To the
best of our knowledge the procedure that is currently adopted to fit the experimen-
tal data [5,208,218] does not separate well anisotropic and anharmonic effects. We
propose here an alternative approach in which the mean force is associated to the
experimental Compton profile according to Eq. (8.29). The projections of the mean
force along different directions are then fitted to an anisotropic harmonic model aver-

aged as required by the crystal symmetry. Any systematic deviation from experiment

233

of the mean force originating from the harmonic contribution, can then be associated
to anharmonicity and used to further refine the underlying model potential energy
surface.

The framework introduced here may also be utilized to provide insight to the
investigation of anharmonic systems. Consider for example a particle with the proton
mass subject to a model double well 1D-potential. V = mT“’zzQ + Aexp(—%) with
w = 1578K, and & = 0.094A. A characterizes the barrier height and is set to be
1263K, 3789K, and 6315K, respectively. These parameters mimic different tunneling
regimes for protons along a hydrogen bond [27,190]. The temperature is set to be
30K. At this temperature the behavior of the systems is dominated by the ground-
state, and the end-to-end distribution can be approximated by the overlap integral
n(z) = [dz(2)Y(z +) where 1(z) is the ground-state wavefunction and F(x) =
—4 In7n(z). In Fig. 8.12 we can see how qualitatively different the mean force can be
in the three cases. One goes from a fully monotonic behavior for A = 1263K which is
a model for a low energy barrier hydrogen bond [26], to the strongly non monotonic
mean forces for A = 3789K and A = 6315K where the tunneling states lie below the
barrier height. Additionally, it is not very difficult to relate features of the mean force
to the underlying effective potential.

It is also instructive to study F'(z) as a function of temperature when the higher
states are mixed in the density matrix. This is done in Fig. 8.13 for the double well
potential with A = 3789K. For temperatures in the 100 — 500K range, the behavior
is dominated by the two lowest eigenstates. The slope of F'(z) at small z, which is
proportional to the excess kinetic energy Ky, shows little dependence on T'. It can
be shown with detailed analysis that this is a generic feature of two level tunneling
systems. Other characters seen in Fig. 8.13 in the same range of temperatures, such as
the more pronounced kink at intermediate x and the enhanced softening of the mean

force at large x, derive from the odd symmetry of the first excited state contribution.

234

(a) (b)
10 10000
— A=1263K

8} |- = = A=3789K 8000
‘== A=6315K

6000

4000

Mean force
~
Potential(K)

2000

8000

8000

6000 6000

4000} 4000

Potential(K
Potential(K

2000 2000

Figure 8.12: (a) The mean force corresponding to a double well model at 7" = 30K, for
different barrier heights A = 1263K (black solid line), A = 3789K (red dashed line),
and A = 6315K (blue dot-dashed line). (b) Potential energy surface for A = 1263K
(blue solid line), and the first five energy levels (red dashed line). (¢) (d) the same as
(b), but with A = 3789K and A = 6315K respectively.

Eventually at higher T" the kink in F'(x) disappears as the mean force progressively
resumes linear behavior with a slope that tends to zero as high temperature classical

limit is reached.

8.5 Semiclassical limit of displaced path integral
formalism

So far the displaced path integral formalism can be applied to compute the momen-
tum distribution of any quantum system as long as the exchange effect among the
particles can be neglected. Furthermore, if the quantum effect is not strong and the
quantum path only perturbs from its centroid by a small magnitude, the computa-

tional procedure can be further simplified. This is known as the semiclassical limit

235

3.5

—— 100K
31 A 300K
----- 500K

25 - = = 1000K

+ 2000K

Mean force

0 0.1 0.2 0.3 0.4 0.5

Figure 8.13: The mean force corresponding to a double well model at A = 3789K
for different temperatures 100K (red solid line), 300K (blue triangle), 500K (black
dot-dashed line), 1000K (magenta dashed line), and 2000K (blue cross).

of the path integral theory. The semiclassical limit has been well studied in terms
of closed path integrals and position distribution [83]. However, little work has been
done in the context of momentum distribution. One of the known result is that if
the quantum effect is weak, the quantum effect on the momentum distribution can
be described as an effective increase of temperature [21,147]:

52 h2

Tp=T
=t ks

(V'(2))%)a- (8.30)

Here (-)q means the average is taken over the classical trajectory. Eq. (8.30) essen-
tially approximates the quantum momentum distribution by an isotropic Gaussian
distribution. The anisotropic effect is mixed and represented by a single parameter
T.g, leaving aside the anharmonic effect. In this section we derive a more accurate
semiclassical limit for momentum distribution, which naturally generalizes the esti-
mate by Feynman and Hibbs [83] to the case with the momentum distribution.

To facilitate the discussion, we first briefly review the derivation of the semiclassi-

236

cal limit for the closed path integral formalism. The semiclassical limit considers the
case when (A is small, namely the system is at high temperature. Then each path

r(7) can be considered to be centered around its centroid

8h
- % /0 r(r)dr. (8.31)

The partition function Z can be written as

L 1 [Ph 2
7 = /dr/dm/ Or(T) exp(—ﬁ % +V(7’)d7‘>. (8.32)
1 0

Here the notation [dr [dry fr? 57“(7‘) is another way of writing the unconstrained
path integral f Dr(7), except that the inside integration satisfies the constraint with

fixed centroid
1

Bh

In the semiclassical analysis, the internal degrees of freedom r; should be integrated

Bh
/0 r(r)dr =7, 7r(0)=r(Bh)=r. (8.33)

out, and the partition function is only determined by the centroid 7. To this end we

rewrite the partition function as

7= /df (/ dry / 5T(T)P[r(f);f]ef) W (). (8.34)

Here

I
f= _ﬁ/o Vr(r)]dr. (8.35)

P[r(7),7] is the probability measure corresponding to free particles

exp —% Oﬁh@cﬁ
Plr(r),7] = (TG) (8.36)

237

with an normalizing factor

W(F) = / dry / Dr(r) exp (—% Oﬁh W;(T)df). (8.37)

In order to integrate out the internal degrees of freedom, we apply the Jensen’s

inequality (i.e. the variational principle)
(el) > el (8.38)
with the average (-) defined by
(A) = / dry / " Br(r)Pr(7):] - A, (8.39)

The question remains to evaluate the average (f).

For fixed position of the centroid 7, we have

(f>:—%/dr1 / B () Plr(r): 7 /OﬁhdtV[r(t)]

—% /O " i / dry / Br(r)Plr(r): AVr (1) (8.40)
1 h

Bh
=—— 1(t;7).
h/o dt I(t;T)

Since each path can be seen as a Sh-length segment of a periodic path, the two sets
{r(0)} and {r(t)} are exactly the same. Therefore I(¢;7) is independent of ¢, and we

have

1(7) = 1(0;7) = / dry /”@(f)P[r(f);ﬂvm), () = —BI(F). (8.41)

238

I(7) can be written as

F :/dY/Y D2(7)Plz(7); F)V[F + Y] (8.42)

with z(7) =r(1) = 7,Y = r; — 7, and we have used P[r(7);7] = P[z(7);7]. The new
path z(7) satisfies the constraint foﬁ " drz(7) = 0. This constraint is linear in z, and it
is convenient to rewrite the constraint using the Dirac-é function as §(foﬁ " zdr). This

0-function can be eliminated in the integral by means of its Fourier transform

5 (/O " sz) - /_ Z dk% exp (m /O BhZ(T)dT) , (8.43)

and

A Bh %) ik
/ i [sy (4 [TEO)
1)2(—iBh)3
drl/dkm {Z {— (—wh)%—%]}
_ o —6mr2/BH2 24mm
2%\/7@}12/0” e o/t 332
_ m

Therefore W (7) is independent of 7. This fact can be readily seen since W (7) is the

(8.44)

normalization factor for free particle system which is translational invariant. Similarly

6 *° 2 2
") =\~ 5”;2 / dy / V(P4 Y)e O mom (8.45)

In summary, the partition function is expressed under the semiclassical limit as

m . _BU(F
~ ‘/27%712 /dre AU, (8.46)

239

with the effective classical potential as

6 e 2 2
F) = ,/Wﬁ”;z / dY V(7 +Y)e 0¥ m/on, (8.47)

We see that the internal degrees of freedom of the quantum path have been integrated

out, and the partition function is represented in terms of an effective classical potential
acting on the centroid of the path. Eq. (8.47) indicates that in the semiclassical
limit, the quantum effect mimics a smearing Gaussian kernel with mean-square spread
(Bh2/12m)"/2.

The displaced path formalism evaluates the end-to-end distribution as an esti-
mator based on closed path integrals. Therefore the same derivation above can be
applied to study the semi-classical limit of the end-to-end distribution, and there-
fore the momentum distribution. The denominator of the end-to-end distribution
is the partition function Z already calculated in Eq. (8.46). The numerator of the

end-to-end distribution is

Tr[e™ w7~ 0H] :exp< : %2) / dF / dry / Or(r
e {1 [(B <>+V[<>+y<>1)}

(8.48)
:exp(2ﬁh2)/dr/dﬁ/ @z
1 m .,
{3 [Car (3@ viee >+y<¢>a:1)}
with y(7), z(7) defined the same as before.
Applying again the variational principle
Tr[e_%me—ﬁH] zexp(2ﬁh2) /dr eXp - —/dm/ ’Dz
(8.49)

Py [avia 4+ yloa}) W

240

and write (f(7)) as

7~
-
—
=3
N~—
~
I
I

r1—"7 Bh
drq / Dz(1)Plz(1); 7] /0 dtViz(t) + y(t)x + 7]

(1) Pla(7); 7]V [2(2) + y(t) + 7] (8.50)

>t
Q.
~
QU
=3
3
|
=
N
N

Stl— St = St

Using the same technique in Eq. (8.43), we find that

(7)) = -% / . dt/ dY e IR (Y 4 y(t)a +7) (8.51)

Therefore the numerator of the end-to-end distribution is

m BU(rw
1/27Tﬁh2 /dre AU) (8.52)

with the effective classical potential U(7;) as

2
i _ mz
Tr[e” #P7e 1] = ™ 26n2

Bh
U(r;z) = Bih /0 dt / AY e S IR (Y 4oy (t)x + 7). (8.53)

The physical meaning of this effective potential is clear. It replaces to the closed path

effective potential U(7) by an average on the displaced path

Bh
U(r;x) = 5%1/0 dtU(T +y(t)z). (8.54)

To sum up, the end-to-end distribution can be rewritten in the semi-classical limit
as

(8.55)

and the displaced path estimator for the end-to-end distribution under the semiclas-

241

sical limit is

N(z;0) = exp {—B[U(F;x) — U(F)]}. (8.56)

We use the double well model (8.15) again to illustrate the accuracy of the new
estimator of the end-to-end distribution under semiclassical limit (8.56). The end-to-
end distribution at 800K and 300K are shown in Fig. 8.14 and 8.15, respectively. The
difference between the quantum and the classical end-to-end distribution is already
visible at 800K. The free energy perturbation estimator (8.56) accurately reproduces
the end-to-end distribution. On the other hand, the isotropic estimator (8.30) over-
shoots the quantum effect, and the deviation from the exact result is even larger than
the deviation obtained from the classical Maxwell-Boltzmann distribution.

The performance of the semiclassical estimator (8.56) at 300K is more interesting.
It has been reported that the double well model at 300K mimics the quantum effect of
ice VII with proton tunneling [190]. The end-to-end distribution in this case strongly
deviates from a Gaussian distribution. However, the semiclassical estimator (8.56)
still gives a rather accurate description of the non-Gaussian end-to-end distribution.
This example clearly indicates the new semiclassical estimator can be applied to study
the quantum momentum distribution for a large class of systems.

Besides the conceptual advantage, the semiclassical estimator (8.56) has com-
putational advantage when combined with the free energy perturbation method.
Eq. (8.54) indicates that if the effective potential for the closed path integral sim-
ulation can be obtained efficiently, then U(7, x) is also readily obtained by means of
Gauss-quadrature along the ¢ direction with a small number of integration points.
The number of integration points can be much less than the number of replicas P

required in the standard path integral simulation. This is our work in progress.

242

Fourier transform of momentum distribution

X(angstrom)

Figure 8.14: The end-to-end distribution corresponding to the double well potential at
800K. Red solid line: the exact result. Black dot dashed line: the result from the new
semiclassical estimator 8.56. Magenta dot dashed line: the result from the isotropic
estimator 8.30. Green dashed line: classical Maxwell-Boltzmann distribution.

=
o
T

=
i
:

=
N
T

© o o
IS) © [
: : : :
N
S
P

Fourier transform of momentum distribution

o
N
T

~
~
.

X(angstrom)

Figure 8.15: The end-to-end distribution corresponding to the double well potential
at 300K. Red solid line: the exact result. Black dot dashed line: the result from the
semiclassical estimator 8.56. Magenta dot dashed line: the result from the isotropic
estimator 8.30. Green dashed line: classical Maxwell-Boltzmann distribution.

243

8.6 A new kinetic estimator

We have shown that the displaced path integral formalism is more advantageous com-
pared to the open path integral method for calculating the momentum distribution.
In this section we show that the displaced path integral formalism also provides an
alternative way of calculating the kinetic energy of quantum particles.

In what follows the new estimator is introduced under single particle picture at
one dimension. The generalization to the many particle case is straightforward. The
kinetic energy is directly related to the curvature of the end-to-end distribution at
r=0as

1 2 1 K2 &2 i
(K) = —=Tr [p—e_BH] = ————Tr [e_ﬁpxe ﬁH] (8.57)

2m

The curvature of the end-to-end distribution can be represented using the displaced

path integral formulation, which reads

dd—;ﬁ(gf) 1 d_Z{/QT(T) exp (_% /OBH dr mTTQ + V[r(7) +y(7)93]) - exp (%)}

|
:% /@r(f) exp (—% /Oﬁh dr ”%“2 + V[T(T)]) -

{—% w (5 [o V'[rm]y(f))z [V"[rm]y?(f)}

(8.58)

Eq. (8.58) involves the second derivative of the potential energy which is difficult to
compute in practice. We would like to represent the kinetic energy estimator only
using the first order derivative of the potential energy, which is the force on the atoms
and is available in any molecular dynamics simulation and in most of the Monte Carlo

simulations.

244

We define the average of a quantity A as

mr

(A = 5 [ornes (—% /0 " ir V(e)]) A (859)

then Eq. (8.58) can be rewritten as

2

2 m AR o
%ﬁ(:c) A <<_%/0 dr V/[T(T)]y(T)))+ <—% /0 dr V'[r(7)]y*(7))
(8.60)

The first term of (8.60) is a constant coming from the free particle contribution,
or the classical Maxwell-Boltzmann distribution. The second term can be rewritten

as

sh 2 8h 8h
<<_% /0 dr v’[r(f)]y(f)))= o /0 dr /0 dtv' [(6]V/[r(m)ly()y (1) (8.61)

To further simplify the formulation, we note that we have used the convention that
we open the path at r(0). However, the path r(7) can be “opened” at any imaginary

time slice r(s). Taking this symmetry into account, Eq. (8.61) equals to

8h 8h 8h
%< /0 ds /O i /0 AV Tr(t + V' (r + 8)y()(D) (8.62)

Let us define a correlation function between forces at imaginary time ¢ and 7 as

8h
V- = / ds VI[r(t + 5)V'[r(r + 9)]. (5.63)

%E)lr)r(t — 7) only depends on the difference along the imaginary time axis u =t — 7.

With this notation Eq. (8.62) becomes

Bh Bh
ol [[v - o) (8.64)

245

After some further simplification, the second term of (8.60) becomes
Ly / v (v -5) (8.65)
2h 0 corr y 12 *

The second derivative in the third term of Eq. (8.60) can be eliminated using the
symmetry along the imaginary time axis as well. The kinetic energy estimator is
invariant when substituting y(7)z by y(7)z + f(x), with f(x) an arbitrary function

of z. Therefore

(8.66)

Here we assume f'(0) and f”(0) are arbitrary, but f(0) = 0. All terms containing

f(0) and f”(0) must vanish, and we have

[% / } :<% /0 " V), (8.67a)

(-2 [ar vwny(f)} J [Maviol) = [virme,
(8.67b)

(/0 P i V() = 0. (8.67¢)

We only need Eq. (8.67a) in order to simplify the third term in Eq. (8.58) as

246

follows

Bh Bh Bh
G| e =g [e [arviee s owe)

1 Bh "
[ar v

_ %< H /Oﬁh V’[T(T)]r> = %%Bhdu Vo (w).
(8.68)

Combining the results of (8.65) and (8.68), the kinetic energy finally takes a very

simple form

() = g3+ o [v (-5 e

The new kinetic energy estimator (8.69) shares similar properties with the well-

known virial estimator [124]: The classical contribution and quantum contribution to
the kinetic energy are naturally separated from each other, and the quantum part has
a well defined continuous limit. Both methods only require the force along the trajec-
tory and the computational costs are the same. Moreover, the new estimator (8.69)
reveals that the quantum contribution only comes from the correlation of the forces at
differential imaginary time slices. The weight " (1 — %) implies that the “self cor-
relation” of the force %E}r’r(o) = V;gr)r(ﬁh) does not contribute to quantum effect. The
correlation function at other imaginary time slices contribute to the kinetic energy
according to a positive parabolic weight function % (1 — %)

The performance of the new kinetic energy estimator (8.69) is compared with
the virial estimator using three examples: harmonic oscillator at 300K; double well
potential at 300K; double well potential at 100K.

For harmonic oscillator at 300K, the new kinetic energy estimator and the virial

estimator are compared in Fig. 8.16. The average value of the kinetic energy estimated

247

by the new estimator is (1.2819 & 0.0815) x 1073, and the variance is 1.610 x 1073,
The average value of the kinetic energy estimated by the virial estimator is (1.2632 +
0.0219) x 1073, and the variance is 4.318 x 10~%. The exact kinetic energy is 1.2629 x
1073, The correlation of forces along imaginary axis in Fig. 8.17 which has a parabolic

shape.

t(fs) 4

t(fs) 4

Figure 8.16: Comparison of the kinetic energy estimator based on displaced path

formula (upper panel) and virial estimator (lower panel) for the harmonic potential
at 300K.

248

-4

x 10

1.2‘

0.8

0.4r

0.2

0 0.2 0.4 0.6 0.8 1
imaginary time (f3 hbar)

Figure 8.17: The correlation function chr)r(u) along the imaginary time axis for the
harmonic potential at 300K.

The same comparison is performed for the double well potential at 300K (Fig. 8.18).
The average value of the kinetic energy of the new estimator is (1.335040.1036)x 1073,
and the variance is 2.895 x 1073, For the virial estimator, the average value is
(1.3281 4 0.0467) x 1073, and the variance is 9.225 x 107*. The exact kinetic en-
ergy is 1.3439 x 1073, The correlation of forces along imaginary axis in Fig. 8.19.

Finally we test the double well potential at 100K (Fig. 8.20). The average value
of kinetic energy estimated by the new estimator is (1.0055 & 0.4116) x 1073, and
the variance is 8.135 x 1073. For the virial estimator, the average value is (0.9974 4+
0.0594) x 1073, and the variance is 8.2938 x 10™%. The exact kinetic energy is 1.0234 x
1073, The correlation of forces along imaginary axis in Fig. 8.21.

From the three examples above, we find that the new kinetic energy estimator is
an unbiased method for sampling the kinetic energy of quantum particles. However,

the variance of the new estimator is in general larger than that in the virial estimator.

249

t(fs) 4

t(fs) x 10°

Figure 8.18: Comparison of the kinetic energy estimator based on displaced path
formula (upper panel) and virial estimator (lower panel) for the double well at 300K.

-4

x 10

0 0.2 0.4 0. 0.8 1
imaginary time (3 hbar)

Figure 8.19: The correlation function %E)lr)r(u) along the imaginary time axis for the
double well potential at 300K.

250

0.15

0.1

3
t(fs) 4

t(fs) 4

Figure 8.20: Comparison of the kinetic energy estimator based on displaced path
formula (upper panel) and virial estimator (lower panel) for the double well at 100K.

x10™

0 0.2 0.4 0.6 0.8 1
imaginary time (B hbar)

Figure 8.21: The correlation function Vc(olr)r(u) along the imaginary time axis for the
double well potential at 100K.

251

8.7 Displaced path formalism for bosons

So far we have established the displaced path formalism for distinguishable quantum
particles. The displaced path integral formalism has various advantages from both
the conceptual and the computational point of view. In this section the displaced
path formalism is generalized to bosons. The same formulation holds for fermions as
well, but the resulting estimator will suffer from the sign problem and the statistical
sampling becomes impractical. For an system consisting of N bosons, we write the
collective variable R to denote the position of the particles (71, --- ,ry). The density

matrix of bosons is
<7°1,'I°2,"' 7TN‘pB|r1 +CU,7°2,"' 7TN> = <R‘pB|R+X> (870)

Here the collective variable X = (&,0,---,0).
The one particle density matrix for bosons pp is defined by symmetrizing the one

particle density matrix for distinguishable particles as [51]

(Rlps| R+ X) =7 S~ (RIp| T[R + X))
T (8.71)

1 Bﬁd

-3 / DR(r)e H i i M VIRE),
N! T < R(0)=R,R(Bh)=T[R+X]

Here T represents any possible N— permutation. The key step of generalizing dis-
placed path formulation is that for each T, we separate the orbit of the particle 1
under the permutation 7" from the other degrees of freedom. The orbit of the particle

1 under the permutation is defined to be the collection of particles

A={1,T(1),T*1),---, 7" (1)} (8.72)

252

such that 7™(1) = 1. Then we group all these particles using the collective variable

Ra(7) = (ri(7), -+, rpa1(1) (7)), (8.73)

and Rp(7) to be the collection of r;(7) with ¢ outside the orbit of the particle 1, we

have

(R|p| T[R + X)) :/ DR4(T)DRp(7T)
R(0)=R,R(h)=T[R+X] (8.74)

52
1 rBh mRY (1)
e rJo dr I

"REC) V(R A(r). R (7)]

Next we introduce the displaced path transformation with respect to permutation 7'

as
71— 1 T

n | nBh

(Vo(r)}i = i=1,--,n. (8.75)

With this notation, Eq. (8.74) can be rewritten as

77L(l?2

(R|o| T[R+ X]) = 557 ORA(r)ORa(7)
R(0)=R,R(3h)=T|R) (8.76)
1 Bh 77LR?4(7') 77LR2B(T)
e nJo d 2 T2 +V[RA(T)+YT(T)%RB(T)].

Plugging Eq. (8.76) into Eq. (8.71), we have the displaced path formulation for bosons.
The displaced path formulation for bosons has the following properties:

mmz
1. The free particle contribution e 27672 factorizes inside each permutation 7" from

the environmental contribution.

77L(l?2

2. The free particle contribution e 2767 converges rapidly to 1 with respect to the
size of the orbit. As a matter of fact, this directly indicates that if there is a
nonzero probability for the infinitely long chain, the end-to-end distribution will

have a non-vanishing value as x — 00, i.e. the off-diagonal long range order.

3. Perturbation method and thermodynamical integration method can still be ap-

253

plied as in distinguishable particle case.

8.8 Conclusion

In this chapter we have introduced the displaced path formalism for computing the
end-to-end distribution, and therefore the momentum distribution of quantum par-
ticles. The new formalism has advantage both conceptually and computationally.
From conceptual point of view, the free particle contribution and the environmental
contribution factorize, and the potential energy surface is only reflected in the envi-
ronmental part. We further derived the mean force, which is directly related to the
potential energy surface, and can be used to analyze the Compton profile in the deep
inelastic neutron scattering experiment.

From computational point of view, the displaced path formalism is more efficient
than open path integral formulation. Numerical examples indicate that the advantage
is already clear for one particle system. The advantage of the displaced path integral
formulation is more prominent in the many particle case since the momentum distri-
bution of all quantum particles can be evaluated using one single closed path integral
simulation if the quantum effect is relatively small. In the situation of strong quan-
tum effects, either thermodynamic integration technical or special enhanced sampling
techniques must be used. This is our work in progress.

We have also established the semiclassical limit of the displaced path integral for-
mulation. The semiclassical limit of the displaced path integral formulation provides a
much more accurate description of the quantum effect than the isotropic model which
regards the quantum effect on the momentum distribution as an effective increase of
temperature.

The displaced path formulation gives a new kinetic energy estimator. The new

kinetic energy estimator shares many similar properties with the virial estimator. The

254

classical and the quantum contribution to the kinetic energy are well separated from
each other and the computational cost is the same as the virial estimator. In the
new kinetic energy estimator, the quantum kinetic energy is determined by weighted
average of the correlation of the force along the imaginary time axis. The new estima-
tor does not explicitly depend on the path r(7), as opposed to the virial formulation
foﬁ "M dr r(7)V'[r(7)]. Finally, we generalized the displaced path integral formalism to
boson systems. The practical implementation of this formulation is our future work.

Other future work of the displaced path integral formulation can be its application
in ab initio molecular dynamics simulation to sample the momentum distribution of
quantum particles, particularly the directional momentum distribution for crystalline
systems. In this case the displaced path integral formulation can focus on the impor-
tant directions such as the hydrogen bond direction, and the performance should be
much superior to that of the open path integral formulation. Besides the free energy
perturbation method and the thermodynamic integration method, other sampling
techniques are also in our scope in order to enhance the statistical sampling and to

reduce the variance of the displaced path integral estimators.

255

Chapter 9

Momentum distribution,
vibrational dynamics and the

potential of mean force in ice

9.1 Introduction

Investigating the impact of hydrogen (H) bonding on molecular properties is the focus
of intense research, but even behavior as fundamental as the equilibrium dynamics of
the protons participating in H bonds remains poorly understood. Proton dynamics is
reflected in the momentum distribution probed by deep inelastic neutron scattering
(DINS) [5]. Recent DINS studies of H bonded systems have made striking observa-
tions, such as the presence of a secondary feature in the tail of the spherically averaged
distribution in confined water [90], and estimates of a surprisingly large quantum ki-
netic energy of the proton in undercooled water [208,209]. The secondary feature was
attributed to quantum tunneling between the two wells of an anharmonic 1D poten-
tial [90]. It is not clear, however, to what extent the dynamics of an interacting many

body system can be reduced to that of a single proton along a bond. For instance, it

256

has been pointed out that anisotropy can mimic features of a spherical distribution
that one might associate to anharmonicity in a 1D model [233], and yet so far there
is no conclusive study of this issue. To interpret experiments in confined and under-
cooled water, the unknown details of the molecular structure are a severe source of
difficulty. However, even in the simpler case of ice Ih, it is not clear if the physics
can be captured by simple model potentials, and how anharmonicity, anisotropy and
structural disorder influence the momentum distribution.

In order to tackle these issues we consider the open path integral Car-Parrinello
molecular dynamics (PICPMD) data for ice Ih that yielded the accurate spherical
momentum distribution reported in a prior publication [191]. In this prior study,
no attempt was made to relate the distribution to the equilibrium dynamics of the
proton or to investigate the role of the environment in terms of a potential of mean
force. In simulations this task is facilitated by access to the full 3D distribution,
in contrast to experiments on polycrystalline samples, where only the spherically
averaged distribution could be measured [5,218]. In addition, crystalline symmetry
allows the use of harmonic analysis to quantify the relation between the momentum
distribution and vibrational dynamics, thereby elucidating the role of anharmonicity
and disorder on the proton ground state.

We find that anisotropy stemming from the molecular orientations in the crystal
has a larger effect on the momentum distribution than anharmonicity. The latter is
effectively described within a quasi-harmonic model and is particularly important in
the stretching motions, corroborating pump-probe laser experiments on the excited
state dynamics of ice and water [17,249]. This finding impacts the interpretation of
infrared and x-ray spectroscopies, and regarding DINS experiments, the large effect of
molecular anisotropy implies that it is not possible to unambiguously attribute to an-
harmonicity features of the spherically averaged distribution. Substantially more in-

formation, capable of disentangling anisotropy from anharmonicity, can be extracted

257

from the directional distribution, for which we now present the theoretical prediction
for a realistic system.

This chapter is organized as follows. Section 9.2 introduces the quasi-harmonic
potential of the mean force in ice Th. Based on the quasi-harmonic potential of
the mean force, we present a theoretical prediction of the directional momentum
distribution for ice Th. The principal frequencies in the quasi-harmonic potential
is interpreted via the analysis of the vibrational dynamics in ice Th in Section 9.3.
The vibrational dynamics also reveals the existence of the anharmonicity along the
hydrogen bonding direction, as well as the nuclear quantum effect of oxygens. The
conclusion of this chapter is given in Section 9.4. The materials in this chapter have

been presented in [167].

9.2 Momentum distribution and the potential of
the mean force

The PICPMD simulation sampled the end-to-end distribution of the open Feynman

paths of the protons [191], i.e. v(x) = NL,, >, Vi(x) where the sum runs over the N,

protons in the cell and the vector & points from one end of the path to the other. The
momentum distribution v(p) is the Fourier transform of v(x). For each distribution
vi(x) we compute the correlation matrix C; .5 = (x,25). Within the statistical errors
of the simulation the eigenvalues {c2};_, of C; are the same for all the protons, while
the associated eigenvectors {v;}i_, are proton specific directions related by crys-
talline symmetry to the directions of the other protons. This suggests an anisotropic

Gaussian form for the end-to-end distribution: 7;(x) o exp (—32”C; 'x). Thus the

1

WpTC’Z-p), implying that the correspond-

momentum distribution is v;(p) o exp (—

ing potential of mean force has the effective harmonic form V(r) = %TTAifr, where

M and r denote the proton mass and position. A; has eigenvalues w? and shares with

258

C; the eigenvectors, v; ;. The wy, are related to the a,% by,

1 Mooy coth h
ol 2h 2kpT’

(9.1)

and wy and v, are denoted the principal frequencies and directions of proton .
Since the principal frequencies do not depend on ¢ all the protons have equivalent
local environments within the simulation error bars.

The hypothesis that the potential of mean force of the proton in ice Ih is quasi-
harmonic can be verified directly by analyzing the quantile function [97] of the end-
to-end distribution. For a one-dimensional probability distribution p(z), the quantile

function Q(p) characterizes the inverse of the cumulative probability distribution F'(z)

Q(p) = inf{z € R:p < F(z)}. (9.2)

The quantile function can be used to compare two probability distributions by plotting
the corresponding quantile functions against each other. This is called the quantile-
quantile plot. The quantile-quantile plot between the end-to-end distribution col-
lected from the PICPMD simulation along the hydrogen bond direction and the nor-
mal distribution that best fits this data is shown in the left panel of Fig. 9.1 alongside
a plot of each distribution (right panel). The end-to-end distribution along the bond
direction is very close to a normal distribution, thereby showing that the potential
of mean force along this direction can be well described by a quasi-harmonic form.
The quantile-quantile plot also exhibits small deviations at the tails indicating the
presence of some degree of additional anharmonicity.

By averaging over the protons we obtain the frequencies w; with error bars in

the first row of Table 9.1. In terms of the 57 the spherically averaged end-to-end

259

0.5 ‘ . 257 :
c R ——Raw
o i .
8 - - ~ Gaussian
>
Ke)
E 2
[%2]
2
el
3
é 1.5¢
: =
2 0 &
[0
© 1t
ES]
kS
3
2 0.5
c
©
o}
g &
_05L ‘
-0.5 0 0.5 -0.5 0 0.5
Quantiles of the normal distribution X(A)

Figure 9.1: The Quantile-quantile plot between the end-to-end distribution along
the bond direction and the normal distribution is depicted in the left panel. The
distributions are shown in the right panel. The end-to-end distribution along the
bond direction is very close to a normal distribution, but with small deviation at the
tail. The quantile-quantile plot indicates that the potential of the mean force along
the bond direction is well modeled by a quasi-harmonic potential.

distribution takes the form,

2 2 2
1 / RECA -
n(xr) = ——— dQ) e 291 27 23 9.3
() \/877'35'15'25'3 |z|=2 ()

Fig. 9.2(a) shows that this curve differs negligibly from the corresponding “raw” dis-
tribution extracted from the simulation, indicating that an effective harmonic model
faithfully represents the spherically averaged data. Consistent with chemical intu-
ition, the associated principal directions reflect the orientation of each water molecule
in the crystal. The principal axes corresponding to the highest frequency are close to
the oxygen-oxygen nearest neighbor directions, whereas the eigenvectors associated
with the middle and lowest frequency correspond respectively to directions in and
perpendicular to the HOH molecular plane.

The PICPMD principal frequencies differ from their harmonic counterparts (see
Table 9.1). The latter were obtained with the phonon calculation discussed below.

Thus the model that better represents the data is anisotropic and quasi-harmonic.

260

We can now resolve, in the case of ice, a major issue that troubled the interpreta-
tion of experiments [233] by quantifying the relative importance of anisotropy and
anharmonicity. We depict in Fig. 9.2 (b) the spherical distributions corresponding to,
respectively, the quasi-harmonic model (first row of Table 9.1), the harmonic model
(second row of Table 9.1), and the isotropic model with frequency @ = 1186 cm ™" that
best fits the data. Anisotropy and anharmonicity are both significant, but anisotropy
clearly has the larger effect. The isotropic model corresponds to a classical Maxwell-
Boltzmann distribution with an effective temperature T = 869K. In spite of T being
significantly higher than the equilibrium temperature of the simulation (7" = 269K),
the isotropic model severely underestimates quantum effects, a finding that is also
illustrated by a kinetic energy (Ex = 111meV) approximately 30 percent smaller

than the simulation value (Ex = 143meV).

w1 (cm™t) wo(cm™1) w3(cm™') | Ex(meV)
PICPMD| 2639 + 60 1164 + 25 775 £+ 20 143 £2
Harmoniq 3017.6 £8.2 | 1172.5 £8.9 | 870.3 £ 14.6 | 157.5+0.3

Table 9.1: Average proton principal frequencies and kinetic energies obtained from
PICPMD and phonon calculations. The error bars reflect statistical errors and phys-
ical effect of disorder in the PICMD and phonon data, respectively.

All the principal frequencies in Table 9.1 are well in excess of the equilibrium
temperature, indicating that the dynamics of the proton is dominated by quantum
zero-point motion. Dependence of the molecular orientations upon the crystalline
framework originates anisotropies that reflect the symmetry of the environment in the
momentum and end-to-end distributions. To study these effects we focus on the latter
distribution, which factorizes into the product of a spherical free-particle contribution

. . . -~ . - _ MkgTa? _
and an anisotropic environmental component ny, i.e. n(x) o< e” 22 ny(x) [166].

Rather than extracting ny (x) directly from the PICPMD data, which would be af-
fected by substantial noise, we reconstruct ny (x) from the superposition of the in-

dividual proton contributions within the quasi-harmonic model. Here we use the

261

/ /
[Anisotropic N Anisotropic
- - - PICPMD 012 !~ |-~ - Isotropic
2 . /" "\\ | — — Harmonic
!
0.1 ,’ i
— (a) ~ Jd (b)
|$ 1.5 § 0.08 III \\\
= A=] ! W\
z 15 I
c o~ | W
£ 4 e 006) \
< < f A\
0.04f | '\
f \
0.5 y RN
0.02 N\
N\ ~
N Xia
0 s
02 04 06 038 1 1.2 0 5 10 15 20
r(A) p(A™"

Figure 9.2: (a) The spherical end-to-end distribution directly collected from PICPMD
data (red dashed line) compared with that reconstructed by the anisotropic fit (blue
line). (b) Comparison of the spherical momentum distribution of the harmonic crystal
(black dot-dashed line) with anisotropic (blue line) and isotropic (red dashed line)
fits.

fact that there are 24 unique orientations of the molecules in the hexagonal ice crys-
tal [122], and we also include the effects of proton disorder estimated below in the
phonon calculation. Fig. 9.3 (a) depicts the log scale plot of one individual environ-
mental end-to-end distribution projected on the basal plane of ice Th. The elliptic
shape of the contour comes directly from the quasi-harmonic model. Fig. 9.3 (b)
illustrates the log scale plot of the superposition of all the environmental end-to-end
distributions. The hexagonal shape of superpositioned distribution is a striking man-
ifestation of quantum mechanics as in classical physics 1y () is equal to 1. While the
distribution is spherical at the center, hexagonal character emerges at intermediate
displacements and becomes pronounced in the tail of the distribution where blurring
of the contour lines due to disorder can be detected. Experiments on ice Th have only
measured the spherical distribution [218] but it is likely that the full three dimensional
distribution should become accessible in the future with improved instrumentation
and preparation techniques. Directional momentum distributions have already been

reported for materials such as KDP [219] and RbsH(SO,), [126]. It should be noted,

262

however, that the greatest sensitivity to anisotropy is in the exponential tail of the
distribution, a finding indicating that substantial resolution may be necessary to ex-

perimentally disentangle anisotropy, anharmonicity and other environmental effects.

y(A)
y(A)

Figure 9.3: (a) “Environmental part” of the end-to-end distribution corresponding
to one individual proton projected in the basal plane of ice Th plotted in logarithmic
scale. (b) “Environmental part” of the end-to-end distribution corresponding to the
superposition of all protons projected in the basal plane of ice Th plotted in loga-
rithmic scale. The super positioned end-to-end distribution reflects the symmetry of
the oxygen sub-lattice. The blurring of the contour lines reflects the disorder effect
detected in the phonon calculation.

9.3 Vibrational dynamics

Now we discuss the relationship between the principal frequencies and the vibrational
spectrum. The latter includes four main features experimentally: a stretching band
centered at &~ 3250 cm™! [30], a bending band centered at ~ 1650 cm™" [238], a wide
librational band between ~ 400cm™* and 1050cm™"' [30,211] and a band of network
modes below &~ 400cm™! [153]. These features are reproduced in the phonon spec-
trum of ice that we calculate by diagonalizing the dynamical matrix. This calculation
is performed with Qbox [113] by adopting the same supercell, electronic structure pa-

rameters and disordered proton configuration of the PICPMD simulation [191]. The

263

dynamical matrix is calculated with a finite difference method (grid size of 0.0053A).
The resulting phonon density of states shown in Fig. 9.4 (a) agrees with experiment,
and is consistent with previous calculations [189], which did not include proton disor-
der, indicating that such effects have a small influence on the spectrum. We indicate
phonon frequencies and eigenvectors by wﬁh and e;, i, respectively, where o are Carte-
sian components, i,k = 1,--- ;3N —3, and N is the number of supercell atoms. In the
quantum harmonic approximation the momentum distribution of particle ¢ of mass
M, has the anisotropic Gaussian form v;(p;) o exp < 3P; rcr e Z) with correlation

matrix [54],

hwph A"
ot €in k€ coth k . 9.4
7 aﬁ pz ali B Z io,kCig k™ & 2k’BT ()
0.0020f (2)
— 0.0015
3
< 0.0010
0.0005} M
0.010F— #
0.008 (b)
3 0.006f -
< b
0.004} A
A i
0.002} M Ry
I 1 M
~ T,

500 1000 1500 2000 2500 3000
w (em™1)

Figure 9.4: (a) Density of states of the phonon spectrum. (b) The population function
for the principal axes corresponding to w; (blue dot-dashed line), wy (red solid line)
and @3 (black dashed line). Network modes below 500cm™! contribute non-negligibly
to all principal frequencies.

264

As a consequence of disorder the eigenvalues of Cff ZB’ depend on the proton index
1. The harmonic average frequencies are reported in the second row of Table 9.1. The
corresponding standard deviations originate almost entirely from ice disorder, being
at least an order of magnitude larger than the numerical errors estimated from the
small asymmetry of the calculated dynamical matrix. The statistical errors in the
PICPMD simulation (Table 9.1) are on average a few times larger than the harmonic
estimate of disorder, confirming that, within error bars, all proton environments are
equivalent. We expect that longer runs combined with better estimators of the end-
to-end distribution [166] should improve the statistical accuracy to the point that

disorder effects could become measurable in future simulations.

The population function,

Np 3 2
1
h(wp' 1) = N E (E Uia,leia,k>) (9.5)
P i=1 \e=1

gives the weight of the phonon £ in the principal direction [and is depicted in Fig. 9.4
(b). It is found that @; is 94% stretching, @, is 47% bending and 48% libration, and
ws is 97% libration. Taking only stretching, bending, and libration into account,
and using weights proportional to h we infer that @; ~ 3160cm™!, @y ~ 1210cm™!,

and @3 ~ 895cm™!.

In comparison, the values in the second line of Table 9.1 are
red-shifted by contributions from network modes (6%,4%, and 3% to @y, @y, and
ws, respectively), an intriguing result suggesting that fine details of the momentum
distribution should reflect intermediate range order properties of the H bond network.

The behavior of the population function h(wy;!) can be explained by the behavior
of a water monomer confined in an effective medium. Let us consider a free water
monomer without the effective medium first. If the rotation mode is neglected, the

free water monomer is confined in a 2D plane spanned by the two hydrogen bonds.

We assume that the Hamiltonian can be completely characterized by the three vibra-

265

tional harmonic modes: symmetric stretching, asymmetric stretching and bending.
To further simply the discussion, we assume the oxygen mass is infinite, i.e. the har-
monic modes only involve the motion of protons. We also assume that the symmetric
and asymmetric stretching frequencies are the same frequency wg, and we denote the

bending frequency by w,. The Hamiltonian of a free water monomer is then

3 3
1 1
H(g.y) =5 6 +5) @iy (9.6)
i=1 i=1

The relation between the normal coordinates (¢,y) and the Cartesian coordinates
(p,) is

1
Mz, = Z €ijYs, \/—mipi = Z €ijd;- (9.7)
J J

Here e;1, €;0, €;3 are the eigenvectors corresponding to the frequencies wy = ws, wy =

Ws, W3 = Whp.

()
o AN e
ST

Figure 9.5: Normal modes for symmetric stretching (left), asymmetric stretching
(middle) and bending modes (right). Big ball: oxygen. Small ball: hydrogen.

Since the motion of the oxygen is fixed, the eigenvectors can be directly read from

266

Fig. 9.5:

{611} B i sing cosg
(A -)
\/5 — sin g Ccos g
<0 9
1 sinZz coszg
{ei} = 7 2 S (9.8)
sin g — cos g
(e} = 1 cosg —sing
i3f = 7=
\/§ — COS g —sin g

The first line of {e;;} is the x, y components of the first proton, and the second line is
the =,y components of the second proton. The 2-norm of each {e;;}; is normalized to
be 1. The two protons are identical, and we only calculate the momentum distribution
for the first proton. The covariance matrix of the momentum distribution for the first

proton is

3
Caﬁ = Z €ai€pizi, Q, 5 =]-7 2a (99)
=1

and the weight for harmonic frequency i is

fiws coth fiws

. T (9.10)

Zi =m

For the free water monomer, we also write z; = 2o = zg, 23 = 2. Plug Eq. (9.8)

into Eq. (9.9) we have

1 0 0

Cy = 3 (223 sin? 3 + 2z cos? 5) ,
1 0 0

Cia = 3 sin 3 coS 5(22'5 —), (9.11)
1 0 0

Cyy = 5 (22’5 cos? 3 + 2 sin? 5))

267

The two eigenvalues of C' are

o} = z,, o5 = /2, (9.12)

and the eigenvector corresponding to o? is along the OH bond direction, and that

corresponding to o3 is along the orthogonal direction. We take w, = 3400cm™,

wy = 1500cm ™!, then at room temperature 2’2‘;T = 8.75, % = 3.64, and coth 22‘;} =

1.000, coth

22‘;% = 1.001, i.e. z(w) is approximately a linear function with respect to
w if w comes from the bulk part of the vibrational spectrum of water.

The second moments of the momentum distribution (9.12) should be interpreted in
terms of the effective frequencies, and the two effective frequencies are approximately
ws and wy/2. The two principal directions are along and orthogonal to OH bond
direction, respectively. We also note that this result is independent of the bond angle
6.

The analysis above can be readily generalized to the case that a water monomer
confined in an effective medium. The Hamiltonian for a water monomer confined in

the effective medium is

6 6
1 1
H(g.y) =5 6 +5) @iy (9.13)
i=1 i=1

The relation w; = wy = wy, w3 = wy still holds, and we have wy, = ws = wg = w;, where

wy is the libration frequency. With fixed position of the oxygen, the 6 eigenvectors of

268

the dynamical matrix can also be written analytically, but in three dimension as

{6'1}:L sing cosg 0
\/5 —sing cosg 0
{G'Q}IL sing cosg 0
\/5 sing —cosg 0
() = 1 cosg —sing 0
i3f = — =)
V2 —cosg —sing 0
(9.14)
{6'4}:L —cosg sing 0
V2 —cosg —sing 0
(e} 1 (0 0 1
€isy = —=)
V2o 0 1
(e} 1 (0 0 1
€6y = — /=
V2 1lo 0 -1

The covariance matrix of the momentum distribution of the first proton is given by

6
Cop = Z eqi€pizi, o, =1,23. (9.15)

i=1

After some calculation, we find the three eigenvalues of C' are

ol =2, 05=(m+2)/2, 03=2. (9.16)
The three eigenvectors are along the OH bond direction, orthogonal to OH bond
direction but inside HOH plane, and perpendicular to the HOH plane, respectively.
The three effectively frequencies are approximately ws, (wp + w;)/2, w;. This result is

again independent of the bond angle #, and is consistent with the free water monomer

269

result by assigning w; = 0. This recovers the result of the population function in
Fig. 9.4.

The potential energy surface is generated with the same protocol in path inte-
gral and phonon calculations. We thus attribute the difference between the average
principal frequencies in the two rows of Table 9.1 to anharmonicity. This originates
from quantum delocalization, present in the PICPMD simulation, which causes the
proton to sample the potential over an extended range. Along the bond direction the
proton spans from ~ —0.2A to &~ 4+0.3A relative to the centroid of the path. This is
much larger than the corresponding classical thermal spread (& :t0.05A) indicating
that quantum anharmonicity is essentially unaffected by temperature. The asymme-
try of the quantal spread suggests that the first correction to the harmonic potential
depends cubically on displacement.

In order to gain better insight on the anharmonicity in the bonding direction, we
perform the following analysis. The potential energy surface is obtained by moving
one proton along the hydrogen bond direction while the positions of all other atoms
are fixed at their equilibrium positions. The resultant potential energy surface is
depicted in Fig. 9.6, and the deviation from a harmonic potential can be readily
seen. The ground state wavefunction |¥?| is also plotted in Fig. 9.6 in order to
show the extent of the quantum delocalization of the proton (—0.2A ~ +0.3A). The
potential energy surface about x = 0 is asymmetric, indicating a cubic dependence
on displacement in the first anharmonic correction (black dashed line in Fig. 9.6).
Higher order corrections set in at displacements larger than ~ 0.3A, which is clearly
beyond the range of the ground state wavefunction. The harmonic frequency at the
minimum of this potential is 3065cm ™!, close to the value of @; garnered from the
phonon calculation (see Table I in the manuscript). The size of the anharmonicity
can be gauged upon comparison of this harmonic value with the effective frequency

of 2847cm~! obtained from the end-to-end distribution associated with the potential

270

in Fig. 9.6 at T = 269K. As expected, the anharmonicity lowers the value of the
frequency and the shift is close to that between the PICPMD and the phonon derived
results. The anharmonicity is a consequence of quantum delocalization which causes
the proton to sample the potential energy surface over an extended range in the
bond direction. It should be noted that the potential in Fig. 9.6 differs from the
potential of mean force that the proton experiences in the simulation. We expect
however that along the bond direction the two potentials should behave qualitatively
similarly as suggested by the close similarity of their respective harmonic frequencies
and anharmonic shifts. The delocalization along the bond that we find is comparable

to the one observed in other ice phases with intact water molecules (see e.g. [26,190]).

— Potential
- - -Cubic
2000 _— |q;|2

15001

meV

1000}

500

-0.2 0 02 04 06 08
x(A)

Figure 9.6: The potential energy surface of the proton in ice Ih along the bond
direction (blue solid line), the cubic fitting potential (black dashed line) and the
corresponding ground state wavefunction |¥?|(red solid line).

The phonon calculation reported in the main text also yields an estimate of the
quantum effects on the oxygen nuclei. The corresponding principal frequencies are
@0, = 640.1 + 16.6cm™!, @y = 585.1 + 9.8cm ™!, and w3 = 351.9 + 30.7cm~!. The
frequencies mostly arise from the network modes, but are blue-shifted due to oxygen
participation in stretching, bending and libration. The kinetic energy estimate for

oxygen is 56.4 + 0.4meV, and is approximately 35% in excess of the classical result

271

(35meV at 269K). The magnitude of this effect is consistent with earlier predic-

tions [188] and with that found for fluorine nuclei in recent calculations on hydrogen

flouride [146].

9.4 Conclusion

We find that to a large extent the momentum distribution in ice is a simple anisotropic
Gaussian distribution. This does not mean, however, that ice behaves like a har-
monic crystal as the principal frequencies of the distribution differ from those of a
harmonic crystal. Anharmonicity, enhanced by H bonding, is appreciable in the li-
bration dominated w3 and is particularly significant in the stretching dominated wy,
in agreement with optical pump-probe experiments [17,249]. The quantal character
of the anharmonicity is consistent with the observed T-independence of the lifetime
of excited stretching modes in ice [249]. Our findings have implications for the calcu-
lation of observables in ice, such as infrared spectra, which typically ignore quantum
anharmonicity [60], and x-ray absorption spectra, which typically ignore quantum
configurational disorder [61]. The approach presented here could be applied directly
to the study of other crystalline H bonded systems, and is also an important step
towards a better understanding of the proton momentum distribution in disordered
H bonded systems such as water under different conditions. In such cases only the
spherically averaged momentum distribution is accessible in experiment and simula-
tion can provide essential microscopic information to supplement and interpret the
experimental data. Finally, we remark that while the qualitative picture emerging
from our calculations is robust, the path integral data have relatively large error bars
and the quantitative details depend on the accuracy of the underlying Born Oppen-
heimer potential energy surface. The latter should reflect the known limitations of

the GGA functional used in this study [109,222] and comparisons with future high

272

resolution experiments should help to clarify this issue.

273

Chapter 10

Quantum proton in hexagonal ice:

interpretation of a new experiment

10.1 Introduction

Although liquid and solid phases of water are the focus of a considerable number
of experimental and theoretical investigations because of their biological and tech-
nological importance, several physical properties of water are not well understood.
Progress in this area requires an accurate description of the proton motion in hydrogen
bonded systems, something that has been difficult to measure directly. Recently new
experimental and simulation techniques have been used to probe the quantum state
of protons in water and ice by examining the proton momentum distribution, n(p),
which is determined almost entirely by quantum effects [5]. Experimentally, n(p)
can be directly measured by Deep Inelastic Neutron Scattering (DINS) [217,219],
where neutrons probe proton dynamics at high energy, hw, and high momentum, Agq,
transfers. As well as providing information on proton quantum dynamics, DINS is
also sensitive to the proton’s local environment, i.e. the potential of mean force ex-

perienced by the protons. In recent years, several DINS studies have addressed the

274

study of bulk water in stable liquid [200], solid [218], and supercooled liquid [208,209]
phases. In parallel, novel simulation techniques have been employed to calculate
the n(p) using open path integral simulations [192] implemented with first principles
molecular dynamics[49] within the Path Integral Car-Parrinello Molecular Dynamics
(PICPMD) framework [183]. The path integral simulation has access to the three
dimensional n(p), and thus provides complementary information to the spherical av-
eraged n(p) obtained via DINS from isotropic ice samples. The calculated n(p) in
ice from Ref. [192] revealed both agreement and discrepancies with that measured in
previous DINS measurements on ice at T=269 K by Reiter et al. [218]. In particular
the calculated n(p) failed to reproduce the tail of the experimental distribution.

This section reports new theoretical and experimental studies of the proton n(p)
in ice at T=269 K and T=271 K. At these temperatures, the momentum distribution
in ice is due almost entirely to zero point motion, providing a sensitive probe of
the proton’s local environment. Here a quasi-harmonic description is expected to be
valid, whereas in the supercooled liquid at 271 K, the large excess of proton mean
kinetic energy was interpreted, in Ref. [208], in terms of possible anharmonicity in
the potential energy surface.

This chapter is organized as follows. The setup of DINS experiment is introduced
in Section 10.2. The analysis of the experimental data is discussed in Section 10.3,
followed by a non-parametric approach of quantifying the uncertainty in the experi-
mental data in Section 10.4. The conclusion of this chapter is given in Section 10.5.

Materials in this chapter have been presented in [84].

10.2 DINS Experiment setup

Refined DINS measurements, using resonance-detector (RD) and foil-cycling tech-

niques (FCT), provide remarkable improvements, with respect to existing measure-

275

ments on bulk ice [218], in both energy resolution (32 % narrowing of FWHM),
and counting statistics, (i.e. achieving 1% error at the center of the overall Neutron
Compton profile and of 15% at 1/15 of the peak height, respectively). Perhaps, more
importantly, a much better separation between proton peaks and the peaks from
heavier atoms in the sample and the container is achieved, thus eliminating any pos-
sible spurious distortion due to inaccurate subtraction of the O, Al contributions.
This also considerably reduces the uncertainty in the determined kinetic energy, from
11% in the previous measurements [218], to ~ 1 % in the present case. Moreover, the
current resolution line shape has a finite variance, allowing us also to carry out non
parametric determinations of kinetic energy as outlined below.

The DINS experiment was performed at the time of flight Vesuvio spectrometer
(ISIS neutron source-UK) in the range 2.5 eV < hw, < 30 eV. Scattered neutrons
were detected by 64 scintillator detectors, located in the angular range 32.75° < 9 <
72.5°. The sample was a 65x65x1 mm? slab of polycrystalline ice contained in an
Al holder, equipped with Rh/Fe thermometers. At each scattering angle the energy
of the scattered neutrons, Fi, is selected by using the RD and FCT by Au analyzers
(B, =4897 meV), providing a resolution in y-space of approximately 2 A~* FWHM,
and a complete removal of the sample-independent background. For each detector,
the time of flight data were corrected for multiple scattering, heavy atom (O, Al)
recoil signals, and residual gamma background. The time of flight spectra were then
transformed into fixed-angle experimental NCP, Fi(y,q) = [Jia(y) + AJi(y,q)] &
Ri(y, q) where [refers to the angular position of the [-th detector. The set Fi(y, q) is
expressed in terms of [independent determinations of the longitudinal n(p), Jra(y),
and ¢-dependent deviations from the impulse approximation (Final State Effects),
AJ(y,q), broadened by the instrumental resolution function Ry(y,q). Fixed-angle
histograms of Fj(y, ¢) have been binned in the range -30 A1 <y <30 A~ and then

normalized.

276

The overall quality of the DINS spectra can be appreciated in Figure 10.1, which

shows the angle-averaged Fj(y, q), henceforth named F(y).

0.08} ' ' {j\

0.07} / \
0.06}

-20 -10 0 10 20
y(A™

Figure 10.1: Experimental Neutron Compton Profile for ice at T = 271 K averaged

over the whole set of the scattering angles (F\(y)=< Fi(y, q) >;) (blue dots with error
bars). The angle-averaged best fit is reported as a red dashed line for the M1 model
(see text for details). The fit residuals are reported as a black continuous line.

10.3 Data analysis by parametric estimation

DINS data were analyzed within the Impulse Approximation (IA), i.e. a neutron-
single atom scattering process with conservation of momentum and kinetic energy.
The recoil energy is: fw, = h*q*/2M, hw,, where M is the proton mass, and q is
the wave vector transfer. The dynamical structure factor for an isotropic system is

related to n(p) by:

S(q,w) = /n(p)a(w _ ;iiM _ q'—]\;’)dp - %Jm(y) (10.1)

277

M . (w— hi) and Jra(y) is the longitudinal n(p). The single particle mean

where y = A7

kinetic energy is: (Ex) = 3ﬁ2 [YA Tialy)dy = 2 > o2

The prime objective of the present DINS experiment was to determine the J;4(y)
line shape from the Fj(y,q) spectra, thus determining n(p) and (Ex). This has
been accomplished via : 1) Determination of the kinetic energy (Ex) by numerical
integration of F'(y)y?; 2) Full analysis of the DINS line shape via simultaneous fitting
of the individual Fj(y, q) spectra with: a) a model-independent line shape; b) a three
dimensional anisotropic Gaussian line shape derived from a quasi-harmonic model
as suggested by a recent study of the PICPMD simulations for hexagonal ice [167].
As outlined in Ref. [234], the numerical integration of F(y)y?, provides a first-order
estimate of 02 and (Ek): by integrating F'(y)y? and subtracting the variance of the
angle-averaged resolution (¢% = 0.98 A=2) we obtain 02 = 27.04£2.7 A=2 . Systematic
uncertainties, due to the limited range of integration, and residual differences between
angle-averaged and constant-q representations of F'(y) are evaluated to be ~ 0.3 A2
Therefore 02 = 27+ 3 A2 0 = 52+ 0.3 A~!, and (Ex) = 169 & 19 meV. This
determination can be used as a constraint for the variance of n(p) in fitting the
Fi(y,q) data set. The DINS data were then analyzed using a model-independent

form for Jra(y) [226], already used in previous work [5]:

_y o
e2? an Y
J1aly) = 2o [1 + Z 22”n!H2n(20>]' (10.2)
n=2

where Hs, are the Hermite polynomials and a,, the corresponding coefficients. The

n(p) is expressed in terms of a Gaussian times a series of generalized Laguerre polyno-
1

mials, L7 (L2 L

+3), with coefficients (—1)"a,. For finite ¢ values, the deviation from the

2 Hy(y/V3o)/a

with ca o (V2V), where V is the effective proton potential [226]. The simultaneous

IA can be accounted for by additive corrections [5], AJ(y, q) ~ ca<

27rcr

fitting of the above line shape, to the whole set of Fj(y, q) spectra, has been performed

278

via equation (2). This fit, referred to as M1 in the following, yielded o = 4.99 4 0.03
A1 a3 =0.10£0.01 and apss = 0,ca = 0.36 & 0.02 and (Ex) = 156 + 2 meV.

Eq. (10.2) has the most general form, but may not facilitate interpretation of the
data. For example, if the momentum distribution corresponding to an anisotropic
harmonic system V (z,y, 2) = 5 (wiz”® +wly* +w22*) is to be measured, the harmonic
frequencies w; cannot be directly reflected in Eq. (10.2). In that case one calculates
the harmonic frequencies w; by measuring o7, i.e. the variance of the momentum

distribution n(p) along direction i by

ol = mhw; coth ﬁhwi.

‘ 2 2

(10.3)

While it is only the spherically averaged momentum distribution that is accessible in
the experiment, the PICPMD is able to access the three dimensional n(p). As a re-
sult the harmonic frequencies along three directions can be calculated with relatively
small error bars. The frequencies obtained from PICPMD are: w,= 2639 4 60 cm™!,
wy= 1164 £ 25 cm™, w,= 775 £ 20 cm™'. The interpretation of these effective fre-
quencies deserves further comment. A careful analysis of the PICPMD result shows
that the effective frequencies w, , , measured from proton n(p) are closely related to
the vibrational spectrum [167]. The experimentally measured vibrational spectrum
of hexagonal ice concentrates at the stretching frequency (centered at ~ 3200 cm™1),
bending frequency (centered at =~ 1650 cm™') and libration frequency (broad spec-
trum centered at ~ 900 cm™!') respectively [188]. Tt is shown [167] that w,, w, and
w, represent weighted averages of the stretching frequencies, librational frequencies
and a mix of bending and librational frequencies respectively, with red-shifts due
to network phonon modes with frequencies at and below 200 cm~!. The PICPMD
analysis indicates a clear connection between the quantum momentum distribution

and the vibrational spectrum. It is also possible to extract the effective frequen-

279

cies from the experimental (spherically averaged) distribution directly by taking:
n(p) = <m exp (—p—i . p—i) >Q The experimental NCP have been
fitted using the above model, labeled M2, with o0,,0,, 0. as free parameters, and
with Final State Effects as outlined above for M1. However, numerical results show
that o, and o, tend to be degenerate, given the current data set, leaving the error
bars on the effective frequencies poorly defined. Although some studies have used
o = 0, = 0, as a parameter for transverse direction[218], this is not an accurate
representation of the physics. Compromise between the numerical optimization and
physical intuition was achieved by adding a weighting term in the least square fit-
ting of the experimental Compton profiles to minimize the deviation between o; from
the fitting and from the PICPMD analysis. The magnitude of the weighting term
reflects the physical range of o;, or equivalently the physical range of the effective
frequency w;. The estimated effective frequencies in M2 are w, = 2797495 cm™!,
wy = 1233£110 em™, w, = 922481 ecm™'. It is noted that w, is underestimated
in PICPMD analysis by 200 cm™' compared to w, in M2. This underestimation
is likely due to large extent to the error in the exchange-correlation functional in
the simulation based on density functional theory. The BLYP exchange-correlation
functional [22,149] used in the current simulation overestimates the hydrogen bond
strength because of self-interaction error, and therefore softens the potential along
the hydrogen bond direction. The radial momentum distribution 47p?n(p) from M1
, M2 and PICPMD analysis are plotted in Figure. 10.2. PICPMD analysis results
in a shorter tail than M1 and M2. The tail behavior is dominated by w, which is
underestimated in PICPMD. The underestimation can also be confirmed from the

kinetic energy: 156 +2 meV (M1), 154 £ 2 meV (M2) and 143 + 2 meV (PICPMD,).

280

0.127 ,
0.1' /

0.08f |

41p° n(p) (A)

0 10 20
-1
p(A™)
Figure 10.2: Experimental radial momentum distribution obtained using model M1
(blue solid line), M2 (black dots) and PICPMD (red dashed line) with error bars.
Errors on the radial momentum distribution for M1 and M2 are determined from the

uncertainty in the measured coefficients, through their correlation matrix calculated
by the fitting program.

10.4 Nonparametric uncertainty quantification

The fact that o, and o, tend naturally to be degenerate in M2 also indicates that the
spherical momentum distribution itself is not sensitive enough to distinguish all three
anisotropic frequencies of the system. This confirms the recent theoretical work for

hexagonal ice [166] in which a more sensitive quantity named mean force is proposed.

mx

The mean force is defined as f(z) = (—logn(z)) — gz

n(x) in the first term
is the spherical end-to-end distribution, i.e. the Fourier transform of the spherical
momentum distribution. The second term represents the free particle contribution

which is irrelevant to the potential energy surface. The experimental NCP F(y) has

been corrected for the Final State Effects AJ(y, ¢) providing the “asymptotic” F4(y),

281

so that the mean force can be directly calculated by

. oma I dy ysin(zy/h)Fra(y)
fle) = Bh? + h S dy cos(zy/h)Fra(y) (10-4)

The mean force calculated using Eq. (10.4) (blue solid line), from the anisotropic
Gaussian model M2 (black dots) and from PICPMD (red dashed line) are plotted in

Fig. 10.3 with error bars. The three mean forces have good correspondence below 0.4

.

6

5 >
L
3 7

/
2 /4
Y/

1t &

O N N N

0 0.1 0.2 0.3

X(A)

Figure 10.3: Mean force calculated directly from the experimental asymptotic Comp-
ton profile, Fra(y) (blue solid line), M2 (black dots) and PICPMD analysis (red
dashed line) with error bars.

A, indicating that the proton quantum state in ice is well described by harmonic and
anisotropic motion. Above 0.4 A, the mean force calculated from the experimental
Compton profile tends to diverge. The mean force is related to the derivative of the
Fourier transform of the Compton profile, and therefore, at large x, is related to its
highest frequency components, i.e. to the noise. The kinetic energy estimated from

the mean force is 156 + 9meV. The error bar of the kinetic energy calculated from

282

the mean force is larger than that obtained from M1 or M2, since the mean force is
an non-parametric approach and is model independent. The uncertainty of the mean
force indicates the accuracy of the experiment required to resolve the anisotropic

frequencies accurately.

10.5 Conclusion

In conclusion, we have elucidated the connection between the proton momentum
distribution and the underlying potential energy surface in ice. To a large extent,
the physics of