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Abstract

This dissertation consists of two independent parts: density functional theory (Part

I), and nuclear quantum effects (Part II).

Kohn-Sham density functional theory (KSDFT) is by far the most widely used

electronic structure theory in condensed matter systems. The computational time

of KSDFT increases rapidly with respect to the number of electrons in the system,

which hinders its practical application to systems of large size. The central quanti-

ties in KSDFT are the electron density and the electron energy, which can be fully

characterized by the diagonal elements and the nearest off-diagonal elements of the

single particle density matrix. However, methods that are currently available require

the calculation of the full density matrix. This procedure becomes highly inefficient

for systems of large size. Part I of this dissertation develops a new method for solving

KSDFT, which directly targets at the calculation of the diagonal and the nearest off-

diagonal elements of the single particle density matrix. The new method is developed

under the framework of Fermi operator expansion. The new method achieves the

optimal expansion cost in the operator level. The electron density and the electron

energy is then evaluated from a serires of Green’s functions by a new fast algorithm

developed in this dissertation. This dissertation also develops a novel method for

discretizing the Hamiltonian of the system that achieves high accuracy with a very

small number of basis functions. Combining all these components together, we ob-

tain a unified, accurate, efficient method to solve KSDFT for insulating and metallic

systems.

Nuclear quantum effects play an important role in a large variety of hydrogen

bonded systems such as water and ice due to the small mass of protons (the nuclei

of hydrogen atoms). The equilibrium proton dynamics is reflected in the quantum

momentum distribution and is the focus of intense research. The standard open path

integral formalism for computing the quantum momentum distribution requires the
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calculation of quantum momentum distribution for one particle at a time, which is

an inefficient process especially when the potential energy surface is generated from

Kohn-Sham density functional theory. The information of the proton dynamics is

reflected in the momentum distribution in a highly averaged way and the interpre-

tation of the momentum distribution can involve significant amount of ambiguity.

Part II of this dissertation develops the displaced path integral formalism which al-

lows the computation of quantum momentum distribution for all particles at the

same time and therefore greatly enhances the computational efficiency. Part II of

this dissertation unambiguously interprets the quantum momentum distribution in

two representative systems: ice Ih and high pressure ice. For ice Ih in which the

potential is quasi-harmonic, this disseration clarifies the previously unclear relation

between anisotropic and anharmonic effects in shaping the momentum distribution

by analyzing the 3D proton momentum distribution and the associated vibrational

dynamics. For high pressure ice in which the potential is strongly anharmonic and

proton tunneling occurs, this dissertation assesses the important role of proton corre-

lation effects by means of spectral decomposition of the single particle density matrix.

The concerted proton tunneling process directly observed and quantified in this study

reduces significantly the number of ionized configurations, and avoids the ionization

catastrophe predicted by the mean field theory, which was used in previous studies

to interpret the path integral simulation results.
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and x0 is given in Å. . . . . . . . . . . . . . . 310

11.4 Parameters for the three-state potential ensemble for ice VII and ice

X. an is given in meV/Å
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Chapter 1

Introduction

1.1 Overview

The arrangement of the electrons characterizes the microscopic structure of molecules

and systems in condensed phases in chemistry, biology, and material science. The

arrangement of the electrons is described by the electronic structure theory. The

various forms of the electronic structure theory differ by orders of magnitude from

each other in terms of accuracy and efficiency. Among the different formalisms of the

electronic structure theory, Kohn-Sham density functional theory (KSDFT) achieves

the best compromise between accuracy and efficiency, and is by far the most widely

used electronic structure theory. Nonetheless, the computational cost of KSDFT still

increases rapidly with respect to the number of electrons in the system, which hinders

the application of KSDFT to systems of large size. Reducing the computational

cost of KSDFT requires combined knowledge of mathematics, physics and computer

science. Part I of this dissertation explores the mathematical properties of KSDFT,

and develops an accurate and efficient algorithm for applying KSDFT to systems of

large scale.

The scale of the system, i.e. the number of the electrons is a crucial parameter
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in many applications in chemistry, biology, and material science. It is desirable to

have the same number of electrons in the numerical simulation as that in the real

system. However, even a water droplet contains more than 1020 electrons. This

overwhelmingly large magnitude is out of the scope of any of the existing simulation

technique, and samples of smaller size has to be used in practice. The small sample

size introduces a systematic error to the numerical simulation, called the size effect,

which is non-negligible in many applications. For example, the diffusion constant of

a polymer chain is underestimated by 2 ∼ 3 times due to the size effect [79]; Crack

propagation [1] involves tens of thousands to millions of atoms and electrons by its

nature, and cannot be observed with samples of smaller sizes. Systems with millions

of electrons are usually treated by classical mechanics with empirical potential. The

empirical potential energy surfaces have achieved success in describing a large class of

phenomena provided that the empirical parameters are carefully optimized. On the

other hand, the potential energy surfaces directly generated from quantum mechanics,

such as from KSDFT, have the advantage that the computational result depends

only on a small number of universal parameters, including atomic species, atomic

positions, and a few parameters in the energy functional which do not depend on the

specific setup of the system. As a result, simulations with potential energy surfaces

generated from KSDFT are called “first principle” simulations, and are capable of

treating bond-forming, bond-breaking, cracking, and other complicated chemical and

mechanical processes without extra tuning of the parameters. It is thus desirable

to directly apply KSDFT to study systems consisting millions of electrons, but this

is far beyond the current capability of the KSDFT. In the standard methods for

solving KSDFT, the computational cost increases as O(N3) where N is the number of

electrons in the system. Although the standard algorithm has been highly optimized

in the past two decades to reduce the computational cost in practice [94,145,182,256],

the cubic scaling still limits the application of KSDFT to systems with at most tens
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of thousands of electrons.

Various efforts have been devoted to reduce the cubic scaling of KSDFT in the

past two decades. The major breakthrough is achieved by the algorithms with linear

scaling, i.e. O(N) scaling [88,89,91,98,99,101,102,154,184,193,229,252]. Such linear

scaling algorithms relies on the “nearsightedness” property of the electrons [142,212],

which means that the density perturbation induced by a local change in the external

potential dies off exponentially with respect to the distance from the place where the

perturbation was applied. According to DFT the ground state energy is a functional of

the density, then the effect of a local perturbation on the density is also local because

of nearsightedness, and the energy should not have a very long-range dependence on

the density. The nearsightedness property allows one to divide the entire system into

many pieces. The size of each piece has fixed size, and the total number of pieces

is proportional to the number of electrons in the entire system. The computational

cost for solving KSDFT in each piece is fixed, and the total computational cost is

therefore proportional to the number of electrons in the entire system. Therefore,

O(N) scaling is achieved.

The nearsightedness property is not valid for all systems, but is only valid for a

class of materials called insulating systems, including sulfur, glass, paper, large or-

ganic molecules such as DNA and protein, most of the common salts and oxides, to

name a few. The nearsightedness property is violated in metallic systems, namely

the density perturbation induced by a local change in the external potential exhibits

algebraic and oscillatory decay (called the Friedel oscillation [87]) with respect to

the distance from the place where the perturbation was applied. Two thirds of the

elements in the periodic table can directly form metallic systems, such as aluminum,

lithium, copper, and iron. Non-metallic elements can also form metallic systems,

e.g. graphene and carbon nanotube which only consists of carbon. Due to the vi-

olation of the nearsightedness property, the O(N) scaling algorithm is not directly
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applicable to metallic systems. The nearsightedness property can be recovered by

introducing an artificial finite temperature in the system, and the decay rate of the

density perturbation induced by a local change in the external potential becomes ex-

ponential again with the exponent depending on the artificial temperature [100,140].

However, it is not easy to take into account the nearsightedness in practical algo-

rithms. First, the nearsightedness is not so precisely defined in practice, and particu-

larly the nearsightedness decay length is difficult to be predicted in advance. Second,

although the accuracy of the linear scaling methods can be systematically improved

by increasing the size of each piece (usually characterized by a truncation radius R),

the truncation radius R can still be quite large if high numerical accuracy is to be

achieved. This is especially the case for metallic system where the truncation ra-

dius depends explicitly on the artificial temperature. The magnitude of the artificial

temperature should be chosen carefully in order to balance the accuracy and the

computational cost. Third, it is not a trivial step to implement the nearsightedness

if the nearsightedness is imposed as a constraint on the Kohn-Sham orbitals or the

Kohn-Sham single particle density matrix. As a result, the O(N3) scaling methods

are still the best uniform solution for applying KSDFT to insulating systems and to

metallic systems. The important question remains open: whether it is possible to

improve the O(N3) scaling uniformly for all the systems without encountering the

difficulties in nearsightedness algorithms?

This open question is positively answered in Part I of this dissertation. Instead

of using the nearsightedness property, this dissertation focuses on the mathematical

properties of KSDFT that are uniformly valid for insulating systems and metallic

systems, at low and at high temperature. As a result, this dissertation develops

algorithms with improved computational scaling over O(N3) scaling methods for all

systems. To be more specific, the amount of improvement depends on the dimension

of the system. The computational cost of the present algorithm is O(N) for one
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dimensional systems, O(N1.5) for two-dimensional systems, and O(N2) for three-

dimensional systems. Furthermore, the present algorithm can be combined with the

nearsightedness property, and achieves O(N) scaling at all dimensions for insulating

systems and for metallic system at high temperature.

This chapter provides the minimum amount of prerequisite knowledge for Part

I of this dissertation. The rest of this chapter is organized as follows: Section 1.2

briefly introduces the quantum many body problem, and the electronic structure

problem with the Bohr-Oppenheimer approximation, followed by Section 1.3 for the

basic components of the Kohn-Sham density functional theory. The pseudopotential

framework for KSDFT is introduced in Section 1.4. In Section 1.5 the mathematical

properties of the KSDFT which are essential for the new method developed in Part

I of this dissertation are discussed. Section 1.6 reviews the existing methods and the

most widely used software packages for solving KSDFT. Finally Section 1.7 outlines

the various components of the new method that will be discussed in detail in the rest

of the Chapters in Part I.

1.2 Quantum many body problem and electronic

structure

The microscopic properties of electrons in chemistry, biology and material science are

accurately described by the many body Hamiltonian of the Schrödinger equation. The

many body Hamiltonian associated with a system with Nnuc atoms and N electrons

is

H =

Nnuc∑

I=1

P 2
I

2MI
+

N∑

i=1

p2i
2

+ V (R1, . . . , RNnuc, x1, . . . , xN). (1.1)

Atomic units are used throughout this dissertation. Namely, without further specifi-

cation, the unit of energy is Hartree, the unit of length is Bohr, the unit of mass is the
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electron mass me, the unit of charge is the electron charge e, and the Planck constant

~ equals to 1. Moreover, MI is the mass of the I-th nucleus, RI is the position of the

I-th nucleus, and xi is the position of the i-th electron. The momentum operator of

the nucleus and the electron are denoted by PI , pi as pi = −i∇xi , PI = −i∇RI
. Spin

is neglected at the moment. V is the interaction energy between the nuclei and the

electrons, given by

V (R1, . . . , RNnuc, x1, . . . , xN) =
1

2

∑

I 6=J

ZIZJ
|RI − RJ |

+
1

2

∑

i 6=j

1

|xi − xj |
−
∑

i,I

ZI
|xi − RI |

.

(1.2)

The charge of the I-th nucleus is ZI . The three terms in Eq. (1.2) represent the

Coulomb interactions among nuclei-nuclei, electron-electron and nuclei-electron, re-

spectively.

The many body Hamiltonian (1.1) contains all the information of systems, but

all the information does not have equal importance in practice. In many cases, the

important information is only contained in the most stable state of the system. This

most stable state is characterized by the ground state of the many body Hamiltonian,

i.e. the smallest eigenvalue and eigenvector of the many body Hamiltonian.

HΨ(R1, . . . , RNnuc; x1, . . . , xN) = EΨ(R1, . . . , RNnuc; x1, . . . , xN ). (1.3)

Eq. (1.3) is referred to as the quantum many body problem. E is called the ground

state energy of the many body system, and Ψ is called the ground state wavefunction.

Ψ should satisfy certain symmetry condition determined by the statistics of both

electrons and nuclei. Especially, Ψ is an antisymmetric function with respect to the

coordinates for the electrons (x1, · · · , xN). Ψ changes sign if any pair of coordinates
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xi and xj are interchanged:

Ψ(R1, . . . , RNnuc ; x1, . . . , xi, . . . , xj , . . . , xN )

= −Ψ(R1, . . . , RNnuc; x1, . . . , xj , . . . , xi, . . . , xN), 1 ≤ i < j ≤ N. (1.4)

The many body problem (1.3) can be analytically solved for a hydrogen atom

which contains only one nucleus and one electron. The solution of (1.3) is already

much more complicated in an H2 molecule which contains two electrons and two nu-

clei. The solution becomes generally intractable for more than 20 particles even with

the help of numerical methods and increasingly more powerful computers. The reason

for this enormous complexity is that the dimension of the ground state wavefunction

is 3(Nnuc+N). Even if each spatial coordinate is discretized by 10 points, 103(Nnuc+N)

real numbers will be immediately required just to record one state of the system.

Although the quantum many body problem is in principle an exact theory, it exhibits

exponential complexity and is intractable without further theoretical approximation.

The enormous complexity of the quantum many body problem was well summarized

by Dirac in 1929 [73]: “The fundamental laws necessary to the mathematical treat-

ment of large parts of physics and the whole of chemistry are thus fully known, and

the difficult lies only in the fact that application of these laws leads to equations that

are too complex to be solved.”

The first step to reduce the complexity of the quantum many body problem is

the Born-Oppenheimer approximation [38], which separates the complexity due to

the electrons and that due to the nuclei. The mass of the electron is more than a

thousand times smaller than the mass of the nuclei of the lightest element in the

periodic table, i.e. hydrogen. The Born-Oppenheimer approximation recognizes that

the electrons should therefore move much faster than the nuclei, and the state of

the electrons is “slaved” to the motion of nuclei. More specifically, for fixed nuclei
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positions (R1, . . . , RNnuc), the state of the electrons is described by the ground state

of the many body Hamiltonian of the electrons:

He = −
1

2

∑

i

∆xi +
∑

i

Vext(xi) + Vee(x1, . . . , xN). (1.5)

The nuclei-electron interaction Vext and the electron-electron interaction Vee are de-

fined as

Vext(x) = −
∑

I

ZI
|x−RI |

, Vee(x1, . . . , xN ) =
1

2

∑

i 6=j

1

|xi − xj |
. (1.6)

Compared to Eq. (1.2), the nuclei-nuclei interaction is excluded from He, since the

nuclei-nuclei interaction

Vnn(R1, . . . , RNnuc) =
1

2

∑

I 6=J

ZIZJ
|RI −RJ |

, (1.7)

is a constant term for fixed nuclei positions (R1, . . . , RNnuc).

The ground state of the many body Hamiltonian of the electrons is defined by

HeΨe(r1, . . . , rN ;R1, . . . , RNnuc) = Ee(R1, . . . , RNnuc)Ψe(r1, . . . , rN ;R1, . . . , RNnuc),

(1.8)

Ee is called the ground state energy of the electrons. Ψe is called the ground state

wavefunction of the electrons, and is an antisymmetric function.

The ground state energy Ee(R1, . . . , RNnuc) has important physical meaning. The

ground state energy together with the nuclei-nuclei interaction Vnn form the effective

inter-atomic potential Veff(R1, . . . , RNnuc) = Ee(R1, . . . , RNnuc) + Vnn(R1, . . . , RNnuc).

This inter-atomic potential is completely determined by the atomic species and the

atomic positions, and has great advantage over the classical inter-atomic poten-

tial characterized by empirical parameters. Therefore, the ground state energy Ee
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carries most of the information of the arrangements of the electrons. Calculating

Ee(R1, . . . , RNnuc) from fixed nuclei positions (R1, . . . , RNnuc) is called the electronic

structure problem.

After solving the electronic structure problem, the motions of the nuclei can be

approximated by classical mechanics

MIR̈i = −
∂Veff(R1, . . . , RNnuc)

∂R
. (1.9)

The approximation (1.9) can be improved by more sophisticated techniques such as

path integrals formulation [83], which will be discussed in detail in Part II of this

dissertation.

From now on we focus on the electronic structure problem, and we drop the

subscript e in the ground state energy Ee and in the ground state wavefunction Ψe

without causing ambiguity.

1.3 Kohn-ShamDensity functional theory (KSDFT)

Born-Oppenheimer approximation reduces the quantum many body problem (1.3)

to the electronic structure problem. The electronic structure problem still exhibits

exponential complexity with respect to the number of electrons N , and it is neces-

sary to make further approximations. Compared to the common acceptance of the

Born-Oppenheimer approximation, less agreement is achieved on the approximation

of the electronic structure problem. Various electronic structure theories with dif-

ferent accuracy and efficiency have been proposed, including Hartree-Fock [152,159],

configuration interaction [237], coupled cluster [63], Møller-Plesset perturbation the-

ory [187], quantum Monte Carlo [51, 85], and density functional theory [125, 143], to

name a few. After decades of development, density functional theory is commonly

found to achieve the best compromise between accuracy and efficiency, and has be-
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come the most widely used electronic structure theory.

The foundation of the density functional theory is the Hohenberg-Kohn theo-

rem [125]. Hohenberg-Kohn theorem proves that the ground state electron energy E

is uniquely determined by the electron density ρ up to a shift of a trivial constant.

This dependence is denoted by the density functional E[ρ]. Given the N -body wave

function Ψ, the electron density is defined as

ρ(x) = N

∫
|Ψ(x, x2, . . . , xN )|2 dx2 · · · dxN , (1.10)

ρ(x) represents the probability of finding any of the N electrons at point x. The

electron density ρ(x) is a function of three coordinates rather than 3N coordinates.

Therefore density functional theory remarkably reduces the complexity of the elec-

tronic structure problem.

If the exact form of the energy functional E[ρ] is known, the ground state energy

can be readily obtained by a minimization procedure over a three-dimensional func-

tion ρ with respect to the energy functional E[ρ]. However, Hohenberg-Kohn theorem

only claims the existence of such energy functional without predicting the full detail

of its actual form. Furthermore, the energy functional carefully chosen for one system

can fail drastically for another system in principle.

The ground-breaking work is provided by Kohn and Sham [143]. Kohn and Sham

approximated the energy functional of interacting electrons by an energy functional

of non-interacting electrons together with a correction term. The energy functional

of non-interacting electrons can be written analytically and contributes to most part

of the ground state energy. The remaining correction term, which is called exchange-

correlation functional, remains unknown but is relatively easy to be approximated

roughly.

The Kohn-Sham density functional theory can be formally written down as fol-

31



lows [143]. The rigorous derivation, however, should follow the Levy-Lieb approach

of constrained minimization [158]. First, the ground state energy of an interacting

inhomogeneous system can be written as [125]

E[ρ] =

∫
Vext(x)ρ(x) dx+

1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy +G[ρ], (1.11)

where the first term (Vext) characterizes the nuclei-electron interaction and the second

term gives the electron-electron interaction. G[ρ] is a universal functional of the

electron density. The Kohn-Sham density functional theory then approximates G[ρ]

as

G[ρ] ≡ EK[ρ] + Exc[ρ], (1.12)

where EK[ρ] is the kinetic energy of N non-interacting electrons. Exc[ρ] is defined

to be the exchange-correlation energy, which takes into account all the remaining

ground state energies that are not represented by the previous terms. The many body

wavefunction of N non-interacting electrons takes the form of the Slater determinant

Ψ(x1, · · · , xN) =
1√
N !

det




ψ1(x1) · · · ψ1(xN)

...
. . .

...

ψN(x1) · · · ψN (xN)



, (1.13)

where the three-dimensional wavefunctions ψi are called the electron orbitals. The

electron orbitals satisfy the orthonormal condition

∫
ψi(x)

∗ψj(x) dx = δij . (1.14)

The electron density is reconstructed from the electron orbitals according to the

relation

ρ(x) =
N∑

i=1

|ψi(x)|2. (1.15)
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The kinetic energy for the non-interacting electrons is

EK

[
{ψi}Ni=1

]
=

1

2

N∑

i=1

∫
|∇ψi|2 dx. (1.16)

As a result, the Kohn-Sham energy functional is given by

EKS [{ψi}] = EK [{ψi}] +
∫
Vext(x)ρ(x) dx+

1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy + Exc[ρ]. (1.17)

To find the ground state energy, the energy functional (1.17) should be optimized

over all possible electron orbitals {ψi}Ni=1, and hence over all possible electron den-

sity ρ satisfying
∫
ρ(x) dx = N . On the other hand, if ρ minimizes Kohn-Sham

energy (1.17), the corresponding electron orbitals are also determined by the mini-

mization procedure. Therefore the ground state energy of the Kohn-Sham density

functional theory depends only on the electron density ρ. This issue will become

clearer in Section 1.5.

The choice of the exchange-correlation functional remains unknown. Fortunately,

it turned out that even the crudest approximation of exchange-correlation functional,

namely the local density approximation (LDA) [52,206] is often surprisingly accurate

for systems with slowly varying charge densities. For example, the bond lengths and

bond angles can be predicted by LDA within a few percent for many systems. More

sophisticated exchange-correlation functionals such as generalized gradient approx-

imation (GGA) [22, 149, 204], and hybrid exchange-correlation functionals [23, 205]

further extend the applicability of KSDFT to a large class of molecules and systems

in condensed phase. Without much loss of generality, in the following we will use the

LDA form for exchange-correlation functional, i.e.

Exc[ρ] =

∫
ǫxc[ρ(x)] dx. (1.18)
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To sum up, the Kohn-Sham density functional theory solves the following mini-

mization problem over the electron orbitals {ψi}.

EKS = min
{ψi}

1

2

N∑

i=1

∫
|∇ψi|2 dx+

∫
Vext(x)ρ(x) dx +

1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy +

∫
ǫxc[ρ(x)] dx,

s.t.

∫
ψi(x)ψj(x) dx = δij , i, j = 1, . . . , N,

ρ(x) =

N∑

i=1

|ψi(x)|2.

(1.19)

Here ρ(x) is a function of {ψi}, and the minimization problem (1.19) is a nonlinear

optimization problem. Eq. (1.19) can be solved directly using nonlinear optimization

techniques [6, 25, 145, 207, 244, 250]. However, in practice it is more popular to solve

the Euler-Lagrange equation associated to (1.19), which is called the self-consistent

iteration. The self-consistent iteration method is used in this dissertation, and the

basic procedure is summarized as follows.

The Euler-Lagrange equation corresponding to the minimization problem (1.19)

is

(
−1
2
∆ + Veff [ρ]

)
ψi =

N∑

j=1

ψjλji,

s.t.

∫
ψi(x)ψj(x) dx = δij , i, j = 1, . . . , N,

ρ(x) =

N∑

i=1

|ψi(x)|2.

(1.20)

We denote the effective potential by Veff [ρ]:

Veff [ρ](x) = Vext(x) +

∫
ρ(y)

|x− y| dy + ǫ′xc[ρ(x)]. (1.21)

{λji} are the Lagrange multipliers corresponding to the orthonormal constraints of
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the electron orbitals. Eq. (1.20) is invariant under unitary transformations of the

electron orbitals. As a result Eq. (1.20) can be simplified as

(
−1
2
∆ + Veff [ρ]

)
ψi = ψiǫi,

s.t.

∫
ψi(x)ψj(x) dx = δij , i, j = 1, . . . , N,

ρ(x) =

N∑

i=1

|ψi(x)|2.

(1.22)

In order to minimize (1.19) only the lowest N eigenvalues and eigenvectors are to

be computed. The lowest N eigenvalues {ǫi}Ni=1 are called the occupied Kohn-Sham

eigenvalues, and the corresponding lowest N eigenvectors {ψi}Ni=1 are called the oc-

cupied Kohn-Sham orbitals. The minimization problem (1.19) is nonlinear, and as a

result the eigenvalue problem (1.22) is a nonlinear eigenvalue problem.

The Euler-Lagrange equation (1.22) can be solved by fixing the electron density

ρ = ρin in the potential energy term Veff [ρ]. Then the Kohn-Sham Hamiltonian

H = −1
2
∆+Veff [ρ] is a fixed linear operator. The corresponding lowest N eigenvalues

and eigenvectors can therefore be computed by a standard linear eigenvalue procedure

such as ARPACK [151]. The consequence of fixing the electron density in the Kohn-

Sham Hamiltonian is that the output electron density ρout given by Eq. (1.15) does

not necessarily match the input electron density ρin. In such case, a new density ρ is

generated based on ρin and ρout. This new density ρ is used as the new input density

for the eigenvalue problem (1.22). This procedure is repeated until ρin = ρout. Since

the self-consistent electron density is obtained iteratively, this procedure is called the

self-consistent iteration.

When the self-consistent electron density ρ is obtained, the ground state electron

energy can be calculated from the Kohn-Sham energies ǫi and the electron density ρ
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according to:

EKS =
N∑

i=1

ǫi −
1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy +

∫
ǫxc[ρ(x)] dx−

∫
ǫ′xc[ρ(x)]ρ(x) dx. (1.23)

1.4 KSDFT: pseudopotential framework

So far KSDFT is introduced as an all electron theory. Namely all the electrons are

taken into account in the calculation. In quantum chemistry, the electrons are divided

into two categories: core electrons and valence electrons. For most of the systems,

only the valence electrons participate in the interstitial bonding region and in the

chemical reactions, and the core electrons do not participate in the chemical reac-

tions. However, the electron orbitals of the core electrons are highly non-smooth

and the treatment of the core electrons requires a large number of basis functions

per atom or a fine mesh for numerical integration. Therefore it is desirable to re-

move the core electrons and represent the core electrons effectively in the potential

energy surface. This idea is achieved in the pseudopotential framework [241, 245].

The pseudopotential framework only involves valence electrons. The number of basis

functions per atom to describe the valence electrons is also much smaller than that in

the all electron framework, and there is no singularity in the electronic wavefunctions.

Pseudopotential framework will be used throughout this dissertation to describe the

Kohn-Sham Hamiltonian unless otherwise specified. We remark that similar results

can be achieved by projected augmented wavefunctions method (PAW) [34]. The

extensions to other frameworks such as PAW and the all-electron framework will be

the work in future.

In the past three decades, a vast number of types of pseudopotentials have been

developed. The most widely used pseudopotentials include the norm-conserving pseu-

dopotential [120,241], the dual-space pseudopotential [104,121] and the ultrasoft pseu-
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dopotential [245]. For a more detailed discussion and comparison of the pseudopo-

tential theories, we refer the readers to the review article [59]. The Troullier-Martins

pseudopotential [241] is one of the most popular norm-conserving pseudopotential.

In what follows, the Troullier-Martins pseudopotential will be used for illustration

purpose.

The Kohn-Sham energy functional in the Troullier-Martins pseudopotential frame-

work is given by:

EK({ψi}) =
1

2

N∑

i=1

∫
|∇ψi(x)|2 dx+

∫
Vext(x)ρ(x) dx+

∑

ℓ

γℓ

N∑

i=1

|
∫
b∗ℓ(x)ψi(x) dx|2

+
1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy +

∫
ǫxc[ρ(x)] dx, (1.24)

In (1.24), we have taken the Kleinman-Bylander form of the pseudopotential [138].

For each ℓ, bℓ is a function supported locally in the real space around the position of

one of the atoms, and γℓ = ±1.

The Kohn-Sham equation, or the Euler-Lagrange equation associated with (1.24)

reads

Heff [ρ]ψi = (−1
2
∆+ Veff [ρ] +

∑

ℓ

γℓ|bℓ〉〈bℓ|)ψi = ǫiψi, (1.25)

where the effective one-body potential Veff is given by

Veff [ρ](x) = Vext(x) +

∫
ρ(y)

|x− y| dy + ǫ′xc[ρ(x)]. (1.26)

After obtaining the self-consistent electron density, the total energy of the system can

be expressed using the eigenvalues {ǫi} and ρ

EKS =

N∑

i=1

ǫi −
1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy +

∫
ǫxc[ρ(x)] dx −

∫
ǫ′xc[ρ(x)]ρ(x) dx. (1.27)

In each step of the self-consistent iteration, we find ρ̃ from a given effective po-
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tential Veff

ρ̃(x) =
N∑

i=1

|ψi|2(x), (1.28)

where the {ψi}’s are the first N eigenfunctions of Heff .

Heffψi = (−1
2
∆+ Veff +

∑

ℓ

γℓ|bℓ〉〈bℓ|)ψi = ǫiψi. (1.29)

The {ψi}’s also minimize the variational problem

Eeff({ψi}) =
1

2

N∑

i=1

∫
|∇ψi(x)|2 dx+

∫
Veff(x)ρ(x) dx+

∑

ℓ

γℓ

N∑

i=1

|〈bℓ, ψi〉|2, (1.30)

with the orthonormality constraints 〈ψi, ψj〉 = δij .

1.5 Mathematical properties of KSDFT

In the self-consistent iteration framework for KSDFT, there are two major steps:

1. Given an input electron density ρin, calculate the output electron density ρout.

This is done by solving the Kohn-Sham energies {ǫi} and the Kohn-Sham elec-

tron orbitals {ψi} of H [ρin].

2. Form a new input electron density from ρin and ρout.

In the standard method for solving KSDFT, the complexity of step 1 is O(N3), and

the complexity of step 2 is O(N). Therefore step 1 dominates the computational cost

for solving KSDFT, and is the major bottleneck in order to reduce the complexity.

Step 1 essentially defines a map from ρin to ρout, which is referred to as the

Kohn-Sham map. Step 1 involves a diagonalization process of H [ρin] which is a

nonlinear process. Therefore the Kohn-Sham map is a nonlinear map. Kohn-Sham

map contains all the information of step 1. The mathematical properties of the
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Kohn-Sham map are essential in order to achieve an accurate and efficient method

for solving KSDFT.

In order to study the mathematical properties of the Kohn-Sham map, it is desir-

able to have the explicit form of the Kohn-Sham map, rather than the implicit form

as defined in step 1. The explicit form of the Kohn-Sham map is as follows. For

simplicity we assume the temperature is zero. The Hamiltonian matrix is denoted by

H ≡ H [ρin] which is discretized into a Nt × Nt matrix. {ǫi}Nt

i=1 and {ψi}Nt

i=1 are all

the eigenvalues and eigenvectors of the Hamiltonian matrix H . The output electron

density can be rewritten in an alternative form:

ρout(x) =
N∑

i=1

|ψi(x)|2

=

(
ψ1(x) · · · ψNt

(x)

)



χ(ε1 − µ)
. . .

χ(εNt
− µ)







ψ1(x)

...

ψNt
(x)




(1.31)

Here χ(x) is the Heaviside function that satisfies

χ(x) =





1, x ≤ 0,

0, x > 0.

(1.32)

µ is called the chemical potential. For a discretized system, µ is chosen to be in the

range (ǫN , ǫN+1) as long as ǫN+1 > ǫN . Eq. (1.31) can be written in a more compact

form using the notation of matrix function:

ρout(x) = [χ (H [ρin]− µI)]x,x ≡ diag χ(H [ρin]− µI). (1.33)

Here χ is a matrix function and I is the identity matrix of size Nt × Nt. Eq. (1.33)

clearly shows that the Kohn-Sham map is nothing but the diagonal elements of the
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matrix Heaviside function χ(H [ρin]− µI).

However, the value of the Heaviside function χ is either 0 or 1 on the spectrum

of the Hamiltonian matrix. The Heaviside function is a not a smooth function, and

the matrix Heaviside function is not well-defined for all systems. Here the important

characteristic quantity is ǫN+1 − ǫN , which is referred to as the energy gap of the

system. It can be shown that as the number of electrons N →∞, the energy gap is

always finite for insulating systems, and becomes zero for metallic systems [12]. As a

result, the matrix Heaviside function is only well defined for insulating system, and

is ill-defined for metallic systems.

The flaw of the matrix Heaviside function can be amended by a more generalized

function called the matrix Fermi-Dirac function, which takes into account the finite

temperature effect [186]

ρ = diag
1

1 + exp(β(H − µ)) ≡ diag f(H) (1.34)

Fermi-Dirac function is closely related to the Heaviside function: If β is finite, the

Fermi-Dirac function is a smooth function across the spectrum of the Hamiltonian

H , and is well-defined regardless of the value of the energy gap. When β → ∞,

Fermi-Dirac function converges to the Heaviside function (see Fig. 1.1). The physical

meaning of β is the inverse of the temperature of the system, and β → ∞ implies

that the temperature is zero. Therefore the matrix Heaviside function is also called

the zero temperature limit of the Fermi-Dirac function.

The ground state energy EKS can be written in terms of f(H) as well. For insu-

lating systems, we have
N∑

i=1

ǫi = Tr [Hχ(H − µI)] , (1.35)

and this relation can be directly generalized to both insulating systems and metallic

systems as Tr [Hf(H)]. Thus, the matrix function f(H) is of central importance

40



Figure 1.1: Heaviside function (black line) and Fermi-Dirac function at finite temper-
ature (red line).

in KSDFT, and is referred to as the density matrix of the system. KSDFT can be

written explicitly only using density matrix:

ρ =diag f(H [ρ]), (1.36)

EKS =Tr [H [ρ]f(H [ρ])]− 1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy

+

∫
ǫxc[ρ(x)] dx −

∫
ǫ′xc[ρ(x)]ρ(x) dx. (1.37)

The density matrix f(H) is a Nt × Nt matrix. Eq. (1.37) shows the remarkable

property that not all the elements of the density matrix are required in KSDFT.

Electron density ρ only requires the diagonal elements of the density matrix. The

Hamiltonian matrix H contains the Laplacian operator, and the nearest off-diagonal

elements of the density matrix are needed to calculate Tr[Hf(H)] in the ground state

energy. In summary, KSDFT only requires the diagonal elements and the nearest off-

diagonal elements of the density matrix. This property is essential in order to achieve

an accurate and efficient method for solving KSDFT.

Although this mathematical property has been observed for a long time [101], it

is not at all reflected in the existing methods for KSDFT calculation. The direct

reason is that it is not straightforward to calculate the diagonal and nearest off-
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diagonal elements of a complicated matrix function. Before introducing the new

method developed in this dissertation that directly calculates the diagonal and nearest

off-diagonal elements of the density matrix, we first discuss the existing methods for

solving KSDFT.

1.6 Existing methods and software packages for

solving KSDFT

Most of the existing methods for solving KSDFT can be categorized into two types:

cubic scaling methods and linear scaling methods. Within each category there are a

large number of software packages available. In this section we mainly discuss two

types of algorithms in the pseudopotential framework. To facilitate readers who are

unfamiliar with this subject, a short list of the capabilities for the most versatile

software packages is given at the end of the discussion. The URL address of each

software package is provided for readers who are interested in further details. Finally,

for completeness of the discussion we also mention some software packages for all-

electron calculations.

1.6.1 Cubic scaling methods

Cubic scaling method is implemented in most of the popular software packages for KS-

DFT calculation. The cubic scaling methods include the direct diagonalization meth-

ods such as the Davidson method [69], the conjugate gradient method (CG) [239], and

the direct inversion in the iterative subspace (DIIS) method [214]. Other variants that

also fall into this category include the Car-Parrinello method [49] and the Chebyshev

filtering method [256], to name a few. The variants of the diagonalization methods

result in different preconstant in front of the asymptotic cubic scaling. However, the

orthogonalization step is inevitable in order to obtain the electron density and the
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ground state energy, and leaves the cubic scaling unchanged.

Take the diagonalization method for instance, the lowest Ñ eigenvalues where

Ñ = N for insulating system or Ñ > N for metallic system (to include the finite

temperature effect) are directly computed. The Kohn-Sham map is then evaluated

as

ρ(x) =
Ñ∑

i=1

1

1 + eβ(ǫi−µ)
|ψi(x)|2. (1.38)

Since the diagonalization method constructs all the occupied electron orbitals {ψi}

explicitly, the entire density matrix f(H) is essentially constructed. It does not

take advantage of the mathematical property that only the diagonal elements and

nearest off-diagonal elements of the density matrix are needed in KSDFT calculation.

The diagonalization method involves an orthogonalization step of the subspace Ψ =

[ψ1, · · · , ψÑ ]. In the discrete case, the length of each vector ψi is proportional to N

and the total number of electrons is N . Therefore the orthogonalization step scales as

O(N3) with respect to the number of electrons in the system, and the computational

cost of KSDFT becomes very high for large number of electrons.

Below are some representative software packages for electronic structure calcula-

tion using cubic scaling methods:

• ABINIT: Diagonalization method with planewave basis functions.

http://www.abinit.org/

• BigDFT: Diagonalization method with a two-level wavelet basis functions.

http://inac.cea.fr/L\_Sim/BigDFT/

• CASTEP: Diagonalization method with planewave basis functions.

http://www.castep.org/

• CP2K: Diagonalization method with mixed Gaussian and planewave basis func-

tions.
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http://cp2k.berlios.de/

• CPMD: Diagonalization method as well as Car-Parrinello method with planewave

basis functions.

http://www.cpmd.org/

• OPENMX (Open source package for material explorer): Diagonalization method

with planewave basis functions and numerical atomic orbitals.

http://www.openmx-square.org/

• PASRSEC (Pseudopotential Algorithm for Real-Space Electronic Calculations):

Diagonalization method and Chebyshev filtering method with finite difference

discretization.

http://parsec.ices.utexas.edu/index.html

• Quantum ESPRESSO: Diagonalization method as well as Car-Parrinello method

with planewave basis functions.

http://www.quantum-espresso.org/

• VASP (Vienna Ab-initio Simulation Package): Diagonalization method with

planewave basis functions.

http://cms.mpi.univie.ac.at/vasp/

1.6.2 Linear scaling methods

The major breakthrough that reduces the O(N3) in the past two decades is the lin-

ear scaling methods. The linear scaling methods use the nearsightedness property,

which means that the density perturbation induced by a local change in the external

potential decays off exponentially with respect to the distance from the place where

the perturbation was applied, and also that the off-diagonal elements of the density
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matrix decay exponentially [142, 212]. The nearsightedness property is valid for in-

sulating systems and metallic systems at finite temperature. The nearsightedness

property is not valid for metallic systems at zero temperature due to the well-known

Friedel oscillation [87]. Due to the fast decay of the density matrix along the off-

diagonal direction, the density matrix can be truncated beyond a certain range along

the off-diagonal direction for insulating systems. Various methods have been pro-

posed based on different perspectives of the nearsightedness property (for a detailed

review, see [101]). We review briefly some representative linear scaling methods as

below. The linear scaling methods are mainly divided into two classes.

The first class of linear scaling algorithms are based on the localization of elec-

tron orbitals and subspaces of electron orbitals. In the orbital minimization approach

(OM) [88, 184], the truncation of the electron orbitals is imposed by adding an ad-

ditional confining potential to the Hamiltonian. Orbital minimization approach can

have multiple minima [136]. The orbital minimization method can be combined with

the localization procedure (OML) [89] to eliminate the multiple minima problem.

The localized subspace iteration method (LSI) [91] localizes the subspace consisting

several electron orbitals, and obtains the optimal truncation radius.

The second class of linear scaling algorithms are based on the localization of the

density matrix directly. In the divide-and-conquer method (D&C) [251], the elec-

tron density is divided into a set of loosely coupled subsystems. Each subsystem is

solved separately by standard diagonalization methods and linear scaling is achieved.

The density matrix minimization method (DMM) [154, 229] achieves linear scaling

by directly truncating the density matrix beyond a predetermined truncation radius,

with the help of the McWeeny purification transformation [185]. The density matrix

is then optimized using nonlinear conjugate gradient method. The Fermi operator

expansion method (FOE) [19,99] expands the Fermi-Dirac matrix function into sim-

ple matrix functions that can be directly evaluated without diagonalization of the
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Hamiltonian. These simple matrix functions can be polynomials or rational functions

of the Hamiltonian matrix. Each simple matrix function is only evaluated within the

truncation range of the density matrix along the off-diagonal direction, and the FOE

method achieves linear scaling.

Several widely used linear scaling methods for the electronic structure calculation

of insulating systems include:

• CONQUEST: b-spline basis functions and Pseudo-atomic orbitals (PAO). Lin-

ear scaling is achieved by McWeeny’s purification method [185].

http://hamlin.phys.ucl.ac.uk/NewCQWeb/bin/view

• ONETEP (Order-N Electronic Total Energy Package): Non-orthogonal gener-

alized Wannier functions (NGWF). Linear scaling is achieved by density kernel

optimization method which is a variant of the density matrix minimization

method [154].

http://www2.tcm.phy.cam.ac.uk/onetep/

• SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms):

Numerical atomic orbitals. Linear scaling is achieved by orbital minimization

method [184].

http://www.icmab.es/siesta/

1.6.3 All-electron methods

As opposed to the pseudopotential framework which only involves valence electrons,

all electron methods treat the core electrons and the valence electrons on the same

footing. All electron methods can avoid the numerical error caused by the limited

transferability in the pseudopotentials, but the computational cost of the all-electron

methods is generally significantly larger than that of the pseudopotential methods.
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The increased computational cost is mainly due to the fact that the electron orbitals

are non-smooth at the positions of the nuclei (satisfying the cusp condition [134]) and

are much more oscillatory around the positions of the nuclei. As a result, analytic

or semi-analytic forms of basis functions are generally used in the all-electron calcu-

lations, such as Slater-type orbitals (STO), Gaussian-type orbitals (GTO) and nu-

merical atomic orbitals (NAO). Several widely used software packages for all-electron

calculation include:

• ADF (Amsterdam Density Functional): Diagonalization methods with Slater-

type orbitals (STO).

http://www.scm.com/

• GAUSSIAN: Diagonalization methods with Gaussian-type orbitals (GTO).

http://www.gaussian.com/

• FHI-aims: Diagonalization methods with numerical atomic orbitals (NAO).

https://aimsclub.fhi-berlin.mpg.de/

• WIEN2k: Diagonalization methods with full-potential (linearized) augmented

plane-wave (FP-LAPW) plus local orbitals (LO) basis functions.

http://www.wien2k.at/

1.7 Unified, accurate and efficient method for solv-

ing KSDFT

Section 1.6 summarizes the most widely used numerical schemes for solving KSDFT.

Cubic scaling methods involve the orthogonalization step which is intrinsically of

O(N3) scaling and is difficult to be improved in general. Linear scaling methods uses

the nearsightedness property for insulating systems and metallic systems at finite
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temperature. However, the performance of the linear scaling methods relies crucially

on the truncation radius. The truncation radius can be quite large if high numer-

ical accuracy is to be achieved, especially for metallic system where the truncation

radius depends explicitly on the artificial temperature. Therefore linear scaling al-

gorithms typically exhibit advantage only for systems with a very large number of

electrons [101]. Moreover, linear scaling methods still construct the entire density

matrix, and they do not aim at calculating the diagonal elements and nearest off-

diagonal elements of the density matrix directly. In order to avoid the difficulties

in the linear scaling methods, it is desirable to design a method that does not use

nearsightedness, and that calculates the diagonal elements and nearest off-diagonal

elements of the density matrix directly. Part I of this dissertation achieves this goal

under the framework of Fermi operator expansion (FOE).

FOE expands the Fermi-Dirac matrix function into simple matrix functions. Each

simple matrix function is calculated directly without diagonalization process, and

thus FOE does not involve the orthogonalization step. In calculating simple matrix

functions, FOE does not necessarily require the nearsightedness property. As a result

FOE has none of the previously mentioned drawbacks. The new method is accurate,

efficient, and is applicable to both insulating and metallic systems at low or at high

temperature. First we discuss the basic procedure of FOE.

FOE expands the Fermi-Dirac matrix function f(H) into simple matrix functions

{fi(H)}, i.e.

f(H) ≈
P∑

i=1

fi(H), (1.39)
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and the electron density and the ground state energy can be calculated as

ρ ≈
P∑

i=1

diag fi(H [ρ]), (1.40)

EKS ≈
P∑

i=1

Tr [H [ρ]fi(H [ρ])]− 1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy

+

∫
ǫxc[ρ(x)] dx−

∫
ǫ′xc[ρ(x)]ρ(x) dx. (1.41)

Therefore under the framework of FOE, only the diagonal elements and nearest off-

diagonal elements of each matrix function fi(H) are to be calculated. The calculation

of fi(H) for different i are independent from each other.

Each simple matrix function fi(H) should take certain form in order to be evalu-

ated directly without diagonalization. To be more specific, fi(H) can only be polyno-

mial matrix function or rational matrix function. FOE based on both the polynomial

expansion [16,99,102,155,156] and the rational expansion [19,103,144,160,164,199,

227] have been developed. FOE based on the polynomial expansion requires calcu-

lating the powers of H . FOE based on the rational expansion requires calculating

the inverse of H . Both operations are O(N3) without further simplification, and

FOE does not exhibit advantage over diagonalization methods for metallic systems.

As a result, FOE is only mentioned sporadically in literature for certain classes of

systems [144, 227].

Part I of this dissertation develops FOE to be an accurate and efficient method

for solving KSDFT in all systems. The new method achieves uniform improvement

over the O(N3) method for systems under all dimensions. The asymptotic scaling of

the new method is O(N) for one dimensional system, O(N1.5) for two-dimensional

system, and O(N2) for three-dimensional system. Furthermore, the new method

can be combined with the nearsightedness property to achieve O(N) scaling at all

dimensions for insulating systems and for metallic systems at high temperature.
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We also expect that the new method should not only exhibit improved asymptotic

scaling but also have a relatively small preconstant. To this end it is necessary to sys-

tematically study all the phases of FOE. In this dissertation, the complete flowchart

of FOE is divided into four phases (see Fig. 1.2): Discretize the Hamiltonian opera-

tor H into a matrix of finite size (discretization); Represent the Fermi-Dirac matrix

function f(H) into appropriate simple matrix functions {fi(H)} (representation);

Evaluate the diagonal and nearest off-diagonal elements of each {fi(H)} (evalua-

tion); Self-consistent iteration (iteration). Part I of this dissertation develops a novel

scheme, named the adaptive local basis functions for the discretization step. The

adaptive local basis functions achieve high accuracy (below 10−3 Hartree/atom) with

a very small number of basis functions. This dissertation presents the optimal strat-

egy for the representation step, which represents the Fermi-Dirac operator in terms

of a simple rational expansion called the pole expansion. This dissertation further de-

velops a fast algorithm for evaluating the diagonal and nearest off-diagonal elements

of each rational function, called the selected inversion algorithm. The computational

scaling of the selected inversion algorithm to evaluate each rational function is O(N)

for one dimensional systems, O(N1.5) for two-dimensional systems, and O(N2) for

three-dimensional systems. Self-consistent iteration is an important component in

the KSDFT calculation. However, the self-consistent iteration does not cause the

O(N3) scaling problem and is a relatively separate issue. The self-consistent itera-

tion is not discussed in this dissertation, but will be studied in the future work.

The rest of Part I of this dissertation is organized as follows. Chapter 2 discusses

the discretization technique for KSDFT, and introduces the novel adaptive local ba-

sis functions. Chapter 3 discusses various representation methods of the Fermi-Dirac

operator, and presents the optimal strategy for representing the Fermi-Dirac opera-

tor in terms of rational expansion. Chapter 4 introduces a new methodology named

selective inversion for evaluating the diagonal elements and nearest off-diagonal ele-
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Figure 1.2: Flowchart of the unified, accurate and efficient method developed in this
dissertation for solving KSDFT.

ments of each simple matrix function. The work of selected inversion also inspired us

developing a fast algorithm for the construction of hierarchical matrices [161]. This is

illustrated in Chapter 5. Finally, Chapter 6 concludes Part I of the dissertation with

open questions and further work.
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Chapter 2

Discretization of the Hamiltonian

matrix: adaptive local basis

functions

2.1 Introduction

In order to study the electronic structure using KSDFT with numerical methods, the

first step is to discretize the Kohn-Sham Hamiltonian into a matrix of finite size.

If space is uniformly discretized, the Kohn-Sham Hamiltonian generally requires a

basis set with a large number of degrees of freedom per atom. For most chemical

systems, the kinetic energy cutoff typically ranges from 15Ry to 90Ry for standard

planewave discretization in the norm-conserving pseudopotential framework [241],

which amounts to about 500 ∼ 5000 basis functions per atom. The required number

of basis functions per atom is even larger for uniform discretization methods other

than planewaves, such as the finite difference method [2, 58] and the finite element

method [201, 202, 242].

The large number of basis functions per atom originates from the rapid oscillation

52



of the Kohn-Sham electron orbitals. The Kohn-Sham orbitals oscillate rapidly around

the nuclei and become smooth in the interstitial region of the nuclei. Physical intuition

suggests that the rapid oscillations around the nuclei are inert to changes in the

environment. A significant part of the rapid oscillations can already be captured by

the orbitals associated with isolated atoms. These orbitals are called atomic orbitals.

Numerical methods based on atomic orbitals or similar ideas have been designed

based on this observation [14,35,71,81,132,135,141,198]. Environmental effect is not

built into the atomic orbitals directly, but can only be approximated by fine tuning

the adjustable parameters in these atomic orbitals. The values of the adjustable

parameters therefore vary among different chemical elements, and sometimes vary

among the different ambient environment of atoms. The quality of the atomic orbitals

is difficult to be improved systematically, but relies heavily on the knowledge of the

underlying chemical system.

Atomic orbitals and uniform discretization methods can be combined, as in the

mixed basis methods [4,34,230,236]. The quality of the basis functions can therefore

be systematically improved. However, fine tuning the adjustable parameters is still

necessary due to the absence of the environmental effect in the basis functions, and

in certain circumstances the number of basis functions per atom is still large.

In this chapter, we propose a novel discretization method to build the environ-

mental effects into the basis set to achieve further dimension reduction of the basis

set. The basis functions are constructed adaptively and seamlessly from the atomic

configuration in local domains, called elements. The basis functions are discontinuous

at the boundary of the elements, and they form the basis set used in the discontinuous

Galerkin (DG) framework. The discontinuous Galerkin framework has been widely

used in numerical solutions of partial differential equations (PDE) for more than four

decades, see for example [7, 8, 15, 64, 66, 247] and the references therein. One of the

main advantages of the DG method is its flexibility in the choice of the basis func-
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tions. The flexibility of the DG framework allows us to employ these discontinuous

basis functions to approximate the continuous Kohn-Sham orbitals, and allows us

to achieve high accuracy (below 10−3 Hartree/atom) in the total energy calculation

with the number of basis functions per atom close to the minimum possible number

of basis functions for the electronic structure calculation, namely the number of basis

functions used by the tight binding method [81,231]. Our method is implemented in

parallel with a rather general data communication framework, and the current im-

plementation is able to calculate the total energy for systems consisting thousands of

atoms.

The novel discretization scheme developed in this chapter can be applied to both

the diagonalization methods and the Fermi operator expansion method that are go-

ing to be discussed in Chapter 3 and Chapter 4. To simplify the discussion the

diagonalization method will be used in the current chapter.

The idea of constructing basis functions adaptively from the local environment has

also been explored in other circumstances in numerical analysis such as reduced basis

method [48,62,174,175] and multi-scale discontinuous Galerkin method [246,254,255]

for solving PDE. In the current context, we apply the DG algorithm to solve eigenvalue

problems with oscillatory eigenfunctions, and the basis functions are constructed by

solving auxiliary local problems numerically.

This chapter is organized as follows. Section 2.2 introduces the discontinuous

Galerkin framework for Kohn-Sham density functional theory. The construction of

the adaptive local basis functions is introduced in Section 2.3. Section 2.4 discusses

implementation issues in more detail. The performance of our method is reported in

Section 2.5, followed by the discussion and conclusion in Section 2.6. Materials in

this chapter have been presented in [165].
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2.2 Discontinuous Galerkin framework for Kohn-

Sham density functional theory

The discontinuous Galerkin (DG) methods have been developed for different types

of partial differential equations [7, 8, 15, 64, 66, 247]. One of the main advantages of

the DG method is its flexibility in the choice of the approximation space, as the

DG method does not require the continuity condition of the basis functions across

the interfaces of the elements. This flexibility is important for constructing effective

discretization schemes for Kohn-Sham density functional theory.

We present in the following a DG method for the evaluation of the electron den-

sity. Among the different formalisms in the DG framework, we will use the interior

penalty method [7, 15]. Other DG methods, such as the local DG method (LDG)

can be employed as well [65]. The interior penalty method naturally generalizes the

variational principle (1.30).

We denote by Ω the computational domain with the periodic boundary condition.

Ω is also referred to as the global domain in the following discussion. Bloch boundary

conditions can be taken into account as well without essential modification. Let T

be a collection of quasi-uniform rectangular partitions of Ω:

T = {E1, E2, · · · , EM}, (2.1)

and S be the collection of surfaces that correspond to T . Each Ek is called an element

of Ω. For a typical choice of partitions used in practice, the elements are chosen to be

of the same size. For example, for a crystalline material, elements can be chosen as

integer multiples of the conventional cell of the underlying lattice. As a result, unlike

the usual finite element analysis, the element size will remain the same. 1

1In the language of finite element method, we will not use the h-refinement.
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In the following discussion, we use extensively the inner products defined as below

〈v, w〉E =

∫

E

v∗(x)w(x) dx, (2.2)

〈v,w〉S =

∫

S

v∗(x) ·w(x) ds(x), (2.3)

〈v, w〉T =

M∑

i=1

〈v, w〉Ei
, (2.4)

〈v,w〉S =
∑

S∈S
〈v,w〉S. (2.5)

In the interior penalty method, the discretized energy functional corresponding to

(1.30) is given by

EDG({ψi}) =
1

2

N∑

i=1

〈∇ψi,∇ψi〉T −
N∑

i=1

〈
{{
∇ψi

}}
,
[[
ψi
]]
〉S + 〈Veff , ρ〉T

+
α

h

N∑

i=1

〈
[[
ψi
]]
,
[[
ψi
]]
〉S +

∑

ℓ

γℓ

N∑

i=1

|〈bℓ, ψi〉T |2. (2.6)

Here the last term comes from the non-local terms in Eq. (1.30), and
{{
·
}}

and
[[
·
]]
are the average and the jump operators across surfaces, defined as follows. For

S ∈ S◦ the set of interior surfaces, we assume S is shared by elements K1 and K2.

Denote by n1 and n2 the unit normal vectors on S pointing exterior to K1 and K2,

respectively. With ui = u|∂Ki
, i = 1, 2, we set

[[
u
]]
= u1n1 + u2n2 on S. (2.7)

For S ∈ S∂ where S∂ is the union of the surfaces on the boundary, we set

[[
u
]]
= un on S, (2.8)
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where n is the outward unit normal vector. For vector-valued function q, we define

{{
q
}}

= 1
2
(q1 + q2) on S ∈ S◦, (2.9)

where qi = q|∂Ki
, and

{{
q
}}

= q on S ∈ S∂ . (2.10)

Note that in the current context S = S◦ since we assume periodic boundary condition

for the computational domain, and every surface is an interior surface. The constant α

in (2.6) is a positive penalty parameter, which penalizes the jumps of functions across

element surfaces to guarantee stability. The choice of α will be further discussed in

Section 2.5.

Assume that we have chosen for each element Ek a set of basis functions {ϕk,j}Jkj=1,

where Jk is the total number of basis functions in Ek. We extend each ϕk,j to the

whole computational domain Ω by setting it to be 0 on the complement set of Ek.

Define the function space V as

V = span{ϕk,j, Ek ∈ T , j = 1, · · · , Jk}. (2.11)

We minimize (2.6) for {ψi} ⊂ V. The energy functional (2.6) in the approximation

space V leads to the following eigenvalue problem for {ψi}Ni=1. For any v ∈ V,

1

2
〈∇v,∇ψi〉T −

1

2
〈
[[
v
]]
,
{{
∇ψi

}}
〉S −

1

2
〈
{{
∇v
}}
,
[[
ψi
]]
〉S +

α

h
〈
[[
v
]]
,
[[
ψi
]]
〉S

+ 〈v, Veffψi〉T +
∑

ℓ

γℓ〈v, bℓ〉T 〈bℓ, ψi〉T = λi〈v, ψi〉T . (2.12)

Setting v = ϕk′,j′ and

ψi =
∑

Ek∈T

Jk∑

j=1

ci;k,jϕk,j, (2.13)
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we arrive at the following linear system

∑

k,j

(
1

2
〈∇fk′,j′,∇fk,j〉T −

1

2
〈
[[
fk′,j′

]]
,
{{
∇fk,j

}}
〉S

− 1

2
〈
{{
∇fk′,j′

}}
,
[[
fk,j
]]
〉S +

α

h
〈
[[
fk′,j′

]]
,
[[
fk,j
]]
〉S + 〈fk′,j′, Vefffk,j〉T

+
∑

ℓ

γℓ〈fk′,j′, bℓ〉T 〈bℓ, fk,j〉T
)
ci;k,j = λi

∑

k,j

〈fk′,j′, fk,j〉ci;k,j. (2.14)

We define A to be the matrix with entries given by the expression in the parentheses,

B to be the matrix with entries 〈fk′,j′, fk,j〉, and ci to be the vector with components

(ci;k,j)k,j. We have the following simple form of generalized eigenvalue problem

Aci = λiBci

for i = 1, 2, . . . , N . Following the standard terminologies in the finite element method,

we call A the (DG) stiffness matrix, and B the (DG) mass matrix. In the special

case when the DG mass matrix B is equal to the identity matrix, we have a stan-

dard eigenvalue problem Aci = λici. Once {ci} are available, the electron density is

calculated by

ρ̃ =

N∑

i=1

∑

Ek∈T
|
Jk∑

j=1

ci;k,jϕk,j|2. (2.15)

2.3 Basis functions adapted to the local environ-

ment

The proposed framework in the previous section is valid for any choice of basis func-

tions. To improve the efficiency of the algorithm, it is desirable to use less number

of basis functions while maintaining the same accuracy. In order to achieve this goal,

the choice of the functions {ϕk,j} is important. In this section, we discuss a way to
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construct the basis functions {ϕk,j} that are adapted to the local environment.

The starting point is the observation as follows. The Kohn-Sham orbitals {ψi}

exhibit singularities around the nuclei. In an all electron calculation, the nuclei charge

density is the summation of delta functions located at the positions of the nuclei (or

numerical delta function after discretization) and the Kohn-Sham orbitals have cusp

points at the positions of the atoms. In the pseudopotential framework which involves

only valence electrons, one can still see that the Kohn-Sham orbitals and the electron

density are much more oscillatory near the atom cores than in the interstitial region,

as illustrated in Fig. 2.1. In the setting of the real space method or the planewave

method, in order to resolve the Kohn-Sham orbitals around the atom cores where the

derivatives of Kohn-Sham orbitals become large, one has to use a uniform fine mesh.

Therefore, the number of mesh points becomes huge even for a small system. This

makes the electronic structure calculation expensive.
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Figure 2.1: Electron density on a (001) slice of a mono-crystalline silicon system
passing through two Si atoms. The two Si atoms are located at (2.57, 2.57) au and
at (7.70, 7.70) au in this plane, respectively. The electron density shows oscillatory
behavior near the nuclei of Si atoms and becomes smooth in the interstitial region.
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In order to reduce the cost, we note that the Kohn-Sham orbitals are smooth away

from the atoms and the uniform fine discretization is not efficient enough. A natural

idea would be to use adaptive mesh refinement techniques, which is just started to

be explored in electronic structure calculations [68, 82].

Our approach builds the oscillatory behavior of the Kohn-Sham orbitals near the

atom cores directly into the basis functions. Hence, a small number of basis functions

are enough to characterize the Kohn-Sham orbitals. This idea is not entirely new. For

example, the philosophy of pseudopotential techniques is quite similar, though the

reduction is done at the analytic level. On the side of numerical methods, the current

idea is closely related to atomic orbital basis and numerical atomic orbitals [35, 81].

The main difference from the previous approaches is that instead of predetermining

basis functions based on the information from isolated atoms, our approach builds the

information from the local environment into the basis functions as well. Thanks to the

flexibility of the discontinuous Galerkin framework, this can be done in a seamless

and systematic way. The basis functions form a complete basis set in the global

domain Ω. The basis set is therefore efficient, and at the same time the accuracy can

be improved systematically. This is an important difference between this approach

and the previous methods along the same line.

The basis functions {ϕk,j} are determined as follows. Given the partition T and

the effective potential Veff , let us focus on the construction of {ϕk,j}, j = 1, · · · , Jk
for one element Ek ∈ T . As discussed above, our approach is to adapt {ϕk,j} to the

local environment in Ek.

For each element Ek, we take a region Qk ⊃ Ek. Qk is called the extended element

associated with the element Ek. The set Qk\Ek is called the buffer area. We assume

that Qk extends symmetrically along the ±x(y, z) directions from the boundary of Ek.

The length of the buffer area extended beyond the boundary of Ek along the ±x(y, z)

direction is called the “buffer size along the x(y, z) direction”. We restrict the effective
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Hamiltonian on Qk by assuming the periodic boundary condition on ∂Qk and denote

by Heff ,Qk
the restricted Hamiltonian. Heff ,Qk

is discretized and diagonalized, and the

corresponding eigenfunctions are denoted by {ϕ̃k,j}, indexed in increasing order of

the associated eigenvalues. We restrict the first Jk eigenfunctions {ϕ̃k,j} from Qk to

Ek, denoted by {ϕk,j}. Each ϕk,j is therefore defined locally on Ek. As discussed

before we extend each ϕk,j to the global domain Ω by setting the value to be 0 on

the complement of Ek. The resulting functions, still denoted by {ϕk,j} are called the

adaptive local basis functions. Numerical result suggests that we can take very small

Jk to achieve high accuracy.

The reason why we choose the periodic boundary condition on Qk for the restric-

tion Heff ,Qk
is twofold. On one hand, the periodic boundary condition captures better

the bulk behavior of the system (than the Dirichlet boundary condition for example);

On the other hand, the periodic boundary condition makes the solution of Heff ,Qk

more easily adapted to existing DFT algorithms and packages, as most of them can

treat periodic boundary conditions. Other choices such as the Neumann boundary

condition are possible, and the optimal choice of boundary conditions remains to be

an open question.

The basis functions constructed from the buffer region well capture the local sin-

gular behavior of Kohn-Sham orbitals near the nuclei. Hence, the approximation

space formed by {ϕk,j} gives an efficient and accurate discretization to the problem,

as will be illustrated by numerical examples in Section 2.5. Note that the {ϕ̃k,j}’s

are the eigenfunctions of the self-adjoint operator Heff,Qk
on Qk, and therefore form

a complete basis set on Qk when Jk → ∞. This implies that after restriction, the

functions {ϕk,j} also form a complete basis set on Ek as Jk →∞. The accuracy can

therefore be systematically improved in the electronic structure calculation.

Eq. (2.14) proposes a generalized eigenvalue problem. From numerical point of

view it would be more efficient if we can choose {ϕk,j} such that the DG mass matrix
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is an identity matrix and that Eq. (2.14) becomes a standard eigenvalue problem.

Moreover, as Jk increases, the basis functions {ϕk,j} can be degenerate or nearly

degenerate, which increases the condition number of the DG stiffness matrix. Both

problems can be solved at the same time by applying a singular value decomposition

(SVD) filtering step, resulting in an orthonormal basis set {ϕk,j}:

1. For each k, form a matrix Mk = (ϕk,1, ϕk,2, · · · , ϕk,Jk) with ϕk,j;

2. Calculate SVD decomposition UDV ∗ =Mk,

D = diag (λk,1, λk,2, · · · , λk,Jk),

where λk,j are singular values of Mk ordered decreasingly in magnitude;

3. For a threshold δ, find J̃k such that |λk,J̃k| > δ and |λk,J̃k+1| < δ (J̃k = Jk if all

singular values are larger than the threshold). Take Uj be the j-th column of

U , j = 1, · · · , J̃k;

4. Set Jk ← J̃k and ϕk,j ← Uk,j for j = 1, · · · , J̃k.

Remark 1. Although the threshold δ can avoid numerical degeneracy of the basis

functions, the numerical degeneracy is not observed for the cases studied in section 2.5.

In other words, Jk = J̃k.

After constructing the basis functions {ϕk,j}, we then apply the discontinuous

Galerkin framework to solve the {ψi} and hence ρ corresponding to Heff . The overall

algorithm can be summarized as follows:

1. Set n = 0, let T be a partition of Ω into elements, and ρ0 be an initial trial

electron density;

2. Form the effective potential Veff [ρn] and the effective Hamiltonian Heff [ρn];

62



3. For each element Ek ∈ T , calculate the eigenfunctions {ϕk,j}, j = 1, · · · , Jk
corresponding to the Hamiltonian Heff ,Qk

on the extended element Qk, and

obtain the orthonormal adaptive local basis functions {ϕk,j}.

4. Solve (2.14) to obtain the coefficients {ci;k,j} for the Kohn-Sham orbitals and

reconstruct the electron density ρ̃ by (2.15);

5. Mixing step: Determine ρn+1 from ρn and ρ̃. If ‖ρn − ρ̃‖ ≤ δ, stop; otherwise,

go to step (2) with n← n + 1.

We remark that due to the flexibility of the DG framework one can supplement the

functions {ϕk,j} constructed above by other functions in Ek, such as local polynomials

in Ek, Gaussian functions restricted to Ek, and other effective basis functions based

on physical and chemical intuition. From practical point of view, we find that the

adaptive basis set constructed above already achieves satisfactory performance.

2.4 Implementation details

This section explains the implementation details for the adaptive local basis functions.

This section is mostly written for the readers who are less familiar with the DG

implementation.

2.4.1 Grids and interpolation

The adaptive local basis functions involve three types of domains: the global domain

Ω, the extended elements {Qk}, and the elements {Ek}. Quantities defined on these

domains are discretized with different types of grids.

• On Ω, the quantities such as ρ and Veff are discretized with a uniform Cartesian

grid with a spacing fine enough to capture the singularities and oscillations in

these quantities.
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• The grid on Qk is simply the restriction of the uniform grid of Ω on Qk. This

is due to the consideration that all quantities on Qk are treated as periodic and

hence a uniform grid is the natural choice.

• The grid on Ek is a three-dimensional Cartesian Legendre-Gauss-Lobatto (LGL)

grid in order to accurately carry out the operations of the basis functions {ϕk,j}

such as numerical integration and trace operator for each element Ek.

Transferring various quantities between these three grids requires the following inter-

polation operators.

• Ω to Qk. This is used when we restrict the density ρn and the effective potential

Veff to the extended element Qk. Since the grid on Qk is the restriction of the

grid on Ω, this interpolation operator simply copies the required values.

• Qk to Ek. This is used when one restricts {ϕ̃k,j} and their derivatives to Ek.

As the grid on Qk is uniform, the interpolation is done by Fourier transform.

Due to the fact that both grids are Cartesian, the interpolation can be carried

out dimension by dimension, which greatly improves the efficiency.

• Ek to Ω. This is used when one assembles the Kohn-Sham orbitals {ψi} from the

coefficients {ci;k,j} of the elements. The interpolation from the LGL grid to the

uniform grid is done by Lagrange interpolation, again carried out dimension by

dimension. Averaging is performed for the grid points of Ω shared by multiple

elements.

The non-local pseudopotentials are used both in solving {ϕ̃k,j} on each Qk and in

the numerical integration step on the LGL grid of each Ek. In our implementation,

the non-local pseudopotentials are directly generated in real space on Qk and on Ek

without further interpolation between the grids.
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2.4.2 Implementation of the discontinuous Galerkin method

We use planewaves in each extended element Qk to discretize the local effective Hamil-

tonian Heff,Qk
and the LOBPCG algorithm [139] with the preconditioner proposed

in [239] to diagonalize the discretized Hamiltonian. The resulting eigenfunctions

{ϕ̃k,j}Jkj=1 of Heff ,Qk
are restricted to Ek and interpolated onto its LGL grid. Within

the SVD filtering step, the inner product that we adopt is the discrete weighted ℓ2

product with the LGL weights inside Ek. The main advantage of the SVD filter-

ing step is that the discontinuous Galerkin method results in a standard eigenvalue

problem.

The assembly of the DG stiffness matrix follows (2.14) strictly and consists of the

following steps.

• For the first term 1
2
〈∇fk′,j′,∇fk,j〉T and the fifth term 〈fk′,j′, Vefffk,j〉T , their

contributions are non-zero only when k = k′ since otherwise two basis functions

have disjoint support. Hence, for each fixed k, we compute 〈∇fk,j′,∇fk,j〉Ek

and 〈fk,j′, Vefffk,j〉Ek
. The integration is done numerically using the LGL grid

on Ek. Part of the stiffness matrix corresponding to these two terms clearly has

a block diagonal form.

• For the second, third, and fourth terms of (2.14), one needs to restrict basis

functions and their derivatives to element faces. As the one-dimensional LGL

grid contains the endpoints of its defining interval, this is done simply by re-

stricting the values of the three-dimensional LGL grid to the element faces. One

then calculates these three terms using numerical integration on these resulting

two-dimensional LGL grids. Since the integral is non-zero only when Ek and

Ek′ are the same element or share a common face, part of the stiffness matrix

corresponding to these three terms is again sparse.

• The last term of (2.14) is
∑

ℓ γℓ〈fk′,j′, bℓ〉T 〈bℓ, fk,j〉T . The integration is again
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approximated using the LGL grids of the elements. Notice that the contribution

is non-zero iff fk′,j′ and fk,j overlap with the support of a common bℓ. Since

each bℓ is localized around a fixed atom, fk,j and fk′,j′ need to be sufficiently

close for this term to be non-zero. As a result, part of the stiffness matrix

corresponding to this last term is also sparse.

Though the DG stiffness matrix A is sparse, this property is not yet exploited in

the current implementation. The eigenvalues and eigenvectors of the DG stiffness

matrix are calculated using the pdsyevd routine of ScaLAPACK by treating it as a

dense matrix. We plan to replace it with more sophisticated solvers that leverage the

sparsity of A in future.

2.4.3 Parallelization

Our algorithm is fully implemented for the message-passing environment. To simplify

the discussion, we assume that the number of processors is equal to the number of

elements. It is then convenient to index the processors {Pk} with the same index

k used for the elements. In the more general setting where the number of elements

is larger than the number of processors, each processor takes a couple of elements

and the following discussion will apply with only minor modification. Each processor

Pk locally stores the basis functions {fk,j} for j = 1, 2, . . . , Jk and the unknowns

{ci;k,j} for i = 1, 2, . . . , N and j = 1, 2, . . . , Jk. We further partition the non-local

pseudopotentials {bℓ} by assigning bℓ to the processor Pk if the atom associated to bℓ

is located in the element Ek.

The eigenfunctions of the local Hamiltonian Heff ,Qk
are calculated on each pro-

cessor Pk. In order to build the local Hamiltonian Heff ,Qk
, the processor Pk needs to

access all the non-local pseudopotentials of which the associated atoms are located

in Qk. This can be achieved by communication among Ek and its nearby elements.

Once these pseudopotentials are available locally, the eigenfunctions of Heff,Qk
are
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computed in parallel without any extra communication between the processors.

The parallel implementation for assembling the DG stiffness matrix is more com-

plicated:

• For the calculation of the first and the fifth terms of the DG stiffness matrix A

in Eq. (2.14), each processor Pk performs numerical integration on Ek. Since

the local basis functions {fk,j} are only non-zero on Ek, this step is carried out

fully in parallel.

• To calculate the second, third, and fourth terms, each processor Pk computes

the surface integrals restricted to the left, front, and bottom faces of Ek. This

requires the basis functions of the left, front, and bottom neighboring elements.

• To calculate the sixth term, each processor Pk computes the parts associated

with the non-local pseudopotentials {bℓ} located on Pk. This requires the access

to the basis functions of all elements that overlap with bℓ.

To summarize, each processor Pk needs to access the basis functions from its neighbor-

ing elements and from the elements that overlap with the support set of the non-local

pseudopotentials located on the elements associated with Pk. Due to the locality of

the non-local pseudopotentials, these elements are geometrically close to Pk. Since

the size of the elements is generally equal to or larger than one unit cell, the support

set of the non-local pseudopotentials are generally within the range of the neighboring

elements. Therefore, the number of the non-local basis functions required by Pk is

bounded by a small constant times the typical number of the basis functions in an

element.

The use of the pdsyevd routine of ScaLAPACK for solving the eigenvalue problem

(2.14) results in another source of communication. ScaLAPACK requires A to be

stored in its block cyclic form. The block cyclic form is quite different from the form

of which the DG stiffness matrix is assembled (as mentioned above). As a result, one
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needs to redistribute A into this block cyclic form before calling pdsyevd and then

redistribute the eigenfunctions afterwards.

In order to support these two sources of data communication, we have imple-

mented a rather general communication framework that only requires the program-

mer to specify the desired non-local data. This framework then automatically fetches

the data from the processors that store them locally. The actual communication is

mostly done using asynchronous communication routines MPI Isend and MPI Irecv.

2.5 Numerical examples

In order to illustrate how our method works in practice, we present numerical results

for the ground state electronic structure calculation, using sodium (Na) and silicon

(Si) as characteristic examples for metallic and insulating systems, respectively. We

find that high accuracy (below 10−3 Hartree/atom) is achieved by using only a small

number of adaptive local basis functions for one, two, and three dimensional systems

under a variety of conditions. Because of the small number of basis functions per atom,

our DG algorithm already shows significant reduction in computational time for a

small system with 128 Na atoms. We demonstrate that the current implementation is

able to solve systems with thousands of atoms, and that the algorithm has a potential

to be applied to much larger systems with a more advanced implementation.

This section is organized as follows: section 2.5.1 introduces the setup of the test

systems and the criterion for the quantification of the error. Section 2.5.2 discusses the

simplest case with the mono-crystalline quasi-1D system, followed by the discussion

on the disordered quasi-1D system in section 2.5.3. We illustrate in section 2.5.4 the

performance of the adaptive local basis functions under the DG framework for the

quasi-2D and bulk 3D systems. We discuss how to choose the penalty parameter

α in section 2.5.5. Finally we demonstrate the computational performance of our
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implementation of the DG method in section 2.5.6.

2.5.1 Setup

We use the local density approximation (LDA) [52, 206] for the exchange-correlation

functional and the Troullier-Martins pseudopotential [241]. More sophisticated pseu-

dopotentials and exchange-correlation functionals can also be used without changing

the structure of the implementation. All quantities are reported in atomic units (au).

All calculations are carried out on the Ranger system maintained at Texas Advanced

Computing Center (TACC) under NSF TeraGrid program. Ranger is a distributed-

memory parallel system with 3,936 16-way SMP compute nodes and a total of 15,744

AMD Opteron quad-cores processors. Each compute node has a theoretical peak

performance of 9.2 gigaflops per second (Gflops) per core, and has 32 gigabyte (GB)

of memory (2 GB per core). InfiniBand technology is used for the interconnection

between all nodes that ensures high data communication performance.

Fig. 2.2 (a) and (b) illustrate one unit cell of the crystalline Na and Si system,

respectively. Na has a body centered cubic (bcc) unit cell, with 2 atoms per cell and

a lattice constant of 7.994 au. Si has a diamond cubic unit cell, with 8 atoms per

cell and a lattice constant of 10.261 au. Fig. 2.2 (c) shows a quasi-1D Na system

with 4 unit cells extended along the z direction. The global domain is partitioned

into 4 elements {Ek}4k=1 with one unit cell per element. The red area represents one

of the elements E2, and the corresponding extended element Q2 consists of both the

red area and the blue area. We recall that the buffer size along the x(y, z) direction

refers to the length of the buffer area extended beyond the boundary of the element

Ek along the x(y, z) direction. We use the number of unit cells as the unit of the

buffer size. Fig. 2.2 shows the case with the buffer size of 1.0 (unit cell) along the z

direction, and 0.0 along the x and y directions. The application of the adaptive local

basis functions is not restricted to the study of mono-crystalline systems, and the
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potential function in each extended element does not necessarily satisfy the periodic

boundary condition. Mono-crystalline systems will be studied first to illustrate how

the adaptive local basis functions work in practice. Disordered system, as well as

cases with fractional buffer size will also be studied below.

To facilitate the comparison between different systems and parameters, we mea-

sure in all the examples the error of the total energy per atom. To be more specific,

we obtain first the self-consistent electron density and the corresponding total energy

in the global domain Ω as in Eq. (1.27). This self-consistent electron density is used

as the input electron density to construct the Hamiltonian Heff . The output electron

density is then evaluated using the DG method, and the corresponding total energy

given by the DG method is compared to that calculated in the global domain. Com-

paring the error of the total energy in a single evaluation step allows us to assess the

numerical error even when the number of the basis functions is not sufficient. For

the case with sufficient number of the basis functions, it is found that the error of

the total energy per atom with additional mixing steps is consistent with the error

in the single evaluation step. Here we set the target accuracy to be 10−3 au per

atom. The real space grid size in the global domain and in the extended elements is

set to be 0.50 au and 0.43 au for Na and Si, respectively. This grid size guarantees

that the uncertainty in the total energy in the global domain Ω is below the target

accuracy. The number of LGL grids inside each element is 16 and 24 along all the

three dimensions for Na and Si, respectively, which ensures the accuracy of numerical

integration.

We remarked in the end of section 2.3 that the DG framework is very flexible

and can incorporate not only the adaptive local basis functions but also other basis

functions such as local polynomials. In practice we find that the adaptive local

basis functions are computationally more efficient than polynomials. Therefore in

the following discussion only adaptive local functions will be used in the basis set.
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The number of adaptive local functions per atom is also referred to as the degrees of

freedom (DOF) per atom.

2.5.2 Periodic Quasi-1D system

Fig. 2.3 (a) shows the error of the total energy per atom with respect to different

buffer sizes and different numbers of basis functions per atom (DOF per atom), for

the quasi-1D periodic sodium system in Fig. 2.2 (c). The element size is fixed to be

one unit cell. The penalty parameter α is 20. The error decreases systematically with

respect to the increase of the buffer size. The target accuracy 10−3 au is plotted as

the black dashed horizontal line. For a small buffer size of 0.25 (red triangle with

solid line) the target accuracy is not yet reached with 20 basis functions per atom.

For a buffer size of 0.50 (black diamond with solid line) only 5 basis functions per

atom is needed to reach the target accuracy. For a larger buffer size of 0.75 (blue star

with solid line), the error is already far below the target accuracy with merely 2 basis

functions per atom. The potential function in the extended element does not satisfy

the periodic boundary condition along the z direction in the case with the buffer size

of 0.75, but the numerical results indicate that this violation does not much affect

the quality of the resulting basis functions in each element.

Similar behavior of the error is also found in the silicon system. Fig. 2.3 (b)

shows the error of the total energy per atom for the quasi-1D periodic silicon system

with four unit cells extended along the z direction, and with element size being one

unit cell. For a buffer size of 0.25 (red triangle with solid line) the number of basis

functions per atom needed to reach the target accuracy is more than 12. For a buffer

size of 0.50 (black diamond with solid line) and 0.75 (blue star with solid line) the

DOF per atom needed to reach the target accuracy is 6 and 5, respectively. Physical

intuition suggests that the minimum number of basis functions is 4, which reflects

one 2s and three 2p atomic orbitals. 20 ∼ 40 number of basis functions per atom
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(a) (b)

(c)

Figure 2.2: (a) The unit cell for Na. (b) The unit cell for Si. (c) A quasi-1D Na
system with 4 unit cells extended along the z direction. The red area represents one
of the elements E2. The corresponding extended element Q2 consists of both the red
area and the blue area. The buffer size is 1.0 unit cell along the z direction, and is
0.0 along the x and y directions.

is generally required to achieve good accuracy if Gaussian type orbitals or numerical

atomic orbitals are to be used [35]. Therefore for the quasi-1D system, our algorithm

achieves nearly the optimal performance in terms of the number of basis functions

per atom.

The behavior of the error found above does not depend on the length of the quasi-

1D system. Fig. 2.4 compares the error of the total energy per atom of the quasi-1D

mono-crystalline sodium system with respect to the length of the global domain (in

the unit of unit cell numbers), for 3 DOF per atom (blue diamond with dashed line),
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Figure 2.3: (a) The error of the total energy per atom (the y axis) for a periodic quasi-
1D sodium system consisting of 4 unit cells, with respect to the number of adaptive
local basis functions per atom (the x axis). The buffer sizes are chosen to be 0.25
(red triangle with solid line), 0.50 (black diamond with solid line), and 0.75 (blue star
with solid line). (b) The error of the total energy per atom for a periodic quasi-1D
silicon system consisting of 4 unit cells, with respect to the number of adaptive local
basis functions per atom (the x axis). The legend is the same as in (a). The black
dashed horizontal line refers to the target accuracy which is 10−3 au per atom.

and 5 DOF per atom (red triangle with solid line), respectively. The element size is

fixed to be one unit cell. The buffer size is 0.50, and penalty parameter α = 20. The

error exhibits stable behavior with respect to the length of the global domain.

2.5.3 Quasi-1D system with random perturbation

The application of the adaptive local basis functions is not restricted to the mono-

crystalline systems. It can also be applied to disordered system as well. To elucidate

this fact we add a random perturbation uniformly distributed between [−0.1, 0.1] au

to each Cartesian component of the atomic positions of the quasi-1D sodium system

and silicon system studied above. The global domain is kept the same, and so is
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Figure 2.4: The error of the total energy per atom for a quasi-1D sodium system with
respect to the length of the global domain along the z direction in Ω . The buffer
size is fixed to be 0.50. We present the results with 3 basis functions per atom (blue
diamond with dashed line) and 5 basis functions per atom (red triangle with solid
line), respectively.

the partition of the elements and the corresponding extended elements. Fig. 2.5

illustrates the error of the total energy per atom with the disordered sodium system

(red diamond with solid line) and the disordered silicon system (blue diamond with

dashed line), respectively. The buffer size is 0.50 and the penalty parameter α = 20. 4

and 6 DOF per atom is needed to reach the target accuracy for Na and Si, respectively.

The number of the basis functions is comparable to that presented in Fig. 2.3.

2.5.4 Quasi-2D and 3D Bulk system

Now we study the dimension dependence of the behavior of the error. Our implemen-

tation of the DG method is also able to calculate the total energy for the quasi-2D

and bulk 3D systems. Fig. 2.6 (a) shows the behavior of the error for a quasi-2D

sodium system with the buffer size of 0.50 (red triangle with solid line) and of 1.00

(blue triangle with dashed line), respectively. Fig. 2.6 (b) shows the behavior of the
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Figure 2.5: The error of the total energy per atom (the y axis) with respect to the
number of basis functions per atom (the x axis), for a disordered quasi-1D sodium
system (red diamond with solid line) and a disordered quasi-1D silicon system (blue
diamond with dashed line). The buffer size is fixed to be 0.50. The black dashed
horizontal line refers to the target accuracy which is 10−3 au per atom.

error for 3D bulk sodium system using the buffer size of 0.50 (red diamond with solid

line) and 1.00 (blue diamond with dashed line), respectively. The buffer area extends

beyond the element only along the y and z directions in the quasi-2D case, and the

buffer area extends along all the three directions in the bulk 3D case. With increased

dimensionality, the number of sodium atoms in each element remains the same, but

the number of sodium atoms in the extended element increases with the volume of the

buffer area. For example, the numbers of the sodium atoms in the extended element

with a buffer size of 1.00 are 4, 18, 54 for quasi-1D, quasi-2D and 3D bulk systems,

respectively. The increased number of atoms in the extended elements leads to more

eigenfunctions in the extended elements, and therefore more basis functions per atom

in the elements. For a buffer size of 0.50, 15 and 35 basis functions per atom are

required to reach target accuracy for the quasi-2D and bulk 3D sodium systems, re-

spectively. By increasing the buffer size to 1.00, the required DOF per atom decreases
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to 5 and 20 for the quasi-2D and bulk 3D sodium systems, respectively.
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Figure 2.6: (a) The error of the total energy per atom (the y axis) for a quasi-
2D sodium system with respect to the number of basis functions per atom (the x
axis). The buffer size is chosen to be 0.50 (red triangle with solid line), and 1.00
(blue triangle with dashed line), respectively. (b) The error of the total energy per
atom for a bulk 3D sodium system (the y axis) with respect to the number of basis
functions per atom (the x axis). The buffer size is chosen to be 0.50 (red diamond
with solid line), and 1.00 (blue diamond with dashed line), respectively. The black
dashed horizontal line refers to the target accuracy which is 10−3 au per atom.

2.5.5 The penalty parameter

The interior penalty formulation of the discontinuous Galerkin method contains an

important parameter α for stability reason. α = 20 has been applied uniformly to all

the examples studied above. Fig. 2.7 shows the α-dependence of the error of the total

energy per atom for the quasi-1D sodium system (red triangle with solid line) and the

quasi-1D silicon system (blue diamond with dashed line), respectively. The buffer size

is 0.50, and the DOF per atom used is 5 and 6 for sodium and silicon, respectively.

There exists a threshold value of α for both sodium and silicon, and in this case the
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threshold value of α is slightly below 20. The error increases dramatically if α is below

this threshold value, since the inter-element continuity of the Kohn-Sham orbitals is

not effectively enforced by the penalty term. After passing this threshold value the

error increases much slower, but is still visible especially for very large value of α.

This is because the penalty term is included in the variational formulation (2.14) and

therefore is also reflected in the eigenvalues and eigenvectors. The rate of increase for

the error can be system dependent, and in this case the rate of increase for the error

in the silicon system is larger than that in the sodium system. Fig. 2.7 indicates that

the penalty parameter α plays an important role in the stability of the algorithm,

but the particular choice of the value of α is not crucial. The algorithm is stable with

respect to a large range of α values.
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Figure 2.7: The error of the total energy per atom (the y axis) with respect to
the penalty parameter α (the x axis), for a quasi-1D sodium system (red triangle
with solid line) and a quasi-1D silicon system (blue diamond with dashed line). The
number of basis functions per atom for sodium and silicon is 5 and 6, respectively.
The buffer size is fixed to be 0.50.
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2.5.6 Computational efficiency

The small number of the adaptive basis functions per atom can lead to significant

saving of the computational time. We illustrate the efficiency of our algorithm using a

bulk 3D mono-crystalline sodium system with the buffer size of 1.00 and with 20 basis

functions per atom. Fig. 2.6 suggests that this choice of the parameters leads to the

target accuracy. The size of the global domain Ω ranges from 4×4×4 unit cells with

128 Na atoms to 12× 12× 12 unit cells with 3456 atoms. Each element is chosen to

be one unit cell. The number of processors used is proportional to the number of unit

cells, and 1, 728 processors are used in the problem with 12× 12× 12 unit cells. We

compare the wall clock time for a single evaluation step of the electron density with a

typical number of 10 LOBPCG iterations for solving the adaptive basis functions in

the extended elements. Fig. 2.8 compares the wall clock time for solving the adaptive

basis functions in the extended elements (blue diamond with dashed line), for solving

the DG eigenvalue problem using ScaLAPACK (red triangle with solid line), and for

the overhead in the DG method (black circle with dot dashed line). Since both the

size of the extended elements and the number of basis functions per atom are fixed,

the computational time for solving the adaptive basis functions does not depend on

the global domain size. The overhead in the DG method includes SVD filtering of

the basis functions, numerical integration, and data communication. All numerical

integrations are localized inside each element and its neighboring elements. Our

implementation ensures that the data communication is restricted to be within nearest

neighboring elements. Therefore the time for the overhead increases mildly with

respect to the global system size. For system size smaller than 1, 000 atoms, solving

the adaptive local basis functions in the extended elements is more time consuming

than the DG eigensolver. The complexity of the DG eigensolver scales cubically with

respect to global system size, and starts to dominate the cost of computational time for

system size larger than 1, 000 atoms. Since the number of processors is proportional to
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the number of elements, the ideal wall clock time for the DG solver scales quadratically

with respect to the number of atoms. This quadratic scaling is illustrated by the slope

of the small red triangle in Fig. 2.8. Numerical result shows that up to 3, 456 atoms,

the performance of ScaLAPACK is still in good correspondence with respect to the

ideal scaling. In this case the matrix size of the DG Hamiltonian matrix is 69, 120.
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Figure 2.8: The wall clock time for solving the adaptive local basis functions in the
extended elements (blue diamond with dashed line), for solving the DG eigenvalue
problem using ScaLAPACK (red triangle with solid line), and for the overhead in the
DG formalism (black circle with dot dashed line). The x axis is the number of atoms
for different bulk 3D sodium systems. The slope of the small red triangle illustrates
the ideal quadratic scaling (x2) for the wall clock time cost for the DG eigenvalue
solver in parallel.

The efficiency due to the dimension reduction of the adaptive basis functions

can be illustrated by the comparison between the cost of the computational time

of the LOBPCG eigensolver directly in the global domain with a planewave basis

set (Global) , and that of the DG eigenvalue problem with the adaptive basis func-

tions (DG), as reported in Table 2.1. The global solver uses a typical number of 10

LOBPCG iteration steps. On a single processor, the global solver costs 2, 235 sec for

the bulk 3D sodium system with 128 atoms, and 53, 395 sec for the bulk 3D sodium
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system with 432 atoms. By assuming that the global solver can be ideally paral-

lelized, the third column of Table 2.1 reports the computational time measured on a

single processor divided by the number of processors used in the corresponding DG

eigensolver. The fourth column reports the wall clock time for the DG eigensolver

executed in parallel. We remark that the computational time for solving the adaptive

local basis functions is not taken into account, since we are comparing the saving of

the computational time due to the dimension reduction of the basis functions. It is

found that the saving of the computational time is already significant even when the

system size is relatively small.

Atom# Proc# Global (sec) DG (sec)
128 64 35 4
432 216 248 35

Table 2.1: The comparison of the cost of the computational time using the planewave
discretization (the LOBPCG solver directly applied in the global domain) and that
using the adaptive local basis functions (the DG eigenvalue solver using ScaLAPACK).
The systems under study are the bulk 3D sodium system with 4 × 4 × 4 unit cells
(128 Na atoms), and with 6× 6× 6 unit cells (432 Na atoms), respectively.

2.6 Conclusion

In this chapter we proposed the adaptive local basis method for discretizing the Kohn-

Sham Hamiltonian operator. We demonstrated that the adaptive local basis functions

are efficient for calculating the total energy and electron density, and can reach high

accuracy (below 10−3 Hartree/atom) with complexity comparable to tight binding

method. The adaptive local basis functions are discontinuous in the global domain,

and the continuous Kohn-Sham orbitals and electron density are reconstructed from

these discontinuous basis functions using the discontinuous Galerkin (DG) framework.

The environmental effect is automatically built into the basis functions, thanks to the

flexibility provided by the DG framework.
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In order to generalize the current framework to the force calculation and further

to the geometry optimization and the ab initio molecular dynamics simulation, the

adaptive local basis functions and their derivatives with respect to the positions of

the atoms (called Pulay force [213]) should be both accessible. Our preliminary

result suggests that the effect of the Pulay force can be systematically reduced. This

generalization will be studied in detail in the near future.

The current implementation of the DG method is already able to perform the total

energy calculation for systems consisting of thousands of atoms. We are aware of the

fact that calculations of this range is already achievable with several existing software

packages using plane wave basis functions with iterative methods. However, the

performance of the DG method with adaptive local basis functions can be improved

by taking into account the block sparsity of the DG stiffness matrix. Furthermore,

the local nature of the adaptive basis functions allows us to incorporate the recently

developed pole expansion and selected inversion type fast algorithms [164, 169, 170]

into the DG framework. The capability of the resulting algorithm is expected to be

greatly enhanced compared to the current implementation. This is also within our

scope in the near future.
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Chapter 3

Representation of the Fermi

operator: Pole expansion

3.1 Introduction

In this chapter we study the decomposition of the Fermi operator, which represents

the finite temperature density matrix ρ:

ρ = f(H) =
2

1 + exp(β(H − µ)) = 1− tanh
(β
2
(H − µ)

)
, (3.1)

where Here tanh is the hyperbolic tangent function. As opposed to the formula-

tion (1.34) in Chapter 1, we add the factor 2 in the numerator accounts for the spin

degeneracy of the electrons.

The Fermi operator is a complicated matrix-valued function, and cannot be di-

rectly computed without further simplification. The Fermi operator expansion frame-

work expands the Fermi operator into a series of simple functions

f(H) ≈
P∑

i=1

fi(H). (3.2)
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Each simple function fi(H) is a polynomial or a rational function of H , and can be

calculated without diagonalization. The number of simple functions (P ) to approx-

imate the Fermi operator reflects the representation cost of Fermi operator. In

practice it is desirable to have the representation cost P as small as possible.

The representation cost of the Fermi operator is a function of β∆E (for metallic

system at finite temperature) or ∆E/Eg (for insulating systems) [101], where ∆E is

the spectral width of the discretized Hamiltonian matrix, and Eg is the spectrum gap

of the Hamiltonian around the chemical potential. If polynomials are used to expand

the Fermi operator for the metallic system with Eg = 0, the representation cost scales

as O(β∆E). Therefore the number of polynomials P can be thousands or more if

the temperature is low or the spectrum width ∆E is large. The representation cost

can be reduced by means of rational functions to O(β∆E)1/2 [53,199]. However, the

optimal representation cost remains unclear.

This dissertation develops two novel strategies, the multipole expansion and the

pole expansion, to reduce the computational cost. Both the multipole expansion and

the pole expansion techniques reduce the representation cost of Fermi operator down

to logarithmic scaling O
(
ln(β∆E)

)
. Numerical examples show that the logarithmic

scaling enables accurate and efficient representation of the Fermi operator even for

β∆E being in the order of millions. Since the scaling of the representation cost is the

same in the multipole expansion and in the pole expansion, the difference between the

two methods is in the preconstant. Numerical example shows that the preconstant

in the pole expansion is smaller than that in the multipole expansion, and therefore

the pole expansion is computationally more efficient. Pole expansion will be used in

designing accurate and efficient algorithms for the evaluation of the electron density

in Chapter 4.

The rest of this chapter is organized as follows. Section 3.2 introduces the multi-

pole expansion, the pole expansion is described in Section 3.3. The relation between
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the multipole expansion and the pole expansion is discussed in Section 3.4, followed

by the conclusion given in Section 3.5. The multipole expansion and the pole expan-

sion use different mathematical techniques and are both interesting from numerical

analysis point of view. Readers who are more interested in the main flow of the new

method for solving KSDFT can directly read Section 3.3 and then go to Chapter 4.

Materials in this chapter have been presented in [160, 164].

3.2 Multipole expansion

3.2.1 Formulation

The multipole expansion of the Fermi operator starts from the Matsubara represen-

tation [176]

ρ = 1− 4ℜ
∞∑

l=1

1

β(H − µ)− (2l − 1)πi
. (3.3)

The summation in (3.3) can be seen as a summation of residues contributed from the

poles {(2l − 1)πi}, with l a positive integer, on the imaginary axis. This suggests

to look for a multipole expansion of the contributions from the poles, as done in the

fast multipole method (FMM) [107]. To do so, we use a dyadic decomposition of the

poles, in which the n-th group contains terms from l = 2n−1 to l = 2n − 1, for a

total of 2n−1 terms (see Figure 3.1 for illustration). We decompose the summation in

Eq.(3.3) accordingly, with x = β(H − µ) for simplicity

∞∑

l=1

1

x− (2l − 1)πi
=

∞∑

n=1

2n−1∑

l=2n−1

1

x− (2l − 1)πi
=

∞∑

n=1

Sn. (3.4)

The basic idea is to combine the simple poles into a set of multipoles at l = ln,

where ln is taken as the midpoint of the interval [2n−1, 2n − 1]

ln =
3 · 2n−1 − 1

2
. (3.5)

84



Re

Im

πi

3πi

5πi

(2n − 1)πi

(2n+1 − 3)πi

...

...

...

Figure 3.1: Illustration of the pole decomposition (3.12). From 2n to 2n+1 − 1 poles
are grouped together as shown in the figure. The spectrum is indicated by the red
line on the real axis.

Then the Sn term in the above equation can be written as

Sn =

2n−1∑

l=2n−1

1

x− (2ln − 1)πi− 2(l − ln)πi

=

2n−1∑

l=2n−1

1

x− (2ln − 1)πi

∞∑

ν=0

( 2(l − ln)πi
x− (2ln − 1)πi

)ν

=
2n−1∑

l=2n−1

1

x− (2ln − 1)πi

P−1∑

ν=0

( 2(l − ln)πi
x− (2ln − 1)πi

)ν

+
2n−1∑

l=2n−1

1

x− (2l − 1)πi

( 2(l − ln)πi
x− (2ln − 1)πi

)P

(3.6)

In deriving Eq. (3.6) we used the result for the summation of a geometric series.

Using the fact that x is real, the second term in Eq. (3.6) can be bounded by

2n−1∑

l=2n−1

∣∣∣ 1

x− (2l − 1)πi

∣∣∣
∣∣∣ 2(l − ln)πi
x− (2ln − 1)πi

∣∣∣
P

≤
2n−1∑

l=2n−1

1

|(2l − 1)π|
∣∣∣2(l − ln)
2ln − 1

∣∣∣
P

≤ 1

2π

1

3P

(3.7)

Therefore, we can approximate the sum Sn by the first P terms, and the error decays
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exponentially with P :

∣∣∣∣∣Sn(x)−
2n−1∑

l=2n−1

1

x− (2ln − 1)πi

P−1∑

ν=0

( 2(l − ln)πi
x− (2ln − 1)πi

)ν
∣∣∣∣∣ ≤

1

2π

1

3P
, (3.8)

uniformly in x. The overall philosophy here is similar to the fast multipole method

[107]: Given a preset error tolerance, one selects P , the number of terms to retain in

Sn, according to Eq. (3.8).

Interestingly, the remainder of the summation in Eq. (3.3) from l = m to ∞ has

an explicit expression

ℜ
∞∑

l=m

1

2x− (2l − 1)iπ
=

1

2π
ℑψ
(
m− 1

2
+
i

π
x

)
, (3.9)

where ψ is the digamma function ψ(z) = Γ′(z)/Γ(z). It is well known [131] that the

digamma function has the following asymptotic expansion

ψ(z) ∼ ln(z)− 1

2z
− 1

12z2
+O

( 1

z4

)
, |arg z| ≤ π and |z| → ∞. (3.10)

Therefore,

ℑψ
(
m− 1

2
+
i

π
x

)
∼ ℑ ln

(
m− 1

2
− i

π
x

)
+O

( 1

m2

)

= arctan

(
2x

(2m− 1)π

)
+O

( 1

m2

)
, m→∞.

(3.11)

Figure 3.2 shows that the asymptotic approximation (3.11) is already rather accurate

when m = 10.

Eq. (3.11) also shows the effectiveness of the multipole representation from the

viewpoint of traditional polynomial approximations. At zero temperature, the Fermi-

Dirac function is a step function that cannot be accurately approximated by any finite

order polynomial. At finite but low temperature, it is a continuous function with a
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(red circle), i.e. the remainder of the pole

expansion in Eq. (3.12) is compared with the function arctan
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)
(blue solid

line) for m = 10

very large derivative at x = 0, i.e. when the energy equals the chemical potential

µ. The magnitude of this derivative becomes smaller and, correspondingly, the Fermi

function becomes smoother as the temperature is raised. One can use the value of the

derivative of the Fermi function at x = 0 to measure the difficulty of an FOE. After

eliminating the first m terms in the expansion, Eq. (3.11) shows that asymptotically

the derivative is multiplied by the factor 2
(2m−1)π

, which is equivalent to a rescaling

of the temperature by the same factor. In particular, if we explicitly include the first

2N terms in the multipole representation of the Fermi operator, we are left with a

remainder which is well approximated by Eq. (3.11), so that, effectively, the difficulty

is reduced by a factor 2N . As a matter of fact standard polynomials approximations,

such as the Chebyshev expansion, can be used to efficiently represent the remainder

in Eq. (3.9) even at very low temperature.

In summary, we arrive at the following multipole representation for the Fermi
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operator

ρ = 1− 4ℜ
N∑

n=1

2n−1∑

l=2n−1

1

β(H − µ)− (2ln − 1)πi

P−1∑

ν=0

( 2(l − ln)πi
β(H − µ)− (2ln − 1)πi

)ν

− 2

π
ℑψ
(
2N − 1

2
+

i

2π
β(H − µ)

)
+O(N/3P ). (3.12)

The multipole part is evaluated directly as discussed below, and the remainder is

evaluated with the standard polynomial method.

3.2.2 Numerical calculation and error analysis

To show the power of the multipole expansion, we discuss a possible algorithm to

compute the Fermi operator in electronic structure calculations and present a de-

tailed analysis of its cost in terms of β∆ǫ. Given the Hamiltonian matrix H , it is

straightforward to compute the density matrix ρ from the multipole expansion if we

can calculate the Green’s functions Bln = [β(H − µ)− (2ln − 1)πi]−1 for different n.

A possible way to calculate the inverse matrices is by the Newton-Schulz iteration.

For any non-degenerate matrix A, the Newton-Schulz iteration computes the inverse

B = A−1 as

Bk+1 = 2Bk −BkABk. (3.13)

The iteration error is measured by the spectral radius, i.e. the eigenvalue of largest

magnitude, of the matrix I −ABk where I is the identity matrix. In the following

we denote the spectral radius of the matrix A by σ(A). Then the spectral radius at

the k-th step of the Newton-Schulz iteration is Rk = I −ABk and

σ(Rk+1) = σ(Rk)
2 = σ(R0)

2k+1

. (3.14)

Thus the Newton-Schulz iteration has quadratic convergence. With a proper choice
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of the initial guess (see [53]), the number of iterations required to converge is bounded

by a constant, and this constant depends only on the target accuracy.

The remainder, i.e. the term associated to the digamma function in Eq. (3.12),

can be evaluated by standard polynomial approximations such as the Chebyshev

expansion. The order of Chebyshev polynomials needed for a given target accuracy

is proportional to β∆ǫ/2N+1 (see [16, Appendix]).

Except for the error coming from the truncated multipole representation, the main

source of error in applications comes from the numerical approximation of the Green’s

functions Bln . To understand the impact of this numerical error on the representation

of the Fermi operator, let us rewrite

Sn =
2n−1∑

l=2n−1

Bln

P−1∑

ν=0

(−2(l − ln)πiBln)
ν =

P−1∑

ν=0

Bν+1
ln

2n−1∑

l=2n−1

(−2(l − ln)πi)ν .

The factor
∑

l(−2(l − ln)πi)
ν is large, but we can control the total error in Sn in

terms of the spectral radius σ(Bln − B̂ln). Here B̂ln is the numerical estimate of Bln .

The error is bounded by

σ(Ŝn − Sn) ≤
P−1∑

ν=0

2n−1(2n−1π)νσ
(
Bν+1 − B̂ν+1

)
≤

P−1∑

ν=0

(2n−1π)ν+1σ
(
Bν+1 − B̂ν+1

)
,

(3.15)

where we have omitted the subscript ln in Bln and in B̂ln . In what follows the

quantity
∑P−1

ν=0 (2
n−1π)ν+1σ

(
Bν+1 − B̂ν+1

)
will be denoted by eP . Then we have

eP =
P−1∑

ν=0

(2n−1π)ν+1σ
(
(Bν − B̂ν)B + (B̂ν −Bν)(B − B̂) +Bν(B − B̂)

)

≤
P−1∑

ν=1

(2n−1π)ν+1
(
σ(B) + σ(B − B̂)

)
σ(Bν − B̂ν) +

P−1∑

ν=0

(2n−1π)ν+1σ(B)νσ(B − B̂).

(3.16)

Here we took into account the fact that the ν = 0 term in the first summation is

equal to zero, and have used the properties σ(A+B) ≤ σ(A)+σ(B), and σ(AB) ≤
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σ(A)σ(B), respectively.

Noting that 2n−1πσ(Bln) ≤ 1/3 and changing ν to ν + 1 in the first summation,

we can rewrite eP as

eP ≤
(1
3
+ 2n−1πσ(B − B̂)

) P−2∑

ν=0

(2n−1π)ν+1σ(Bν+1 − B̂ν+1) +
P−1∑

ν=0

1

3ν
2n−1πσ(B − B̂)

≤ (
1

3
+ 2n−1πσ(B − B̂))eP−1 +

3

2
2n−1πσ(B − B̂)

= (
1

3
+ e1)eP−1 +

3

2
e1.

(3.17)

In the last equality, we used the fact that e1 = 2n−1πσ(B − B̂). Therefore, the error

eP satisfies the following recursion formula

eP+
3e1/2

e1 − 2/3
≤ (

1

3
+e1)

(
e1 +

3e1/2

eP−1 − 2/3

)
≤ (

1

3
+e1)

P−1

(
e1 +

3e1/2

e1 − 2/3

)
. (3.18)

Taking e1 ≤ 2
3
, we have

eP ≤ e1 = 2n−1πσ(B − B̂). (3.19)

Therefore, using Eq. (3.14) we find that the number k of Newton-Schulz iterations

must be bounded as dictated by the following inequality in order for the error σ(Ŝn−

Sn) to be ≤ 10−D/N .

2n−1σ(R0)
2k ≤ 10−D

N
. (3.20)

Here we have used the fact that σ(Bln) ≤ 1/π for any n. Each Newton-Schulz

iteration requires two matrix by matrix multiplications, and the number of matrix by

matrix multiplications needed in the Newton-Schulz iteration for Bln with n < N is

bounded by

2 log2

(
D log2 10 +N + log2N

− log2 σ(R0)

)
. (3.21)

To obtain a target accuracy σ(ρ − ρ̂) ≤ 10−D for a numerical estimate ρ̂ of the
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density matrix, taking into account the operational cost of calculating the remainder

and the direct multipole summation in the FOE, the number of matrix by matrix

multiplications nMM is bounded by

nMM ≤ 2N log2N + C1N + C22
−N−1β∆ǫ. (3.22)

Here we used the property: log2(x + y) ≤ log2 x + log2 y when x, y ≥ 2, and defined

the constant C1 as follows:

C1 =
2

N

N∑

n=1

log2

(
D log2 10 + log2N

− log2 σ
(
(R0)ln

)
)
. (3.23)

The dependence on 2−N−1β∆ǫ in the last term on the right hand side of (3.22)

comes from Chebyshev expansion used to calculate the remainder. From numerical

calculations on model systems, the constant C1 and C2 will be shown to be rather

small. Finally, choosing N ∝ ln(β∆ǫ), we obtain

nMM ∝ (ln β∆ǫ) · (ln ln β∆ǫ) (3.24)

with a small prefactor.

3.2.3 Numerical examples

We illustrate the algorithm in three simple cases. The first is an off-lattice one

dimensional model defined in a supercell with periodic boundary conditions. In this

example, we discretize the Hamiltonian with the finite difference method, resulting in

a very broad spectrum with a width of about 2000eV, and we choose a temperature

as low as 32K. In the second example we consider a nearest neighbor tight binding

Hamiltonian in a three dimensional simple cubic lattice and set the temperature to

100K. In the third example we consider a three dimensional Anderson model with
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random on-site energy on a simple cubic lattice at 100K.

One dimensional model with large spectral width

In this example, a one dimensional crystal is described by a periodic supercell

with 10 atoms, evenly spaced. We take the distance between adjacent atoms to be

a = 5.29Å. The one-particle Hamiltonian is given by

H = −1
2

∂2

∂x2
+ V. (3.25)

The potential V is given by a sum of Gaussians centered at the atoms with width

σ = 1.32Å and depth V0 = 13.6eV. The kinetic energy is discretized using a simple 3-

point finite difference formula, resulting in a HamiltonianH with a discrete eigenvalue

spectrum with lower and upper eigenvalues equal to ǫ− = 6.76eV and ǫ+ = 1959eV,

respectively. Various temperatures from 1024K to 32K were tried. Figure 3.3 reports

the linear-log graph of nMM, the number of matrix by matrix multiplications needed

to evaluate the density matrix using our FOE, versus β∆ǫ, with β∆ǫ plotted in a

logarithmic scale. The logarithmic dependence can be clearly seen. The prefactor

of the logarithmic dependence is rather small: when β∆ǫ is doubled, a number of

additional matrix multiplications equal to 17 is required to achieve two-digit accuracy

(D = 2), a number equal to 19 is needed for D = 4, and a number equal to 21 is

needed for D = 6, respectively. The observed D-dependence of the number of matrix

multiplications agrees well with the prediction in (3.22).

In order to assess the validity of the criterion for the number of matrix multipli-

cations given in Eq. (23), we report in Table 3.1 the calculated relative energy error

and relative density error, respectively, at different temperatures, when the number

of matrix multiplications is bounded as in formula (23) using different values for D.

The relative energy error, ∆ǫrel, measures the accuracy in the calculation of the total
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Figure 3.3: Linear-log plot of the number of matrix matrix multiplications nMM versus
β∆ǫ. nMM depends logarithmically on β∆ǫ with a small constant prefactor.

electronic energy corresponding to the supercell E = Tr(ρH). It is defined as

∆ǫrel =
|Ê − E|
|E| . (3.26)

Similarly the relative L1 error in the density function in real space is defined as

∆ρrel =
Tr |ρ̂− ρ|

Trρ
. (3.27)

Because Trρ = Ne, where Ne is the total number of electrons in the supercell, ∆ρrel is

the same as the L1 density error per electron. Table 3.1 shows that for all the values

of β∆ǫ, our algorithm gives a numerical accuracy that is even better than the target

accuracy D. This is not surprising because our theoretical analysis was based on the

most conservative error estimates.

Periodic three dimensional tight-binding model

In this example we consider a periodic three dimensional single-band tight-binding

Hamiltonian in a simple cubic lattice. The Hamiltonian, which can be viewed as the

discretized form of a free-particle Hamiltonian, is given in second quantized notation
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T β∆ǫ
∆ǫrel

D = 2 D = 4 D = 6

1024K 2.22× 104 1.64× 10−3 5.98× 10−6 3.31× 10−8

512K 4.44× 104 1.73× 10−3 6.49× 10−6 3.70× 10−8

256K 8.89× 104 1.78× 10−3 6.83× 10−6 3.96× 10−8

128K 1.78× 105 1.74× 10−3 6.55× 10−6 3.75× 10−8

64K 3.56× 105 1.75× 10−3 6.62× 10−6 3.80× 10−8

32K 7.12× 105 1.76× 10−3 6.66× 10−6 3.82× 10−8

T β∆ǫ
∆ρrel

D = 2 D = 4 D = 6

1024K 2.22× 104 4.21× 10−4 2.23× 10−6 1.50× 10−8

512K 4.44× 104 4.63× 10−4 2.52× 10−6 1.74× 10−8

256K 8.89× 104 4.77× 10−4 2.62× 10−6 1.81× 10−8

128K 1.78× 105 5.04× 10−4 2.80× 10−6 1.95× 10−8

64K 3.56× 105 4.92× 10−4 2.70× 10−6 1.86× 10−8

32K 7.12× 105 4.84× 10−4 2.64× 10−6 1.80× 10−8

Table 3.1: One dimensional Hamiltonian model with large spectral gap. Relative
energy error ∆ǫrel and relative L1 density error ∆ρrel for a large range of values of
β∆ǫ and several values of D.

by:

H = −t
∑

<i,j>

c+i cj , (3.28)

where the sum includes the nearest neighbors only. Choosing a value of 2.27eV

for the hopping parameter t the band extrema occur at ǫ+ = 13.606eV, and at

ǫ− = −13.606eV, respectively. In the numerical calculation we consider a periodically

repeated supercell with 1000 sites and chose a value of 100K for the temperature.

Table 3.2 shows the dependence of nMM, ∆ǫrel, and ∆ρrel on the chemical potential

µ, for different D choices. Compared to the previous one dimensional example in

which β∆ǫ was as large as 7.12 × 105, here β∆ǫ = 1600 due to the much smaller

spectral width of the tight-binding Hamiltonian. When µ = 0 the chemical potential

lies exactly in the middle of the spectrum. This symmetry leads to a relative error as

low as 10−19 for the density function.
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µ
D = 4 D = 8

nMM ∆ǫrel ∆ρrel nMM ∆ǫrel ∆ρrel

−10.88eV 320 4.09× 10−9 2.31× 10−10 376 2.27× 10−13 2.37× 10−14

−5.44eV 308 1.48× 10−9 3.15× 10−11 356 4.77× 10−13 2.52× 10−15

0.00eV 305 1.55× 10−9 6.26× 10−19 357 2.98× 10−15 6.26× 10−19

5.44eV 308 1.45× 10−8 1.34× 10−12 356 5.36× 10−13 1.07× 10−16

10.88eV 320 1.69× 10−8 1.78× 10−13 376 1.09× 10−12 1.80× 10−17

Table 3.2: Three dimensional periodic tight binding model. Number of matrix matrix
multiplications nMM, relative energy error ∆ǫrel, and relative L1 density error ∆ρrel.
For µ = 0, the algorithm achieves machine accuracy for the absolute error of the
density function as a consequence of symmetry.

Three dimensional disordered Anderson model

In this example we consider an Anderson model with on-site disorder on a simple

cubic lattice. The Hamiltonian is given by

H = −t
∑

<i,j>

c+i cj +
∑

i

ǫic
+
i ci. (3.29)

This Hamiltonian contains random on-site energies ǫi uniformly distributed in the in-

terval [−1.13eV, 1.13eV], and we use the same hopping parameter t as in the previous

(ordered) example. In the numerical calculation we consider, as before, a supercell

with 1000 sites with periodic boundary conditions, and choose again a temperature of

100K. In one realization of disorder corresponding to a particular set of random on-

site energies, the spectrum has extrema at ǫ+ = 13.619eV and at ǫ− = −13.676eV.

The effect of disorder on the density function is remarkable: while in the periodic

tight-binding case the density was uniform, having the same constant value at all the

lattice sites, now the density is a random function in the lattice sites within the su-

percell. Table 3.3 reports for the disordered model the same data that were reported

in Table 3.2 for the ordered model. We see that the accuracy of our numerical FOE

is the same in the two cases, irrespective of disorder. The only difference is that the

super convergence due to symmetry for µ = 0 no longer exists in the disordered case.
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µ
D = 4 D = 8

nMM ∆ǫrel ∆ρrel nMM ∆ǫrel ∆ρrel

−10.88eV 320 5.16× 10−9 1.72× 10−10 376 3.16× 10−13 2.59× 10−14

−5.44eV 308 4.75× 10−9 2.43× 10−11 356 3.71× 10−13 1.48× 10−15

0.00eV 305 8.08× 10−10 9.50× 10−13 357 1.76× 10−14 2.39× 10−17

5.44eV 308 1.01× 10−8 1.22× 10−12 356 3.57× 10−13 8.05× 10−17

10.88eV 320 1.30× 10−8 1.56× 10−13 376 9.56× 10−13 1.83× 10−17

Table 3.3: Three dimensional Anderson model with on-site disorder. Number of
matrix matrix multiplications nMM, relative energy error ∆ǫrel, and relative L1 density
error ∆ρrel.

3.3 Pole expansion

3.3.1 Pole expansion: basic idea

Efficient representation of the Fermi-Dirac function can be achieved alternatively by

using the discretized contour integral in the complex plane:

f(x) =
1

2πi

∫

Γ

f(z)(z − x)−1 dz,

≈
P∑

i=1

ωi
x− zi

, x ∈ R, zi ∈ Z, ωi ∈ Z.

(3.30)

Here {zi} are the quadrature points on the complex contour Γ, and {ωi} are the

quadrature weights. Each point zi is a single-pole on the complex plane, and Eq. (3.30)

is referred to as the pole expansion in the following discussion. The advantage of the

pole expansion is that when substituting H for x in Eq. (3.30), each term ωi

H−zi only

involves matrix-inversion but not matrix-matrix multiplication as in the multipole ex-

pansion. As shall be seen in Chapter 4, pole expansion (3.30) allows the development

of accurate and efficient algorithm for solving KSDFT. The representation cost of the

pole expansion developed in this section scales as O(log(β∆E)). The mathematical

technique used in the pole expansion originates from the idea in [118].

Let us first briefly recall the main idea of [118]. Consider a function f that is
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analytic in C\(−∞, 0] and an operator A with spectrum in [m,M ] ⊂ R
+, one wants

to evaluate f(A) using a rational expansion of f by discretizing the contour integral

f(A) =
1

2πi

∫

Γ

f(z)(z −A)−1 dz. (3.31)

The innovative technique in [118] was to construct a conformal map that maps the

stripe S = [−K,K] × [0, K ′] to the upper half (denoted as Ω+) of the domain Ω =

C\
(
(−∞, 0] ∪ [m,M ]

)
. This special map from t ∈ S to z ∈ Ω+ is given by

z =
√
mM

(k−1 + u

k−1 − u
)
, u = sn(t) = sn(t|k), k =

√
M/m− 1√
M/m+ 1

. (3.32)

Here sn(t) is one of the Jacobi elliptic functions and the numbers K and K ′ are

complete elliptic integrals whose values are given by the condition that the map is

from S to Ω+.

Applying the trapezoidal rule with Q equally spaced points in (−K + iK ′/2, K +

iK ′/2),

tj = −K +
iK ′

2
+ 2

(j − 1
2
)K

Q
, 1 ≤ j ≤ Q, (3.33)

we get the quadrature rule (denote zj = z(tj))

fQ(A) =
−4K

√
mM

πQk
ℑ

Q∑

j=1

f(zj)(zj −A)−1 cn(tj) dn(tj)

(k−1 − sn(tj))2
. (3.34)

Here cn and dn are the other two Jacobi elliptic functions in standard notation and the

factor cn(tj) dn(tj)(k
−1 − sn(tj))

−2
√
mM/k comes from the Jacobian of the function

z(t).

It is proved in [118] that the convergence is exponential in the number of quadra-

ture points Q and the exponent deteriorates only logarithmically as M/m→∞:

‖f(A)− fQ(A)‖ = O(e−π2Q/(log(M/m)+3)). (3.35)
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To adapt the idea to our setting with the Fermi-Dirac function or the hyperbolic

tangent function, we face with two differences: First, the tanh function has singular-

ities on the imaginary axis. Second, the operator we are considering, β(H − µ), has

spectrum on both the negative and positive axis.

3.3.2 Gapped case: insulating system

We first consider the case when the Hamiltonian H has a gap in its spectrum around

the chemical potential µ, such that dist(µ, σ(H)) = Eg > 0. Physically, this will be

the case when the system is an insulator.

Let us consider f(z) = tanh(β
2
z1/2) acting on the operator A = (H − µ)2. Now,

f(z) has singularities only on (−∞, 0] and the spectrum of A is contained in [E2
g , E

2
M ],

where

EM = max
E∈σ(H)

|E − µ|.

We note that obviously EM ≤ ∆E. Hence we are back in the same scenario as

considered in [118] except that we need to take care of different branches of the

square root function when we apply the quadrature rule.

More specifically, we construct the contour and quadrature points zj in the z-plane

using parameters m = E2
g and M = E2

M . Denote g(ξ) = tanh(βξ/2), ξ±j = ±z1/2j ,

and B = H − µ. The quadrature rule is then given by

gQ(B) =
−2K

√
mM

πQk
ℑ
(

Q∑

j=1

g(ξ+j )(ξ
+
j −B)−1 cn(tj) dn(tj)

ξ+j (k
−1 − sn(tj))2

+

Q∑

j=1

g(ξ−j )(ξ
−
j −B)−1 cn(tj) dn(tj)

ξ−j (k
−1 − sn(tj))2

)
, (3.36)

where the factors ξ±j in the denominator come from the Jacobian of the map from z

to ξ. The number of poles to be inverted is Npole = 2Q. After applying (3.35), we
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have a similar error estimate for g(B)

‖g(B)− gQ(B)‖ = O(e−π2Q/(2 log(EM/Eg)+3)). (3.37)

In Fig. 3.4, a typical configuration of the quadrature points is shown. The x-axis

is taken to be E − µ. We see that in this case the contour consists of two loops, one

around the spectrum below the chemical potential and the other around the spectrum

above the chemical potential.
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Figure 3.4: A typical configuration of the poles on a two-loop contour. Q = 30,
Eg = 0.2, EM = 4 and β = 1000. The red line indicates the spectrum. The inset
shows the poles close to the origin. The x-axis is E − µ with E the eigenvalue of H .
The poles with negative imaginary parts are not explicitly calculated.

Note further that as the temperature goes to zero, the Fermi-Dirac function con-

verges to the step function:

η(ξ) =





2, ξ ≤ 0,

0, ξ > 0.

(3.38)

Therefore, the contribution of the quadrature points ξ+j on the right half plane (ℜξ+j >
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0) is negligible when β is large. In particular, for the case of zero temperature, one

may choose only the quadrature points on the left half plane. The quadrature formula

we obtain then becomes

ηQ(B) =
−4K

√
mM

πQk
ℑ
( Q∑

j=1

(ξ−j −B)−1 cn(tj) dn(tj)

ξ−j (k
−1 − sn(tj))2

)
. (3.39)

The number of poles to be inverted is then Npole = Q.

We show in Fig. 3.5 a typical configuration of the set of quadrature points. Only

one loop is required compared with Fig. 3.4.

−6 −4 −2 0 2 4
−3

−2

−1

0

1

2

3

Re

Im

−0.2 0 0.2

−0.2

0

0.2

Figure 3.5: A typical configuration of the poles for zero temperature (β = ∞).
Q = 30, Eg = 0.2 and EM = 4. The red line indicates the spectrum. The inset zooms
into the poles that is close to the origin. The x-axis is E − µ with E the eigenvalue
of H . The poles with negative imaginary parts are not explicitly calculated.

3.3.3 Gapless case: metallic system

The more challenging case is when the spectrum of H does not have a gap, i.e. Eg =

0. Physically, this corresponds to the case of metallic systems. In this case, the
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construction discussed in the last subsection does not work.

To overcome this problem, we note that the hyperbolic tangent function tanh(β
2
z)

is analytic except at poles (2l − 1)π/βi, l ∈ Z on the imaginary axis. Therefore,

we could construct a contour around the whole spectrum of H which passes through

the imaginary axis on the upper half plane between the origin and π/βi and also on

the lower half plane between the origin and −π/βi. Thus, we will have a dumbbell

shaped contour as shown in Fig. 3.6.

To be more specific, let us first construct the contour and quadrature points zj

in the z-plane as in the last subsection using parameters m = π2/β2 and M =

E2
M + π2/β2. Denote ξ±j = ±(zj − π2/β2)1/2, g = tanh(βξ/2) and B = H − µ. The

quadrature rule takes the following form

gQ(B) =
−2K

√
mM

πQk
ℑ
(

Q∑

j=1

g(ξ+j )(ξ
+
j −B)−1 cn(tj) dn(tj)

ξ+j (k
−1 − sn(tj))2

+

Q∑

j=1

g(ξ−j )(ξ
−
j −B)−1 cn(tj) dn(tj)

ξ−j (k
−1 − sn(tj))2

)
. (3.40)

When apply the quadrature formula, the number of poles to be inverted is Npole = 2Q.

Fig. 3.6 shows a typical configuration of quadrature points for Q = 30. The map

ξ(z) = (z − π2/β2)1/2 maps the circle in the z-plane to a dumbbell-shaped contour

(put two branches together).

Actually, what is done could be understood as follows. Similar to [118], we have

constructed a map from the rectangular domain [−3K,K]× [0, K ′] to the upper half

of the domain

U = {z | ℑz ≥ 0}\
(
[−EM , EM ] ∪ i[π/β,∞)

)
.

The map is carried out in three steps, shown in Fig. 3.7. The first two steps use the

original map constructed in [118], however with extended domain of definition. First,
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Figure 3.6: A typical configuration of the poles on a dumbbell-shaped contour. Q =
30, Eg = 0, EM = 4 and β = 1000. The inset zooms into the part close to the origin.
The red line indicates the spectrum. The black crosses indicate the positions of the
poles of tanh function on the imaginary axis. The poles with negative imaginary
parts are not explicitly calculated.

the Jacobi elliptic function

u = sn(t) = sn(t|k), k =

√
M/m− 1√
M/m+ 1

(3.41)

maps the rectangular domain to the complex plane, with the ends mapping to [1, k−1]

and the middle vertical line −K + i[0, K ′] to [−k−1,−1]. Then, the Möbius transfor-

mation

z =
√
mM

(
k−1 + u

k−1 − u

)
(3.42)

maps the complex plane to itself in such a way that [−k−1,−1] and [1, k−1] are mapped

to [0, m] and [M,∞], respectively. Finally, the shifted square root function

ξ = (z −m)1/2 (3.43)
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Figure 3.7: The map from the rectangular domain [−3K,K] × [0, K ′] to the upper-
half of the domain U . The map is constructed in three steps: t → u → z → ξ. The
boundaries are shown in various colors and line styles.

maps the complex plane to the upper-half plane (we choose the branch of the square

root such that the lower-half plane is mapped to the second quadrant and the upper-

half plane is mapped to the first quadrant), in such a way that [0, m] is sent to i[0,
√
m]

and [M,∞) is sent to (−∞,−
√
M −m] ∪ [

√
M −m,∞). The map can be extended

to a map from [−7K,K]× [0, K ′] to the whole U , in this case, the z-plane becomes

a double-covered Riemann surface with branch point at m.

Since the function g is analytic in the domain U , the composite function g(t) =

g(ξ(z(u(t)))) is analytic in the stripe in the t-plane, and therefore, the trapezoidal

rule converges exponentially fast. Using a similar analysis that leads to (3.35), it can

be shown that

‖g(B)− gQ(B)‖ = O(e−CQ/ log(βEM )), (3.44)

where C is a constant.

We remark that the construction proposed in this subsection also applies to the

gapped case. In practice, if the temperature is high (so that β is small) or the gap
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around the chemical potential is small (in particular, for gapless system), the contour

passing through the imaginary axis will be favorable; otherwise, the construction in

the last subsection will be more efficient.

3.3.4 Numerical examples

We test the pole expansion described above using a two dimensional nearest neighbor

tight binding model for the Hamiltonian. The matrix components of the Hamiltonian

can be written as (in atomic units),

Hi′j′;ij =





2 + Vij, i′ = i, j′ = j,

−1/2 + Vij , i′ = i± 1, j′ = j or i′ = i, j′ = j ± 1.

(3.45)

The on-site potential energy Vij is chosen to be a uniform random number between

0 and 10−3. The domain size is 32 × 32 with periodic boundary condition. The

chemical potential will be specified later. The accuracy is measured by the L1 error

of the electronic density profile per electron

∆ρrel =
Tr |P̂ − P |
NElectron

. (3.46)

Contour integral representation: gapped case

The error of the contour integral representation is determined by Npole. At finite

temperature Npole = 2Q, while at zero temperature Npole = Q, with Q being the

quadrature points on one loop of the contour. The performance of the algorithm

is studied by the minimum number of Npole such that ∆ρrel (the L
1 error in the

electronic density per electron) is smaller than 10−6. For a given temperature, the

chemical potential µ is set to satisfy

TrP = NElectron. (3.47)
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β∆E Npole ∆ρrel

4, 208 40 5.68× 10−7

8, 416 44 3.86× 10−7

16, 832 44 3.60× 10−7

33, 664 44 3.55× 10−7

67, 328 44 3.57× 10−7

134, 656 44 3.47× 10−7

269, 312 44 3.55× 10−7

Table 3.4: Npole and L
1 error of electronic density per electron with respect to various

β∆E. The energy gap Eg ≈ 0.01. The contour integral representation for gapped
system at finite temperature is used for the calculation. The performance of the
algorithm depends weakly on β∆E.

In our setup the energy gap Eg ≈ 0.01 Hartree = 0.27 eV and EM ≈ 4 Hartree.

Therefore, this system can be regarded as a crude model for semiconductor with a

small energy gap. The number of Npole and the error ∆ρrel are shown in Table 3.4 with

respect to β∆E ranging between 4, 000 and up to 270, 000. Because of the existence

of the finite energy gap, the performance is essentially independent of β∆E, as is

clearly shown in Table 3.4.

When the temperature is low and therefore when β is large, as discussed before

the finite temperature result is well approximated by the zero temperature Fermi

operator, i.e. , the matrix sign function. In such case the quadrature formula is given

by (3.39). Only the contour that encircles the spectrum lower than chemical potential

is calculated, and Npole = Q.

In order to study the dependence of ∆ρrel on the number of poles Npole, we tune

artificially the chemical potential to reduce the energy gap to 10−6 Hartree. Fig. 3.8

shows the exponential decay of ∆ρrel with respect to Npole. For example, in order

to reach the 10−6 error criterion, Npole ≈ 50 is sufficient. The increase in Npole is

very small compared to the large decrease of energy gap and this is consistent the

logarithmic dependence of Npole on Eg given by (3.37).

105



10 20 30 40 50 60 70
10

−8

10
−6

10
−4

10
−2

NPole

L
1

er
ro

r
p
er

el
ec

tr
on

Figure 3.8: The lin-log plot of the L1 error of electronic density per electron with
respect to Npole. The energy gap Eg ≈ 10−6. The contour integral representation for
gapped system at zero-temperature is used for calculation.

Contour integral representation: gapless case

For gapless systems such as metallic systems, our quadrature formula in (3.40)

exploits the effective gap on the imaginary axis due to finite temperature. In the

following results the chemical potential is set artificially so that Eg = 0. EM ≈

4 Hartree and the error criterion is still 10−6 as in the gapped case. Table 3.5 reports

the number of poles Npole and the error ∆ρrel with respect to β∆E ranging from

4, 000 up to 4 million. These results are further summarized in Fig. 3.9 to show the

logarithmic dependence of Npole on β∆E, as predicted in the analysis of (3.44).
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β∆E Npole ∆ρrel

4, 208 58 1.90× 10−7

8, 416 62 5.32× 10−7

16, 832 66 8.28× 10−7

33, 664 72 3.55× 10−7

67, 328 76 3.46× 10−7

134, 656 80 1.69× 10−7

269, 312 84 8.89× 10−8

538, 624 88 7.09× 10−8

1, 077, 248 88 8.94× 10−7

2, 154, 496 88 4.25× 10−7

4, 308, 992 92 3.43× 10−7

Table 3.5: Npole and L
1 error of electronic density per electron with respect to various

β∆E. Eg = 0. The contour integral representation for gapless system is used for the
calculation.
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Figure 3.9: Log-lin plot of Npole with respect to β∆E. The contour integral repre-
sentation for gapless system is used for the calculation.
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3.4 Discussion

Compared to the pole expansion, the multipole expansion has a disadvantage that

the inverse matrices should be multiplied in order to form multipoles. This makes it

difficult to apply the fast algorithms that will be introduced in Chapter 4. On the

other hand, it is also possible to find an expansion similar to (3.12) that uses only

simple poles. As we mentioned earlier, the key idea in deriving (3.12) is to combine

the poles in each group together to form multipoles as the distance between them and

the real axis is large. However, if instead we want an expansion that involves only

simple poles, it is natural to revisit the variants of FMM that only use simple poles,

for example, the version introduced in [253]. The basic idea there is to use a set of

equivalent charges on a circle surrounding the poles in each group to reproduce the

effective potential away from these poles.

Specifically, take the group of poles from l = 2n−1 to l = 2n − 1 for example.

Consider a circle Bn with center cn = (3 · 2n−1 − 2)πi and radius rn = 2n−1π. It is

clear that the circle Bn encloses the poles considered. Take P equally spaced points

{xn,k}Pk=1 on the circle Bn. Next, one needs to place equivalent charges {ρn,k}Pk=1 at

these points such that the potential produced by these equivalent charges match with

the potential produced by the poles inside Bn away from the circle. This can be done

in several ways, for example, by matching the multipole expansion, by discretizing

the potential on Bn generated by the poles, and so on. Here we follow the approach

used in [253].

We simply take a bigger concentric circle Bn outside Bn with radius Rn = 2nπ

and match the potential generated on Bn by the poles and by the equivalent charges

on Bn. For this purpose, we solve for ρn,k the equations

P∑

k=1

ρn,k
y − xn,k

=

2n−1∑

l=2n−1

1

y − (2l − 1)πi
, y ∈ Bn. (3.48)
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Regularization techniques such as Tikhonov regularization are required here since this

is a first-kind Fredholm equation.

One can also prove that similar to the original version of the multipole representa-

tion, the error in the potential produced by the equivalent charges decay exponentially

in P , the details can be found in [253]. Putting these all together, we can write down

the following expansion of the Fermi-Dirac function

ρ = 1− 4ℜ
NG∑

n=1

P∑

k=1

ρn,k
β(H − µ)− xn,k

− 2

π
ℑψ
(
Mpole +

1

2
+

i

2π
β(H − µ)

)
+O(NG/3

P ). (3.49)

The number of poles that are effectively represented in the original Matsubara repre-

sentation is still Mpole = 2NG −1. Npole = NGP simple poles are now to be calculated

in practice.

The tail part can be approximated using a Chebyshev polynomial expansion.

Similar to the analysis in [160], it can be shown that the complexity of the expansion

is O(log β∆E). As we pointed out earlier, the advantage of (3.49) over (3.12) is that

only simple poles are involved in the formula. This is useful when combined with fast

algorithms for extracting the diagonal of an inverse matrix.

Note that in (3.12) and (3.49), for 2n−1 < P there would be no savings if we use P

terms in the expansion. They are written in this form just for simplicity. In practice

the first P simple poles will be calculated separately and the multipole expansion will

be used starting from the (P + 1)-th term and the starting level is n = log2 P + 1.

We show in Fig. 3.10 a typical configuration of the set of poles in the multipole

representation type algorithm.

The approach (3.49) based on the multipole representation has three parts of error:

the finite-term multipole expansion, the finite-term Chebyshev expansion for the tail

part, and the truncated matrix-matrix multiplication in the Chebyshev expansion.
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Figure 3.10: A typical configuration of the poles in the multipole representation type
algorithm. Mpole = 512 and P = 16 is used in this figure. The poles with negative
imaginary parts are not explicitly shown. The inset shows the first few poles. The
first 16 poles are calculated separately and the starting level is n = 5.

The error from the multipole expansion is well controlled by P in (3.49). When

P = 16, 1/3P ∼ O(10−8). The number of groups NG is usually no more than 20,

and therefore the error introduced by multipole expansion is around O(10−7), which

is much less than the error criterion 10−6.

The number of terms in the Chebyshev expansion for the tail part NCheb is

O
(
β∆E
Mpole

)
, with Mpole being the number of poles that are excluded in the tail part

in the pole expansion. The truncation radius for the tail part is O
(
exp(−C β∆E

Mpole
)
)
.

In order to reach a fixed target accuracy, we setMpole to be proportional to β∆E. Due

to the fact that Mpole ≈ 2NG ≈ 2Npole/P , this requires Npole to grow logarithmically

with respect to β∆E.

The target accuracy for the Chebyshev expansion is set to be 10−7 and the trun-

cation radius for the tail is set to be 4 for the metallic system under consideration.

For β∆E = 4208, Mpole is set to be 512 so that the error is smaller than 10−6. For

other cases, Mpole scales linearly with β∆E. The lin-log plot in Fig. 3.11 shows the
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logarithmic dependence of Npole with respect to β∆E. For more detailed results,

Table 3.6 measures Mpole, Npole, NCheb, and ∆ρrel for β∆E ranging from 4000 up to 1

million. For all cases, NCheb is kept as a small constant. Note that the truncation ra-

dius is always set to be a small number 4, and this indicates the tail part is extremely

localized in the multipole representation due to the effectively raised temperature.
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Figure 3.11: log-lin plot of Npole with respect to β∆E. The multipole representation
is used for the calculation.

Table 3.6 indicates that the error exhibits some slight growth. We believe that

it comes from the growth of the number of groups in the multipole representation

(3.49) and also the extra log log dependence on β∆E. When compared with the

results reported in Table 3.5, we see that for the current application to electronic

structure, the pole expansion outperforms the multipole representation in terms of

both the accuracy and the number of poles used.
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β∆E Mpole Npole NCheb ∆ρrel

4, 208 512 96 22 4.61× 10−7

8, 416 1, 024 112 22 4.76× 10−7

16, 832 2, 048 128 22 4.84× 10−7

33, 664 4, 096 144 22 4.88× 10−7

67, 328 8, 192 160 22 4.90× 10−7

134, 656 16, 384 176 22 4.90× 10−7

269, 312 32, 768 192 22 6.98× 10−7

538, 624 65, 536 208 22 3.20× 10−6

1, 077, 248 131, 072 224 22 7.60× 10−6

Table 3.6: The number of poles calculated Npole, the order of Chebyshev expansion
for the tail part NCheb, and the L1 error of electronic density per electron with respect
to various β∆E. The number of poles excluded in the tail part Mpole is chosen to be
proportional to β∆E.

3.5 Conclusion

We have developed the multipole expansion and pole expansion techniques to expand

the Fermi operator into simple functions in section 3.2 and in section 3.3, respec-

tively. The two techniques originate from different mathematical observations. The

multipole expansion is similar to the fast multipole methods (FMM) which groups

the poles together using Taylor expansion. The pole expansion constructs the opti-

mal Cauchy contour integral and the optimal rule for numerical integration. Both

techniques achieve the optimal representation cost, i.e. the complexity isO(log β∆E).

From practical point of view, the pole expansion is more advantageous. After the

detailed comparison in Section 3.4, we find that the preconstant of the pole expansion

is smaller. The pole expansion only requires the inversion of matrices, which enables

to apply the fast algorithms that will be introduced in Chapter 4.
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Chapter 4

Evaluation of the Fermi operator:

Selected inversion

4.1 Introduction

The pole expansion developed in Chapter 3 expands the Fermi operator f(H) into

simple rational functions

f(H) ≈
P∑

i=1

ωi
H − ziI

. (4.1)

The question remains to obtain all the diagonal elements and the nearest off-diagonal

elements of (H − zi)−1. Clearly, if the diagonal elements and the nearest off-diagonal

elements are extracted after directly inverting the matrix, the computational cost is

O(N3), and there is no advantage in using the Fermi operator expansion method

compared to the standard diagonalization method.

There are two possible ways to reduce the computational complexity of calculating

the diagonal elements and the nearest off-diagonal elements of an inverse matrix.

The first way is to compress the matrix H − ziI and invert the compressed matrix

directly with lower computational cost. The common techniques that fall into this

category include fast multiple method [107, 253], hierarchical matrix [36, 114], fast

113



wavelet transform [31, 33], discrete symbol calculus [72] (Update reference here),

to name a few. The second way is to avoid the full inverse, but to calculate the

diagonal elements, and as few as possible related elements of the inverse matrix. We

will discuss briefly the reason why the first way, i.e. the existing matrix compression

techniques do not apply to the electronic structure calculation. We will then introduce

the second way which is able to calculate the diagonal elements of the inverse matrix

accurately with reduced computational cost, which shall be referred to later as the

selected inversion technique.

For a typical electronic structure calculation with the domain taken to be a peri-

odic box [0, n]d (d is the dimension) after normalization, the potential function V (x)

generally oscillates on the O(1) scale, and µ is often on the order of O(nd). As a result,

the operator (H −µI) is far from being positive definite. In many computations, the

Hamiltonian is sampled with a constant number of points per unit length. Therefore,

the discretization of H − ziI, denoted by A, is a matrix of dimension N = O(nd).

For the case when A is a positive definite matrix, several ingenious approaches

have been developed to represent and manipulate the inverse matrix of A, denoted

by G efficiently. One strategy is to represent A and G using multi-resolution basis

like wavelets [31, 33]. It is well known that for positive definite A, the wavelet ba-

sis offers an asymptotically optimal sparse representation for both A and G = A−1.

Together with the Newton-Schulz iteration for inverting a matrix, it gives rise to

a linear scaling algorithm for calculating the inverse matrix G from A. In one di-

mension, assuming that we use L levels of wavelet coefficients, and if we truncate

the matrix elements that correspond to the wavelets which are centered at locations

with distance larger than R, then the cost of matrix-matrix multiplication is roughly

O(R2L3N). In 2D, a naive extension using the tensor product structure will lead

to a complexity of O(R4L6N). This has linear scaling, but the prefactor is rather

large: Consider a moderate situation with R = 10 and L = 8, R4L6 is on the order of
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109. This argument is rather crude, but it does reveal a paradoxical situation with the

wavelet representation: Although in principle linear scaling algorithms can be derived

using wavelets, they are not practical in 2D and 3D, unless much more sophisticated

techniques are developed to reduce the prefactor.

Another candidate for positive definite A is to use the hierarchical matrices [36,

114]. The main observation is that the off-diagonal blocks of the matrix G are numer-

ically low-rank and thus can be approximated hierarchically using low rank factor-

izations. The cost of multiplying and inverting hierarchical matrices scales as O(N).

Therefore, by either combining with the Newton-Schulz iteration, or directly inverting

the hierarchical matrices with block LU decomposition, one obtains a linear scaling

algorithm.

Both of these two approaches are quite successful for A being positive definite.

Unfortunately as we pointed out earlier, for the application to electronic structure

analysis, our matrix A is far from being positive definite. In fact, the matrix elements

of G are highly oscillatory due to the shift of chemical potential in the Hamiltonian.

Consequently, the inverse matrix G does not have an efficient representation in either

the wavelet basis or the hierarchical matrix framework. The same argument applies to

other fast algorithms designed for elliptic operators, such as fast multiple method [107,

253] and discrete symbol calculus [72].

The selected inversion algorithm developed in this chapter follows the orthogonal

direction to the matrix compression approach. The selected inversion method does

not calculate all the elements of the inverse matrix G, but only the diagonal elements

and the nearest off-diagonal elements of the inverse matrix, and as few as possible

other related elements. The selected inversion algorithm is able to accurately compute

the diagonal elements and the nearest off-diagonal elements of G with O(N) com-

plexity for quasi-1D systems, O(N1.5) complexity for quasi-2D systems, and O(N2)

complexity for 3D bulk systems. The selected inversion method is applicable if the
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Hamiltonian operator is discretized by localized basis functions, such as finite differ-

ence, finite element, spectral element, and adaptive local basis functions developed in

Chapter 2.

This chapter is organized as following. Section 4.2 introduces the basic idea of the

selected inversion and illustrates how selected inversion reduces the computational

cost for extracting the diagonals and the nearest off-diagonal elements for general

symmetric matrices. Section 4.3 introduces the SelInv software which is a sequential

algorithm for performing the selected inversion for general symmetric matrices. A

parallel selected inversion for structured 2D matrices is developed in Section 4.4. The

discussion and future work is summarized in Section 4.5. Materials in this chapter

have been presented in [162, 169, 170].

4.2 Selected inversion: Basic idea

4.2.1 Dense matrix

An obvious way to obtain selected components of A−1 is to compute A−1 first and

then simply pull out the needed entries. The standard approach for computing A−1

is to first decompose A as

A = LDLT , (4.2)

where L is a unit lower triangular matrix and D is a diagonal or a block-diagonal

matrix. Equation (4.2) is often known as the LDLT factorization of A. For positive

definite matrices, D can always be kept as a diagonal matrix. For general symmetric

matrices, a block LDLT factorization that allows 2× 2 block pivots [45,46] or partial

pivoting [96] may be used to achieve numerical stability in the factorization. Given

such a factorization, one can obtain A−1 = (x1, x2, . . . , xn) by solving a number of
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triangular systems

Ly = ej , Dw = y, LTxj = w, (4.3)

for j = 1, 2, . . . , n, where ej is the j-th column of the identity matrix I. The compu-

tational cost of such algorithm is generally O(n3), with n being the dimension of A.

However, when A is sparse, we can exploit the sparsity structure of L and ej to reduce

the complexity of computing selected components of A−1. We will examine this type

of algorithm, which we will refer to as direct inversion, further in Section 4.3.3 when

we compare the performance of direct inversion with that of our new fast algorithm.

The selected inversion algorithm which is summarized below also perform an

LDLT factorization of A first. However, the algorithm does not require solving (4.3)

directly. Before we present this algorithm, it will be helpful to first review the major

operations involved in the LDLT factorization of A.

Let

A =




α bT

b Â


 , (4.4)

be a nonsingular symmetric matrix. The first step of an LDLT factorization produces

a decomposition of A that can be expressed by

A =




1

ℓ I







α

Â− bbT /α







1 ℓT

I


 ,

where α is often referred to as a pivot, ℓ = b/α and S = Â − bbT /α is known as the

Schur complement. The same type of decomposition can be applied recursively to the

Schur complement S until its dimension becomes 1. The product of lower triangular
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matrices produced from the recursive procedure, which all have the form




I

1

ℓ(i) I



,

where ℓ(1) = ℓ = b/α, yields the final L factor. At this last step the matrix in the

middle becomes diagonal, which is the D matrix.

To simplify our discussion, we assume here that all pivots produced in the LDLT

factorization are sufficiently large so that no row or column permutation (pivoting)

is needed during the factorization. The discussion can be readily generalized if D

contains 2× 2 blocks.

The key observation is that A−1 can be expressed by

A−1 =




α−1 + ℓTS−1ℓ −ℓTS−1

−S−1ℓ S−1


 . (4.5)

This expression suggests that once α and ℓ are known, the task of computing A−1

can be reduced to that of computing S−1.

Because a sequence of Schur complements is produced recursively in the LDLT

factorization of A, the computation of A−1 can be organized in a recursive fashion too.

Clearly, the reciprocal of the last entry of D is the (n, n)-th entry of A−1. Starting

from this entry, which is also the 1× 1 Schur complement produced in the (n− 1)-th

step of the LDLT factorization procedure, we can construct the inverse of the 2 × 2

Schur complement produced at the (n − 2)-th step of the factorization procedure,

using the recipe given by (4.5). This 2 × 2 matrix is the trailing 2 × 2 block of A−1.

As we proceed from the lower right corner of L and D towards their upper left corner,

more and more elements of A−1 are recovered. The complete procedure can be easily

described by a MATLAB script shown in Algorithm 1.
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Algorithm 1 A MATLAB script for computing the inverse of a dense matrix A given
its LDLT factorization.

Input: A unit triangular matrix L and a diagonal matrix D such
that A = LDLT ;

Output: The inverse of A denoted by Ainv.

Ainv(n,n) = 1/D(n,n);

for j = n-1:-1:1

Ainv(j+1:n,j) = -Ainv(j+1:n,j+1:n)*L(j+1:n,j);

Ainv(j,j+1:n) = Ainv(j+1:n,j)’;

Ainv(j,j) = 1/D(j,j) - L(j+1:n,j)’*Ainv(j+1:n,j);

end;

For the purpose of clarity, we use a separate array Ainv in Algorithm 1 to store the

computed A−1. In practice, A−1 can be computed in place. That is, we can overwrite

the array used to store L and D with the lower triangular and diagonal part of A−1

incrementally.

4.2.2 Sparse matrix

It is not difficult to observe that if A is a dense matrix, the complexity of Algorithm 1

is O(n3) because a matrix vector multiplication involving a j × j dense matrix is

performed at the j-th iteration of this procedure, and (n− 1) iterations are required

to fully recover A−1. Therefore, when A is dense, this procedure does not offer any

advantage over the standard way of computing A−1. Furthermore, all elements of

A−1 are needed and computed. No computational cost can be saved if we just want

to extract selected elements (e.g., the diagonal elements) of A−1.

However, when A is sparse, a tremendous amount of savings can be achieved if

we are only interested in the diagonal components of A−1. If the vector ℓ in (4.5)

is sparse, computing ℓTS−1ℓ does not require all elements of S−1 to be obtained in

advance. Only those elements that appear in the rows and columns corresponding to

the nonzero rows of ℓ are required.

Therefore, to compute the diagonal elements of A−1, we can simply modify the
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procedure shown in Algorithm 1 so that at each iteration we only compute selected

elements of A−1 that will be needed by subsequent iterations of this procedure. It

turns out that the elements that need to be computed are completely determined by

the nonzero structure of the lower triangular factor L. To be more specific, at the

j-th step of the selected inversion process, we compute (A−1)i,j for all i such that

Li,j 6= 0. Therefore, our algorithm for computing the diagonal of A−1 can be easily

illustrated by a MATLAB script (which is not the most efficient implementation)

shown in Algorithm 2.

Algorithm 2 A MATLAB script for computing selected matrix elements of A−1 for
a sparse symmetric matrix A.

Input: A unit triangular matrix L and a diagonal matrix D such
that A = LDLT ;

Output: Selected elements of A−1 denoted by Ainv, i.e. the elements
(A−1)i,j such that Li,j 6= 0.

Ainv(n,n) = 1/D(n,n);

for j = n-1:-1:1

% find the row indices of the nonzero elements in

% the j-th column of L

inz = j + find(L(j+1:n,j)~=0);

Ainv(inz,j) = -Ainv(inz,inz)*L(inz,j);

Ainv(j,inz) = Ainv(inz,j)’;

Ainv(j,j) = 1/D(j,j) - Ainv(j,inz)*L(inz,j);

end;

To see why this type of selected inversion is sufficient, we only need to examine

the nonzero structure of the k-th column of L for all k < j since such a nonzero

structure tells us which rows and columns of the trailing sub-block of A−1 are needed

to complete the calculation of the (k, k)-th entry of A−1. In particular, we would like

to find out which elements in the j-th column of A−1 are required for computing A−1
i,k

for any k < j and i ≥ j.

Clearly, when Lj,k = 0, the j-th column of A−1 is not needed for computing the

k-th column of A−1. Therefore, we only need to examine columns k of L such that

Lj,k 6= 0. A perhaps not so obvious but critical observation is that for these columns,
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Li,k 6= 0 and Lj,k 6= 0 implies Li,j 6= 0 for all i > j. Hence computing the k-th column

of A−1 will not require more matrix elements from the j-th column of A−1 than those

that have already been computed (in previous iterations,) i.e. elements (A−1)i,j such

that Li,j 6= 0 for i ≥ j.

These observations are well known in the sparse matrix factorization literature

[77,93]. They can be made more precise by using the notion of elimination tree [172].

In such a tree, each node or vertex of the tree corresponds to a column (or row) of

A. Assuming A can be factored as A = LDLT , a node p is the parent of a node j if

and only if

p = min{i > j|Li,j 6= 0}.

L =




a
b

• c
d

• e
f

• • g
• • • • h

• • • i
• • • • • j




(a) The L factor. (b) The elimina-
tion tree.

Figure 4.1: The lower triangular factor L of a sparse 10 × 10 matrix A and the
corresponding elimination tree.

If Lj,k 6= 0 and k < j, then the node k is a descendant of j in the elimination

tree. An example of the elimination tree of a matrix A and its L factor are shown

in Figure 4.1. Such a tree can be used to clearly describe the dependency among

different columns in a sparse LDLT factorization of A. In particular, it is not too

difficult to show that constructing the j-th column of L requires contributions from
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descendants of j that have a nonzero matrix element in the j-th row [172].

Similarly, we may also use the elimination tree to describe which selected elements

within the trailing sub-block A−1 are required in order to obtain the (j, j)-th element

of A−1. In particular, it is not difficult to show that the selected elements must belong

to the rows and columns of A−1 that are among the ancestors of j.

4.3 SelInv – An algorithm for selected inversion of

a sparse symmetric matrix

4.3.1 Block Algorithms and Supernodes

The selected inversion procedure described in Algorithm 1 and its sparse version can

be modified to allow a block of rows and columns to be modified simultaneously. A

block algorithm can be described in terms a block factorization of A. For example, if

A is partitioned as

A =




A11 BT
21

B21 A22


 ,

its block LDLT factorization has the form

A =




I

L21 I







A11

A22 − B21A
−1
11 B

T
21







I LT21

I


 , (4.6)

where L21 = B21A
−1
11 and S = A22 − B21A

−1
11 B

T
21 is the Schur complement. The

corresponding block version of (4.5) can be expressed by

A−1 =




A−1
11 + LT21S

−1L21 −LT21S−1

−S−1L21 S−1


 .

There are at least three advantages of using a block algorithm:
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1. It allows us to use level 3 BLAS (Basic Linear Algebra Subroutine) to develop

an efficient implementation by exploiting the memory hierarchy in modern mi-

croprocessors.

2. When applied to sparse matrices, it tends to reduce the amount of indirect

addressing overhead.

3. It allows 2×2 block pivots that can be used to overcome numerical instabilities

that may arise when A is indefinite.

When A is sparse, the columns of A and L can be partitioned into supernodes.

A supernode is a maximal set of contiguous columns {j, j + 1, ..., j + s} of L such

that they have the same nonzero structure below the (j + s)-th row and the lower

triangular part of Lj:j+s,j:j+s is completely dense. An example of a supernode partition

of the lower triangular factor L associated with a 49 × 49 sparse matrix A is shown

in Figure 4.2. The definition of a supernode can be relaxed to include columns whose

nonzero structures are nearly identical with adjacent columns. However, we will not

be concerned with such an extension in this chapter. We will use upper case script

letters such as J to denote a supernode. Following the convention introduced in [195],

we will interpret J either as a supernode index or a set of column indices contained

in that supernode depending on the context.

We should note here that the supernode partition of A or L is completely based

on the nonzero structure of A. Although it is desirable to create supernodes that

contain all 2 × 2 block pivots priori to numerical factorization of A, this is generally

difficult to do for sparse matrices. When the size of a supernode is larger than 1, we

can still use 2 × 2 block pivots within this supernode to improve numerical stability

of the LDLT factorization. This type of strategy is often used in multifrontal solvers

[11, 77].

We denote the set of row indices associated with the nonzero rows below the di-
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Figure 4.2: A supernode partition of L.

agonal block of the J -th supernode by SJ . These row indices are further partitioned

into nJ disjoint subsets I1, I2, ..., InJ
such that Ii contains a maximal set of contigu-

ous row indices and Ii ⊂ K for some supernode K > J . Here K > J means k > j

for all k ∈ K and j ∈ J . In Figure 4.3, we show how the nonzero rows associated

with one of the supernodes (the 26-th supernode which begins at column 27) are

partitioned. The purpose of the partition is to create dense submatrices of L that can

be easily accessed and manipulated. The reason we impose the constraint Ii ⊂ K,

which is normally not required in the LDLT factorization of A, will become clear in

Section 4.3.2. We should also note that, under this partitioning scheme, it is possible

that Ii and Ij belong to the same supernode even if i 6= j.

The use of supernodes leads to a necessary but straightforward modification of the

elimination tree. All nodes associated with columns within the same supernode are

collapsed into a single node. The modified elimination tree describes the dependency

among different supernodes in a supernode LDLT factorization of A (see [195, 221]).

Such dependency also defines the order by which selected blocks of A−1 are computed.

Using the notion of supernodes, we can modify the selected inversion process de-
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scribed by the MATLAB script shown in Algorithm 2 to make it more efficient. If

columns of L can be partitioned into nsup supernodes, a supernode based block se-

lected inversion algorithm can be described by the pseudocode shown in Algorithm 3.

Algorithm 3 A supernode-based algorithm for computing the selected elements of
A−1.

Input: (1) The supernode partition of columns of A: {1, 2, ..., nsup};
(2) A supernode LDLT factorization of A;

Output: Selected elements of A−1, i.e. (A−1)i,j such that Li,j 6= 0.

1: Compute A−1
nsup,nsup

= D−1
nsup,nsup

;
2: for J = nsup − 1, nsup − 2, ..., 1 do

3: Identify the nonzero rows in the J -th supernode SJ ;
4: Perform Y = A−1

SJ ,SJ
LSJ ,J ;

5: Calculate A−1
J ,J = D−1

J ,J + Y TLSJ ,J ;

6: Set A−1
SJ ,J ← −Y ;

7: end for

4.3.2 Implementation details

We now describe some of the implementation details that allow the selected inver-

sion process described schematically in Algorithm 3 to be carried out in an efficient

manner.

We assume a supernode LDLT factorization has been performed using, for ex-

ample, an efficient left-looking algorithm described in [195, 221]. Such an algorithm

typically stores the nonzero elements of L in a contiguous array using the compressed

column format [76]. This array will be overwritten by the selected elements of A−1.

The row indices associated with the nonzero rows of each supernode are stored in a

separate integer array. Several additional integer arrays are used to mark the supern-

ode partition and column offsets.

As we illustrated in Algorithm 3, the selected inversion process proceeds backwards

from the last supernode nsup towards the first supernode. For all supernodes J < nsup,
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we need to perform a matrix-matrix multiplication of the form

Y = (A−1)SJ ,SJ
LSJ ,J , (4.7)

where J serves the dual purposes of being a supernode index and an index set that

contains all column indices belonging to the J -th supernode, and SJ denotes the set

of row indices associated with nonzero rows within the J -th supernode of L.

Recall that the row indices contained in SJ are partitioned into a number of

disjoint subsets I1, I2, ..., InJ
such that Ii ⊂ K for some supernode K > J . Such

a partition corresponds to a row partition of the dense matrix block associated with

the J -th supernode into nJ submatrices. The same partition is applied to the rows

and columns of the submatrix (A−1)SJ ,SJ
except that this submatrix is not stored in

a contiguous array. For example, the nonzero row indices of the 26-th supernode in

Figure 4.2, which consists of columns 27, 28 and 29, can be partitioned as

S26 = {30} ∪ {40, 41} ∪ {43, 44, 45}.

This partition as well as the corresponding partition of the blocks in the trailing A−1

that are used in (4.7) is highlighted in Figure 4.3.

We carry out the matrix-matrix multiplication (4.7) by using Algorithm 4. The

outer loop (line 2) of this algorithm goes through each block column of (A−1)SJ ,SJ

indexed by Ij ∈ SJ , and accumulates (A−1)∗,IjLIj ,J in the dense matrix Y stored

in a contiguous work array. The inner loop of this algorithm, which starts from line

6, simply goes through the nonzero blocks of (A−1)∗,Ij to perform (A−1)Ii,IjLIj ,J ,

i = j + 1, ..., nJ , one block at a time. Because A−1 is symmetric, we store only

the selected nonzero elements in the lower triangular part of the matrix (except the

diagonal blocks in which both the upper and lower triangular parts of the matrix are

stored in a full dense matrix.) Hence, our implementation of (4.7) also computes the

126



Figure 4.3: The partition of the nonzero rows in S26 and the matrix elements needed
in A−1

30:49,30:49 for the computation of A−1
30:49,30:49L30:39,27:29.

contribution of (A−1)T∗,IjLIi,J to Y as the Ij-th block column of A−1 is accessed (step

10) in the inner loop of Algorithm 4.

An efficient implementation of Algorithm 4 requires each sub-block of A−1
SJ ,SJ

(within the storage allocated for L) to be identified quickly and the product of

(A−1)Ii,Ij and LIj ,J , as well as the product of [(A−1)Ii,Ij ]
T and LIi,J , to be placed

at appropriate locations in the Y array. To achieve these goals, we use an integer

array indmap with n entries to record the relative row positions of the first row of

Ii in Y , for i = 2, 3, ..., nJ . (The relative positions of all other nonzero rows can be

easily calculated once the relative row position of the first row of Ii is determined,

because the row numbers in Ii are contiguous.) To be specific, all the entries of

indmap are initialized to be zero. If k is an element in Ii (all elements in Ii are sorted

in an ascending order), then indmap[k] is set to be the relative distance of row k

from the last row of the diagonal block of the J -th supernode in L. For example, in

Figure 4.3, the leftmost supernode S26, which contains columns 27, 28, 29, contains 6

nonzero rows below its diagonal block. The nonzero entries of the indmap array for
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Algorithm 4 Compute Y = (A−1)SJ ,SJ
LSJ ,J needed in Step 4 of Algorithm 3.

Input: (1) The J -th supernode of L, LSJ ,J , where SJ contains the
indices of the nonzero rows in J . The index set SJ is par-
titioned into disjoint nJ subsets of contiguous indices, i.e.
SJ = {I1,I2, ...,InJ

};
(2) The nonzero elements of A−1 that have been computed pre-

viously. These elements are stored in LSK,K for all K > J ;
Output: Y = (A−1)SJ ,SJ

LSJ ,J ;

1: Construct an indmap array for nonzero rows in the J -th supernode;
2: for j = 1, 2, ..., nJ do

3: Identify the supernode K that contains Ij;
4: Let R1 = indmap(Ij);
5: Calculate YR1,∗ ← YR1,∗ + (A−1)Ij ,IjLIj ,J ;
6: for i = j + 1, j + 2, ...nJ do

7: Use indmap to find the first nonzero row in the K-th supernode that
belongs to Ii so that (A−1)Ii,Ij can be located;

8: Let R2 = indmap(Ii);
9: Calculate YR2,∗ ← YR2,∗ + (A−1)Ii,IjLIj ,J ;

10: Calculate YR1,∗ ← YR1,∗ + [(A−1)Ii,Ij ]
TLIi,J ;

11: end for

12: end for

13: Reset the nonzero entries of indmap to zero;
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S26 are

indmap[30] = 1,

indmap[40] = 2,

indmap[41] = 3,

indmap[43] = 4,

indmap[44] = 5,

indmap[45] = 6.

These entries of the indmap array are reset to zeros once the calculation of (4.7) is

completed for each J . A similar indirect addressing scheme is used in [195] for gath-

ering the contributions from the descendants of the J -th supernode that have already

been updated in the previous steps of a left-looking supernodal LDLT factorization.

Our use of indirect addressing collects contributions from the ancestors of the J -th

supernode as (A−1)SJ ,J is being updated.

Once the indmap array is properly set up, the sub-block searching process indicated

in line 7 of the pseudocode shown in Algorithm 4 goes through the row indices k of

the nonzero rows of the K-th supernode (that contains Ij) until a nonzero indmap[k]

is found (step 7). A separate pointer p to the floating point array allocated for L

is incremented at the same time. When a nonzero indmap[k] is found, the position

in the floating point array pointed by p gives the location of (A−1)Ii,Ij required in

line 9 of the special matrix-matrix multiplication procedure shown in Algorithm 4.

Meanwhile, the value of indmap[k] gives the location of the target work array Y at

which the product of (A−1)Ii,Ij and LIj ,J is accumulated. After lines 9 and 10 are

executed in the inner loop of Algorithm 4, the remaining nonzero rows in the K-th

supernode are examined until the next desired sub-block in the K-th supernode of

A−1 is found or until all nonzero rows within this supernode have been examined.

Figure 4.4 shows of how the indmap array is used to place the product of (A−1)Ii,{30}

and L{30},26 as well as the product of (A−1)TIi,{30} and LIi,26 in the Y array at lines 9
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and 10 of Algorithm 4 for the example problem given in Figure 4.3.

(a) The use of indmap in Step 9. (b) The use of indmap in Step 10. The
dashed arrow indicates that L{30},26 pro-
vides only the index for the row of Y that
is modified.

Figure 4.4: A schematic drawing that illustrates how indmap is used in Steps 9 and
10 in the first outer iteration of Algorithm 4 for J = 26 in the example given in
Figure 4.3.

Before we copy Y to the appropriate location in the array that stores the J -th

supernode of L, we need to compute the diagonal block of A−1 within this supernode

by the following update:

(A−1)J ,J = (A−1)J ,J + Y TLSJ ,J ,

where (A−1)J ,J , which is stored in the diagonal block of the storage allocated for

L, contains the inverse of the diagonal block DJ ,J (which may contain 2× 2 pivots)

produced by the supernode LDLT factorization before the update is performed.

4.3.3 Performance

Here we report the performance of our selected inversion algorithm SelInv. Our per-

formance analysis is carried out on the Franklin Cray XT4 supercomputing system
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maintained at NERSC1. Each compute node consists of a 2.3 GHz single socket quad-

core AMD Opteron processor (Budapest) with a theoretical peak performance of 9.2

GFlops/sec per core (4 flops/cycle if using SSE128 instructions). Each core has 2 GB

of memory. Our test problems are taken from the Harwell-Boeing Test Collection [76]

and the University of Florida Matrix Collection[70]. These matrices are widely used

benchmark problems for sparse direct methods. The names of these matrices as well

as some of their characteristics are listed in Table 4.1 and 4.2. All matrices are real

and symmetric. The multiple minimum degree (MMD) matrix reordering strategy

[171] is used to minimize the amount of nonzero fills in L. We used the supernodal

left-looking algorithm and code provided by the authors of [195] to perform the LDLT

factorization of A. Table 4.3 gives the performance result in terms of computational

time as well as floating point operations per second (flops) for both the factoriza-

tion and the selected inversion algorithms respectively. We also report the average

flops measured on-the-fly using PAPI [44]. The dimension of the matrices we tested

ranges from 2, 000 to 1.5 million, and the number of nonzero elements in the L factor

ranges from 0.1 million to 0.2 billion. For the largest problem G3 circuit, the overall

computation takes only 350 seconds. Among these problems, the best performance

is obtained with the problem pwtk. For this particular problem, the factorization

part attains 26% of the peak performance of the machine, and the selected inversion

part attains 68% of the peak flops. The average (of the factorization and inversion)

flops ratio is 46%. The flops performance is directly related to the supernode size

distribution due to the reordering strategy. For pwtk, 90% of the supernodes have

sizes larger than 5. By contrast, the dimension of parabolic fem is more than twice

the dimension of pwtk, but 81% of the supernodes contain only one column. Conse-

quently, SelInv cannot take full advantage of level 3 BLAS when it is used to solve

this problem. As a result, its performance is worse on this problem than on pwtk.

1http://www.nersc.gov/
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To demonstrate how much we can gain by using the selected inversion algo-

rithm, we compare the timing statistics of the selected inversion algorithm with

that of the direct inversion algorithm mentioned. In our implementation of the di-

rect inversion algorithm, we compute the diagonal elements of A−1 using eTj A
−1ej =

(L−1ej)
TD−1(L−1ej), where ej is the j-th column of the identity matrix. When com-

puting y = L−1ej (via solving Ly = ej), we modify only the nonzero entries of y.

The positions of these entries can be predicted by the traversal of a directed graph

constructed from the nonzero structure of L [95]. This approach reduces the number

of floating point operations significantly compared to a naive approach that does not

take into account the sparsity of L or ej . However, it still has a higher asymptotic

complexity compared to the selected inversion algorithm we presented earlier. This

can be seen from the following example in which A is a discretized Laplacian operator

obtained from applying a five-point stencil on an m×m grid in 2D where m = n1/2.

Assuming A is ordered by nested dissection [92] so that the last m columns of A

corresponds to nodes in the largest separator, we can see that solving Ly = ej , for

j = n − m + 1, ..., n, would require a total of O(m2) = O(n) operations because

the lower triangular part of Ln−m+1:n,n−m+1:n is completely dense. Because these

columns belong to a supernode that is at the root of the elimination tree, they are

all reachable from node j on the directed graph constructed from solving Ly = ej

for j = 1, 2, ..., n−m. Consequently, the overall complexity for solving Ly = ej for

j = 1, 2, ..., n is O((n − m)n + n) = O(n2). This is higher than the O(n3/2) com-

plexity associated with selected inversion. Similarly, if A is a discretized Laplacian

operator obtained from applying a seven-point stencil on an m ×m ×m grid in 3D

where m = n1/3, the complexity of direct inversion becomes O(n7/3) because the

largest separator contains n2/3 columns, whereas the complexity of selected inversion

is O(n2).

Although it is difficult to perform such analysis for a general sparse matrix, similar
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problem description

bcsstk14 Roof of the Omni Coliseum, Atlanta.
bcsstk24 Calgary Olympic Saddledome arena.
bcsstk28 Solid element model, linear statics.
bcsstk18 R.E. Ginna Nuclear Power Station.
bodyy6 NASA, Alex Pothen.
crystm03 FEM crystal free vibration mass matrix.
wathen120 Gould,Higham,Scott: matrix from AndyWathen, Oxford

Univ.
thermal1 Unstructured FEM, steady state thermal problem, Dani

Schmid, Univ. Oslo.
shipsec1 DNV-Ex 4 : Ship section/detail from production run-

1999-01-17.
pwtk Pressurized wind tunnel, stiffness matrix.
parabolic fem Diffusion-convection reaction, constant homogeneous dif-

fusion.
tmt sym Symmetric electromagnetic problem, David Isaak, Com-

putational EM Works.
ecology2 Circuitscape: circuit theory applied to animal/gene flow,

B. McRae, UCSB.
G3 circuit Circuit simulation problem, Ufuk Okuyucu, AMD, Inc.

Table 4.1: Test problems

difference in complexity should hold. To provide a more concrete comparison, we list

the timing measurements for both approaches in Table 4.4 as well as the speedup

factor. The speedup factor is defined by the time for selected inversion divided by the

time for direct inversion. In this comparison, selected inversion refers to the second

part of SelInv, i.e., the time for LDLT factorization is not counted since factoriza-

tion is used in both algorithms. We also terminate the direct inversion algorithm if

its running time is larger than 3 hours. We observe that for the smallest problem

bcsstk14, the speedup factor is already 13. For larger problems, the speedup can be

several hundreds or more.
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problem n |A| |L|
bcsstk14 1,806 32,630 112,267
bcsstk24 3,562 81,736 278,922
bcsstk28 4,410 111,717 346,864
bcsstk18 11,948 80,519 662,725
bodyy6 19,366 77,057 670,812
crystm03 24,696 304,233 3,762,633
wathen120 36,441 301,101 2,624,133
thermal1 82,654 328,556 2,690,654
shipsec1 140,874 3,977,139 40,019,943
pwtk 217,918 5,926,171 56,409,307

parabolic fem 525,825 2,100,225 34,923,113
tmt sym 726,713 2,903,837 41,296,329
ecology2 999,999 2,997,995 38,516,672
G3 circuit 1,585,478 4,623,152 197,137,253

Table 4.2: Characteristic of the test problems

problem factorization
time (sec)

factorization
flops
(G/sec)

selected
inversion
time (sec)

selected
inversion
flops
(G/sec)

average
flops
(G/sec)

bcsstk14 0.007 1.43 0.010 2.12 1.85
bcsstk24 0.019 1.75 0.020 3.65 2.71
bcsstk28 0.023 1.63 0.024 3.46 2.54
bcsstk18 0.080 1.80 0.235 1.54 1.60
bodyy6 0.044 1.49 0.090 1.68 1.61
crystm03 0.452 2.26 0.779 2.95 2.70
wathen120 0.251 2.12 0.344 3.47 2.90
thermal1 0.205 1.53 0.443 1.66 1.62
shipsec1 18.48 2.38 17.66 5.45 3.88
pwtk 16.43 2.48 14.55 6.28 4.26
parabolic fem 6.649 2.34 20.06 1.91 2.02
tmt sym 10.64 2.35 13.98 4.02 3.30
ecology2 6.789 2.32 16.04 2.35 2.34
G3 circuit 136.5 2.24 218.7 3.27 2.88

Table 4.3: The time cost, and flops result for factorization and selected inversion
process respectively. The last column reports the average flops reached by SelInv.
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problem selected inversion direct inversion speedup
time time

bcsstk14 0.01 sec 0.13 sec 13
bcsstk24 0.02 sec 0.58 sec 29
bcsstk28 0.02 sec 0.88 sec 44
bcsstk18 0.24 sec 5.73 sec 24
bodyy6 0.09 sec 5.37 sec 60
crystm03 0.78 sec 26.89 sec 34
wathen120 0.34 sec 48.34 sec 142
thermal1 0.44 sec 95.06 sec 216
shipsec1 17.66 sec 3346 sec 192
pwtk 14.55 sec 5135 sec 353

parabolic fem 20.06 sec 7054 sec 352
tmt sym 13.98 sec > 3 hours > 772
ecology2 16.04 sec > 3 hours > 673
G3 circuit 218.7 sec > 3 hours > 49

Table 4.4: Timing comparison between selected inversion and direct inversion. The
speedup factor is defined by the direct inversion time divided by the selected inversion
time.

4.3.4 Application to electronic structure calculation of alu-

minum

Here we show how SelInv can be applied to electronic structure calculations based on

the pole expansion introduced in Chapter 3. We need to compute the diagonal of the

inverse of a number of complex symmetric (non-Hermitian) matrices H−(zi+µ)I (i =

1, 2, ..., P ). A fast implementation of the SelInv algorithm described in Section 4.3.2

can be used to perform this calculation efficiently.

The example we consider here is a quasi-2D aluminum system with a periodic

boundary condition. For simplicity, we only use a local pseudopotential, i.e. Vpse(r)

is a diagonal matrix. The Laplacian operator ∆ is discretized using a second-order

seven-point stencil. A room temperature of 300K (which defines the value of β) is

used. The aluminum system has a face centered cubic (FCC) crystal structure. We

include 5 unit cells along both x and y directions, and 1 unit cell along the z direction
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in our computational domain. Each unit cell is cubic with a lattice constant of 4.05Å.

Therefore, there are altogether 100 aluminum atoms and 300 valence electrons in

the experiment. The position of each aluminum atom is perturbed from its original

position in the crystal by a random displacement around 10−3Å so that no point

group symmetry is assumed in our calculation. The grid size for discretization is set

to 0.21Å. The resulting Hamiltonian matrix size is 159, 048.

We compare the density evaluation performed by both PARSEC and the pole

expansion technique. In PARSEC, the invariant subspace associated with the smallest

310 eigenvalues is computed using ARPACK [151]. Each self-consistent iteration

step takes 2, 490 seconds. In the pole expansion approach, we use 60 poles, which

gives a comparable relative error in electron density on the order of 10−5 (in L1

norm.) The MMD reordering scheme is used to reduce the amount of fill in the

LDLT factorization. In addition to using the selected inversion algorithm to evaluate

each term, an extra level of coarse grained parallelism can be utilized by assigning

each pole to a different processor. The evaluation of each term takes roughly 1, 950

seconds. Therefore, the total amount of time required to evaluate the electron density

for each self-consistent iteration step on a single core is 1, 950 × 60 seconds. As a

result, the performance of the selected inversion based pole expansion approach is

only comparable to the invariant subspace computation approach used in PARSEC

if the extra level of coarse grained parallelism is used.

A 3D isosurface plot of the electron density as well as the electron density plot

restricted on the z = 0 plane are shown in Figure 4.5.

We also remark that the efficiency of selected inversion can be further improved

for this particular problem. One of the factors that has prevented the SelInv from

achieving even higher performance for this problem is that most of the supernodes

produced from the MMD ordering of H contains only 1 column even though many of

these supernodes have similar (but not identical) nonzero structures. Consequently,
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Figure 4.5: (a)3D isosurface plot of the electron density together with the electron
density restricted to z = 0 plane. (b) The electron density restricted to z = 0 plane.

both the factorization and inversion are dominated by level 1 BLAS operations. Fur-

ther performance gain is likely to be achieved if we relax the definition of a supernode

and treat some of the zeros in L as nonzero elements. This approach has been demon-

strated to be extremely helpful in [9].

4.4 Parallel selected inversion algorithm

4.4.1 Algorithmic and implementation

In this subsection, we present the algorithmic and implementation of a parallel pro-

cedure for selected inversion. Our algorithm is quite general as long as a block LDLT

factorization is available. We make use of the elimination tree and other structure

information that can be generated during a preprocessing step that involves both

matrix reordering and symbolic factorization. For illustration purpose, we use a 2D

Laplacian with nearest neighbor interaction, where the nearest neighbor is defined

in terms of a standard 5-point stencil, as an example in this section. However, the

techniques we describe here are applicable to other higher order stencils for both

2D and 3D systems and to irregular problems obtained from, e.g., a finite element

discretization. Although we have developed an efficient parallel implementation of a
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supernodal LDLT factorization for 2D problems, we will focus our discussion on the

selected inversion procedure only.

The Sequential Algorithm Before we present the sequential algorithms for the

selected inversion process, we need to introduce some notations and terminologies

commonly used in the sparse matrix literature. We use the technique of nested dis-

section [92] to reorder and partition the sparse matrix A. The reordered matrix has

a sparsity structure similar to that shown in Fig. 4.6a. For 2D problems defined on

a rectangular grid, nested dissection corresponds to a recursive partition of the 2D

grid into a number of subdomains with a predefined minimal size. In the example

shown in Fig. 4.7a, this minimal size is 3×3. Each subdomain is separated from other

subdomains by separators that are defined in a hierarchical or recursive fashion. The

largest separator is defined to be a set of grid points that divides the entire 2D grid

into two subgrids of approximately equal sizes. Smaller separators can be constructed

recursively within each subgrid. These separators are represented as rectangular oval

boxes in Fig. 4.7a and are labeled in post order in Fig. 4.7b. The separators and

minimal subdomains can be further organized in a tree structure shown in Fig. 4.6b.

This tree is sometimes called a separator tree, which is also the elimination tree as-

sociated with a block LDLT factorization of the reordered and partitioned matrix

A. Each leaf node of the tree corresponds to a minimal subdomain. Other nodes

of the tree correspond to separators defined at different levels of the partition. For

general symmetric sparse matrices, separators and leaf nodes can be obtained from

the analysis of the adjacency graph associated with the nonzero structure of A [133].

We will denote a set of row or column indices associated with each node in the

separator tree by an uppercase typewriter typeface letter such as I. Each one of

these nodes corresponds to a diagonal block in the block diagonal matrix D produced

from the block LDLT factorization. A subset of columns in I may have a similar
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nonzero structure below the diagonal block. These columns can be grouped together

to form what is known as a supernode or a relaxed supernode. (See [77] for a more

precise definition of a supernode, and [9] for the definition of a relaxed supernode.)

Sparse direct methods often take advantage of the presence of supernodes or relaxed

supernodes in the reordered matrix A to reduce the amount of indirect addressing.

Because the nonzero matrix element within a supernode can be stored as a dense

matrix, we can take full advantage of BLAS3 when working with supernodes.

(a) The reordered and partitioned
matrix A
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(b) The separator (or elimination)
tree in postorder

Figure 4.6: The separator tree associated with the nested dissection of the 15 × 15
grid shown in Fig. 4.7a can also be viewed as the elimination tree associated with a
block LDLT factorization of the 2D Laplacian defined on that grid.

(a) Nested dissection par-
tition and separators
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(b) The ordering of separa-
tors and subdomains.

Figure 4.7: The nested dissection of a 15×15 grid and the ordering of separators and
subdomains associated with this partition.

Once the separator tree and the block LDLT factorization of A become available,
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we can use the pseudocode shown in Algorithm 5 to perform block selected inversion.

As we can see from this pseudocode that Ainv(J,K) is calculated if and only if

L(J,K) is a nonzero block. Such a calculation makes use of previously calculated

blocks Ainv(J,I), where both J and I are ancestors of the node K.

Algorithm 5 A selected inversion algorithm for a sparse symmetric matrix A given
its block LDLT factorization A = LDLT .

for K = {separator tree nodes arranged in reverse post
order} do

for J ∈ {ancestors of K} do
Ainv(J,K) ← 0;

for I ∈ {ancestors of K} do
Ainv(J, K)← Ainv(J, K)− Ainv(J, I) ∗ L(I, K);

end for

Ainv(K, J)← Ainv(J, K)T ;
end for

Ainv(K, K) ← D(K,K)−1;

for J ∈ {ancestors of K} do
Ainv(K, K)← Ainv(K, K)− L(J, K)T ∗ Ainv(J, K);

end for

end for

The pseudocode in Algorithm 5 treats the matrix block L(J,I) as if it is a dense

matrix. As we can see from Fig. 4.6a, this is clearly not the case. In order to carry

out the matrix-matrix multiplication efficiently, we must take advantage of these

sparsity structures. In particular, we should not store the zero rows and columns in

L(I,K). Moreover, during the calculation of Ainv(J,K), selected rows and columns

of Ainv(J,I) must be extracted before the submatrix associated with these rows and

columns are multiplied with the corresponding nonzero rows and columns of L(I,K).

We place the extracted rows and columns in a Buffer array in Algorithm 6. The

Buffer array is then multiplied with the corresponding nonzero columns of L(I,K).

As a result, the product of the nonzero rows and columns of these matrices will have a

smaller dimension. We will call the multiplication of the nonzero rows and columns of

Buffer and L(I,K) a restrictedmatrix-matrix multiplication, and denote it by⊗. The

row and column indices associated with the needed rows and columns of Ainv(J,I)

140



are called absolute indices. These indices can be predetermined by a symbolic analysis

procedure, and they are retrieved by calling the GetAbsIndex function in Algorithm 6

that shows how restricted multiplication is used in the selected inversion process.

Algorithm 6 Selected inversion of A with restricted matrix-matrix multiplication
given its block LDLT factorization.

subroutine SeqSelInverse

for K = {separator tree nodes arranged in reverse post order} do
for J ∈ {ancestors of K} do

Ainv(J,K) ← 0;

for I ∈ {ancestors of K} do
[IA,JA] ← GetAbsIndex(L,K,I,J);

Buffer ← selected rows and columns of Ainv(J,I) starting at (IA, JA);
Ainv(J, K)← Ainv(J, K)− Buffer⊗ L(I, K);

end for

Ainv(K,J) ← transpose(Ainv(J,K));
end for

Ainv(K,K) ← D(K, K)−1;
for J ∈ {ancestors of K} do

Ainv(K, K)← Ainv(K, K)− L(J, K)T ⊗ Ainv(J, K);
end for

end for

return Ainv;
end subroutine

Parallelization The sequential algorithm described above is very efficient for prob-

lems that can be stored on a single processor. For example, we have used the algo-

rithm to compute the diagonal of a discretized Kohn-Sham Hamiltonian defined on

a 2047 × 2047 grid. The entire computation, which involves more than 4 million

degrees, took less than 2 minutes on an AMD Opteron processor.

For larger problems that we would like to solve in electronic structure calculation,

the limited amount of memory on a single processor makes it difficult to store the

L and D factors in-core. Furthermore, because the complexity of the computation

is O(n3/2) in 2D [163], the CPU time required to complete a calculation on a single

processor will eventually become excessively long.
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Thus, it is desirable to modify the sequential algorithm so that the selected in-

version process can be performed in parallel on multiple processors. The parallel

algorithm we describe below focuses on distributed memory machines that do not

share a common pool of memory.

Task parallelism and data distribution The elimination tree associated with

the block LDLT factorization of the reordered A (using nested dissection) provides

natural guidance for parallelizing the factorization calculation. It can thus be viewed

also as a parallel task tree. The same task tree can be used for carrying out selected

inversion.

We divide the computational work among different branches of the tree. A branch

of the tree is defined to be a path from the root to a node K at a given level ℓ as well

as the entire subtree rooted at K. The choice of ℓ depends on the number of processors

available. For a perfectly balanced tree, our parallel algorithm requires the number

of processors p to be a power of two, and ℓ is set to log2(p) + 1. Fig. 4.8a illustrates

the parallel task tree in the case of 4 processors.

In terms of tree node to processor mapping, each node at level ℓ or below is

assigned to a unique processor. Above level ℓ, each node is shared by multiple pro-

cessors. The amount of sharing is hierarchical, and depends on the level at which the

node resides. For a perfectly balanced tree, a level-k node is shared by 2ℓ−k processors.

We will use procmap(J) in the following discussion to denote the set of processors

assigned to node J. Each processor is labeled by an integer processor identification

(id) number between 0 and p − 1. This processor id is known to each processor as

mypid. In section 4.4.2, we show that this simple parallelization strategy leads to

good load balance for a 2D Hamiltonian defined on a rectangular domain and dis-

cretized with a five point stencil. For irregular computational domain or non-uniform

mesh partitioning strategy, more complicated task-to-processor mapping algorithms
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should be used [210] to take into account the structure of the separator tree. It may

also be necessary to perform task scheduling on-the-fly [3].

The data distribution scheme used for selected inversion is compatible with that

used for LDLT factorization. We should emphasize that the matrix D(J,J) in our

implementation of the block LDLT factorization is not necessarily diagonal. Again,

we do not store the entire submatrix L(I,J), but only the nonzero subblock within

this submatrix as well as the starting location of the nonzero subblock.

In our parallel LDLT factorization computation, the L(I,J) and D(J,J) subma-

trices associated with any J in an aggregated leaf node are stored on a single processor

p to which the aggregated leaf node is assigned. These matrices are computed using a

sequential sparse LDLT factorization algorithm on this processor. Furthermore, this

computation is done independently from that of other processors.

When J is an ancestor of an aggregated leaf node, computing L(I,J) and D(J,J)

requires the participation of all processors that are assigned to this node procmap(J).

As a result, it is natural to divide the nonzero subblock in L(I,J) and D(J,J)

into smaller submatrices, and distribute them among all processors that belong to

procmap(J). Fig. 4.8b illustrates how the columns of the L factor are partitioned and

distributed among 4 processors.

Distributing these smaller submatrices among different processors is also necessary

for overcoming the memory limitation imposed by a single processor. For example,

for a 2D Hamiltonian defined on a 16, 383× 16, 383 grid, the dimension of D(J,J) is

16, 383 for the root node J. This matrix is completely dense, hence contains 16, 3832

matrix elements. If each element is stored in double precision, the total amount of

memory required to store D(J,J) alone is roughly 2.1 gigabytes (GB). As we will see

in section 4.4.2, the distribution scheme we use in our parallel algorithm leads to only

a mild increase of memory usage per processor as we increase the problem size and

the number of processors in proportion.
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To achieve a good load balanced, we use a 2D block cyclic mapping consistent with

that used by ScaLAPACK to distribute the nonzero blocks of L(I,J) and D(J,J) for

any J that is an ancestor of an aggregated leaf node. In our parallel selected inversion

algorithm, the distributed nonzero blocks of L(I,J) and D(J,J) are overwritten by

the corresponding nonzero blocks of Ainv(I,J) and Ainv(J,J).
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(a) Parallel task tree (b) Columns of the L factor are
partitioned and distributed among
different processors.

Figure 4.8: Task parallelism expressed in terms of parallel task tree and corresponding
matrix to processor mapping.

Parallel selected inversion algorithm Once the task-to-processor mapping and

the initial data distribution is established, the parallelization of the selected inversion

process can be described in terms of operations performed on different branches of

the parallel task tree simultaneously by different processors. As illustrated in the

subroutine ParSelInverse in Algorithm 8, each processor moves from the root of

the task tree down towards to an aggregated leaf node along a particular branch

identified by mybranch. At each node K, it first computes Ainv(J,K) for ancestors

J of K that satisfy L(J, K) 6= 0. This calculation is followed by the computation of

the diagonal block Ainv(K,K). These two operations are accomplished by the subrou-

tine ParExtract shown in the left column of Algorithm 8. Before moving one step

further along mybranch, all processors belonging to procmap(K) perform some addi-

tional data redistribution by calling the subroutine ParRestrict listed in the right
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column of Algorithm 8, so that selected components of Ainv(J,K) that will be needed

in the subsequent calculation of Ainv(J,I) for all descendents I of K are placed at

appropriate locations in a Buffer array created for each child of K. This step is essen-

tial for reducing synchronization overhead and will be discussed in detail later. After

ParRestrict is called, no communication is required between the processors assigned

to different children of K. Finally, when each processor reaches an aggregated leaf node

K, it calls the sequential selected inversion subroutine SeqSelInverse (Algorithm 6)

to compute Ainv(J,I) for all descendents I of K. No inter-processor communication

is required from this point on.

Algorithm 7 Parallel algorithm from extracting selected elements of the inverse of
a symmetric matrix A.

subroutine ParSelInverse

K ← root;
while (K is not an aggregated leaf node) do

Update Ainv(K,J) for all J = ancestor(K) by calling ParExtract(K);

Update Buffer by calling ParRestrict(K);

K ← child(K) along mybranch;
end while

Call Sequential algorithm to obtain Ainv at the leaf node;
return Ainv;
end subroutine

Avoiding synchronization bottleneck Avoiding synchronization bottleneck is

the key to achieving scalable performance in selected inversion. Synchronization is

needed in selected inversion as each processor proceeds from the root of the parallel

task tree to an aggregated leaf node because the submatrix L(I,K) required at a

particular node K of the parallel task tree is distributed in a block cyclic fashion

among a larger group of processors that are mapped to the ancestors of K. Some of

these processors will not participate in the computation of Ainv(K,K). Therefore,

data redistribution is required to move the required matrix elements from this larger

group of processors to the set of processors in procmap(K).

We use the ScaLAPACK subroutine PDGEMR2D to perform such a data redistribution.
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Algorithm 8 Parallel implementation of selected inversion of A given its block LDLT

factorization.
subroutine ParExtract(K)

for J ∈ {ancestors of K} do
Ainv(J,K) ← 0;

for I ∈ {ancestors of K}
do

Ainv(J, K)← Ainv(J, K)−
Buffer(J, I)⊗ L(I, K);

end for

Ainv(K,J) ←
Ainv(J,K)T;

end for

Ainv(K,K) ← D(K,K);

for J ∈ {ancestors of K} do
Ainv(K, K)← Ainv(K, K)−
L(J, K)T ⊗ Ainv(J, K);

end for

return Ainv;
end subroutine

subroutine ParRestrict(K)

if (K is the root) then
Buffer ← D(K,K);

end if

for C ∈ {children of K} do
for all I,J ∈ {ancestors of K} do

if L(J, C) 6= 0 and L(I, C) 6= 0)
then

[IR,JR] ←
GetRelIndex(C,K,I,J);

Restrict Buffer(J,I) to a sub-
matrix starting at (IR, JR).

end if

end for

end for

return Buffer;
end subroutine

When PDGEMR2D is called to redistribute data from a larger processor group A to a

smaller processor group B that is contained in A, all processors in A are blocked,

meaning that no processor in A can proceed with its own computational work until

the data redistribution initiated by processors in B is completed. This blocking

feature of PDGEMR2D, while necessary for ensuring data redistribution is done in a

coherent fashion, creates a potential synchronization bottleneck.

To be specific, when the selected nonzero rows and columns in Ainv(J,I) (Algo-

rithm 8) are to be extracted from a large number of processors in procmap(I) and

redistributed among a subset of processors in procmap(K), a direct extraction and

redistribution via the use of PDGEMR2D will block all processors in procmap(I). If K is

several levels away from I, a communication bottleneck that involves all processors

in procmap(I) is created. This bottleneck makes the computation of Ainv(J,K) a

sequential process for all descendants K of I that are at the same level.

The strategy we use to overcome this synchronization bottleneck is to place se-
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lected nonzero elements of Ainv(J,I) that would be needed for subsequent calcula-

tions in a Buffer array. Selected subblocks of the Buffer array will be passed further

to the descendants of I as each processor moves down the parallel task tree. The task

of extracting necessary data and placing it in Buffer is performed by the subroutine

ParRestrict shown in Algorithm 8. At a particular node I, the ParRestrict call

is made simultaneously by all processors in procmap(I), and the Buffer array is

distributed among processors assigned to each child of I so that the multiplication

of the nonzero subblocks of Ainv(J,I) and L(J,K) can be carried out in parallel (by

pdgemm). Because this distributed Buffer array contains all information that would

be needed by descendants of K, no more direct reference to Ainv(J,I) is required for

any ancestor I of K from this point on. As a result, no communication is performed

between processors that are assigned to different children of I once ParRestrict is

called at node I.

As each processor moves down the parallel task tree within the while loop of the

subroutine ParSelInverse in Algorithm 7, the amount of data extracted from the

Buffer array by the ParRestrict subroutine becomes smaller and smaller. The new

extracted data is distributed among a smaller number of processors also. Each call

to ParRestrict(I) requires a synchronization of all processors in procmap(I), hence

incurring some synchronization overhead. This overhead becomes smaller as each

processor gets closer to an aggregated leaf node because each ParRestrict call is

then performed within a small group of processors. When an aggregated leaf node is

reached, all selected nonzero rows and columns of Ainv(J,I) required in subsequent

computation are available in the Buffer array allocated on each processor. As a

result, no communication is required among different processors from this point on.

Since the desired data in the Buffer array is passed level by level from a parent to

its children, we only need to know the relative positions of the subblocks needed by

a child within the Buffer array owned by its parent. Such positions can be recorded
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by relative indices that are obtained by the subroutine GetRelIndex in Algorithm 8.

They are used for data extraction in ParRestrict. The use of relative indices is

not necessary when each process reaches a leaf node at which the sequential selected

inversion subroutine SeqSelInverse is called.

4.4.2 Performance of the parallel selected inversion algorithm

In this subsection, we report the performance of our implementation of the selected

inversion algorithm for a discretized 2D Kohn-Sham Hamiltonian H using five-point

stencil with a zero shift, which we will refer to as PSelInv in the following. The

nested dissection procedure stops when the dimension of the subdomain is 3× 3. We

analyze the performance statistics by examining several aspects of the implementa-

tion that affect the efficiency of the computation and communication. Our perfor-

mance analysis is carried out on the Franklin system maintained at National Energy

Research Scientific Computing (NERSC) Center. Franklin is a distributed-memory

parallel system with 9,660 compute nodes. Each compute node consists of a 2.3 GHz

single socket quad-core AMD Opteron processor (Budapest) with a theoretical peak

performance of 9.2 gigaflops per second (Gflops) per core. Each compute node has

8 gigabyte (GB) of memory (2 GB per core). Each compute node is connected to

a dedicated SeaStar2 router through Hypertransport with a 3D torus topology that

ensures high performance, low-latency communication for MPI. The floating point

calculation is done in 64-bit double precision. We use 32-bit integers to keep index

and size information.

Our implementation of the selective inversion achieves very high single processor

performance. In particular, when the grid size reaches 2, 047, we are able to reach

67% (6.16/9.2) of the peak performance of a single Franklin core.

Here we will mainly focus on the parallel performance of our algorithm and im-

plementation. Our objective for developing a parallel selected inversion algorithm is
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to enable us and other researchers to study the electronic structure of large quan-

tum mechanical systems when a vast amount of computational resource is available.

Therefore, our parallelization is aimed at achieving a good weak scaling. Weak scal-

ing refers to a performance model similar to that used by Gustafson [112]. In such

a model, performance is measured by how quickly the wall clock time increases as

both the problem size and the number of processors involved in the computation in-

crease. Because the complexity of the factorization and selected inversion procedures

is O(n3/2), where n is the matrix dimension and m is the number of grids in one

dimension. We will simply call m the grid size in the following. Clearly n = m2. We

also expect that, in an ideal scenario, the wall-clock time should increase by a factor

of two when the grid size doubles and the number of processor quadruples.

In addition to using MPI Wtime() calls to measure the wall clock time consumed by

different components of our code, we also use the Integrated Performance Monitoring

(IPM) tool [228], the CrayPat performance analysis tool [129] as well as PAPI [44] to

measure various performance characteristics of our implementation.

Single Processor Performance We first report the performance of selected in-

version algorithm when it is executed on a single processor. The single processor

performance is measured in terms of the CPU time and the floating point operations

performed per second (flops). Table 4.5 lists the performance characteristic of single

processor calculations for Hamiltonians defined on square grids with different sizes.

We choose the grid size m to be m = 2ℓ− 1 for some integer ℓ > 1 so that a perfectly

balanced elimination tree is produced from a nested dissection of the computational

domain.

The largest problem we can solve on a single processor contains 2, 047×2, 047 grid

points. The dimension of the corresponding matrix is over 4 million. The memory

requirement for solving problems defined on a larger grid (with ℓ > 11) exceeds what
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grid size matrix dimension symbolic factorization inversion total Gflops

127 16,129 0.01 0.04 0.03 0.08 1.29
255 65,025 0.05 0.21 0.17 0.43 2.57
511 261,121 0.22 1.18 1.03 2.43 3.89
1023 1,046,529 0.93 7.29 6.76 15.0 5.12
2047 4,190,209 4.21 48.8 47.3 100.3 6.15

Table 4.5: Single processor performance

is available on a single node of the Franklin system. Thus they can only be solved in

parallel using multiple processors.

We can clearly see from Table 4.5 that the symbolic analysis of the LDLT fac-

torization takes a small fraction of the total time, especially when the problem is

sufficiently large. The selected inversion calculation (after a block LDLT factoriza-

tion has been performed) takes slightly less time to complete than that required by

the factorization. The total CPU time listed in the 6th column of the table confirms

the O(n3/2) complexity.

We also observe that a high flops rate is achieved for larger problems. In particular,

when the grid size reaches 2, 047, we achieve 67% (6.16/9.2) of peak performance of

the machine. This is due to the fact that as the problem size increases, the overall

computation is dominated by computation performed on the dense matrix blocks

associated with large supernodes. Therefore the performance approaches that of

dense matrix-matrix multiplications.

Parallel Scalability We report the performance of our implementation when it is

executed on multiple processors. Our primary interest is in the weak scaling of the

parallel computation with respect to an increasing problem size and an increasing

number of processors. The strong scaling of our implementation for a problem of

fixed size is described in Table 4.6. We report the wall clock time (in seconds) for

selected inversion of A−1 defined on a 2, 047× 2, 047 grid. In the third column of the
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table, we report also the speedup factor defined as τ = t1/tnp
, where tnp

is the wall

clock time recorded for an np-processor run.

np wall clock time speedup factor Gflops

1 100.1 1.0 6.2
2 52.2 1.9 11.8
4 30.2 3.3 20.2
8 16.8 6.0 33.5
16 9.5 10.5 55.9
32 5.7 17.6 90.0
64 3.3 30.3 156.2
128 2.3 42.3 226.4
256 1.8 55.6 281.7
512 1.7 58.9 294.2

Table 4.6: The scalability of parallel computation used to obtain A−1 for A of a fixed
size (n = 2047× 2047.)
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Figure 4.9: Log-log plot of total wall clock time and total Gflops with respect to
number of processors, compared with ideal scaling. The grid size is fixed at 2047 ×
2047.

Figure 4.9 compares the performance of our algorithm, called PSelInv, with ideal

scaling in terms of total wall clock time and total Gflops. As we can clearly see

from Table 4.6 and Figure 4.9, for problem of this fixed size, deviation from the

ideal speedup begins to show up when the computation is performed in parallel on 4
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processors. The performance barely improves in a 512-processor run compared to the

256-processor run. Beyond that point, communication overhead starts to dominate.

We will discuss the sources of communication overhead in the next few subsections.

In terms of weak scaling, PSelInv performs quite well with up to 4,096 processors

for problems defined on a 65, 535×65, 535 grid (with corresponding matrix dimension

around 4.3 billion). In Table 4.7, we report the wall clock time recorded for several

runs on problems defined on square grids of different sizes. To measure weak scaling,

we start with a problem defined on a 1, 023× 1, 023 grid, which is solved on a single

processor. When we double the grid size, we increase the number of processors by

a factor of 4. In an ideal scenario in which communication overhead is small, we

should expect to see a factor of two increase in wall clock time every time we double

the grid size and quadruple the number of processors used in the computation. Such

prediction is based on the O(m3) complexity of the computation. In practice, the

presence of communication overhead will lead to a larger amount of increase in total

wall clock time. Hence, if we use t(m,np) to denote the total wall clock time used in

an np-processor calculation for a problem defined on a square grid with grid size m,

we expect the weak scaling ratio defined by τ(m,np) = t(m/2, np/4)/t(m,np), which

we show in the last column of Table 4.7, to be larger than two. However, as we can

see from this table, deviation of τ(m,np) from the ideal ratio of two is quite modest

even when the number of processors used in the computation reaches 4, 096.

A closer examination of the performance associated with different components of

our implementation reveals that our parallel symbolic analysis takes a nearly constant

amount of time that is a tiny fraction of the overall wall clock time for all configura-

tions of problem size and number of processors. This highly scalable performance is

primarily due to the fact that most of the symbolic analysis performed by each pro-

cessor is carried out within an aggregated leaf node that is completely independent

from other leaf nodes.
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Table 4.7 shows that the performance of our block selected inversion subroutine

achieves nearly ideal weak scaling up to 4, 096 processors. The scaling of flops and

wall clock time can be better viewed in Fig. 4.10, in which the code performance is

compared to ideal performance using a log-log plot. We should point out that the

performance of our implementation of the parallel LDLT factorization is comparable

to that achieved by the state-of-art sparse matrix software packages such as MUMPS

[3] on relatively small 2D problem used in our experiment even though our factor-

ization includes the additional computation of using the ScaLAPACK subroutines

pdgetri to invert the diagonal blocks of D. (We have not been able to use MUMPS

to factor problems that are discretized with 8191× 8191 or more grid points.) From

Table 4.7, we can also see that the selected inversion time is significantly less than that

associated with factorization when the problem size becomes sufficiently large. This

is due primarily to the fact that selected inversion involves less amount of indirect

addressing, and almost all float point operations involved in block selected inversion

are dense matrix-matrix multiplications.

grid size np symbolic factorization inversion total weak scaling
time time time time ratio

1,023 1 0.92 7.29 6.77 14.99 –

2,047 4 1.77 14.44 13.82 30.04 2.00

4,095 16 1.82 34.26 25.39 61.82 2.05

8,191 64 1.91 86.35 47.07 135.34 2.18

16,383 256 1.98 207.51 89.91 299.41 2.21

32,767 1024 2.08 474.94 174.57 651.59 2.17

65,535 4096 2.40 1109.09 348.13 1459.62 2.24

Table 4.7: The scalability of parallel computation used to obtain A−1 for A for in-
creasing system sizes. The largest grid size is 65, 535 × 65, 535 and corresponding
matrix size is approximately 4.3 billion.

Load Balance To have a better understanding of the parallel performance of our

code, let us now examine how well the computational load is balanced among different

processors. Although we try to maintain a good load balance by distributing the
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Figure 4.10: Log-log plot of total wall clock time and total Gflops with respect to
number of processors, compared with ideal scaling. The grid size starts from 1023×
1023, and is proportional to the number of processors.

nonzero elements in L(I,J) and D(J,J) as evenly as possible among processors in

procmap(J), such a data distribution strategy alone is not enough to achieve perfect

load balance as we will see below.

One way to measure load balance is to examine the flops performed by each

processor. We collected such statistics by using PAPI [44]. Fig. 4.11 shows the

overall flop counts measured on each processor for a 16-processor run of the selected

inversion for A defined on a 4, 095 × 4, 095 grid. There is clearly some variation in

operation counts among the 16 processors. Such variation contributes to idle time

that shows up in the communication profile of the run, which we will report in the

next subsection. Such variation can be explained by how the separator tree nodes are

order and its relationship with the 2D grid topology.

Communication Overhead A comprehensive measurement of the communication

cost can be collected using the IPM tool. Table 4.8 shows the overall communication

cost increases moderately as we double the problem size and quadruple the number

of processors at the same time.
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Figure 4.11: The number of flops performed on each processor for the selected inver-
sion of A−1 defined on a 4, 095× 4, 095 grid.

grid size np communication (%)

1,023 1 0

2,047 4 2.46

4,095 16 11.14

8,191 64 20.41

16,383 256 28.43

32,767 1024 34.46

65,535 4096 40.80

Table 4.8: Communication cost as a percentage of the total wall clock time.

155



As we discussed earlier, the communication cost can be attributed to the following

three factors:

1. Idle wait time. This is the amount of time a processor spends waiting for other

processors to complete their work before proceeding beyond a synchronization

point.

2. Communication volume. This is the amount of data transfered among different

processors.

3. Communication latency. This factor pertains to the startup cost for sending a

single message. The latency cost is proportional to the total number of messages

communicated among different processors.

The communication profile provided by IPM shows that MPI Barrier calls are the

largest contributor to the communication overhead. An example of such a profile

obtained from a 16-processor run on a 4, 095 × 4, 095 grid is shown in Fig. 4.12. In

this particular case, MPI Barrier represents more than 50% of all communication

cost. The amount of idle time the code spent in this MPI function is roughly 6.3%

of the overall wall clock time.

The MPI Barrier and BLACS Barrier (which shows up in the performance profile

as MPI Barrier) functions are used in several places in our code. In particular, the

barrier functions are used in the selected inversion process to ensure relative indices

are properly computed by each processor before selected rows and columns of the

matrix block associated with a higher level node are redistributed to its descendants.

The idle wait time spent in these barrier function calls is due to the variation of

computational loads. Using the call graph provided by CrayPat, we examined the

total amount of wall clock time spent in these MPI Barrier calls. For the 16-processor

run (on the 4, 095 × 4, 095 grid), this measured time is roughly 2.6 seconds, or 56%

of all idle time spent in MPI Barrier calls. The rest of the MPI Barrier calls are
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[name] [time] [calls] <%mpi> <%wall>

MPI_Barrier 67.7351 960 52.21 6.32

MPI_Recv 30.4719 55599 23.49 2.84

MPI_Reduce 16.6104 18260 12.80 1.55

MPI_Send 7.86273 25865 6.06 0.73

MPI_Bcast 5.86476 100408 4.52 0.55

MPI_Allreduce 0.842473 320 0.65 0.08

MPI_Isend 0.261145 29734 0.20 0.02

MPI_Testall 0.0563367 33515 0.04 0.01

MPI_Sendrecv 0.0225533 1808 0.02 0.00

MPI_Allgather 0.00237397 16 0.00 0.00

MPI_Comm_rank 8.93647e-05 656 0.00 0.00

MPI_Comm_size 1.33585e-05 32 0.00 0.00

Figure 4.12: Communication profile for a 16-processor run on a 4, 095× 4, 095 grid.

made in ScaLAPACK matrix-matrix multiplication routine pdgemm, dense matrix

factorization and inversion routines pdgetrf and pdgetri, respectively.

Fig. 4.13a shows that the percentage of wall clock time spent in MPI Barrier

increases moderately as more processors are used to solve larger problems. Such

increase is due primarily to the increase in the length of the critical path in both

the elimination tree and in the dense linear algebra calculations performed on each

separator.

(a) The percentage of time spent in
MPI Barrier as a function of np (and
the corresponding grid size m).

(b) The average memory usage per
processor as a function of np and m.

Figure 4.13: Communication overhead and memory usage profile

In addition to the idle wait time spent in MPI Barrier, communication overhead
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is also affected by the volume of data transfered among different processors and how

frequent these transfers occur. It is not difficult to show that the total volume of

communication should be proportional to the number of nonzeros in L and indepen-

dent from the number of processors used. Fig. 4.12 shows that the total amount of

wall clock time spent in MPI data transfer functions MPI Send, MPI Recv, MPI ISend,

MPI Reduce, MPI Bcast and MPI Allreduce etc. is less than 5% of the overall wall

clock time for a 16-processor run on a 4, 095× 4, 095 grid. Some of the time spent in

MPI Recv and collective communication functions such as MPI Reduce and MPI Bcast

corresponds to idle wait time that are not accounted for in MPI Barrier. Thus, the

actual amount of time spent in data transfer is much less than 5% of the total wall

clock time. This observation provides an indirect measurement of the relatively low

communication volume produced in our calculation.

In terms of the latency cost, we can see from Fig. 4.12 that the total number of MPI

related function calls made by all processors is roughly 258,000 (obtained by adding

up the call numbers in the third column). Therefore, the total number of messages

sent and received per processor is roughly 16,125. The latency for sending one message

on Franklin is roughly 8 microsecond. Hence, the total latency cost for this particular

run is estimated to be roughly 0.13 seconds, a tiny fraction of the overall wall clock

time. Therefore, latency does not contribute much to communication overhead.

Memory Consumption In addition to maintaining good load balance among dif-

ferent processors, the data-to-processor mapping scheme also ensures that the memory

usage per core only increases logarithmically with respect to the matrix dimension in

the context of weak scaling. This estimation is based on the observation that when

the grid size is increased by a factor of two, the dimension of the extra blocks associ-

ated with L and D to are proportional to the grid size, and the total amount of extra

memory requirement is proportional to the square of the grid size. Since the number
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of processors is increased by a factor of four, the extra memory requirement stays

fixed regardless of the grid size. This logarithmic dependence is clear from Fig. 4.13b,

where the average memory cost per core with respect to number of processors is

shown. The x-axis is plotted in logarithmic scale.

4.4.3 Application to electronic structure calculation of 2D

rectangular quantum dots

We now show how the parallel selected inversion algorithm can be used to speed up

electronic structure calculations. The example we use here is a 2D electron quantum

dot confined in a rectangular domain, a model investigated in [216] with the local

density approximation (LDA) for the 2D exchange-correlation functional [13]. This

model is also provided in the test suite of the Octopus software [50], which we use for

comparison.

We calculate the electron density using the pole expansion introduced in sec-

tion 3.3. In this example, the Laplacian operator ∆ is discretized using a five-point

stencil. The electron temperature is set to be 300K. The area of the quantum dot

is L2. In a two-electron dot, setting L = 1.66Å and discretizing the 2D domain with

31× 31 grid points yields an total energy error that is less than 0.002Ha. When the

number of electrons becomes larger, we increase the area of the dot in proportion so

that the average electron density is fixed. A typical density profile with 32 electrons

is shown in Fi. 4.14. In this case, the quantum dot behaves like a metallic system

with a tiny energy gap around 0.08eV.

We compare the density evaluation performed by both Octopus and the pole

expansion technique. In Octopus, the invariant subspace associated with the smallest

ne/2 + nh smallest eigenvalues of H is computed using a conjugate gradient (CG)

like algorithm, where ne is the number of electrons in the quantum dot and nh is the

number of extra states for finite temperature calculation. The value of nh depends
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Figure 4.14: A contour plot of the density profile of a quantum dot with 32 electrons.

on the system size and temperature. For example, in the case of 32 electrons 4 extra

states are necessary for the electronic structure calculation at 300K. In the pole

expansion approach, we use 80 poles, which in general could give a relative error in

electron density on the order of 10−7 (in L1 norm) [164].

In addition to using the parallel algorithm to evaluate each term, an extra level of

coarse grained parallelism can be achieved by assigning each pole to a different group

of processors.

In Table 4.9, we compare the efficiency of the pole expansion technique for the

quantum dot density calculation performed with the standard eigenvalue calculation

approach implemented in Octopus. The maximum number of CG iterations for com-

puting each eigenvalue in Octopus is set to the default value of 25. We label the pole

expansion-based approach that uses the algorithm and implementation as PCSelInv,

where the letter C stands for complex. The factor 80 in the last column of Table 4.9

accounts for 80 poles. When a massive number of processors are available, this pole

number factor will easily result in a factor of 80 reduction in wall clock time for the

PCSelInv calculation, whereas such a perfect reduction in wall clock time cannot be

easily obtained in Octopus.

We observe that for quantum dots that contain a few electrons, the standard den-

sity evaluation approach implemented in Octopus is faster than the pole expansion
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ne(#Electrons) Grid #proc Octopus time(s) PCSelInv time(s)

2 31 1 < 0.01 0.01 × 80

8 63 1 0.03 0.06 × 80

32 127 1 0.78 0.03 × 80

128 255
1 26.32 1.72 × 80

4 10.79 0.59 × 80

512 511
1 1091.04 9.76 × 80

4 529.30 3.16 × 80

16 131.96 1.16 × 80

2048 1023
1 out of memory 60.08 × 80

4 out of memory 19.04 × 80

16 7167.98 5.60 × 80

64 1819.39 2.84 × 80

Table 4.9: Timing comparison of electron density evaluation between Octopus and
PCSelInv for systems of different sizes. The multiplication by 80 in the last column
accounts for the use of 80 pole.

approach. However, when the number of electrons becomes sufficiently large, the

advantage of the pole expansion approach using the algorithms presented to compute

diag [H−(zi+µ)I]−1 becomes quite evident. This is because the computation cost as-

sociated with the eigenvalue calculation in Octopus is dominated by the computation

performed to maintain mutual orthogonality among different eigenvectors when the

number of electrons in the quantum dot is large. The complexity of this computation

alone is O(n3), whereas the overall complexity of the pole-based approach is O(n3/2).

The crossover point in our experiment appears to be 512 electrons. For a quantum

dot that contains 2048 electrons, PCSelInv is eight times faster than Octopus.

4.5 Conclusion

This chapter has developed the selected inversion algorithm for extracting the di-

agonal elements and the nearest off-diagonal elements of symmetric matrices. The

selected inversion algorithm is numerically exact. The computational complexity of
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the selected inversion algorithm is O(N) for quasi-1D systems, O(N1.5) for quasi-

2D systems and O(N2) for 3D systems, where N is the number of electrons in the

system. Combined with the pole expansion developed in Chapter 3, the selected in-

version algorithm can be used for accurate and efficient calculation of solving KSDFT.

The asymptotic computational scaling is universally improved compared to the cubic

scaling for systems of all dimensions.

We have developed a sequential selected inversion algorithm, called SelInv, for

solving the diagonal and nearest off-diagonal elements of a general symmetric matrix.

SelInv is applied to a variety of benchmark problems with dimension as large as 1.5

million. SelInv is already two orders of magnitude faster than the direct inversion

method for moderately large matrices. We have developed a parallel selected inversion

algorithm, called PSelInv, for solving the diagonal and nearest off-diagonal elements of

structured 2D matrices. PSelInv is able to solve problems defined on a 65, 535×65, 535

grid with 4.3 billion degrees of freedom on 4, 096 processors, and exhibits an excellent

weak scaling property.

The selected inversion algorithm have also been applied to study the electronic

structure of quantum dots and aluminum. The quantum dots is a two-dimensional

system, and the new parallel selected inversion algorithm shows significant advan-

tage over the diagonalization method. Aluminum is a three-dimensional system, and

SelInv is only marginally superior to the diagonalization method. The difference in

the performance is twofold. First, the asymptotic scaling of the selected inversion

algorithm is O(N1.5) for two dimensional system, and O(N2) for three dimensional

system, due to the difference in the sparsity of the Cholesky factor of the Hamiltonian

matrix. The computational time of the selected inversion algorithm is expected to

be more expensive in two dimensional case than that in the three dimensional case.

Second, the selected inversion algorithm has a larger preconstant than that in the di-

agonalization method. The preconstant is largely determined by the number of basis
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functions per atom, denoted by c. It can be shown that after taking into account the

pre-constant, the computational complexity of the diagonalization method is O(cN3),

while the computational complexity of the selected inversion algorithm is O(c3N) for

one dimensional system, O(c3N1.5) for two dimensional system, and O(c3N2) for the

three dimensional case. Take the three dimensional system for example, asymptot-

ically the crossover between the selected inversion method and the diagonalization

method happens at N = c2. In the scenario studied in Section 4.3 for aluminum sys-

tem, finite difference method is used for the discretization of the Hamiltonian matrix.

It is well known that the finite difference discretization leads to a large number of

basis functions per atom. It is desirable to use a discretization scheme that leads to

small basis functions per atom. The adaptive local basis functions method developed

in Chapter 2 results in a small number of basis functions per atom, and is therefore

the natural choice of basis functions in the future work.

Another direction for future work is the parallel selected inversion algorithm for

general symmetric matrices. The selected inversion algorithm contains three phases:

symbolic analysis; LDLT factorization; selected inversion. The symbolic analysis can

be done in parallel relatively easily for 2D Hamiltonians discretized on a rectangular

domain by finite difference. For problems defined on irregular grids (e.g., problems

that are discretized by finite elements or some other techniques), a general parallel

symbolic analysis based on graph partitioning [133,210,257,257] should be used. The

LDLT factorization can in principle be performed by any of the existing sparse matrix

solvers [3, 10, 110, 111, 195, 215, 221, 223]. The selected inversion based on supernodes

can be generalized to the parallel version using the same method as in SelInv, once

the parallel symbolic analysis is available. This is an area of research we are currently

pursuing.
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Chapter 5

Fast construction of H matrix

5.1 Introduction

In this chapter, we consider the following problem: Assume that an unknown sym-

metric matrix G has the structure of a hierarchical matrix (H-matrix) [37, 115, 116],

that is, certain off-diagonal blocks of G are low-rank or approximately low-rank (see

the definitions in Sections 5.1.3 and 5.2.2). The task is to construct G efficiently only

from a “black box” matrix-vector multiplication subroutine (which shall be referred

to as matvec in the following). In a slightly more general setting when G is not

symmetric, the task is to construct G from “black box” matrix-vector multiplication

subroutines of both G and GT. In this work, we focus on the case of a symmetric

matrix G. The proposed algorithm can be extended to the non-symmetric case in a

straightforward way.

This work is inspired from the work of selected inversion developed in Chapter 4,

and this chapter is relatively independent. Readers who are focusing on the main flow

of this dissertation can skip this chapter and directly go to the conclusion of Part I

in Chapter 6. Materials in this chapter have been presented in [161].
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5.1.1 Motivation and applications

Our motivation is mainly for the situation that G is given as the Green’s function of

an elliptic equation. In this case, it is proved that G is an H-matrix under mild regu-

larity assumptions [20]. For elliptic equations, methods like preconditioned conjugate

gradient, geometric and algebraic multigrid methods, sparse direct methods provide

application of the matrix G on vectors. The algorithm proposed in this work then

provides an efficient way to construct the matrix G explicitly in the H-matrix form.

Once we obtain the matrix G as an H-matrix, it is possible to apply G on vectors

efficiently, since the application of anH-matrix on a vector is linear scaling. Of course,

for elliptic equations, it might be more efficient to use available fast solvers directly to

solve the equation, especially if only a few right hand sides are to be solved. However,

sometimes, it would be advantageous to obtain G since it is then possible to further

compress G according to the structure of the data (the vectors that G will be acting

on), for example as in numerical homogenization [80]. Another scenario is that the

data has special structure like sparsity in the choice of basis, the application of the

resulting compressed matrix will be more efficient than the “black box” elliptic solver.

Let us remark that, in the case of elliptic equations, it is also possible to use theH-

matrix algebra to invert the direct matrix (which is an H-matrix in e.g. finite element

discretization). Our method, on the other hand, provides an efficient alternative

algorithm when a fast matrix-vector multiplication is readily available, and is able

to compute the inverse of an H-matrix of dimension n × n with O(log n) matrix-

vector multiplications. We also remark that the preconstant in front of the O(log n)

scaling can be large, and this may hinder the application of the current version of the

algorithm in many scenarios. However, from a computational point of view, what is

probably more attractive is that our algorithm facilitates a parallelized construction

of the H-matrix, while the direct inversion has a sequential nature [115].

As another motivation, the purpose of the algorithm is to recover the matrix via
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a “black box” matrix-vector multiplication subroutine. A general question of this

kind will be that under which assumptions of the matrix, one can recover the matrix

efficiently by matrix-vector multiplications. If the unknown matrix is low-rank, the

recently developed randomized singular value decomposition algorithms [119,157,248]

provide an efficient way to obtain the low-rank approximation through application of

the matrix on random vectors. Low-rank matrices play an important role in many

applications. However, the assumption is too strong in many cases that the whole

matrix is low-rank. Since the class of H-matrices is a natural generalization of the

one of low-rank matrices, the proposed algorithm can be viewed as a further step in

this direction.

5.1.2 Randomized singular value decomposition algorithm

A repeatedly leveraged tool in the proposed algorithm is the randomized singular

value decomposition algorithm for computing a low rank approximation of a given

numerically low-rank matrix. This has been an active research topic in the past

several years with vast literature. For the purpose of this work, we have adopted the

algorithm developed in [157], although other variants of this algorithm with similar

ideas can also be used here. For a given matrix A that is numerically low-rank, this

algorithm goes as following to compute a rank-r factorization.

Algorithm 9 Construct a low-rank approximation A ≈ U1MUT
2 for rank r

1: Choose a Gaussian random matrix R1 ∈ R
n×(r+c) where c is a small

constant;
2: Form AR1 and apply SVD to AR1. The first r left singular vectors

give U1;
3: Choose a Gaussian random matrix R2 ∈ R

n×(r+c);
4: Form RT

2 A and apply SVD to ATR2. The first r left singular vectors
give U2;

5: M = (RT
2 U1)

†[RT
2 (AR1)](U

T
2 R1)

†, where B† denotes the Moore-
Penrose pseudoinverse of matrix B [105, pp. 257–258].

The accuracy of this algorithm and its variants has been studied thoroughly by
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several groups. If the matrix 2-norm is used to measure the error, it is well-known that

the best rank-r approximation is provided by the singular value decomposition (SVD).

When the singular values of A decay rapidly, it has been shown that Algorithm 9

results in almost optimal factorizations with an overwhelming probability [119]. As

Algorithm 9 is to be used frequently in our algorithm, we analyze briefly its complexity

step by step. The generation of random numbers is quite efficient, therefore in practice

one may ignore the cost of steps 1 and 3. Step 2 takes (r+ c) matvec of matrix A and

O(n(r + c)2) steps for applying the SVD algorithms on an n × (r + c) matrix. The

cost of step 4 is the same as the one of step 2. Step 5 involves the computation of

RT
2 (AR1), which takes O(n(r + c)2) steps as we have already computed AR1 in step

2. Once RT
2 (AR1) is ready, the computation of M takes additional O((r+ c)3) steps.

Therefore, the total complexity of Algorithm 9 is O(r+ c) matvecs plus O(n(r+ c)2)

extra steps.

5.1.3 Top-down construction of H-matrix

We illustrate the core idea of our algorithm using a simple one-dimensional example.

The algorithm of constructing a hierarchical matrix G is a top-down pass. We assume

throughout the article that G is symmetric.

For clarity, we will first consider a one dimension example. The details of the

algorithm in two dimensions will be given in Section 2. We assume that a symmetric

matrix G has a hierarchical low-rank structure corresponding to a hierarchical dyadic

decomposition of the domain. The matrix G is of dimension n × n with n = 2LM

for an integer LM . Denote the set for all indices as I0;1, where the former subscript

indicates the level and the latter is the index for blocks in each level. At the first level,

the set is partitioned into I1;1 and I1;2, with the assumption that G(I1;1, I1;2) and

G(I1;2, I1;1) are numerically low-rank, say of rank r for a prescribed error tolerance

ε. At level l, each block Il−1;i on the above level is dyadically decomposed into two
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blocks Il;2i−1 and Il;2i with the assumption that G(Il;2i−1, Il;2i) and G(Il;2i, Il;2i−1) are

also numerically low-rank (with the same rank r for the tolerance ε). Clearly, at level

l, we have in total 2l off-diagonal low-rank blocks. We stop at level LM , for which

the block ILM ,i only has one index {i}. For simplicity of notation, we will abbreviate

G(Il;i, Il;j) by Gl;ij. We remark that the assumption that off-diagonal blocks are

low-rank matrices may not hold for general elliptic operators in higher dimensions.

However, this assumption simplifies the introduction of the concept of our algorithm.

More realistic case will be discussed in detail in Sections 5.2.3 and 5.2.4.

The overarching strategy of our approach is to peel off the off-diagonal blocks level

by level and simultaneously construct their low-rank approximations. On the first

level, G1;12 is numerically low-rank. In order to use the randomized SVD algorithm

for G1;12, we need to know the product of G1;12 and also GT
1;12 = G1;21 with a collection

of random vectors. This can be done by observing that



G1;11 G1;12

G1;21 G1;22






R1;1

0


 =



G1;11R1;1

G1;21R1;1


 , (5.1)



G1;11 G1;12

G1;21 G1;22







0

R1;2


 =



G1;12R1;2

G1;22R1;2


 , (5.2)

where R1;1 and R1;2 are random matrices of dimension n/2 × (r + c). We obtain

(G1;21R1;1)
T = RT

1;1G1;12 by restricting the right hand side of Eq. (5.1) to I1;2 and

obtain G1;12R1;2 by restricting the right hand side of Eq. (5.2) to I1;1, respectively.

The low-rank approximation using Algorithm 9 results in

G1;12 ≈ Ĝ1;12 = U1;12M1;12U
T
1;21. (5.3)

U1;12 and U1;21 are n/2 × r matrices and M1;12 is an r × r matrix. Due to the fact

that G is symmetric, a low-rank approximation of G1;21 is obtained as the transpose
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of G1;12.

Now on the second level, the matrix G has the form




G2;11 G2;12

G2;21 G2;22

G1;12

G1;21

G2;33 G2;34

G2;43 G2;44




.

The submatrices G2;12, G2;21, G2;34, and G2;43 are numerically low-rank, to obtain

their low-rank approximations by the randomized SVD algorithm. Similar to the first

level, we could apply G on random matrices of the form like (R2;1, 0, 0, 0)
T. This will

require 4(r+c) number of matrix-vector multiplications. However, this is not optimal:

Since we already know the interaction between I1;1 and I1;2, we could combine the

calculations together to reduce the number of matrix-vector multiplications needed.

Observe that




G2;11 G2;12

G2;21 G2;22

G1;12

G1;21

G2;33 G2;34

G2;43 G2;44







R2;1

0

R2;3

0




=






G2;11R2;1

G2;21R2;1


+G1;12



R2;3

0






G2;33R2;3

G2;43R2;3


+G1;21



R2;1

0







. (5.4)

Denote

Ĝ(1) =




0 Ĝ1;12

Ĝ1;21 0


 (5.5)

with Ĝ1;12 and Ĝ1;21 the low-rank approximations we constructed on the first level,
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then

Ĝ(1)




R2;1

0

R2;3

0




=




Ĝ1;12



R2;3

0




Ĝ1;21



R2;1

0







. (5.6)

Therefore,

(G− Ĝ(1))




R2;1

0

R2;3

0




≈




G2;11R2;1

G2;21R2;1

G2;33R2;3

G2;43R2;3




, (5.7)

so that we simultaneously obtain (G2;21R2;1)
T = RT

2;1G2;12 and (G2;43R2;3)
T = RT

2;3G2;34.

Similarly, applying G on (0, R2;2, 0, R2;4)
T provides G2;12R2;2 and G2;34R2;4. We can

then obtain the following low-rank approximations by invoking Algorithm 9.

G2;12 ≈ Ĝ2;12 = U2;12M2;12U
T
2;21,

G2;34 ≈ Ĝ2;34 = U2;34M2;34U
T
2;43.

(5.8)

The low-rank approximations of G2;21 and G2;43 are again given by the transposes of

the above formulas.
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Similarly, on the third level, the matrix G has the form




G3;11 G3;12

G3;21 G3;22

G2;12

G2;21

G3;33 G3;34

G3;43 G3;44

G1;12

G1;21

G3;55 G3;56

G3;65 G3;66

G2;34

G2;43

G3;77 G3;78

G3;87 G3;88




, (5.9)

and define

Ĝ(2) =




0 Ĝ2;12

Ĝ2;21 0
0

0
0 Ĝ2;34

Ĝ2;43 0




. (5.10)

We could simultaneously obtain the product of G3;12, G3;34, G3;56 and G3;78 with

random vectors by applying the matrix G with random vectors of the form

(RT
3;1, 0, R

T
3;3, 0, R

T
3;5, 0, R

T
3;7, 0)

T,

then subtract the product of Ĝ(1) + Ĝ(2) with the same vectors. Again invoking

Algorithm 9 provides us the low-rank approximations of these off-diagonal blocks.

The algorithm continues in the same fashion for higher levels. The combined

random tests lead to a constant number of matvec at each level. As there are log(n)

levels in total, the total number of matrix-vector multiplications scales logarithmically.

When the block size on a level becomes smaller than the given criteria (for exam-

ple, the numerical rank r used in the construction), one could switch to a deterministic
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way to get the off-diagonal blocks. In particular, we stop at a level L (L < LM ) such

that each IL;i contains about r entries. Now only the elements in the diagonal blocks

GL,ii need to be determined. This can be completed by applying G to the matrix

(I, I, . . . , I)T,

where I is the identity matrix whose dimension is equal to the number of indices in

IL;i.

Let us summarize the structure of our algorithm. From the top level to the bottom

level, we peel off the numerically low-rank off-diagonal blocks using the randomized

SVD algorithm. The matrix-vector multiplications required by the randomized SVD

algorithms are computed effectively by combining several random tests into one using

the zero pattern of the remaining matrix. In this way, we get an efficient algorithm

for constructing the hierarchical representation for the matrix G.

5.1.4 Related works

Our algorithm is built on top of the framework of the H-matrices proposed by Hack-

busch and his collaborators [20, 37, 115]. The definitions of the H-matrices will be

summarized in Section 5.2. In a nutshell, the H-matrix framework is an operational

matrix algebra for efficiently representing, applying, and manipulating discretizations

of operators from elliptic partial differential equations. Though we have known how

to represent and apply these matrices for quite some time [108], it is the contribu-

tion of the H-matrix framework that enables one to manipulate them in a general

and coherent way. A closely related matrix algebra is also developed in a more

numerical-linear-algebraic viewpoint under the name hierarchical semiseparable ma-

trices by Chandrasekaran, Gu, and others [56,57]. Here, we will follow the notations

of the H-matrices as our main motivations are from numerical solutions of elliptic

172



PDEs.

A basic assumption of our algorithm is the existence of a fast matrix-vector multi-

plication subroutine. The most common case is when G is the inverse of the stiffness

matrix H of a general elliptic operator. Since H is often sparse, much effort has

been devoted to computing u = Gf by solving the linear system Hu = f . Many

ingenious algorithms have been developed for this purpose in the past forty years.

Commonly-seen examples include multifrontal algorithms [78, 92], geometric multi-

grids [41, 43, 115], algebraic multigrids (AMG) [42], domain decompositions methods

[232, 240], wavelet-based fast algorithms [32] and preconditioned conjugate gradient

algorithms (PCG) [28], to name a few. Very recently, both Chandrasekaran et al [55]

and Martinsson [179] have combined the idea of the multifrontal algorithms with the

H-matrices to obtain highly efficiently direct solvers for Hu = f . Another common

case for which a fast matrix-vector multiplication subroutine is available comes from

the boundary integral equations where G is often a discretization of a Green’s function

restricted to a domain boundary. Fast algorithms developed for this case include the

famous fast multipole method [108], the panel clustering method [117], and others.

All these fast algorithms mentioned above can be used as the “black box” algorithm

for our method.

As shown in the previous section, our algorithm relies heavily on the randomized

singular value decomposition algorithm for constructing the factorizations of the off-

diagonal blocks. This topic has been a highly active research area in the past several

years and many different algorithms have been proposed in the literature. Here, for

our purpose, we have adopted the algorithm described in [157, 248]. In a related but

slightly different problem, the goal is to find low-rank approximations A = CUR

where C contains a subset of columns of A and R contains a subset of rows. Papers

devoted to this task include [74, 75, 106, 177]. In our setting, since we assume no

direct access of entries of the matrix A but only its impact through matrix-vector
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multiplications, the algorithm proposed by [157] is the most relevant choice. An

excellent recent review of this fast growing field can be found in [119].

In a recent paper [178], Martinsson considered also the problem of constructing the

H-matrix representation of a matrix, but he assumed that one can access arbitrary

entries of the matrix besides the fast matrix-vector multiplication subroutine. Under

this extra assumption, he showed that one can construct the H2 representation of the

matrix with O(1) matrix-vector multiplications and accesses of O(n) matrix entries.

However, in many situations including the case of G being the inverse of the stiffness

matrix of an elliptic differential operator, accessing entries ofG is by no means a trivial

task. Comparing with Martinsson’s work, our algorithm only assumes the existence

of a fast matrix-vector multiplication subroutine, and hence is more general.

As we mentioned earlier, one motivation for computing G explicitly is to further

compress the matrix G. The most common example in the literature of numerical

analysis is the process of numerical homogenization or upscaling [80]. Here the matrix

G is often again the inverse of the stiffness matrix H of an elliptic partial differential

operator. When H contains information from all scales, the standard homogenization

techniques fail. Recently, Owhadi and Zhang [197] proposed an elegant method that,

under the assumption that the Cordes condition is satisfied, upscales a general H

in divergence form using metric transformation. Computationally, their approach

involves d solves of form Hu = f with d being the dimension of the problem. On

the other hand, if G is computed using our algorithm, one can obtain the upscaled

operator by inverting a low-passed and down-sampled version of G. Complexity-wise,

our algorithm is more costly since it requires O(logn) solves of Hu = f . However,

since our approach makes no analytic assumptions about H , it is expected to be more

general.
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5.2 Algorithm

We now present the details of our algorithm in two dimensions. In addition to a top-

down construction using the peeling idea presented in the introduction, the complexity

will be further reduced using the H2 property of the matrix [37, 116]. The extension

to three dimensions is straightforward.

In two dimensions, a more conservative partition of the domain is required to

guarantee the low-rankness of the matrix blocks. We will start with discussion of

this new geometric setup. Then we will recall the notion of hierarchical matrices and

related algorithms in Section 5.2.2. The algorithm to construct an H2 representation

for a matrix using matrix-vector multiplications will be presented in Sections 5.2.3

and 5.2.4. Finally, variants of the algorithm for constructing the H1 and uniform H1

representations will be described in Section 5.2.5.

5.2.1 Geometric setup and notations

Let us consider an operator G defined on a 2D domain [0, 1)2 with periodic boundary

condition. We discretize the problem using an n = N ×N uniform grid with N being

a power of 2: N = 2LM . Denote the set of all grid points as

I0 = {(k1/N, k2/N) | k1, k2 ∈ N, 0 ≤ k1, k2 < N} (5.11)

and partition the domain hierarchically into L + 1 levels (L < LM). On each level l

(0 ≤ l ≤ L), we have 2l×2l boxes denoted by Il;ij = [(i−1)/2l, i/2l)×[(j−1)/2l, j/2l)

for 1 ≤ i, j ≤ 2l. The symbol Il;ij will also be used to denote the grid points that

lies in the box Il;ij. The meaning should be clear from the context. We will also use

Il(or Jl) to denote a general box on certain level l. The subscript l will be omitted,

when the level is clear from the context. For a given box Il for l ≥ 1, we call a box

Jl−1 on level l − 1 its parent if Il ⊂ Jl−1. Naturally, Il is called a child of Jl−1. It is
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clear that each box except those on level L will have four children boxes.

For any box I on level l, it covers N/2l×N/2l grid points. The last level L can be

chosen so that the leaf box has a constant number of points in it (i.e. the difference

LM − L is kept to be a constant when N increases).

For simplicity of presentation, we will start the method from level 3. It is also

possible to start from level 2. Level 2 needs to be treated specially, as for level 3. We

define the following notations for a box I on level l (l ≥ 3):

NL(I) Neighbor list of box I. This list contains the boxes on level l that are adjacent

to I and also I itself. There are 9 boxes in the list for each I.

IL(I) Interaction list of box I. When l = 3, this list contains all the boxes on level 3

minus the set of boxes in NL(I). There are 55 boxes in total. When l > 3, this

list contains all the boxes on level l that are children of boxes in NL(P) with P

being I’s parent minus the set of boxes in NL(I). There are 27 such boxes.

Notice that these two lists determine two symmetric relationship: J ∈ NL(I) if and

only if I ∈ NL(J ) and J ∈ IL(I) if and only if I ∈ IL(J ). Figs. 5.1 and 5.2 illustrate

the computational domain and the lists for l = 3 and l = 4, respectively.

Box I3;3,3AdjaentInteration

Figure 5.1: Illustration of the computational domain at level 3. I3;3,3 is the black
box. The neighbor list NL(I3;3,3) consists of 8 adjacent light gray boxes and the black
box itself, and the interaction list IL(I3;3,3) consists of the 55 dark gray boxes.
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Box I4;5,5AdjaentInteration

Figure 5.2: Illustration of the computational domain at level 4. I4;5,5 is the black
box. The neighbor list NL(I4;5,5) consists of 8 adjacent light gray boxes and the black
box itself, and the interaction list IL(I4;5,5) consists of the 27 dark gray boxes.

For a vector f defined on the N ×N grid I0, we define f(I) to be the restriction

of f to grid points I. For a matrix G ∈ R
N2×N2

that represents a linear map from I0
to itself, we define G(I,J ) to be the restriction of G on I × J .

A matrix G ∈ R
N2×N2

has the following decomposition

G = G(3) +G(4) + · · ·+G(L) +D(L). (5.12)

Here, for each l, G(l) incorporates the interaction on level l between a box with its

interaction list. More precisely, G(l) has a 22l × 22l block structure:

G(l)(I,J ) =





G(I,J ), I ∈ IL(J ) (eq. J ∈ IL(I));

0, otherwise

with I and J both on level l. The matrix D(L) includes the interactions between

adjacent boxes at level L:

D(L)(I,J ) =





G(I,J ), I ∈ NL(J ) (eq. J ∈ NL(I));

0, otherwise
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with I and J both on level L. To show that (5.12) is true, it suffices to prove that

for any two boxes I and J on level L, the right hand side gives G(I,J ). In the case

that I ∈ NL(J ), this is obvious. Otherwise, it is clear that we can find a level l, and

boxes I ′ and J ′ on level l, such that I ′ ∈ IL(J ′), I ⊂ I ′ and J ⊂ J ′, and hence

G(I,J ) is given through G(I ′,J ′). Throughout the text, we will use ‖A‖2 to denote

the matrix 2-norm of matrix A.

5.2.2 Hierarchical matrix

Our algorithm works with the so-called hierarchical matrices. We recall in this subsec-

tion some basic properties of this type of matrices and also some related algorithms.

For simplicity of notations and representation, we will only work with symmetric

matrices. For a more detailed introduction of the hierarchical matrices and their

applications in fast algorithms, we refer the readers to [115, 116].

H1 matrices

Definition 5.2.1. G is a (symmetric) H1-matrix if for any ε > 0, there exists r(ε) .

log(ε−1) such that for any pair (I,J ) with I ∈ IL(J ), there exist orthogonal matrices

UIJ and UJ I with r(ε) columns and matrix MIJ ∈ R
r(ε)×r(ε) such that

‖G(I,J )− UIJMIJU
T
JI‖2 ≤ ε‖G(I,J )‖2. (5.13)

The main advantage of the H1 matrix is that the application of such matrix

on a vector can be efficiently evaluated: Within error O(ε), one can use Ĝ(I,J ) =

UIJMIJU
T
JI , which is low-rank, instead of the original block G(I,J ). The algorithm

is described in Algorithm 10. It is standard that the complexity of the matrix-vector

multiplication for an H1 matrix is O(N2 logN) [115].
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Algorithm 10 Application of a H1-matrix G on a vector f .
1: u = 0;
2: for l = 3 to L do

3: for I on level l do
4: for J ∈ IL(I) do
5: u(I) = u(I) + UIJ (MIJ (UT

J If(J )));
6: end for

7: end for

8: end for

9: for I on level L do

10: for J ∈ NL(I) do
11: u(I) = u(I) +G(I,J )f(J );
12: end for

13: end for

Uniform H1 matrix

Definition 5.2.2. G is a (symmetric) uniform H1-matrix if for any ε > 0, there

exists rU(ε) . log(ε−1) such that for each box I, there exists an orthogonal matrix UI

with rU(ε) columns such that for any pair (I,J ) with I ∈ IL(J )

‖G(I,J )− UINIJU
T
J ‖2 ≤ ε‖G(I,J )‖2 (5.14)

with NIJ ∈ R
rU (ε)×rU (ε).

The application of a uniform H1 matrix to a vector is described in Algorithm 11.

The complexity of the algorithm is still O(N2 logN). However, the prefactor is much

better as each UI is applied only once. The speedup over Algorithm 10 is roughly

27r(ε)/rU(ε) [115].

H2 matrices

Definition 5.2.3. G is an H2 matrix if

• it is a uniform H1 matrix;
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Algorithm 11 Application of a uniform H1-matrix G on a vector f
1: u = 0;
2: for l = 3 to L do

3: for J on level l do
4: f̃J = UT

J f(J );
5: end for

6: end for

7: for l = 3 to L do

8: for I on level l do
9: ũI = 0;

10: for J ∈ IL(I) do
11: ũI = ũI +NIJ f̃J ;
12: end for

13: end for

14: end for

15: for l = 3 to L do

16: for I on level l do
17: u(I) = u(I) + UI ũI ;
18: end for

19: end for

20: for I on level L do

21: for J ∈ NL(I) do
22: u(I) = u(I) +

G(I,J )f(J );
23: end for

24: end for

• Suppose that C is any child of a box I, then

‖UI(C, :)− UCTCI‖2 . ε, (5.15)

for some matrix TCI ∈ R
rU (ε)×rU (ε).

The application of an H2 matrix to a vector is described in Algorithm 12 and it

has a complexity of O(N2), Notice that, compared with H1 matrix, the logarithmic

factor is reduced [116].

Remark 2. Applying an H2 matrix to a vector can indeed be viewed as the matrix

form of the fast multipole method (FMM) [108]. One recognizes in Algorithm 12 that

the second top-level for loop corresponds to the M2M (multipole expansion to multipole

expansion) translations of the FMM; the third top-level for loop is the M2L (multipole

expansion to local expansion) translations; and the fourth top-level for loop is the L2L

(local expansion to local expansion) translations.

In the algorithm to be introduced, we will also need to apply a partial matrix

G(3) +G(4) + · · ·+G(L′) for some L′ ≤ L to a vector f . This amounts to a variant of

Algorithm 12, described in Algorithm 13.
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Algorithm 12 Application of a H2-matrix G on a vector f
1: u = 0;
2: for J on level L do

3: f̃J = UT
J f(J );

4: end for

5: for l = L− 1 down to 3 do

6: for J on level l do
7: f̃J = 0;
8: for each child C of J do

9: f̃J = f̃J + TT
CJ f̃C;

10: end for

11: end for

12: end for

13: for l = 3 to L do

14: for I on level l do
15: ũI = 0;
16: for J ∈ IL(I) do
17: ũI = ũI +NIJ f̃J ;
18: end for

19: end for

20: end for

18: for l = 3 to L− 1 do

19: for I on level l do
20: for each child C of I do

21: ũC = ũC + TCI ũI ;
22: end for

23: end for

24: end for

25: for I on level L do

26: u(I) = UI ũI ;
27: end for

28: for I on level L do

29: for J ∈ NL(I) do
30: u(I) = u(I) +

G(I,J )f(J );
31: end for

32: end for

5.2.3 Peeling algorithm: outline and preparation

We assume that G is a symmetric H2 matrix and that there exists a fast matrix-vector

subroutine for applying G to any vector f as a “black box”. The goal is to construct

an H2 representation of the matrix G using only a small number of test vectors.

The basic strategy is a top-down construction: For each level l = 3, . . . , L, assume

that an H2 representation for G(3) + · · · + G(l−1) is given, we construct G(l) by the

following three steps:

1. Peeling. Construct an H1 representation for G(l) using the peeling idea and the

H2 representation for G(3) + · · ·+G(l−1).

2. Uniformization. Construct a uniform H1 representation for G(l) from its H1

representation.

3. Projection. Construct an H2 representation for G(3) + · · ·+G(l).
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Algorithm 13 Application of a partial H2-matrix G(3) + · · ·+G(L′) on a vector f

1: u = 0;
2: for J on level L′ do
3: f̃J = UT

J f(J );
4: end for

5: for l = L′ − 1 down to 3 do

6: for J on level l do
7: f̃J = 0;
8: for each child C of J do

9: f̃J = f̃J + TT
CJ f̃C;

10: end for

11: end for

12: end for

13: for l = 3 to L′ do
14: for I on level l do
15: ũI = 0;
16: for J ∈ IL(I) do
17: ũI = ũI +NIJ f̃J ;
18: end for

19: end for

20: end for

18: for l = 3 to L′ − 1 do

19: for I on level l do
20: for each child C of I do

21: ũC = ũC + TCI ũI ;
22: end for

23: end for

24: end for

25: for I on level L′ do
26: u(I) = UI ũI ;
27: end for

The names of these steps will be made clear in the following discussion. Variants of

the algorithm that only construct an H1 representation (a uniform H1 representation,

respectively) of the matrix G can be obtained by only doing the peeling step (the

peeling and uniformization steps, respectively). These variants will be discussed in

Section 5.2.5.

After we have the H2 representation for G(3) + · · · + G(L), we use the peeling

idea again to extract the diagonal part D(L). We call this whole process the peeling

algorithm.

Before detailing the peeling algorithm, we mention two procedures that serve as

essential components of our algorithm. The first procedure concerns with the uni-

formization step, in which one needs to get a uniform H1 representation for G(l) from

its H1 representation, i.e., from Ĝ(I,J ) = UIJMIJU
T
JI to Ĝ(I,J ) = UINIJU

T
J ,

for all pairs of boxes (I,J ) with I ∈ IL(J ). To this end, what we need to do is to
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find the column space of

[UIJ1MIJ1 | UIJ2MIJ2 | · · · | UIJt
MIJt

], (5.16)

where Jj are the boxes in IL(I) and t = |IL(I)|. Notice that we weight the singular

vectors U by M , so that the singular vectors corresponding to larger singular values

will be more significant. This column space can be found by the usual SVD algorithm

or a more effective randomized version presented in Algorithm 14. The important left

singular vectors are denoted by UI , and the diagonal matrix formed by the singular

values associated with UI is denoted by SI .

Algorithm 14 Construct a uniform H1 representation of G from the H1 representa-
tion at a level l
1: for each box I on level l do
2: Generate a Gaussian random matrix R ∈ R

(r(ε)×t)×(rU (ε)+c);
3: Form product [UIJ1MIJ1 | · · · | UIJtMIJt]R and apply SVD to it.

The first rU (ε) left singular vectors give UI , and the corresponding
singular values give a diagonal matrix SI ;

4: for Jj ∈ IL(I) do
5: IIJj

= UT
I UIJj

;
6: end for

7: end for

8: for each pair (I,J ) on level l with I ∈ IL(J ) do
9: NIJ = IIJMIJ ITJI ;

10: end for

Complexity analysis: For a box I on level l, the number of grid points in I is

(N/2l)2. Therefore, UIJj
are all of size (N/2l)2×r(ε) andMIJ are of size r(ε)×r(ε).

Forming the product [UIJ1MIJ1 | · · · | UIJt
MIJt

]R takes O((N/2l)2r(ε)(rU(ε) + c))

steps and SVD takes O((N/2l)2(rU(ε) + c)2) steps. As there are 22l boxes on level l,

the overall cost of Algorithm 14 is O(N2(rU(ε) + c)2) = O(N2). One may also apply

to [UIJ1MIJ1 | · · · | UIJt
MIJt

] the deterministic SVD algorithm, which has the same

order of complexity but with a prefactor about 27r(ε)/(rU(ε) + c) times larger.

The second procedure is concerned with the projection step of the above list, in
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which one constructs an H2 representation for G(3) + · · ·G(l). Here, we are given the

H2 representation for G(3) + · · · + G(l−1) along with the uniform H1 representation

for G(l) and the goal is to compute the transfer matrix TCI for a box I on level l − 1

and its child C on level l such that

‖UI(C, :)− UCTCI‖2 . ε.

In fact, the existing UC matrix of the uniform H1 representation may not be rich

enough to contain the columns of UI(C, :) in its span. Therefore, one needs to update

the content of UC as well. To do that, we perform a singular value decomposition for

the combined matrix

[UI(C, :)SI | UCSC]

and define a matrix VC to contain rU(ε) left singular vectors. Again UI , UC should be

weighted by the corresponding singular values. The transfer matrix TCI is then given

by

TCI = V T
C UI(C, :)

and the new UC is set to be equal to VC. Since UC has been changed, the matrices

NCD for D ∈ IL(C) and also the corresponding singular values SC need to be updated

as well. The details are listed in Algorithm 15.

Complexity analysis: The main computational task of Algorithm 15 is again the

SVD part. For a box C on level l, the number of grid points in I is (N/2l)2. There-

fore, the combined matrix [UI(C, :)SI | UCSC] is of size (N/2l)2 × 2rU(ε). The SVD

computation clearly takes O((N/2l)2rU(ε)2) = O((N/2l)2) steps. Taking into the

consideration that there are 22l boxes on level l gives rise to an O(N2) estimate for

the cost of Algorithm 15.

184



Algorithm 15 Construct an H2 representation of G from the uniform H1 represen-
tation at level l
1: for each box I on level l − 1 do

2: for each child C of I do

3: Form matrix [UI(C, :)SI | UCSC ] and apply SVD to it. The
first rU (ε) left singular vectors give VC , and the corresponding
singular values give a diagonal matrix WC;

4: KC = V T
C UC ;

5: TCI = V T
C UI(C, :);

6: UC = VC ;
7: SC = WC ;
8: end for

9: end for

10: for each pair (C,D) on level l with C ∈ IL(D) do
11: NCD = KCNCDKT

D;
12: end for

5.2.4 Peeling algorithm: details

With the above preparation, we are now ready to describe the peeling algorithm in

detail at different levels, starting from level 3. At each level, we follow exactly the

three steps listed at the beginning of Section 5.2.3.

Level 3

First in the peeling step, we construct the H1 representation for G(3). For each pair

(I,J ) on level 3 such that I ∈ IL(J ), we will invoke randomized SVD Algorithm 9

to construct the low rank approximation of GI,J . However, in order to apply the

algorithm we need to compute G(I,J )RJ and RT
IG(I,J ), where RI and RJ are

random matrices with r(ε) + c columns. For each box J on level 3, we construct a

matrix R of size N2 × (r(ε) + c) such that

R(J , :) = RJ and R(I0\J , :) = 0.

Computing GR using r(ε) + c matvecs and restricting the result to grid points I ∈

IL(J ) gives G(I,J )RJ for each I ∈ IL(J ).
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After repeating these steps for all boxes on level 3, we hold for any pair (I,J )

with I ∈ IL(J ) the following data:

G(I,J )RJ and RT
IG(I,J ) = (G(J , I)RI)

T.

Now, applying Algorithm 9 to them gives the low-rank approximation

Ĝ(I,J ) = UIJMIJU
T
J I . (5.17)

In the uniformization step, in order to get the uniform H1 representation for G(3),

we simply apply Algorithm 14 to the boxes on level 3 to get the approximations

Ĝ(I,J ) = UINIJU
T
J . (5.18)

Finally in the projection step, since we only have 1 level now (level 3), we have

already the H2 representation for G(3).

Complexity analysis: The dominant computation is the construction of the H1

representation for G(3). This requires r(ε)+c matvecs for each box I on level 3. Since

there are in total 64 boxes at this level, the total cost is 64(r(ε) + c) matvecs. From

the complexity analysis in Section 5.2.3, the computation for the second and third

steps cost an extra O(N2) steps.

Level 4

First in the peeling step, in order to construct the H1 representation for G(4), we need

to compute the matrices G(I,J )RJ and RT
IG(I,J ) for each pair (I,J ) on level 4

with I ∈ IL(J ). Here RI and RJ are again random matrices with r(ε) + c columns.

One approach is to follow exactly what we did for level 3: Fix a box J at this
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level, construct R of size N2 × (r(ε) + c) such that

R(J , :) = RJ and R(I0\J , :) = 0.

Next apply G − G(3) to R, by subtracting GR and G(3)R. The former is computed

using r(ε) + c matvecs and the latter is done by Algorithm 13. Finally, restrict the

result to grid points I ∈ IL(J ) gives G(I,J )RJ for each I ∈ IL(J ).

However, we have observed in the simple one-dimensional example in Section 5.1.3

that random tests can be combined together as in Eq. (5.6) and (5.7). We shall

detail this observation in the more general situation here as following. Observe that

G − G(3) = G(4) + D(4), and G(4)(J , I) and D(4)(J , I) for boxes I and J on level

4 is only nonzero if I ∈ NL(J ) ∪ IL(J ). Therefore, (G − G(3))R for R coming from

J can only be nonzero in NL(P) with P being J ’s parent. The rest is automatically

zero (up to error ε as G(3) is approximated by its H2 representation). Therefore, we

can combine the calculation of different boxes as long as their non-zero regions do

not overlap.

More precisely, we introduce the following sets Spq for 1 ≤ p, q ≤ 8 with

Spq = {J4;ij | i ≡ p (mod 8), j ≡ q (mod 8)}. (5.19)

There are 64 sets in total, each consisting of four boxes. Fig. 5.3 illustrates one such

set at level 4. For each set Spq, first construct R with

R(J , :) =





RJ , J ∈ Spq;

0, otherwise.

Then, we apply G−G(3) to R, by subtracting GR and G(3)R. The former is computed

using r(ε) + c matvecs and the latter is done by Algorithm 13. For each J ∈ Spq,
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restricting the result to I ∈ IL(J ) gives G(I,J )RJ . Repeating this computation for

all sets Spq then provides us with the following data:

G(I,J )RJ and RT
IG(I,J ) = (G(J , I)RI)

T,

for each pair (I,J ) with I ∈ IL(J ). Applying Algorithm 9 to them gives the required

low-rank approximations

Ĝ(I,J ) = UIJMIJU
T
JI (5.20)

with UIJ orthogonal.

Set S5,5AdjaentInteration

Figure 5.3: Illustration of the set S55 at level 4. This set consists of four black boxes
{I4;5,5, I4;13,5, I4;5,13, I4;13,13}. The light gray boxes around each black box are in the
neighbor list and the dark gray boxes in the interaction list.

Next in the uniformization step, the task is to construct the uniform H1 represen-

tation of G(4). Similar to the computation at level 3, we simply apply Algorithm 14

to the boxes on level 4 to get

Ĝ(I,J ) = UINIJU
T
J . (5.21)

Finally in the projection step, to get H2 representation for G(3) +G(4), we invoke

Algorithm 15 at level 4. Once it is done, we hold the transfer matrices TCI between

any I on level 3 and each of its children C, along with the updated uniform H1-matrix
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representation of G(4).

Complexity analysis: The dominant computation is again the construction of H1

representation for G(4). For each group Spq, we apply G to r(ε)+ c vectors and apply

G(3) to r(ε) + c vectors. The latter takes O(N2) steps for each application. Since

there are 64 sets in total, this computation takes 64(r(ε) + c) matvecs and O(N2)

extra steps.

Level l

First in the peeling step, to construct the H1 representation for G(l), we follow the

discussion of level 4. Define 64 sets Spq for 1 ≤ p, q ≤ 8 with

Spq = {Jl;ij | i ≡ p (mod 8), j ≡ q (mod 8)}. (5.22)

Each set contains exactly 2l/8× 2l/8 boxes. For each set Spq, construct R with

R(J , :) =





RJ , J ∈ Spq;

0, otherwise.

Next, apply G − [G(3) + · · · + G(l−1)] to R, by subtracting GR and [G(3) + · · · +

G(l−1)]R. The former is again computed using r(ε)+ c matvecs and the latter is done

by Algorithm 13 using the H2 representation of G(3)+ · · ·+G(l−1). For each J ∈ Spq,

restricting the result to I ∈ IL(J ) gives G(I,J )RJ . Repeating this computation for

all sets Spq gives the following data for any pair (I,J ) with I ∈ IL(J )

G(I,J )RJ and RT
IG(I,J ) = (G(J , I)RI)

T.
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Now applying Algorithm 9 to them gives the low-rank approximation

Ĝ(I,J ) = UIJMIJU
T
JI (5.23)

with UIJ orthogonal.

Similar to the computation at level 4, the uniformization step that constructs the

uniform H1 representation of G(l) simply by Algorithm 14 to the boxes on level l.

The result gives the approximation

Ĝ(I,J ) = UINIJU
T
J . (5.24)

Finally in the projection step, one needs to compute an H2 representation for

G(3) + · · ·+G(l). To this end, we apply Algorithm 15 to level l.

The complexity analysis at level l follows exactly the one of level 4. Since we still

have exactly 64 sets Spq, the computation again takes 64(r(ε)+ c) matvecs along with

O(N2) extra steps.

These three steps (peeling, uniformization, and projection) are repeated for each

level until we reach level L. At this point, we hold the H2 representation for G(3) +

· · ·G(L).

Computation of D(L)

Finally we construct of the diagonal part

D(L) = G− (G(3) + · · ·+G(L)). (5.25)

More specifically, for each box J on level L, we need to compute G(I,J ) for I ∈

NL(J ).

Define a matrix E of size N2 × (N/2L)2 (recall that the box J on level L covers
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(N/2L)2 grid points) by

E(J , :) = I and E(I0\J , :) = 0,

where I is the (N/2L)2× (N/2L)2 identity matrix. Applying G− (G(3)+ · · ·+G(L)) to

E and restricting the results to I ∈ NL(J ) gives G(I,J ) for I ∈ NL(J ). However,

we can do better as (G− (G(3)+ · · ·+G(L)))E is only non-zero in NL(J ). Hence, one

can combine computation of different boxes J as long as NL(J ) do not overlap.

To do this, define the following 4× 4 = 16 sets Spq, 1 ≤ p, q ≤ 4

Spq = {JL,ij | i ≡ p (mod 4), j ≡ q (mod 4)}.

For each set Spq, construct matrix E by

E(J , :) =





I, J ∈ Spq;

0, otherwise.

Next, apply G − (G(3) + · · · + G(L)) to E. For each J ∈ Spq, restricting the result

to I ∈ NL(J ) gives G(I,J )I = G(I,J ). Repeating this computation for all 16 sets

Spq gives the diagonal part D(L).

Complexity analysis: The dominant computation is for each group Spq apply G

and G(3) + · · · + G(L) to E, the former takes (N/2L)2 matvecs and the latter takes

O((N/2L)2N2) extra steps. Recall by the choice of L, N/2L is a constant. Therefore,

the total cost for 16 sets is 16(N/2L)2 = O(1) matvecs and O(N2) extra steps.

Let us now summarize the complexity of the whole peeling algorithm. From the

above discussion, it is clear that at each level the algorithm spends 64(r(ε)+c) = O(1)

matvecs and O(N2) extra steps. As there are O(logN) levels, the overall cost of the

peeling algorithm is equal to O(logN) matvecs plus O(N2 logN) steps.
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It is a natural concern that whether the error from low-rank decompositions on

top levels accumulates in the peeling steps. As observed from numerical examples in

Section 5.3, it does not seem to be a problem at least for the examples considered.

We do not have a proof for this though.

5.2.5 Peeling algorithm: variants

In this section, we discuss two variants of the peeling algorithm. Let us recall that

the above algorithm performs the following three steps at each level l.

1. Peeling. Construct an H1 representation for G(l) using the peeling idea and the

H2 representation for G(3) + · · ·+G(l−1).

2. Uniformization. Construct a uniform H1 representation for G(l) from its H1

representation.

3. Projection. Construct an H2 representation for G(3) + · · ·+G(l).

As this algorithm constructs the H2 representation of the matrix G, we also refer to

it more specifically as the H2 version of the peeling algorithm. In what follows, we

list two simpler versions that are useful in practice

• the H1 version, and

• the uniform H1 version.

In the H1 version, we only perform the peeling step at each level. Since this

version constructs only the H1 representation, it will use the H1 representation of

G(3) + · · ·+G(l) in the computation of (G(3) + · · ·+G(l))R within the peeling step at

level l + 1.

In the uniform H1 version, we perform the peeling step and the uniformization

step at each level. This will give us instead the uniform H1 version of the matrix.
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Accordingly, one needs to use the uniform H1 representation of G(3) + · · · + G(l) in

the computation of (G(3) + · · ·+G(l))R within the peeling step at level l + 1.

These two simplified versions are of practical value since there are matrices that

are in the H1 or the uniform H1 class but not the H2 class. A simple calculation

shows that these two simplified versions still take O(logN) matvecs but requires

O(N2 log2N) extra steps. Clearly, the number of extra steps is logN times more

expensive than the one of the H2 version. However, if the fast matrix-vector multi-

plication subroutine itself takes O(N2 logN) steps per application, using the H1 or

the uniform H1 version does not change the overall asymptotic complexity.

Between these two simplified versions, the uniform H1 version requires the uni-

formization step, while the H1 version does not. This seems to suggest that the

uniform H1 version is more expensive. However, because (1) our algorithm also uti-

lizes the partially constructed representations for the calculation at future levels and

(2) the uniform H1 representation is much faster to apply, the construction of the

uniform H1 version turns out to be much faster. Moreover, since the uniform H1

representation stores one UI matrix for each box I while the H1 version stores about

27 of them, the uniform H1 is much more memory-efficient, which is very important

for problems in higher dimensions.

5.3 Numerical results

We study the performance of the hierarchical matrix construction algorithm for the

inverse of a discretized elliptic operator. The computational domain is a two dimen-

sional square [0, 1)2 with periodic boundary condition, discretized as an N×N equis-

paced grid. We first consider the operator H = −∆+V with ∆ being the discretized

Laplacian operator and the potential being V (i, j) = 1 +W (i, j), i, j = 1, . . . , N .

For all (i, j), W (i, j) are independent random numbers uniformly distributed in [0, 1].
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The potential function V is chosen to have this strong randomness in order to show

that the existence of H-matrix representation of the Green’s function depends weakly

on the smoothness of the potential. The inverse matrix of H is denoted by G. The

algorithms are implemented using MATLAB. All numerical tests are carried out on a

single-CPU machine.

We analyze the performance statistics by examining both the cost and the accu-

racy of our algorithm. The cost factors include the time cost and the memory cost.

While the memory cost is mainly determined by how the matrix G is compressed

and does not depend much on the particular implementation, the time cost depends

heavily on the performance of matvec subroutine. Therefore, we report both the

wall clock time consumption of the algorithm and the number of calls to the matvec

subroutine. The matvec subroutine used here is a nested dissection reordered block

Gauss elimination method [92]. For an N × N discretization of the computational

domain, this matvec subroutine has a computational cost of O(N2 logN) steps.

Table 5.1 summarizes the matvec number, and the time cost per degree of free-

dom (DOF) for the H1, the uniform H1 and the H2 representations of the peeling

algorithm. The time cost per DOF is defined by the total time cost divided by the

number of grid points N2. For the H1 and the uniform H1 versions, the error criterion

ε in Eq. (5.13), Eq. (5.14) and Eq. (5.15) are all set to be 10−6.

The number of calls to the matvec subroutine is the same in all three cases (as

the peeling step is the same for all cases) and is reported in the third column of

Table 5.1. It is confirmed that the number of calls to matvec increases logarithmically

with respect to N if the domain size at level L, i.e. 2LM−L, is fixed as a constant. For

a fixed N , the time cost is not monotonic with respect to L. When L is too small the

computational cost of D(L) becomes dominant. When L is too large, the application

of the partial representation G(3) + . . . + G(L) to a vector becomes expensive. From

the perspective of time cost, there is an optimal Lopt for a fixed N . We find that this
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optimal level number is the same for H1, uniform H1 and H2 algorithms. Table 5.1

shows that Lopt = 4 for N = 32, 64, 128, Lopt = 5 for N = 256, and Lopt = 6 for

N = 512. This suggests that for large N , the optimal performance is achieved when

the size of boxes on the final level L is 8× 8. In other words, L = LM − 3.

The memory cost per DOF for the H1, the uniform H1 and the H2 algorithms

is reported in Table 5.2. The memory cost is estimated by summing the sizes of

low-rank approximations as well as the size of D(L). For a fixed N , the memory cost

generally decreases as L increases. This is because as L increases, an increasing part

of the original dense matrix is represented using low-rank approximations.

Both Table 5.1 and Table 5.2 indicate that uniform H1 algorithm is significantly

more advantageous than H1 algorithm, while the H2 algorithm leads to a further

improvement over the uniform H1 algorithm especially for large N . This fact can

be better seen from Fig. 5.4 where the time and memory cost per DOF for N =

32, 64, 128, 256, 512 with optimal level number Lopt are shown. We remark that since

the number of calls to the matvec subroutine are the same in all cases, the time cost

difference comes solely from the efficiency difference of the low rank matrix-vector

multiplication subroutines.

We measure the accuracy for the H1, the uniform H1 and the H2 representations

of G with its actual value using the operator norm (2-norm) of the error matrix. Here,

the 2-norm of a matrix is numerically estimated by power method [105] using several

random initial guesses. We report both absolute and relative errors. According to

Table 5.3, the errors are well controlled with respect to both increasing N and L,

in spite of the more aggressive matrix compression strategy in the uniform H1 and

the H2 representations. Moreover, for each box I, the rank rU(ε) of the uniform

H1 representation is only slightly larger than the rank r(ε) of the H1 representation.

This can be seen from Table 5.4. Here the average rank for a level l is estimated by

averaging the values of rU(ε) (or r(ε)) for all low-rank approximations at level l. Note
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that the rank of the H2 representation is comparable to or even lower than the rank

in the uniform H1 representation. This is partially due to different weighting choices

in the uniformization step and H2 construction step.

N L matvec H1 time Uniform H1 time H2 time
number per DOF (s) per DOF (s) per DOF (s)

32 4 3161 0.0106 0.0080 0.0084

64 4 3376 0.0051 0.0033 0.0033
64 5 4471 0.0150 0.0102 0.0106

128 4 4116 0.0050 0.0025 0.0024
128 5 4639 0.0080 0.0045 0.0045
128 6 5730 0.0189 0.0122 0.0125

256 4 7169 0.015 0.0054 0.0050
256 5 5407 0.010 0.0035 0.0033
256 6 5952 0.013 0.0058 0.0057
256 7 7021 0.025 0.0152 0.0154

512 5 8439 0.025 0.0070 0.0063
512 6 6708 0.018 0.0050 0.0044
512 7 7201 0.022 0.0079 0.0072

Table 5.1: matvec numbers and time cost per degree of freedom (DOF) for the H1,
the uniform H1 and the H2 representations with different grid point per dimension
N and low rank compression level L. The matvec numbers are by definition the same
in the three algorithms.
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N L H1 memory Uniform H1 memory H2 memory
per DOF (MB) per DOF (MB) per DOF (MB)

32 4 0.0038 0.0024 0.0024

64 4 0.0043 0.0027 0.0026
64 5 0.0051 0.0027 0.0026

128 4 0.0075 0.0051 0.0049
128 5 0.0056 0.0029 0.0027
128 6 0.0063 0.0029 0.0027

256 4 0.0206 0.0180 0.0177
256 5 0.0087 0.0052 0.0049
256 6 0.0067 0.0030 0.0027
256 7 0.0074 0.0030 0.0027

512 5 0.0218 0.0181 0.0177
512 6 0.0099 0.0053 0.0049
512 7 0.0079 0.0031 0.0027

Table 5.2: Memory cost per degree of freedom (DOF) for the H1, the uniform H1 and
the H2 versions with different grid point per dimension N and low rank compression
level L.
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Figure 5.4: Comparison of the time and memory costs for the H1, the uniform H1

and the H2 versions with optimal level Lopt for N = 32, 64, 128, 256, 512. The x-axis
(N) is set to be in logarithmic scale.
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N L H1 Uniform H1 H2

Absolute Relative Absolute Relative Absolute Relative
error error error error error error

32 4 2.16e-07 3.22e-07 2.22e-07 3.31e-07 2.20e-07 3.28e-07

64 4 2.10e-07 3.15e-07 2.31e-07 3.47e-07 2.31e-07 3.46e-07
64 5 1.96e-07 2.95e-07 2.07e-07 3.12e-07 2.07e-07 3.11e-07

128 4 2.16e-07 3.25e-07 2.26e-07 3.39e-07 2.24e-07 3.37e-07
128 5 2.60e-07 3.90e-07 2.68e-07 4.03e-07 2.67e-07 4.02e-07
128 6 2.01e-07 3.01e-07 2.09e-07 3.13e-07 2.08e-07 3.11e-07

256 4 1.78e-07 2.66e-07 1.95e-07 2.92e-07 2.31e-07 3.46e-07
256 5 2.11e-07 3.16e-07 2.26e-07 3.39e-07 2.27e-07 3.40e-07
256 6 2.75e-07 4.12e-07 2.78e-07 4.18e-07 2.30e-07 3.45e-07
256 7 1.93e-07 2.89e-07 2.05e-07 3.08e-07 2.24e-07 3.36e-07

512 5 2.23e-07 3.35e-07 2.33e-07 3.50e-07 1.42e-07 2.13e-07
512 6 2.06e-07 3.09e-07 2.17e-07 3.26e-07 2.03e-07 3.05e-07
512 7 2.67e-07 4.01e-07 2.74e-07 4.11e-07 2.43e-07 3.65e-07

Table 5.3: Absolute and relative 2-norm errors for the H1, the uniform H1 and the
H2 algorithms with different grid point per dimension N and low rank compression
level L. The 2-norm is estimated using power method.

l H1 Uniform H1 H2

average rank average rank average rank

4 6 13 13
5 6 13 11
6 6 12 9

Table 5.4: Comparison of the average rank at different levels between the H1, the
uniform H1, and the H2 algorithms, for N = 256.
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The peeling algorithm for the construction of hierarchical matrix can be applied

as well to general elliptic operators in divergence form H = −∇ · (a(r)∇) + V (r).

The computational domain, the grids are the same as the example above, and five-

point discretization is used for the differential operator. The media is assumed to be

high contrast: a(i, j) = 1 + U(i, j), with U(i, j) being independent random numbers

uniformly distributed in [0, 1]. The potential functions under consideration are (1)

V (i, j) = 10−3W (i, j); (2) V (i, j) = 10−6W (i, j). W (i, j) are independent random

numbers uniformly distributed in [0, 1] and are independent of U(i, j). We test the

H2 version for N = 64, L = 4, with the compression criterion ε = 10−6. The number

of matvec is comparable to that reported in Table 5.1. The resulting L2 absolute and

relative error of the Green’s function are reported in Table 5.5. The results indicate

that the algorithms work well in these cases, despite the fact that the off-diagonal

elements of the Green’s function have a slower decay than the first example. We also

remark that the small relative error for case (2) is due to the large 2-norm of H−1

when V is small.

Potential matvec Absolute error Relative error

V (i, j) = 10−3W (i, j) 4420 5.91e-04 2.97e-07
V (i, j) = 10−6W (i, j) 4420 3.60e-03 1.81e-09

Table 5.5: The number of matvec, and the absolute and relative 2-norm errors for
the H2 representation of the matrix (−∇ · (a∇) + V )−1 with N = 64, L = 4 and two
choice of potential function V . The 2-norm is estimated using power method.

5.4 Conclusion

In this work, we present a novel algorithm for constructing a hierarchical matrix

from its matrix-vector multiplication. One of the main motivations is the construc-

tion of the inverse matrix of the stiffness matrix of an elliptic differential operator.

The proposed algorithm utilizes randomized singular value decomposition of low-rank
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matrices. The off-diagonal blocks of the hierarchical matrix are computed through a

top-down peeling process. This algorithm is efficient. For an n × n matrix, it uses

only O(logn) matrix-vector multiplications plus O(n log n) additional steps. The

algorithm is also friendly to parallelization. The resulting hierarchical matrix repre-

sentation can be used as a faster algorithm for matrix-vector multiplications, as well

as for numerical homogenization or upscaling.

The performance of our algorithm is tested using two 2D elliptic operators. The

H1, the uniform H1 and the H2 versions of the proposed algorithms are implemented.

Numerical results show that our implementations are efficient and accurate and that

the uniform H1 representation is significantly more advantageous over H1 represen-

tation in terms of both the time cost and the memory cost, and H2 representation

leads to further improvement for large N .

Although the algorithms presented require only O(log n) matvecs, the actual num-

ber of matvecs can be quite large (for example, several thousands for the example in

Section 5.3). Therefore, the algorithms presented here might not be the right choice

for many applications. However, for computational problems in which one needs to in-

vert the same system with a huge of unknowns or for homogenization problems where

analytic approaches do not apply, our algorithm does provide an effective alternative.

The current implementation depends explicitly on the geometric partition of the

rectangular domain. However, the idea of our algorithm can be applied to general

settings. For problems with unstructured grid, the only modification is to partition

the unstructured grid with a quadtree structure and the algorithms essentially require

no change. For discretizations of the boundary integral operators, the size of an

interaction list is typically much smaller as many boxes contain no boundary points.

Therefore, it is possible to design a more effective combination strategy with small

number of matvecs. These algorithms can also be extended to the 3D cases in a

straightforward way, however, we expect the constant to grow significantly. All these
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cases will be considered in the future.
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Chapter 6

Conclusion of Part I

Part I of this dissertation has developed a novel method for solving KSDFT which is

uniformly applicable to both insulating systems and metallic systems, at low temper-

ature and at high temperature. This method is accurate and efficient, and the key

element of the new method is that it focuses explicitly on the diagonal elements and

the nearest off-diagonal elements that are needed to calculate the electron density

and the ground state electron energy.

The new method is developed under the framework of Fermi operator expansion.

The Fermi operator expansion method expands the Fermi operator f(H) into simple

functions. The contribution of each simple function to the electron density, and the

ground state electron energy can be calculated directly without diagonalization. The

Fermi operator expansion method includes four phases:

1. Discretization: discretization of the Hamiltonian operator;

2. Representation: representation of the Fermi operator into simple functions;

3. Evaluation: evaluation of the electron density and the ground state electron

energy based on each simple function;

4. Iteration: self-consistent iteration of the electron density.
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Part I of this dissertation has developed accurate and efficient methods for the dis-

cretization, the representation and the evaluation phases of Fermi operator expansion

for solving KSDFT. The adaptive local basis method developed in Chapter 2 can be

highly accurate with complexity comparable to tight binding method, i.e. the mini-

mum possible number of basis functions per atom to discretize the Hamiltonian oper-

ator. The pole expansion developed in Chapter 3 achieves the optimal representation

cost of the Fermi operator. The complexity of the pole expansion is O(log β∆E). The

selected inversion algorithm accurately calculates the electron density and the ground

state energy and achieves lower computational cost than the standard diagonaliza-

tion method uniformly for all dimensions. The complexity of the selected inversion

is O(N) for one dimensional system, O(N1.5) for two dimensional system and O(N2)

for three dimensional systems.

In order to combine all the new methods developed in Part I of this dissertation

into a practical software for electronic structure calculation, a large amount of work

remains to be done.

The ground state electron energy calculated by the adaptive local basis functions

can reach high accuracy with a small number of basis functions. This property is ideal

for the selected inversion technique. By taking into account the block sparsity of the

DG stiffness matrix, the pole expansion method and the selected inversion method

can be combined to calculated the electron density and the ground state electron

energy in the DG framework. The capability of the resulting algorithm is expected to

be greatly enhanced compared to the current implementation as in either Chapter 2

or Chapter 4. To this end the selected inversion algorithm should be implemented

in parallel as well. The parallelization of the selected inversion algorithm for general

matrices has been addressed in the conclusion section of Chapter 4.

Besides the capability of the calculation of the ground state electron energy, an-

other important aspect of an electronic structure software is ab initio molecular dy-
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namics simulation. In order to perform ab initio molecular dynamics simulation, the

derivatives of the basis functions with respect to the positions of the atoms (known

as the Pulay force [213]) have to be systematically studied. This work is currently in

progress.

The self-consistent iteration is a relative separate issue, since the self-consistent it-

eration does not directly contribute to the cubic scaling in the diagonalization method.

However, it is not clear yet how to control the number of iterations for general large

system, especially for general metallic systems. The self-consistent iteration will be

systematically studied in future.
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Part II

Nuclear quantum effects
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Chapter 7

Introduction

Hydrogen bonded systems, including water and ice, are ubiquitous on earth. Hydro-

gen bond glues particles in soft matters, and the nature of the dynamics of protons

(the nuclei of hydrogen atoms) plays a critical role in the behavior of biological sys-

tems [24] and chemical systems [130]. The vast majority of the numerical simulations

for hydrogen bonded systems treat protons as classical particles. However, the be-

havior of protons is significantly affected by quantum mechanics even at ambient

temperature due to the small nuclear mass. The isotopic effect in water [67], the

quantum ferroelectric behavior of KH2PO4 (KDP) [219], and the formation of ice

phases under high pressure [26], are just a few of the relevant phenomena where the

nuclear quantum effects play a crucial role. Therefore, investigating the impact of

nuclear quantum effects on molecular properties and equilibrium proton dynamics in

hydrogen bond systems is the focus of intense research. The proton dynamics is re-

flected in the momentum distribution of protons due to the non-commutative relation

between the momentum operator and the position operator in quantum mechanics.

The proton momentum distribution can be computed from numerical simulation by

means of path integral formalism [51,83,183,243] and can be measured directly from

Deep Inelastic Neutron Scattering (DINS) experiment [5, 218, 219].
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The path integral formalism describes the equilibrium dynamics of nuclei by map-

ping a quantum system consisting of N particles to a equivalent classical system

consisting of NP particles (in the cases discussed here P ∼ 30). Such mapping is

exact in the P → ∞ limit if exchange effects among atoms can be neglected. The

potential energy surface is then evaluated for P times compared to a classical sim-

ulation. If the potential energy surface is generated using first principle methods

such as Kohn-Sham density functional theory discussed in Part I of this dissertation,

the Kohn-Sham orbitals are also evaluated for P times. Given the high computa-

tional complexity in the evaluation of the potential energy surface, the computation

of quantum momentum distribution is a demanding task, and efficiency is a crucial

issue. However, the open path integral formalism can only evaluate the quantum

momentum distribution for one particle at a time, even if all the particles share the

same environment and are essentially equivalent with each other. One can choose to

evaluate the momentum distribution for multiple particles at the same time, but the

accuracy has to be sacrificed in a way that is difficult to control a priori.

Part II of this dissertation develops the novel displaced path integral formalism

which converts the problem of calculating quantum momentum distribution into a

problem of calculating free energy differences. The displaced path integral formalism

can therefore be combined with a large pool of free energy calculation techniques to

improve the computational efficiency. This dissertation demonstrates that when com-

bined with free energy perturbation method, the quantum momentum distributions

for all particles can be computed at the same time with a standard closed path inte-

gral simulation. The resulting formulation is shown to be more efficient than the open

path integral formalism when applied to a force-field water system. Furthermore, in

the displaced path integral formalism, the end-to-end distribution, i.e. the Fourier

transform of the momentum distribution factorizes into a free particle part and an

environmental part. This factorization facilitates the interpretation of the quantum
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momentum distribution, since only the environmental part contains the information

of the potential energy surface. The displaced path integral formalism also gives rise

to a novel semiclassical analysis of the quantum momentum distribution, and provides

a new kinetic energy estimator.

After obtaining the quantum momentum distribution, it remains a difficult task

to extract the information of proton dynamics from the momentum distribution. The

proton dynamics is governed by the potential energy surface of the system. For a

system consisting of N atoms, the potential energy surface is a 3N dimensional func-

tion, while the momentum distribution is only a 3 dimensional quantity. In principle

there are infinite potential energy surfaces corresponding to the same momentum dis-

tribution. The interpretation of the momentum distribution can therefore be highly

ambiguous and controversial. This dissertation resolves such ambiguity in the inter-

pretation of the proton momentum distribution using two representative examples as

follows.

Recent DINS studies have observed a secondary feature in the tail of the spheri-

cally averaged distribution in confined water [90], and a large excess kinetic energy in

supercooled water [208]. Such features were attributed to quantum tunneling between

the two wells of an effective anharmonic 1D potential. However, anisotropy can mimic

features of a spherical distribution that one might associate to anharmonicity in a

1D model [233]. Even in a much simpler system such as monocrystalline ice Ih, the

relative importance of anisotropy and anharmonicity remains unclear. Most of the

current DINS experiments can only be performed on polycrystalline samples, where

only the spherically averaged momentum distribution could be measured. Most of

the path integral molecular dynamics simulations only report the spherical momen-

tum distribution but not the full 3D momentum distribution and the effect of the

anisotropicity. The unknown details of the full 3D momentum distribution due to the

spherical averaging operation severely increases the difficulty for the interpretation.
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Part II of this dissertation clarifies the relation between anisotropy and anhar-

monicity in ice Ih by analyzing the 3D proton momentum distribution obtained from

the ab initio path integral simulation. The proton momentum distribution is found

to be well described by an anisotropic Gaussian distribution originating from a quasi-

harmonic model for the potential of the mean force of protons. Anisotropy stemming

from the molecular orientations in the crystal has clearly a larger effect in shaping the

momentum distribution than anharmonicity. The large effect of molecular anisotropy

implies that it is not possible to unambiguously attribute features of the spherically

averaged distribution to anharmonicity. Part II of this dissertation reveals the direct

relation between the principal frequencies of the quantum momentum distribution

(i.e. the eigenvalues of the covariance matrix of the momentum distribution) and the

phonon spectrum in the vibrational dynamics. The full path integral simulation re-

sult is to a large extent in agreement with the vibrational dynamics, which supports

the quasi-harmonic form for the potential of the mean force. The remaining deviation

between the path integral simulation and the vibrational dynamics is mainly visible

along the hydrogen bond direction, indicating the anharmonic effect along the bond.

The proton dynamics becomes more challenging in the presence of proton tun-

neling which is beyond the quasi-harmonic regime. Proton tunneling is important in

phase transitions such as the ferroelectric to paraelectric transition in KDP and the

sequence of transitions leading to hydrogen bond symmetrization in high pressure ice.

In the case of high pressure ice, at large inter-oxygen distance such as dOO ∼ 2.53Å

typically of ice VIII, the system is characterized by asymmetric hydrogen bonds and

satisfies the ice rule [29,203], which means that on the four hydrogen bonds connect-

ing an oxygen to its neighboring oxygens, two protons are near the central oxygen

and two are near the neighboring oxygens, as is required to keep the water molecules

intact. As the inter-oxygen distance decreases to dOO ∼ 2.45Å typically of ice VII,

the protons become delocalized along the hydrogen bonds, accompanied by the ap-
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pearance of ionized configurations such as H3O
+ and OH− or H4O

++ and O−− which

locally break the ice rule. The standard picture to interpret path integral studies was

based on mean field theory [26,27], and proton correlation effects were not taken into

consideration. The mean field theory overestimates the number of ionized configura-

tions which is called the ionization catastrophe [235].

Part II of this dissertation unambiguously assesses the important role of proton

correlation effects in high pressure ice by means of spectral decomposition of the single

particle density matrix, which contains the information of the momentum distribu-

tion as well as that of the spatial distribution. The correlation effects among protons

manifests themselves in the concerted proton tunneling process which is directly ob-

served in the simulation by the study of the centroid of the paths in imaginary time.

The total energy cost of a concerted proton tunneling process is lower than that of a

complete ionization catastrophe predicted by the mean field theory. Concerted proton

tunneling reduces the number of ionized configurations and the local charge neutral-

ity is partially restored. Finally, this dissertation demonstrates that the correlated

character of proton dynamics can be described in terms of an ensemble of potentials

of the mean force, which provides a more accurate description of the hydrogen bond

symmetrization transitions than that predicted by a single potential of the mean force

in the mean field theory.

Part II of this dissertation is organized as follows: Chapter 8 gives a short intro-

duction on the quantum momentum distribution, and develops the displaced path

integral formalism. Chapter 9 discusses the relative importance of anisotropy and

anharmonicity for the proton momentum distribution in ice Ih, and its relation to the

vibrational dynamics. This discussion is followed in Chapter 10 for the theoretical

interpretation of a recently performed DINS experiment on the proton momentum

distribution in ice Ih. The correlation effect in hydrogen bonded systems with proton

tunneling is illustrated for ice under high pressure in Chapter 11. The conclusion of
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Part II of this dissertation is given in Chapter 12.
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Chapter 8

Displaced path integral formalism

8.1 Introduction

The momentum distribution of quantum particles conveys unique information of the

potential energy surface of the system and is of great interest in practice. The mo-

mentum distribution can be measured with Deep Inelastic Neutron Scattering exper-

iments (DINS), and calculated with computer simulation. In this chapter, we discuss

the computational methods for the quantum momentum distribution. To simplify

the notation, we first discuss the momentum distribution for a single particle under

an external potential as follows. The momentum distribution n(p) is expressed in

terms of the single particle density matrix ρ as

n(p) = 〈p |ρ|p〉

=

∫
drdr′〈p|r〉 〈r |ρ| r′〉 〈r′|p〉

=
1

(2π~)3

∫
drdr′e

i
~
p·(r−r′)ρ(r, r′)

=
1

(2π~)3

∫
dx e

i
~
p·xñ(x)

(8.1)
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The end-to-end distribution ñ(x) defined in the last equality is the Fourier trans-

form of the momentum distribution. The end-to-end distribution characterizes the

information along the off-diagonal elements of the density matrix:

ñ(x) = 〈δ(r − r′ = x)〉 =
∫
drdr′δ(r − r′ = x)ρ(r, r′). (8.2)

In a condensed system particles move in a high dimensional space and statistical

sampling is the only viable computational strategy for calculating the momentum

distribution. The statistical sampling is usually done using the Feynman path repre-

sentation [83]. The path integral discretization of the density matrix maps the quan-

tum system onto a set of P replicas (“beads”) that obey classical physics, thereby

allowing one to utilize the machinery of computational classical statistical mechan-

ics, namely Monte Carlo and molecular dynamics strategies. The discretized density

matrix takes the form

ρ(r, r′) = lim
P→∞

∫

r1=r
rP+1=r′

dr2 . . .drP e
−βUeff (8.3)

Ueff =

P∑

i=1

mP

2~2β2
|ri − ri+1|2

+
V (r1) + V (rp+1)

2P
+

P∑

i=2

V (ri)

P
(8.4)

In the limit P → ∞, the density matrix may be written in the form of continuous

path integral as [51]

ρ(r, r′) =

∫

r(β~)=r′,r(0)=r

Dr(τ)e
− 1

~

∫ β~

0 dτ

(
mṙ

2(τ)
2

+V [r(τ)]

)

. (8.5)

Eq. (8.4) and (8.5) are introduced under the single particle picture but can be easily

extended to multi-particle systems. If the system consists of M distinguishable par-
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ticles, the momentum distribution corresponding to the l-th particle can be obtained

by sampling the single particle density matrix corresponding to the l-th particle:

ρl(r, r
′) =

∫

R(β~)=R′,R(0)=R

DR(τ)e−
1
~

∫ β~

0 dτ
mṘ

2(τ)
2

+V [R(τ)]. (8.6)

Here we have used the compact notation

R(τ) =
(
r1(τ), . . . , rl−1(τ), rl(τ), rl+1(τ), . . . , rM(τ)

)
,

and

R =
(
r1, . . . , rl−1, r, rl+1, . . . , rM

)
,

R′ =
(
r1, . . . , rl−1, r

′, rl+1, . . . , rM
)
.

Note that only the path rl(τ) is “open” with the condition that rl(0) = r, rl(β~) = r′.

All other paths rk(τ), k 6= l are “closed” with the condition that rk(0) = rk(β~).

From Eq. (8.6) we can understand the challenge in computing the momentum

distribution in a condensed system. In order to calculate the momentum distribution

of the l-th particle, it is required to open the path for the l-th particle with all other

particles being represented by closed paths. However, in a bulk material with a large

number of particles of the same species, the momentum distribution can only be

garnered for one particle at a time. This leads to a very inefficient sampling process.

It has been shown that if the paths of multiple particles are “opened” and these paths

are sufficiently far apart from each other, the impact upon the resultant distribution

is negligible [192]. In general, this strategy requires one to balance two contradictory

requirements. On one hand the number of open paths has to be large enough to

obtain good statistics, while on the other hand it cannot be too large as the sampling

will become incorrect.

This dissertation develops a novel method, called the displaced path integral for-
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malism that is more efficient in sampling the momentum distribution. In the dis-

placed path integral formalism, the momentum distribution can be garnered from

a post-processing step using the trajectory of a standard closed path integral sim-

ulation. Numerical examples using one dimensional model potentials as well as a

three-dimensional water system indicate that the new method is accurate and effi-

cient. The displaced path integral formalism is also conceptually advantageous. The

end-to-end distribution factorizes into a free particle part and an environmental part.

The information of the potential energy surface is completely contained in the environ-

mental part, which facilitates the interpretation of the simulation and experimental

result. Furthermore, the displaced path integral formalism allows a novel semiclassi-

cal analysis of the quantum momentum distribution. This semiclassical analysis is in

parallel to the Feynman-Hibbs analysis of the closed path integral formulation [83],

and is shown to be applicable to a large class of quantum systems. The displaced

path integral formalism also provides a new kinetic energy estimator for quantum

particles.

This chapter is organized as follows: Section 8.2 derives the displaced path in-

tegral formulation, and illustrates its performance in different regimes using a one

dimensional example. Section 8.3 applies the displaced path integral formalism to

water system using a force field model, and shows that the new method is accurate

and efficient in many body systems. The discussion is followed in Section 8.4 which

introduces a new quantity, called the mean force, for interpreting the quantum mo-

mentum distribution. The displaced path integral formalism also serves as a new tool

for the semiclassical analysis of the quantum momentum distribution, and we discuss

this in Section 8.5. In Section 8.6, the displaced path formalism also provides a new

kinetic energy estimator. Finally, the displaced path integral formalism is introduced

for distinguishable particles, but can also be extended to indistinguishable particles.

Section 8.7 generalizes the displaced path integral formalism to bosonic systems, fol-
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lowed by the conclusion of this chapter in Section 8.8. Part of the materials in this

chapter have been presented in [166].

8.2 Displaced path integral formalism

To simplify the notation, we introduce the displaced path formalism in this section

for a single particle under an external potential. The end-to-end distribution ñ(x) is

the Fourier transform of the momentum distribution

ñ(x) = Tr[e−
i
~
p·xe−βH ]/Z ≡ Z(x)

Z
, (8.7)

and ñ(x) can be expressed in the open path integral formulation [51]

ñ(x) =
1

Z

∫
drdr′δ (r − r′ − x) ρ (r, r′)

=

∫
r(0)−r(β~)=x

Dr(τ)e
− 1

~

∫ β~

0 dτ

(
mṙ

2(τ)
2

+V [r(τ)]

)

∫
r(β~)=r(0)

Dr(τ)e
− 1

~

∫ β~

0 dτ
(

mṙ2(τ)
2

+V [r(τ)]
) .

(8.8)

As illustrated in Section 8.1, in a many particle system, Eq. (8.8) requires to open the

path for only one particle with all other particles being represented by closed paths.

Therefore one particle is marked as special among all the particles in the system,

even if all the particles are embedded in the same ambient environment, and the

momentum distribution can only be calculated one particle at a time. It is desirable

to find an alternative algorithm that can calculate the momentum distribution of all

particles at the same time. This objective essentially requires that all the paths have

to remain closed during the simulation.

One possible way to evaluate the end-to-end distribution from closed path integral

formalism is the perturbation method. In the discrete setup as in Eq. (8.3) and

(8.4), one can perturb the end point of the path r′ = rP+1 by a small amount
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away from the starting point of the path r = r1, and the end-to-end distribution

is calculated by sampling a corresponding estimator along the closed path integral

trajectory. However, as one refines the discretization along the imaginary time and

increases the number of beads P to infinity, the variance of this estimator must also

goes to infinity. Therefore, the simple perturbation method is problematic and does

not have a well-defined continuous limit. This resembles the scenario of the primitive

kinetic energy estimator where the variance of the estimator of the quantum kinetic

energy goes to infinity when P →∞ [124].

The displaced path formalism developed in this dissertation solves the problem of

infinite variance mentioned above by means of a simple transform. The open path r(τ)

is converted to a closed path r̃(τ) by applying a x-dependent linear transformation

in the path space:

r(τ) = r̃(τ) + y(τ)x, (8.9)

Here y(τ) = C − τ
β~

and C is an arbitrary constant. Then the numerator of (8.8)

becomes

∫

r(0)−r(β~)=x

Dr(τ)e
− 1

~

∫ β~

0 dτ

(
mṙ

2(τ)
2

+V [r(τ)]

)

=e
−mx

2

2β~2

∫

r̃(β~)=r̃(0)

Dr̃(τ)e
− 1

~

∫ β~

0 dτ

(
m ˙̃r

2
(τ)

2
+V [r̃(τ)+y(τ)x]

)

.

(8.10)

In Eq. (8.10), the term e
−mx

2

2β~2 corresponds to the exact end-to-end distribution

for a free particle system. This term comes naturally from the derivative of y(τ).

The choice of the constant C influences the variance of estimators for the end-to-

end distribution. It is found that the lowest variance is achieved when C = 1/2,

since this choice has the smallest displacement from the closed path configuration.

Therefore under the displaced path integral formalism, the end-to-end distribution is
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represented as

ñ(x) = ñ0(x)

∫
Dr(τ) exp

(
−1

~

∫ β~
0
dτ
(
mṙ2(τ)

2
+ V [r(τ) + y(τ)x]

))

∫
Dr(τ) exp

(
−1

~

∫ β~
0
dτ
(
mṙ2(τ)

2
+ V [r(τ)]

)) , (8.11)

where ñ0(x) = e
−mx

2

2β~2 is the end-to-end distribution corresponding to a free particle.

Computational advantages arise from the explicit factorization of ñ0(x) and the

remaining part, called the “environmental part”. It follows from Eq. (8.11) that,

having put Z(0) = Z, we can write ñ(x)
ñ0(x)

= Z(x)
Z(0)

as a ratio between two partition

functions. To calculate this ratio or its logarithm, called the “potential of the mean

force” or “excess free energy” U(x) = − ln Z(x)
Z(0)

, one can apply all the methods avail-

able in standard statistical mechanics, and open path integral method [51] becomes

one of the many choices. Below we introduce two methods that are more efficient

than the open path integral method. The first method combines the displaced path

integral formalism with the free energy perturbation method [258], and the second

method combines the displaced path integral formalism with thermodynamic integra-

tion method [137].

The free energy perturbation method calculates the end-to-end distribution ñ(x)

by perturbation from the closed path configuration:

ñ(x) =
Z(x)

Z(0)

=ñ0(x)ñV (x)

=ñ0(x)

∫
Dr(τ)N (x; 0) exp

(
−1

~

∫ β~
0
dτ
(
mṙ2(τ)

2
+ V [r(τ)]

))

∫
Dr(τ) exp

(
−1

~

∫ β~
0
dτ
(
mṙ2(τ)

2
+ V [r(τ)]

))

≡ñ0(x)〈N (x; 0)〉0,

(8.12)

The estimator for the environmental part of the end-to-end distribution is denoted
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by

N (x; 0) = e−
1
~

∫ β~

0 dτ (V [r(τ)+y(τ)x]−V [r(τ)]). (8.13)

The free energy perturbation method only requires a standard closed path integral

simulation, and the end-to-end distribution can be calculated using a post-processing

step with the estimator in Eq. (8.13), which is the difference of the potential energy

between the displaced path configuration and the closed path configuration. The

variance of the estimator (8.13) is finite, and is small in many systems as will be

shown later. The potential of the mean force is calculated as the logarithm of the

environmental part of the end-to-end distribution

U(x) = − ln 〈N (x; 0)〉
0
. (8.14)

where the average is evaluated using the closed path distribution Z(0).

Now we apply the free energy perturbation method to study the momentum dis-

tribution of a single particle in an external double well potential

V =
mω2

2
x2 + Ae−(x/b)2 (8.15)

with ω = 0.0050, b = 0.25 and A = 0.012 in atomic unit. The particle is assumed to

have proton mass m = 1836. This potential mimics the potential of the mean force

along the hydrogen bond direction in tunneling ice [190]. The barrier of this potential

is 2400K. 32 beads are used for discretizing the path along the imaginary time and

the length of the trajectory is 30ps. The end-to-end distribution obtained from the

displaced path formalism is compared with that from the open path integral method

(Figure 8.1). The exact end-to-end distribution obtained by directly diagonalizing the

Hamiltonian is also included for comparison. The results obtained from both the open

path integral method and the displaced path method are consistent with the exact
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result, while the result in the open path integral method contains more noise than

that in the displaced path method. The potential of the mean force corresponding to

the double well model is also compared between the two methods (Fig. 8.2). Despite

the strong anharmonic feature in the potential energy surface, the displaced path

method is able to accurately calculate the potential of the mean force.

The displaced path method is already more efficient than the open path integral

method for a single particle. The reason is that the end-to-end distribution is a smooth

function, and the end-to-end distribution can be well approximated by its values at

a few points along the x axis. The displaced path formalism exactly calculates the

end-to-end distribution on a certain prescribed set of end-to-end distance x. On the

other hand, the open path integral samples the values of the end-to-end distribution

at all points. As a result the statistics on each point is less than that in the displaced

path formulation.
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Figure 8.1: The end-to-end distribution of a particle in a double well potential at
300K obtained from exact diagonalization (red solid line), from displaced path method
(black dashed line), and from the open path integral method (blue dot dashed line).

The natural factorization of the free particle part and the environmental part in
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Figure 8.2: The potential of the mean force of a particle in a double well potential
at 300K. Red solid line: exact result. Black dashed line: displaced path formulation
with 30ps data. Blue dot dashed line: open path simulation with 30ps data. The
potential of the mean force is in the unit of kBT .

the end-to-end distribution also facilitates the visualization of the quantum effect in

the momentum distribution. Since the quantum effect is only included in the envi-

ronmental part, we can define the environmental part of the momentum distribution

as

ñ(p) =
1

2π~

∫
e

i
~
pxñ(x), (8.16)

The momentum distribution n(p) and the environmental part of the momentum dis-

tribution ñ(p) are compared in Fig. 8.3. The quantum effect is only indicated as the

extended tail in the momentum distribution, while the quantum effect is much more

amplified in the environmental part of the momentum distribution, which exhibits

a node point around 4Å
−1
. This existence of the node in the environmental part of

the momentum distribution indicates strong anharmonicity in the potential energy

surface.

The free energy perturbation method gives accurate description of the end-to-end
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Figure 8.3: Red solid line: momentum distribution n(p). Black dashed line: en-
vironmental part of the momentum distribution ñ(p), where the quantum effect is
amplified.

distribution of the double well system even when the quantum effect is relatively large

(Fig. 8.3). However, in some cases the perturbation method can be less accurate. This

occurs when the system is at low temperature and β becomes large. As the variance

of the estimator (8.13) increases with β, the free energy perturbation method becomes

increasingly inefficient. To illustrate this case, we use the double well potential (8.15)

again, but at a different temperature as 100K. The path integral is discretized with

64 beads and the length of the trajectory is 300ps. The potential of the mean force,

and the momentum distribution are calculated using the displaced path formulation

(Fig. 8.4 and Fig. 8.5, respectively). Compared to the exact potential of the mean

force and the momentum distribution using diagonalization method, we find that

the accuracy of the displaced path estimator is reduced when the system is at lower

temperature. The statistical accuracy can be improved with a longer trajectory,

however, it is desirable to design more efficient methods to calculate the momentum

distribution in this case.
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Figure 8.4: The potential of the mean force of a particle in a double well potential
at 100K, obtained from the exact diagonalization method (red solid line), and from
the displaced path method (black dashed line). The unit of the potential of the mean
force is kBT .
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Figure 8.5: The momentum distribution of a particle in a double well potential at
100K. Red solid line: exact result. Black dashed line: displaced path formula with
300ps data. An inset with the same legend is included to describe difference in the
second shoulder.
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For fixed trajectory length in simulation, the accuracy of the free energy pertur-

bation method is determined by the variance of the estimator N (x; 0), which takes

the form

〈N (x; 0)2〉0 − 〈N (x; 0)〉20

=〈e− 2
~

∫ β~

0 dτ V [r(τ)+y(τ ;x)]−V [r(τ)]〉0 − 〈e−
1
~

∫ β~

0 dτ V [r(τ)+y(τ ;x)]−V [r(τ)]〉20.
(8.17)

The variance of N (x; 0) at different x is computed for the double well potential

at 300K (left panel in Fig. 8.6) and at 100K (right panel in Fig. 8.6), respectively.

The variance of the estimator at 100K is about 25 times bigger than that at 300K.

For a general estimator A, the sampling statistical error σ2(A) can be expressed

as [86, Appendix D]

σ2(A) ≈ 2tcA
t
(〈A2〉 − 〈A〉2). (8.18)

Here tcA is the characteristic decay time of the correlation function of A. Therefore the

sampling statistical error at 100K is much larger that than at 300K using a trajectory

of the same length, and the free energy perturbation method is not very efficient at

100K.

The discussion above indicates that the free energy perturbation method is mostly

suited for studying the momentum distribution of quantum systems at intermediate

temperature. If the system is at low temperature, or the potential energy surface of

the quantum system has a large fluctuation, the estimator in the free energy pertur-

bation method will have a large variance and the statistical error is difficult to reduce.

To overcome this problem, we note that the variance of N (x; 0) is not uniform along

x direction (see the right panel of Fig. 8.6). The variance is small when x is small

(|x| < 0.1Å) or large (|x| > 1.0Å). The largest variance occurs at intermediate dis-

placement |x| ≈ 0.5Å. The variance can be reduced by inserting an intermediate
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Figure 8.6: The variance of N (x; 0) for double well model at 300K (left panel) and
at 100K (right panel).

point x′ in the free energy perturbation method as

ñV (x) =
ZV (x)

ZV (0)
=
ZV (x)

ZV (x′)

ZV (x
′)

ZV (0)

=

∫
Dr(τ) exp

(
−1

~

∫ β~
0
dτ mṙ2(τ)

2
+ V [r(τ) + y(τ ; x)]

)

∫
Dr(τ) exp

(
−1

~

∫ β~
0
dτ mṙ2(τ)

2
+ V [r(τ) + y(τ ; x′)]

)×

∫
Dr(τ) exp

(
−1

~

∫ β~
0
dτ mṙ2(τ)

2
+ V [r(τ) + y(τ ; x′)]

)

∫
Dr(τ) exp

(
−1

~

∫ β~
0
dτ mṙ2(τ)

2
+ V [r(τ)]

)

=〈N (x; x′)〉x′〈N (x′; 0)〉0

(8.19)

The last equality in Eq. (8.19) also defines a new quantity N (x; x′), which is the

estimator of the ratio of the end-to-end distribution at x to the end-to-end distribution

at x′. When x′ = 0, N (x; 0) is the end-to-end distribution and Eq. (8.19) is the same

as Eq. (8.13).

Instead of computing N (x; 0) for all x, Eq. (8.19) first computes N (x; 0) for

0 < x ≤ x′ and then calculates N (x; x′) for x > x′. The variance of the estimator is

therefore reduced. Eq. (8.19) can be applied recursively by injecting multiple inter-
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mediate points x′. In practice a few intermediate points is already able to accurately

calculate the momentum distribution. Take the double well potential at 100K for

instance. We apply Eq. (8.19) with intermediate points x′ = 0, 0.11, 0.26, 0.42, 0.53Å,

respectively, with the sampling trajectory of 60ps at each intermediate points with

the path integral discretized by 64 beads. The total length of the trajectory is still

300ps. The accuracy of the momentum distribution and the potential of the mean

force is greatly improved (see Fig. 8.7 and Fig. 8.8). The variance of the estimator

N (x, x′) is more than 25 times smaller than that of the free energy perturbation es-

timator (see Fig. 8.9). The discontinuity in Fig. 8.9 indicates the positions of the

intermediate points.
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Figure 8.7: The momentum distribution of a particle in a double well potential at
100K using Eq. (8.19). Red solid line: exact result obtained by diagonalization of
the Hamiltonian matrix. Black dashed line: displaced path formula (8.19). An inset
with the same legend is included for better illustration of the tail of the momentum
distribution.
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Figure 8.8: The potential of the mean force of a particle in a double well potential at
100K. Red solid line: exact result. Black dashed line: Displaced path formula (8.19).
The potential of the mean force is in the unit of kBT .
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Figure 8.9: The variance for estimating the end-to-end distribution for 100K double
well model using Eq. (8.19). The discontinuity indicates the intermediate points to
enhance the sampling efficiency.
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We have demonstrated that the free energy perturbation method is very effective

even at low temperature by inserting several intermediate points x′. It is natural

to ask what is the continuous limit of Eq. (8.19) by inserting infinite number of

intermediate points. This continuous limit is the thermodynamic integration formula

in statistical mechanics [137], which calculates the potential of the mean force by

integrating its gradient F (x′):

U(x) =

∫ x

0

dx′ · F (x′). (8.20)

The derivative quantity F (x′), called the mean force, can be sampled directly from

the path integral simulation according to the intermediate partition function Z(x′)

F (x′) =

〈
1

~

∫ β~

0

dτ ∇rV [r(τ) + y(τ)x′]y(τ)

〉

x′

(8.21)

We remark that both Eq. (8.19) and the thermodynamic integration formula (8.21) re-

quire inserting intermediate points x′ which leads to open paths. However, Eq. (8.19)

and Eq. (8.21) are more accurate methods for calculating the momentum distribution,

and can be applied in a fully controlled way. The computation of the potential of

mean force has analogies with non-Boltzmann sampling methods. Modern techniques

for enhanced sampling, such as metadynamics [128] and well-tempered metadynam-

ics [18] can be applied to improve the statistical accuracy. This work is currently in

progress.

8.3 Application of the displaced path integral for-

malism to water

The displaced path formalism is introduced in Section 8.2 under the single particle

picture, and it can be readily generalized to distinguishable many particle systems.
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Following the notation of Eq. (8.6), the end-to-end distribution of the l-th particle of

a many body system takes the form under the displaced path formalism as

ñ(x) =
1

Z

∫

R(β~)=R(0)

DR(τ)e−
1
~

∫ β~

0 dτ
mṘ

2(τ)
2

+V [R(τ)+Yl(τ)x]. (8.22)

with the compact notation

R(τ) =
(
r1(τ), . . . , rl−1(τ), rl(τ), rl+1(τ), . . . , rM(τ)

)
, (8.23)

and Yl(τ) is a M-dimensional function with the only nonzero entry at the l-th com-

ponent as

Yl(τ) =
(
0, . . . , y(τ), . . . , 0

)
. (8.24)

Again we find that displaced path formalism does not introduce any special par-

ticle among all the particles and the formulation is exact. We can sample the mo-

mentum distribution using all particles in the system, and thus can greatly enhance

the sampling efficiency. The displaced path algorithm is tested with a flexible model

for water [173]. The simulation box contains 32 water molecules. The temperature is

set to be 296K. Both protons and oxygens are treated by quantum mechanics, and

are represented by 64 classical beads. The end-to-end distribution takes the spherical

averaged form in water. The quantum effect for protons in water at room tempera-

ture is relatively small [191], which allows us to use free energy perturbation (8.14)

and compare the results with open path integral simulation [192]. In the latter case,

in principle one proton path should be opened and all other paths should be closed

as discussed in Section 8.1. However, the resulting statistics would be poor. In order

to boost statistics one proton path per water molecule was opened, as it was found

that this approximation leads to a negligible error in the momentum distribution

due to the relatively weak interaction between protons belonging to different water
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molecules [192]. The displaced path integral formulation allows one to compute the

end-to-end distribution without opening any proton path, and therefore all the pro-

tons can be included in the calculation of the end-to-end distribution without any

approximation. We show the end-to-end distribution calculated both from a 268 ps

open path simulation and from a 12 ps displaced path simulation that utilizes the

estimator given by Eq. (8.14) in Fig. 8.10 (a), and the comparison of the potential

of mean force in Fig. 8.10 (b). In both simulations, the time step is 0.24 fs. Two

consecutive steps contain highly correlated information, and the free energy pertur-

bation estimator may be computed every 20 steps. Thus with only a small increase in

computational overhead in comparison to an open path simulation of the same length,

the displaced path formulation has a large gain in terms of sampling efficiency.

0 0.5 1
0

2

4

6

r(A)

n
(r
)

(a)

0 0.5 1

0

2

4

6

8

r(A)

U
(r
)

(b)

0 0.1 0.2

4

6

8

0 0.1 0.2

−0.4

−0.2

0

0.2

Figure 8.10: Comparison of (a) the end-to-end distribution and (b) the potential of
mean force in SPC/F2 water. In both figures, the red line is computed by a 268ps
open path integral simulation. The thick blue line is calculated using the displaced
path estimator (8.14), with the thickness indicating the 95% confidence interval. The
noise near r = 0 in both insets for open path simulation is due to the r2 weight in
the spherical integration, while the displaced path gives correct small r behavior by
definition.
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8.4 A new way of interpreting the momentum dis-

tribution

The thermodynamic integration approach given in Eq. (8.21) is not only computa-

tionally advantageous, but also provides one with the potential of mean force U(x),

and its gradient F (x). Both U(x) and F (x) are key quantities for interpreting the

physics underlying the momentum distribution n(p). We first note that the kinetic

energy K is given by K = ~
2

2m
∇ · F (x)

∣∣∣
x=0

+ 3
2β
≡ KV + 3

2β
. Since 3/2β is the free

particle contribution, the non-classical contribution is completely included in the ex-

cess kinetic energy term KV , and is determined by the zero point curvature of U(x).

Secondly, if the momentum distribution of an individual particle is accessible (as is

possible e.g. in simulations) and the underlying potential energy surface is harmonic,

the end-to-end distribution follows a Gaussian distribution and the mean force is

given by a straight line. Any deviation of q̂ ·F (x) from linearity signals anharmonic

behavior along the q̂ direction.

In experiments, the spherically averaged momentum distribution is accessible in

liquids, and amorphous and polycrystalline solids, while the directional distribution is

accessible in monocrystalline materials. The latter distribution provides more infor-

mation about the underlying potential energy surface. However, in single crystals the

total momentum distribution is the sum of the contributions of individual particles

participating in bonds with different orientations. As a consequence the difference

between directional and spherical momentum distribution is usually very small as

shown in the top panel of Fig. 8.11. This figure is based on an anisotropic harmonic

model with three distinct principal frequencies fitted from the ab initio path integral

simulation for ice Ih [191]. The bottom panel of the same figure clearly shows that

the distinction between the spherical and directional distributions is enhanced when

comparing the mean forces. It is therefore of great interest to link directly the mean
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force to the experimental data, i.e. to the Compton profile. The Compton profile is

given by

J(q̂, y) =

∫
n(p)δ(y − p · q̂)dp. (8.25)

q̂ indicates the direction of the neutron detector [218].
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Figure 8.11: Top panel: the momentum distribution of the protons in ice Ih resulting
from an anisotropic harmonic model (see text). Both the spherical and the directional
distribution along the c-axis are shown. Bottom panel: the corresponding spherical
and directional mean force projected along the c-axis. The curves are plotted as a
function of the end-to-end distance. The mean force enhances the differences between
spherical and directional distributions.

We define x‖ = x · q̂, and denote by x⊥ the x component orthogonal to q̂.

Correspondingly p‖ = p · q̂, and p⊥ is the p component orthogonal to q̂. One has

J(q̂, y) =
1

(2π~)3

∫
dxdp ñ(x)e

i
~
p·xδ(y − p · q̂)

=
1

(2π~)3

∫
dx‖dx⊥dp‖dp⊥ ñ(x)e

i
~
x‖p‖+

i
~
p⊥·x⊥δ(y − p‖)

=
1

2π~

∫
dx‖ ñ(x‖q̂)e

i
~
x‖y.

(8.26)

232



Given the end-to-end distribution can be expressed as

ñ(x) = e
−mx

2

2β~2 e−U(x), (8.27)

the potential of mean force U(x) can be obtained from the Compton profile as

U(x‖q̂) = −
mx2‖
2β~2

− ln

∫
dy J(q̂, y)e−

i
~
x‖y. (8.28)

The mean force F (x) is the gradient of U(x). Taking into account that J(q̂, y) is an

even function of y one obtains

q̂ · F (x‖q̂) = −
mx‖
β~2

+

∫∞
0
dy y sin(x‖y/~)J(q̂, y)

~
∫∞
0
dy cos(x‖y/~)J(q̂, y)

. (8.29)

In the bottom panel of Fig. 8.11 the slope of the mean force, either spherical or

directional, at r = 0 is equal to the excess kinetic energy KV divided by the con-

stant ~2

2m
. This is an exact result that originates from the symmetry property of ice

Ih. In general the spherical and directional mean force can have different slopes at

r = 0. The deviation of the spherical and directional forces from linearity at finite r

results from the averaging process and is not a sign of anharmonicity. Thus in the

interpretation of the experimental Compton profile, which results from the contri-

bution of many particles, one must distinguish the case of an anisotropic harmonic

potential energy surface from that of an anharmonic potential energy surface. To the

best of our knowledge the procedure that is currently adopted to fit the experimen-

tal data [5, 208, 218] does not separate well anisotropic and anharmonic effects. We

propose here an alternative approach in which the mean force is associated to the

experimental Compton profile according to Eq. (8.29). The projections of the mean

force along different directions are then fitted to an anisotropic harmonic model aver-

aged as required by the crystal symmetry. Any systematic deviation from experiment
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of the mean force originating from the harmonic contribution, can then be associated

to anharmonicity and used to further refine the underlying model potential energy

surface.

The framework introduced here may also be utilized to provide insight to the

investigation of anharmonic systems. Consider for example a particle with the proton

mass subject to a model double well 1D-potential. V = mω2

2
z2 + A exp(− z2

2ξ2
) with

ω = 1578K, and ξ = 0.094Å. A characterizes the barrier height and is set to be

1263K, 3789K, and 6315K, respectively. These parameters mimic different tunneling

regimes for protons along a hydrogen bond [27, 190]. The temperature is set to be

30K. At this temperature the behavior of the systems is dominated by the ground-

state, and the end-to-end distribution can be approximated by the overlap integral

ñ(x) =
∫
dzψ(z)ψ(z + x) where ψ(z) is the ground-state wavefunction and F (x) =

− d
dx

ln ñ(x). In Fig. 8.12 we can see how qualitatively different the mean force can be

in the three cases. One goes from a fully monotonic behavior for A = 1263K which is

a model for a low energy barrier hydrogen bond [26], to the strongly non monotonic

mean forces for A = 3789K and A = 6315K where the tunneling states lie below the

barrier height. Additionally, it is not very difficult to relate features of the mean force

to the underlying effective potential.

It is also instructive to study F (x) as a function of temperature when the higher

states are mixed in the density matrix. This is done in Fig. 8.13 for the double well

potential with A = 3789K. For temperatures in the 100 − 500K range, the behavior

is dominated by the two lowest eigenstates. The slope of F (x) at small x, which is

proportional to the excess kinetic energy KV , shows little dependence on T . It can

be shown with detailed analysis that this is a generic feature of two level tunneling

systems. Other characters seen in Fig. 8.13 in the same range of temperatures, such as

the more pronounced kink at intermediate x and the enhanced softening of the mean

force at large x, derive from the odd symmetry of the first excited state contribution.
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Figure 8.12: (a) The mean force corresponding to a double well model at T = 30K, for
different barrier heights A = 1263K (black solid line), A = 3789K (red dashed line),
and A = 6315K (blue dot-dashed line). (b) Potential energy surface for A = 1263K
(blue solid line), and the first five energy levels (red dashed line). (c) (d) the same as
(b), but with A = 3789K and A = 6315K respectively.

Eventually at higher T the kink in F (x) disappears as the mean force progressively

resumes linear behavior with a slope that tends to zero as high temperature classical

limit is reached.

8.5 Semiclassical limit of displaced path integral

formalism

So far the displaced path integral formalism can be applied to compute the momen-

tum distribution of any quantum system as long as the exchange effect among the

particles can be neglected. Furthermore, if the quantum effect is not strong and the

quantum path only perturbs from its centroid by a small magnitude, the computa-

tional procedure can be further simplified. This is known as the semiclassical limit
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of the path integral theory. The semiclassical limit has been well studied in terms

of closed path integrals and position distribution [83]. However, little work has been

done in the context of momentum distribution. One of the known result is that if

the quantum effect is weak, the quantum effect on the momentum distribution can

be described as an effective increase of temperature [21, 147]:

Teff = T +
β2

~
2

12mkB
〈(V ′(x̄))2〉cl. (8.30)

Here 〈·〉cl means the average is taken over the classical trajectory. Eq. (8.30) essen-

tially approximates the quantum momentum distribution by an isotropic Gaussian

distribution. The anisotropic effect is mixed and represented by a single parameter

Teff , leaving aside the anharmonic effect. In this section we derive a more accurate

semiclassical limit for momentum distribution, which naturally generalizes the esti-

mate by Feynman and Hibbs [83] to the case with the momentum distribution.

To facilitate the discussion, we first briefly review the derivation of the semiclassi-
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cal limit for the closed path integral formalism. The semiclassical limit considers the

case when β~ is small, namely the system is at high temperature. Then each path

r(τ) can be considered to be centered around its centroid

r̄ =
1

β~

∫ β~

0

r(τ)dτ. (8.31)

The partition function Z can be written as

Z =

∫
dr̄

∫
dr1

∫ r1

r1

D̃r(τ) exp
(
−1

~

∫ β~

0

mṙ2

2
+ V (r)dτ

)
. (8.32)

Here the notation
∫
dr̄
∫
dr1
∫ r1
r1

D̃r(τ) is another way of writing the unconstrained

path integral
∫
Dr(τ), except that the inside integration satisfies the constraint with

fixed centroid

1

β~

∫ β~

0

r(τ)dτ = r̄, r(0) = r(β~) = r1. (8.33)

In the semiclassical analysis, the internal degrees of freedom r1 should be integrated

out, and the partition function is only determined by the centroid r̄. To this end we

rewrite the partition function as

Z =

∫
dr̄

(∫
dr1

∫ r1

r1

D̃r(τ)P [r(τ); r̄]ef
)
·W (r̄). (8.34)

Here

f = −1

~

∫ β~

0

V [r(τ)]dτ. (8.35)

P [r(τ), r̄] is the probability measure corresponding to free particles

P [r(τ), r̄] =
exp

(
−1

~

∫ β~
0

mṙ2(τ)
2

dτ
)

W (r̄)
(8.36)
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with an normalizing factor

W (r̄) =

∫
dr1

∫ r1

r1

D̃r(τ) exp

(
−1

~

∫ β~

0

mṙ2(τ)

2
dτ

)
. (8.37)

In order to integrate out the internal degrees of freedom, we apply the Jensen’s

inequality (i.e. the variational principle)

〈ef 〉 ≥ e〈f〉, (8.38)

with the average 〈·〉 defined by

〈A〉 ≡
∫
dr1

∫ r1

r1

D̃r(τ)P [r(τ); r̄] ·A. (8.39)

The question remains to evaluate the average 〈f〉.

For fixed position of the centroid r̄, we have

〈f〉 = −1

~

∫
dr1

∫ r1

r1

D̃r(τ)P [r(τ); r̄]

∫ β~

0

dt V [r(t)]

= −1

~

∫ β~

0

dt

∫
dr1

∫ r1

r1

D̃r(τ)P [r(τ); r̄]V [r(t)]

≡ −1

~

∫ β~

0

dt I(t; r̄).

(8.40)

Since each path can be seen as a β~-length segment of a periodic path, the two sets

{r(0)} and {r(t)} are exactly the same. Therefore I(t; r̄) is independent of t, and we

have

I(r̄) ≡ I(0; r̄) =

∫
dr1

∫ r1

r1

D̃r(τ)P [r(τ); r̄]V (r1), 〈f(r̄)〉 = −βI(r̄). (8.41)
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I(r̄) can be written as

I(r̄) =

∫
dY

∫ Y

Y

D̃z(τ)P [z(τ); r̄]V [r̄ + Y ] (8.42)

with z(τ) = r(τ)− r̄, Y = r1 − r̄, and we have used P [r(τ); r̄] = P [z(τ); r̄]. The new

path z(τ) satisfies the constraint
∫ β~
0
dτz(τ) = 0. This constraint is linear in z, and it

is convenient to rewrite the constraint using the Dirac-δ function as δ(
∫ β~
0
zdτ). This

δ-function can be eliminated in the integral by means of its Fourier transform

δ

(∫ β~

0

zdτ

)
=

∫ ∞

−∞
dk

β

2π
exp

(
ik

∫ β~

0

z(τ)dτ

)
, (8.43)

and

W (r̄) =

∫
dk

β

2π
dr1

∫ r1−r̄

r1−r̄
Dz(τ) exp

(
−1

~

∫ β~

0

mż2(τ)− ikz
2

dτ

)

=
β

2π

∫
dr1

∫
dk

√
m

2πβ~2
exp

{
i

~

[
1

2
(ik)(−iβ~)2r1 −

(ik)2(−iβ~)3)
24m

]}

=
β

2π

√
m

2πβ~2

∫
dr1e

−6mr21/β~
2

√
24mπ

β3~2

=

√
m

2πβ~2
.

(8.44)

Therefore W (r̄) is independent of r̄. This fact can be readily seen since W (r̄) is the

normalization factor for free particle system which is translational invariant. Similarly

I(r̄) =

√
6m

πβ~2

∫
dY

∫ ∞

−∞
V (r̄ + Y )e−6Y 2m/β~2 , (8.45)

In summary, the partition function is expressed under the semiclassical limit as

Z ≈
√

m

2πβ~2

∫
dr̄e−βU(r̄), (8.46)
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with the effective classical potential as

U(r̄) =

√
6m

πβ~2

∫ ∞

−∞
dY V (r̄ + Y )e−6Y 2m/β~2 . (8.47)

We see that the internal degrees of freedom of the quantum path have been integrated

out, and the partition function is represented in terms of an effective classical potential

acting on the centroid of the path. Eq. (8.47) indicates that in the semiclassical

limit, the quantum effect mimics a smearing Gaussian kernel with mean-square spread

(β~2/12m)1/2.

The displaced path formalism evaluates the end-to-end distribution as an esti-

mator based on closed path integrals. Therefore the same derivation above can be

applied to study the semi-classical limit of the end-to-end distribution, and there-

fore the momentum distribution. The denominator of the end-to-end distribution

is the partition function Z already calculated in Eq. (8.46). The numerator of the

end-to-end distribution is

Tr[e−
i
~
pxe−βH ] = exp

(
−mx

2

2β~2

)∫
dr̄

∫
dr1

∫ r1

r1

D̃r(τ)

exp

{
−1

~

∫ β~

0

dτ
(m
2
ṙ2(τ) + V [r(τ) + y(τ)x]

)}

= exp

(
−mx

2

2β~2

)∫
dr̄

∫
dr1

∫ r1−r̄

r1−r̄
D̃z(τ)

exp

{
−1

~

∫ β~

0

dτ
(m
2
ż2(τ) + V [r̄ + z(τ) + y(τ)x]

)}

(8.48)

with y(τ), z(τ) defined the same as before.

Applying again the variational principle

Tr[e−
i
~
pxe−βH ] ≈ exp

(
−mx

2

2β~2

)∫
dr̄
(
exp

{
− 1

~

∫
dr1

∫ r1−r̄

r1−r̄
D̃z(τ)

P [z(τ); r̄]

∫ β~

0

dtV [z(t) + r̄ + y(t)x]
})
·W (r̄)

(8.49)
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and write 〈f(r̄)〉 as

〈f(r̄)〉 = −1

~

∫
dr1

∫ r1−r̄

r1−r̄
D̃z(τ)P [z(τ); r̄]

∫ β~

0

dt V [z(t) + y(t)x+ r̄]

= −1

~

∫ β~

0

dt

∫
dr1

∫ r1−r̄

r1−r̄
D̃z(τ)P [z(τ); r̄]V [z(t) + y(t)x+ r̄]

≡ −1

~

∫ β~

0

dt I(t; r̄).

(8.50)

Using the same technique in Eq. (8.43), we find that

〈f(r̄)〉 = −1

~

∫ β~

0

dt

∫
dY e−6mY 2/β~2V (Y + y(t)x+ r̄) (8.51)

Therefore the numerator of the end-to-end distribution is

Tr[e−
i
~
pxe−βH ] = e

− mx2

2β~2

√
m

2πβ~2

∫
dr̄e−βU(r̄;x) (8.52)

with the effective classical potential U(r̄; x) as

U(r̄; x) =
1

β~

∫ β~

0

dt

∫
dY e−6mY 2/β~2V (Y + y(t)x+ r̄). (8.53)

The physical meaning of this effective potential is clear. It replaces to the closed path

effective potential U(r̄) by an average on the displaced path

U(r̄; x) =
1

β~

∫ β~

0

dt U(r̄ + y(t)x). (8.54)

To sum up, the end-to-end distribution can be rewritten in the semi-classical limit

as

ñ(x) ≈ e
− mx2

2β~2

∫
dr̄e−βU(r̄;x)

∫
dr̄e−βU(r̄)

, (8.55)

and the displaced path estimator for the end-to-end distribution under the semiclas-
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sical limit is

N (x; 0) ≈ exp {−β[U(r̄; x)− U(r̄)]} . (8.56)

We use the double well model (8.15) again to illustrate the accuracy of the new

estimator of the end-to-end distribution under semiclassical limit (8.56). The end-to-

end distribution at 800K and 300K are shown in Fig. 8.14 and 8.15, respectively. The

difference between the quantum and the classical end-to-end distribution is already

visible at 800K. The free energy perturbation estimator (8.56) accurately reproduces

the end-to-end distribution. On the other hand, the isotropic estimator (8.30) over-

shoots the quantum effect, and the deviation from the exact result is even larger than

the deviation obtained from the classical Maxwell-Boltzmann distribution.

The performance of the semiclassical estimator (8.56) at 300K is more interesting.

It has been reported that the double well model at 300K mimics the quantum effect of

ice VII with proton tunneling [190]. The end-to-end distribution in this case strongly

deviates from a Gaussian distribution. However, the semiclassical estimator (8.56)

still gives a rather accurate description of the non-Gaussian end-to-end distribution.

This example clearly indicates the new semiclassical estimator can be applied to study

the quantum momentum distribution for a large class of systems.

Besides the conceptual advantage, the semiclassical estimator (8.56) has com-

putational advantage when combined with the free energy perturbation method.

Eq. (8.54) indicates that if the effective potential for the closed path integral sim-

ulation can be obtained efficiently, then U(r̄, x) is also readily obtained by means of

Gauss-quadrature along the t direction with a small number of integration points.

The number of integration points can be much less than the number of replicas P

required in the standard path integral simulation. This is our work in progress.
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Figure 8.14: The end-to-end distribution corresponding to the double well potential at
800K. Red solid line: the exact result. Black dot dashed line: the result from the new
semiclassical estimator 8.56. Magenta dot dashed line: the result from the isotropic
estimator 8.30. Green dashed line: classical Maxwell-Boltzmann distribution.
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Figure 8.15: The end-to-end distribution corresponding to the double well potential
at 300K. Red solid line: the exact result. Black dot dashed line: the result from the
semiclassical estimator 8.56. Magenta dot dashed line: the result from the isotropic
estimator 8.30. Green dashed line: classical Maxwell-Boltzmann distribution.
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8.6 A new kinetic estimator

We have shown that the displaced path integral formalism is more advantageous com-

pared to the open path integral method for calculating the momentum distribution.

In this section we show that the displaced path integral formalism also provides an

alternative way of calculating the kinetic energy of quantum particles.

In what follows the new estimator is introduced under single particle picture at

one dimension. The generalization to the many particle case is straightforward. The

kinetic energy is directly related to the curvature of the end-to-end distribution at

x = 0 as

〈K〉 = 1

Z
Tr

[
p2

2m
e−βH

]
= − 1

Z

~
2

2m

d2

dx2
Tr
[
e−

i
~
pxe−βH

] ∣∣∣
x=0

. (8.57)

The curvature of the end-to-end distribution can be represented using the displaced

path integral formulation, which reads

d2

dx2
ñ(x) =

1

Z

d2

dx2

{∫
Dr(τ) exp

(
−1

~

∫ β~

0

dτ
mṙ2

2
+ V [r(τ) + y(τ)x]

)
· exp

(−mx2
2β~2

)}∣∣∣
x=0

=
1

Z

d

dx

{∫
Dr(τ) exp

(
−1

~

∫ β~

0

dτ
mṙ2

2
+ V [r(τ) + y(τ)x]

)
· exp

(−mx2
2β~2

)
·

[
−mx
β~2
− 1

~

∫ β~

0

dτ V ′[r(τ) + y(τ)x]y(τ)

]}∣∣∣
x=0

=
1

Z

∫
Dr(τ) exp

(
−1

~

∫ β~

0

dτ
mṙ2

2
+ V [r(τ)]

)
·

{
− m

β~2
+

(
−1

~

∫ β~

0

dτ V ′[r(τ)]y(τ)

)2

− 1

~

∫ β~

0

dτ V ′′[r(τ)]y2(τ)

}

(8.58)

Eq. (8.58) involves the second derivative of the potential energy which is difficult to

compute in practice. We would like to represent the kinetic energy estimator only

using the first order derivative of the potential energy, which is the force on the atoms

and is available in any molecular dynamics simulation and in most of the Monte Carlo

simulations.
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We define the average of a quantity A as

〈A[r(τ)]〉 = 1

Z

∫
Dr(τ) exp

(
−1

~

∫ β~

0

dτ
mṙ2

2
+ V [r(τ)]

)
A[r(τ)] (8.59)

then Eq. (8.58) can be rewritten as

d2

dx2
ñ(x) = − m

β~2
+ 〈
(
−1

~

∫ β~

0

dτ V ′[r(τ)]y(τ)

)2

〉+ 〈−1

~

∫ β~

0

dτ V ′′[r(τ)]y2(τ)〉

(8.60)

The first term of (8.60) is a constant coming from the free particle contribution,

or the classical Maxwell-Boltzmann distribution. The second term can be rewritten

as

〈
(
−1

~

∫ β~

0

dτ V ′[r(τ)]y(τ)

)2

〉 = 1

~2
〈
∫ β~

0

dτ

∫ β~

0

dtV ′[r(t)]V ′[r(τ)]y(τ)y(t)〉 (8.61)

To further simplify the formulation, we note that we have used the convention that

we open the path at r(0). However, the path r(τ) can be “opened” at any imaginary

time slice r(s). Taking this symmetry into account, Eq. (8.61) equals to

1

β~3
〈
∫ β~

0

ds

∫ β~

0

dτ

∫ β~

0

dtV ′[r(t+ s)]V ′[r(τ + s)]y(τ)y(t)〉 (8.62)

Let us define a correlation function between forces at imaginary time t and τ as

V (1)
corr(t− τ) ≡

1

β~

∫ β~

0

ds V ′[r(t + s)]V ′[r(τ + s)]. (8.63)

V
(1)
corr(t− τ) only depends on the difference along the imaginary time axis u = t− τ .

With this notation Eq. (8.62) becomes

1

~2
〈
∫ β~

0

dτ

∫ β~

0

dt V (1)
corr(t− τ)y(t)y(τ)〉 (8.64)
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After some further simplification, the second term of (8.60) becomes

β

2~
〈
∫ β~

0

du V (1)
corr(u)

(
y2(u)− 1

12

)
〉 (8.65)

The second derivative in the third term of Eq. (8.60) can be eliminated using the

symmetry along the imaginary time axis as well. The kinetic energy estimator is

invariant when substituting y(τ)x by y(τ)x + f(x), with f(x) an arbitrary function

of x. Therefore

d2

dx2
ñ(x) =− m

β~2
+ 〈
(
−1

~

∫ β~

0

dτ V ′[r(τ)]y(τ)

)2

〉+ 〈−1

~

∫ β~

0

dτ V ′′[r(τ)]y2(τ)〉

=− m

β~2
+ 〈
(
−1

~

∫ β~

0

dτ V ′[r(τ)](y(τ) + f ′(0))

)2

〉+

〈−1

~

∫ β~

0

dτ V ′′[r(τ)](y(τ) + f ′(0))2〉+ 〈−1

~

∫ β~

0

dτ V ′[r(τ)]f ′′(0)〉.

(8.66)

Here we assume f ′(0) and f ′′(0) are arbitrary, but f(0) = 0. All terms containing

f ′(0) and f ′′(0) must vanish, and we have

〈
[
−1

~
dτ

∫ β~

0

V ′[r(τ)]

]2
〉 = 〈1

~

∫ β~

0

dτ V ′′[r(τ)]〉, (8.67a)

〈
[
−1

~

∫ β~

0

dτ V ′[r(τ)]y(τ)

]
·
[
−1

~

∫ β~

0

dτ V ′[r(τ)]

]
〉 = 〈1

~

∫ β~

0

dτ V ′′[r(τ)]y(τ)〉,

(8.67b)

〈
∫ β~

0

dτ V ′[r(τ)]〉 = 0. (8.67c)

We only need Eq. (8.67a) in order to simplify the third term in Eq. (8.58) as
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follows

〈1
~

∫ β~

0

dτ V ′′[r(τ)]y2(τ)〉 = 〈 1

β~2

∫ β~

0

ds

∫ β~

0

dτ V ′′(r(τ + s))y2(τ)〉

=
1

12~
〈
∫ β~

0

dτ V ′′(r(s))〉

=
1

12
〈
[
−1

~

∫ β~

0

V ′[r(τ)]

]2
〉 = β

12~
〈
∫ β~

0

du V (1)
corr(u)〉.

(8.68)

Combining the results of (8.65) and (8.68), the kinetic energy finally takes a very

simple form

〈K〉 = 1

2β
+
β2

~
2

4m
〈 1
β~

∫ β~

0

du V (1)
corr(u)

[
u

β~

(
1− u

β~

)]
〉 (8.69)

The new kinetic energy estimator (8.69) shares similar properties with the well-

known virial estimator [124]: The classical contribution and quantum contribution to

the kinetic energy are naturally separated from each other, and the quantum part has

a well defined continuous limit. Both methods only require the force along the trajec-

tory and the computational costs are the same. Moreover, the new estimator (8.69)

reveals that the quantum contribution only comes from the correlation of the forces at

differential imaginary time slices. The weight u
β~

(
1− u

β~

)
implies that the “self cor-

relation” of the force V
(1)
corr(0) = V

(1)
corr(β~) does not contribute to quantum effect. The

correlation function at other imaginary time slices contribute to the kinetic energy

according to a positive parabolic weight function u
β~

(
1− u

β~

)
.

The performance of the new kinetic energy estimator (8.69) is compared with

the virial estimator using three examples: harmonic oscillator at 300K; double well

potential at 300K; double well potential at 100K.

For harmonic oscillator at 300K, the new kinetic energy estimator and the virial

estimator are compared in Fig. 8.16. The average value of the kinetic energy estimated
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by the new estimator is (1.2819 ± 0.0815) × 10−3, and the variance is 1.610 × 10−3.

The average value of the kinetic energy estimated by the virial estimator is (1.2632±

0.0219)×10−3, and the variance is 4.318×10−4. The exact kinetic energy is 1.2629×

10−3. The correlation of forces along imaginary axis in Fig. 8.17 which has a parabolic

shape.
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Figure 8.16: Comparison of the kinetic energy estimator based on displaced path
formula (upper panel) and virial estimator (lower panel) for the harmonic potential
at 300K.
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Figure 8.17: The correlation function V
(1)
corr(u) along the imaginary time axis for the

harmonic potential at 300K.

The same comparison is performed for the double well potential at 300K (Fig. 8.18).

The average value of the kinetic energy of the new estimator is (1.3350±0.1036)×10−3,

and the variance is 2.895 × 10−3. For the virial estimator, the average value is

(1.3281 ± 0.0467) × 10−3, and the variance is 9.225 × 10−4. The exact kinetic en-

ergy is 1.3439× 10−3. The correlation of forces along imaginary axis in Fig. 8.19.

Finally we test the double well potential at 100K (Fig. 8.20). The average value

of kinetic energy estimated by the new estimator is (1.0055 ± 0.4116) × 10−3, and

the variance is 8.135× 10−3. For the virial estimator, the average value is (0.9974±

0.0594)×10−3, and the variance is 8.2938×10−4. The exact kinetic energy is 1.0234×

10−3. The correlation of forces along imaginary axis in Fig. 8.21.

From the three examples above, we find that the new kinetic energy estimator is

an unbiased method for sampling the kinetic energy of quantum particles. However,

the variance of the new estimator is in general larger than that in the virial estimator.
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Figure 8.18: Comparison of the kinetic energy estimator based on displaced path
formula (upper panel) and virial estimator (lower panel) for the double well at 300K.
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Figure 8.19: The correlation function V
(1)
corr(u) along the imaginary time axis for the

double well potential at 300K.
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Figure 8.20: Comparison of the kinetic energy estimator based on displaced path
formula (upper panel) and virial estimator (lower panel) for the double well at 100K.
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Figure 8.21: The correlation function V
(1)
corr(u) along the imaginary time axis for the

double well potential at 100K.

251



8.7 Displaced path formalism for bosons

So far we have established the displaced path formalism for distinguishable quantum

particles. The displaced path integral formalism has various advantages from both

the conceptual and the computational point of view. In this section the displaced

path formalism is generalized to bosons. The same formulation holds for fermions as

well, but the resulting estimator will suffer from the sign problem and the statistical

sampling becomes impractical. For an system consisting of N bosons, we write the

collective variable R to denote the position of the particles (r1, · · · , rN). The density

matrix of bosons is

〈r1, r2, · · · , rN |ρB| r1 + x, r2, · · · , rN〉 ≡ 〈R |ρB|R+X〉 (8.70)

Here the collective variable X = (x, 0, · · · , 0).

The one particle density matrix for bosons ρB is defined by symmetrizing the one

particle density matrix for distinguishable particles as [51]

〈R |ρB|R+X〉 = 1

N !

∑

T

〈R |ρ|T [R+X ]〉

=
1

N !

∑

T

∫

R(0)=R,R(β~)=T [R+X]

DR(τ)e−
1
~

∫ β~

0 dτ
mṘ

2(τ)
2

+V [R(τ)].

(8.71)

Here T represents any possible N− permutation. The key step of generalizing dis-

placed path formulation is that for each T , we separate the orbit of the particle 1

under the permutation T from the other degrees of freedom. The orbit of the particle

1 under the permutation is defined to be the collection of particles

A = {1, T (1), T 2(1), · · · , T n−1(1)} (8.72)

252



such that T n(1) = 1. Then we group all these particles using the collective variable

RA(τ) = (r1(τ), · · · , rTn−1(1)(τ)), (8.73)

and RB(τ) to be the collection of ri(τ) with i outside the orbit of the particle 1, we

have

〈R |ρ| T [R+X ]〉 =
∫

R(0)=R,R(β~)=T [R+X]

DRA(τ)DRB(τ)

e−
1
~

∫ β~

0 dτ
mṘ

2
A

(τ)

2
+

mṘ
2
B

(τ)

2
+V [RA(τ),RB(τ)].

(8.74)

Next we introduce the displaced path transformation with respect to permutation T

as

{YT (τ)}i =
i− 1

n
+

τ

nβ~
, i = 1, · · · , n. (8.75)

With this notation, Eq. (8.74) can be rewritten as

〈R |ρ| T [R+X ]〉 =e−
mx

2

2nβ~2

∫

R(0)=R,R(β~)=T [R]

DRA(τ)DRB(τ)

e−
1
~

∫ β~

0 dτ
mṘ

2
A

(τ)

2
+

mṘ
2
B

(τ)

2
+V [RA(τ)+YT (τ)x,RB(τ)].

(8.76)

Plugging Eq. (8.76) into Eq. (8.71), we have the displaced path formulation for bosons.

The displaced path formulation for bosons has the following properties:

1. The free particle contribution e
− mx

2

2nβ~2 factorizes inside each permutation T from

the environmental contribution.

2. The free particle contribution e
− mx

2

2nβ~2 converges rapidly to 1 with respect to the

size of the orbit. As a matter of fact, this directly indicates that if there is a

nonzero probability for the infinitely long chain, the end-to-end distribution will

have a non-vanishing value as x→∞, i.e. the off-diagonal long range order.

3. Perturbation method and thermodynamical integration method can still be ap-
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plied as in distinguishable particle case.

8.8 Conclusion

In this chapter we have introduced the displaced path formalism for computing the

end-to-end distribution, and therefore the momentum distribution of quantum par-

ticles. The new formalism has advantage both conceptually and computationally.

From conceptual point of view, the free particle contribution and the environmental

contribution factorize, and the potential energy surface is only reflected in the envi-

ronmental part. We further derived the mean force, which is directly related to the

potential energy surface, and can be used to analyze the Compton profile in the deep

inelastic neutron scattering experiment.

From computational point of view, the displaced path formalism is more efficient

than open path integral formulation. Numerical examples indicate that the advantage

is already clear for one particle system. The advantage of the displaced path integral

formulation is more prominent in the many particle case since the momentum distri-

bution of all quantum particles can be evaluated using one single closed path integral

simulation if the quantum effect is relatively small. In the situation of strong quan-

tum effects, either thermodynamic integration technical or special enhanced sampling

techniques must be used. This is our work in progress.

We have also established the semiclassical limit of the displaced path integral for-

mulation. The semiclassical limit of the displaced path integral formulation provides a

much more accurate description of the quantum effect than the isotropic model which

regards the quantum effect on the momentum distribution as an effective increase of

temperature.

The displaced path formulation gives a new kinetic energy estimator. The new

kinetic energy estimator shares many similar properties with the virial estimator. The
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classical and the quantum contribution to the kinetic energy are well separated from

each other and the computational cost is the same as the virial estimator. In the

new kinetic energy estimator, the quantum kinetic energy is determined by weighted

average of the correlation of the force along the imaginary time axis. The new estima-

tor does not explicitly depend on the path r(τ), as opposed to the virial formulation
∫ β~
0
dτ r(τ)V ′[r(τ)]. Finally, we generalized the displaced path integral formalism to

boson systems. The practical implementation of this formulation is our future work.

Other future work of the displaced path integral formulation can be its application

in ab initio molecular dynamics simulation to sample the momentum distribution of

quantum particles, particularly the directional momentum distribution for crystalline

systems. In this case the displaced path integral formulation can focus on the impor-

tant directions such as the hydrogen bond direction, and the performance should be

much superior to that of the open path integral formulation. Besides the free energy

perturbation method and the thermodynamic integration method, other sampling

techniques are also in our scope in order to enhance the statistical sampling and to

reduce the variance of the displaced path integral estimators.
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Chapter 9

Momentum distribution,

vibrational dynamics and the

potential of mean force in ice

9.1 Introduction

Investigating the impact of hydrogen (H) bonding on molecular properties is the focus

of intense research, but even behavior as fundamental as the equilibrium dynamics of

the protons participating in H bonds remains poorly understood. Proton dynamics is

reflected in the momentum distribution probed by deep inelastic neutron scattering

(DINS) [5]. Recent DINS studies of H bonded systems have made striking observa-

tions, such as the presence of a secondary feature in the tail of the spherically averaged

distribution in confined water [90], and estimates of a surprisingly large quantum ki-

netic energy of the proton in undercooled water [208,209]. The secondary feature was

attributed to quantum tunneling between the two wells of an anharmonic 1D poten-

tial [90]. It is not clear, however, to what extent the dynamics of an interacting many

body system can be reduced to that of a single proton along a bond. For instance, it
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has been pointed out that anisotropy can mimic features of a spherical distribution

that one might associate to anharmonicity in a 1D model [233], and yet so far there

is no conclusive study of this issue. To interpret experiments in confined and under-

cooled water, the unknown details of the molecular structure are a severe source of

difficulty. However, even in the simpler case of ice Ih, it is not clear if the physics

can be captured by simple model potentials, and how anharmonicity, anisotropy and

structural disorder influence the momentum distribution.

In order to tackle these issues we consider the open path integral Car-Parrinello

molecular dynamics (PICPMD) data for ice Ih that yielded the accurate spherical

momentum distribution reported in a prior publication [191]. In this prior study,

no attempt was made to relate the distribution to the equilibrium dynamics of the

proton or to investigate the role of the environment in terms of a potential of mean

force. In simulations this task is facilitated by access to the full 3D distribution,

in contrast to experiments on polycrystalline samples, where only the spherically

averaged distribution could be measured [5, 218]. In addition, crystalline symmetry

allows the use of harmonic analysis to quantify the relation between the momentum

distribution and vibrational dynamics, thereby elucidating the role of anharmonicity

and disorder on the proton ground state.

We find that anisotropy stemming from the molecular orientations in the crystal

has a larger effect on the momentum distribution than anharmonicity. The latter is

effectively described within a quasi-harmonic model and is particularly important in

the stretching motions, corroborating pump-probe laser experiments on the excited

state dynamics of ice and water [17, 249]. This finding impacts the interpretation of

infrared and x-ray spectroscopies, and regarding DINS experiments, the large effect of

molecular anisotropy implies that it is not possible to unambiguously attribute to an-

harmonicity features of the spherically averaged distribution. Substantially more in-

formation, capable of disentangling anisotropy from anharmonicity, can be extracted
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from the directional distribution, for which we now present the theoretical prediction

for a realistic system.

This chapter is organized as follows. Section 9.2 introduces the quasi-harmonic

potential of the mean force in ice Ih. Based on the quasi-harmonic potential of

the mean force, we present a theoretical prediction of the directional momentum

distribution for ice Ih. The principal frequencies in the quasi-harmonic potential

is interpreted via the analysis of the vibrational dynamics in ice Ih in Section 9.3.

The vibrational dynamics also reveals the existence of the anharmonicity along the

hydrogen bonding direction, as well as the nuclear quantum effect of oxygens. The

conclusion of this chapter is given in Section 9.4. The materials in this chapter have

been presented in [167].

9.2 Momentum distribution and the potential of

the mean force

The PICPMD simulation sampled the end-to-end distribution of the open Feynman

paths of the protons [191], i.e. ν̃(x) = 1
Np

∑
i ν̃i(x) where the sum runs over the Np

protons in the cell and the vector x points from one end of the path to the other. The

momentum distribution ν(p) is the Fourier transform of ν̃(x). For each distribution

ν̃i(x) we compute the correlation matrix Ci,αβ = 〈xαxβ〉. Within the statistical errors

of the simulation the eigenvalues {σ2
k}3k=1 of Ci are the same for all the protons, while

the associated eigenvectors {vi,k}3k=1 are proton specific directions related by crys-

talline symmetry to the directions of the other protons. This suggests an anisotropic

Gaussian form for the end-to-end distribution: ν̃i(x) ∝ exp
(
−1

2
xTC−1

i x
)
. Thus the

momentum distribution is νi(p) ∝ exp
(
− 1

2~2
pTCip

)
, implying that the correspond-

ing potential of mean force has the effective harmonic form V (r) = M
2
rTAir, where

M and r denote the proton mass and position. Ai has eigenvalues ω
2
k and shares with
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Ci the eigenvectors, vi,k. The ωk are related to the σ2
k by,

1

σ2
k

=
Mωk
2~

coth
~ωk
2kBT

, (9.1)

and ωk and vi,k are denoted the principal frequencies and directions of proton i.

Since the principal frequencies do not depend on i all the protons have equivalent

local environments within the simulation error bars.

The hypothesis that the potential of mean force of the proton in ice Ih is quasi-

harmonic can be verified directly by analyzing the quantile function [97] of the end-

to-end distribution. For a one-dimensional probability distribution p(x), the quantile

functionQ(p) characterizes the inverse of the cumulative probability distribution F (x)

Q(p) = inf{x ∈ R : p ≤ F (x)}. (9.2)

The quantile function can be used to compare two probability distributions by plotting

the corresponding quantile functions against each other. This is called the quantile-

quantile plot. The quantile-quantile plot between the end-to-end distribution col-

lected from the PICPMD simulation along the hydrogen bond direction and the nor-

mal distribution that best fits this data is shown in the left panel of Fig. 9.1 alongside

a plot of each distribution (right panel). The end-to-end distribution along the bond

direction is very close to a normal distribution, thereby showing that the potential

of mean force along this direction can be well described by a quasi-harmonic form.

The quantile-quantile plot also exhibits small deviations at the tails indicating the

presence of some degree of additional anharmonicity.

By averaging over the protons we obtain the frequencies ω̄k with error bars in

the first row of Table 9.1. In terms of the σ̄2
k the spherically averaged end-to-end
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Figure 9.1: The Quantile-quantile plot between the end-to-end distribution along
the bond direction and the normal distribution is depicted in the left panel. The
distributions are shown in the right panel. The end-to-end distribution along the
bond direction is very close to a normal distribution, but with small deviation at the
tail. The quantile-quantile plot indicates that the potential of the mean force along
the bond direction is well modeled by a quasi-harmonic potential.

distribution takes the form,

n(x) =
1√

8π3σ̄1σ̄2σ̄3

∫

|x|=x
dΩ e

− x21
2σ̄2

1
− x22

2σ̄2
2
− x23

2σ̄2
3 . (9.3)

Fig. 9.2(a) shows that this curve differs negligibly from the corresponding “raw” dis-

tribution extracted from the simulation, indicating that an effective harmonic model

faithfully represents the spherically averaged data. Consistent with chemical intu-

ition, the associated principal directions reflect the orientation of each water molecule

in the crystal. The principal axes corresponding to the highest frequency are close to

the oxygen-oxygen nearest neighbor directions, whereas the eigenvectors associated

with the middle and lowest frequency correspond respectively to directions in and

perpendicular to the HOH molecular plane.

The PICPMD principal frequencies differ from their harmonic counterparts (see

Table 9.1). The latter were obtained with the phonon calculation discussed below.

Thus the model that better represents the data is anisotropic and quasi-harmonic.
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We can now resolve, in the case of ice, a major issue that troubled the interpreta-

tion of experiments [233] by quantifying the relative importance of anisotropy and

anharmonicity. We depict in Fig. 9.2 (b) the spherical distributions corresponding to,

respectively, the quasi-harmonic model (first row of Table 9.1), the harmonic model

(second row of Table 9.1), and the isotropic model with frequency ω̄ = 1186 cm−1 that

best fits the data. Anisotropy and anharmonicity are both significant, but anisotropy

clearly has the larger effect. The isotropic model corresponds to a classical Maxwell-

Boltzmann distribution with an effective temperature T̃ = 869K. In spite of T̃ being

significantly higher than the equilibrium temperature of the simulation (T = 269K),

the isotropic model severely underestimates quantum effects, a finding that is also

illustrated by a kinetic energy (EK = 111meV) approximately 30 percent smaller

than the simulation value (EK = 143meV).

ω̄1(cm
−1) ω̄2(cm

−1) ω̄3(cm
−1) EK(meV)

PICPMD 2639± 60 1164± 25 775± 20 143± 2
Harmonic 3017.6± 8.2 1172.5± 8.9 870.3± 14.6 157.5± 0.3

Table 9.1: Average proton principal frequencies and kinetic energies obtained from
PICPMD and phonon calculations. The error bars reflect statistical errors and phys-
ical effect of disorder in the PICMD and phonon data, respectively.

All the principal frequencies in Table 9.1 are well in excess of the equilibrium

temperature, indicating that the dynamics of the proton is dominated by quantum

zero-point motion. Dependence of the molecular orientations upon the crystalline

framework originates anisotropies that reflect the symmetry of the environment in the

momentum and end-to-end distributions. To study these effects we focus on the latter

distribution, which factorizes into the product of a spherical free-particle contribution

and an anisotropic environmental component ñV , i.e. ñ(x) ∝ e−
MkBTx

2

2~2 ñV (x) [166].

Rather than extracting ñV (x) directly from the PICPMD data, which would be af-

fected by substantial noise, we reconstruct ñV (x) from the superposition of the in-

dividual proton contributions within the quasi-harmonic model. Here we use the
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Figure 9.2: (a) The spherical end-to-end distribution directly collected from PICPMD
data (red dashed line) compared with that reconstructed by the anisotropic fit (blue
line). (b) Comparison of the spherical momentum distribution of the harmonic crystal
(black dot-dashed line) with anisotropic (blue line) and isotropic (red dashed line)
fits.

fact that there are 24 unique orientations of the molecules in the hexagonal ice crys-

tal [122], and we also include the effects of proton disorder estimated below in the

phonon calculation. Fig. 9.3 (a) depicts the log scale plot of one individual environ-

mental end-to-end distribution projected on the basal plane of ice Ih. The elliptic

shape of the contour comes directly from the quasi-harmonic model. Fig. 9.3 (b)

illustrates the log scale plot of the superposition of all the environmental end-to-end

distributions. The hexagonal shape of superpositioned distribution is a striking man-

ifestation of quantum mechanics as in classical physics ñV (x) is equal to 1. While the

distribution is spherical at the center, hexagonal character emerges at intermediate

displacements and becomes pronounced in the tail of the distribution where blurring

of the contour lines due to disorder can be detected. Experiments on ice Ih have only

measured the spherical distribution [218] but it is likely that the full three dimensional

distribution should become accessible in the future with improved instrumentation

and preparation techniques. Directional momentum distributions have already been

reported for materials such as KDP [219] and Rb3H(SO4)2 [126]. It should be noted,
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however, that the greatest sensitivity to anisotropy is in the exponential tail of the

distribution, a finding indicating that substantial resolution may be necessary to ex-

perimentally disentangle anisotropy, anharmonicity and other environmental effects.

Figure 9.3: (a) “Environmental part” of the end-to-end distribution corresponding
to one individual proton projected in the basal plane of ice Ih plotted in logarithmic
scale. (b) “Environmental part” of the end-to-end distribution corresponding to the
superposition of all protons projected in the basal plane of ice Ih plotted in loga-
rithmic scale. The super positioned end-to-end distribution reflects the symmetry of
the oxygen sub-lattice. The blurring of the contour lines reflects the disorder effect
detected in the phonon calculation.

9.3 Vibrational dynamics

Now we discuss the relationship between the principal frequencies and the vibrational

spectrum. The latter includes four main features experimentally: a stretching band

centered at ≈ 3250 cm−1 [30], a bending band centered at ≈ 1650 cm−1 [238], a wide

librational band between ≈ 400cm−1 and 1050cm−1 [30, 211] and a band of network

modes below ≈ 400cm−1 [153]. These features are reproduced in the phonon spec-

trum of ice that we calculate by diagonalizing the dynamical matrix. This calculation

is performed with Qbox [113] by adopting the same supercell, electronic structure pa-

rameters and disordered proton configuration of the PICPMD simulation [191]. The
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dynamical matrix is calculated with a finite difference method (grid size of 0.0053Å).

The resulting phonon density of states shown in Fig. 9.4 (a) agrees with experiment,

and is consistent with previous calculations [189], which did not include proton disor-

der, indicating that such effects have a small influence on the spectrum. We indicate

phonon frequencies and eigenvectors by ωphk and eiα,k, respectively, where α are Carte-

sian components, i, k = 1, · · · , 3N−3, and N is the number of supercell atoms. In the

quantum harmonic approximation the momentum distribution of particle i of mass

Mi has the anisotropic Gaussian form νi(pi) ∝ exp
(
−1

2
pTi C

ph
i

−1
pi

)
with correlation

matrix [54],

Cph
i,αβ = 〈pi,αpi,β〉 =

∑

k

eiα,keiβ,k
Mi~ω

ph
k

2
coth

(
~ωphk
2kBT

)
. (9.4)
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Figure 9.4: (a) Density of states of the phonon spectrum. (b) The population function
for the principal axes corresponding to ω̄1 (blue dot-dashed line), ω̄2 (red solid line)
and ω̄3 (black dashed line). Network modes below 500cm−1 contribute non-negligibly
to all principal frequencies.
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As a consequence of disorder the eigenvalues of Cph
i,αβ, depend on the proton index

i. The harmonic average frequencies are reported in the second row of Table 9.1. The

corresponding standard deviations originate almost entirely from ice disorder, being

at least an order of magnitude larger than the numerical errors estimated from the

small asymmetry of the calculated dynamical matrix. The statistical errors in the

PICPMD simulation (Table 9.1) are on average a few times larger than the harmonic

estimate of disorder, confirming that, within error bars, all proton environments are

equivalent. We expect that longer runs combined with better estimators of the end-

to-end distribution [166] should improve the statistical accuracy to the point that

disorder effects could become measurable in future simulations.

The population function,

h(ωphk ; l) =
1

Np

Np∑

i=1

(
3∑

α=1

viα,leiα,k

)2

, (9.5)

gives the weight of the phonon k in the principal direction l and is depicted in Fig. 9.4

(b). It is found that ω̄1 is 94% stretching, ω̄2 is 47% bending and 48% libration, and

ω̄3 is 97% libration. Taking only stretching, bending, and libration into account,

and using weights proportional to h we infer that ω̄1 ∼ 3160cm−1, ω̄2 ∼ 1210cm−1,

and ω̄3 ∼ 895cm−1. In comparison, the values in the second line of Table 9.1 are

red-shifted by contributions from network modes (6%, 4%, and 3% to ω̄1, ω̄2, and

ω̄3, respectively), an intriguing result suggesting that fine details of the momentum

distribution should reflect intermediate range order properties of the H bond network.

The behavior of the population function h(ωk; l) can be explained by the behavior

of a water monomer confined in an effective medium. Let us consider a free water

monomer without the effective medium first. If the rotation mode is neglected, the

free water monomer is confined in a 2D plane spanned by the two hydrogen bonds.

We assume that the Hamiltonian can be completely characterized by the three vibra-

265



tional harmonic modes: symmetric stretching, asymmetric stretching and bending.

To further simply the discussion, we assume the oxygen mass is infinite, i.e. the har-

monic modes only involve the motion of protons. We also assume that the symmetric

and asymmetric stretching frequencies are the same frequency ωs, and we denote the

bending frequency by ωb. The Hamiltonian of a free water monomer is then

H(q, y) =
1

2

3∑

i=1

q2i +
1

2

3∑

i=1

ω2
i y

2
i . (9.6)

The relation between the normal coordinates (q, y) and the Cartesian coordinates

(p, x) is

√
mixi =

∑

j

eijyj,
1√
mi

pi =
∑

j

eijqj. (9.7)

Here ei1, ei2, ei3 are the eigenvectors corresponding to the frequencies ω1 = ωs, ω2 =

ωs, ω3 = ωb.

θ

θ
θ

Figure 9.5: Normal modes for symmetric stretching (left), asymmetric stretching
(middle) and bending modes (right). Big ball: oxygen. Small ball: hydrogen.

Since the motion of the oxygen is fixed, the eigenvectors can be directly read from
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Fig. 9.5:
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2
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(9.8)

The first line of {eij} is the x, y components of the first proton, and the second line is

the x, y components of the second proton. The 2-norm of each {eij}i is normalized to

be 1. The two protons are identical, and we only calculate the momentum distribution

for the first proton. The covariance matrix of the momentum distribution for the first

proton is

Cαβ =
3∑

i=1

eαieβizi, α, β = 1, 2, (9.9)

and the weight for harmonic frequency i is

zi = m
~ωi
2

coth
~ωi
2kBT

. (9.10)

For the free water monomer, we also write z1 = z2 = zs, z3 = zb. Plug Eq. (9.8)

into Eq. (9.9) we have

C11 =
1

2

(
2zs sin

2 θ

2
+ zb cos

2 θ

2

)
,

C12 =
1

2
sin

θ

2
cos

θ

2
(2zs − zb),

C22 =
1

2

(
2zs cos

2 θ

2
+ zb sin

2 θ

2

)
.

(9.11)
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The two eigenvalues of C are

σ2
1 = zs, σ2

2 = zb/2, (9.12)

and the eigenvector corresponding to σ2
1 is along the OH bond direction, and that

corresponding to σ2
2 is along the orthogonal direction. We take ωs = 3400cm−1,

ωb = 1500cm−1, then at room temperature ~ωs

2kBT
= 8.75, ~ωb

2kBT
= 3.64, and coth ~ωs

2kBT
=

1.000, coth ~ωb

2kBT
= 1.001, i.e. z(ω) is approximately a linear function with respect to

ω if ω comes from the bulk part of the vibrational spectrum of water.

The second moments of the momentum distribution (9.12) should be interpreted in

terms of the effective frequencies, and the two effective frequencies are approximately

ωs and ωb/2. The two principal directions are along and orthogonal to OH bond

direction, respectively. We also note that this result is independent of the bond angle

θ.

The analysis above can be readily generalized to the case that a water monomer

confined in an effective medium. The Hamiltonian for a water monomer confined in

the effective medium is

H(q, y) =
1

2

6∑

i=1

q2i +
1

2

6∑

i=1

ω2
i y

2
i . (9.13)

The relation ω1 = ω2 = ωs, ω3 = ωb still holds, and we have ω4 = ω5 = ω6 = ωl, where

ωl is the libration frequency. With fixed position of the oxygen, the 6 eigenvectors of
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the dynamical matrix can also be written analytically, but in three dimension as
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1√
2
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(9.14)

The covariance matrix of the momentum distribution of the first proton is given by

Cαβ =
6∑

i=1

eαieβizi, α, β = 1, 2, 3. (9.15)

After some calculation, we find the three eigenvalues of C are

σ2
1 = zs, σ2

2 = (zb + zl)/2, σ2
3 = zl. (9.16)

The three eigenvectors are along the OH bond direction, orthogonal to OH bond

direction but inside HOH plane, and perpendicular to the HOH plane, respectively.

The three effectively frequencies are approximately ωs, (ωb + ωl)/2, ωl. This result is

again independent of the bond angle θ, and is consistent with the free water monomer
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result by assigning ωl = 0. This recovers the result of the population function in

Fig. 9.4.

The potential energy surface is generated with the same protocol in path inte-

gral and phonon calculations. We thus attribute the difference between the average

principal frequencies in the two rows of Table 9.1 to anharmonicity. This originates

from quantum delocalization, present in the PICPMD simulation, which causes the

proton to sample the potential over an extended range. Along the bond direction the

proton spans from ≈ −0.2Å to ≈ +0.3Å relative to the centroid of the path. This is

much larger than the corresponding classical thermal spread (≈ ±0.05Å) indicating

that quantum anharmonicity is essentially unaffected by temperature. The asymme-

try of the quantal spread suggests that the first correction to the harmonic potential

depends cubically on displacement.

In order to gain better insight on the anharmonicity in the bonding direction, we

perform the following analysis. The potential energy surface is obtained by moving

one proton along the hydrogen bond direction while the positions of all other atoms

are fixed at their equilibrium positions. The resultant potential energy surface is

depicted in Fig. 9.6, and the deviation from a harmonic potential can be readily

seen. The ground state wavefunction |Ψ2| is also plotted in Fig. 9.6 in order to

show the extent of the quantum delocalization of the proton (−0.2Å ∼ +0.3Å). The

potential energy surface about x = 0 is asymmetric, indicating a cubic dependence

on displacement in the first anharmonic correction (black dashed line in Fig. 9.6).

Higher order corrections set in at displacements larger than ≈ 0.3Å, which is clearly

beyond the range of the ground state wavefunction. The harmonic frequency at the

minimum of this potential is 3065cm−1, close to the value of ω̄1 garnered from the

phonon calculation (see Table I in the manuscript). The size of the anharmonicity

can be gauged upon comparison of this harmonic value with the effective frequency

of 2847cm−1 obtained from the end-to-end distribution associated with the potential
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in Fig. 9.6 at T = 269K. As expected, the anharmonicity lowers the value of the

frequency and the shift is close to that between the PICPMD and the phonon derived

results. The anharmonicity is a consequence of quantum delocalization which causes

the proton to sample the potential energy surface over an extended range in the

bond direction. It should be noted that the potential in Fig. 9.6 differs from the

potential of mean force that the proton experiences in the simulation. We expect

however that along the bond direction the two potentials should behave qualitatively

similarly as suggested by the close similarity of their respective harmonic frequencies

and anharmonic shifts. The delocalization along the bond that we find is comparable

to the one observed in other ice phases with intact water molecules (see e.g. [26,190]).
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Figure 9.6: The potential energy surface of the proton in ice Ih along the bond
direction (blue solid line), the cubic fitting potential (black dashed line) and the
corresponding ground state wavefunction |Ψ2|(red solid line).

The phonon calculation reported in the main text also yields an estimate of the

quantum effects on the oxygen nuclei. The corresponding principal frequencies are

ω̄1 = 640.1 ± 16.6cm−1, ω̄2 = 585.1 ± 9.8cm−1, and ω̄3 = 351.9 ± 30.7cm−1. The

frequencies mostly arise from the network modes, but are blue-shifted due to oxygen

participation in stretching, bending and libration. The kinetic energy estimate for

oxygen is 56.4 ± 0.4meV, and is approximately 35% in excess of the classical result
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(35meV at 269K). The magnitude of this effect is consistent with earlier predic-

tions [188] and with that found for fluorine nuclei in recent calculations on hydrogen

flouride [146].

9.4 Conclusion

We find that to a large extent the momentum distribution in ice is a simple anisotropic

Gaussian distribution. This does not mean, however, that ice behaves like a har-

monic crystal as the principal frequencies of the distribution differ from those of a

harmonic crystal. Anharmonicity, enhanced by H bonding, is appreciable in the li-

bration dominated ω̄3 and is particularly significant in the stretching dominated ω̄1,

in agreement with optical pump-probe experiments [17, 249]. The quantal character

of the anharmonicity is consistent with the observed T-independence of the lifetime

of excited stretching modes in ice [249]. Our findings have implications for the calcu-

lation of observables in ice, such as infrared spectra, which typically ignore quantum

anharmonicity [60], and x-ray absorption spectra, which typically ignore quantum

configurational disorder [61]. The approach presented here could be applied directly

to the study of other crystalline H bonded systems, and is also an important step

towards a better understanding of the proton momentum distribution in disordered

H bonded systems such as water under different conditions. In such cases only the

spherically averaged momentum distribution is accessible in experiment and simula-

tion can provide essential microscopic information to supplement and interpret the

experimental data. Finally, we remark that while the qualitative picture emerging

from our calculations is robust, the path integral data have relatively large error bars

and the quantitative details depend on the accuracy of the underlying Born Oppen-

heimer potential energy surface. The latter should reflect the known limitations of

the GGA functional used in this study [109, 222] and comparisons with future high
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resolution experiments should help to clarify this issue.

273



Chapter 10

Quantum proton in hexagonal ice:

interpretation of a new experiment

10.1 Introduction

Although liquid and solid phases of water are the focus of a considerable number

of experimental and theoretical investigations because of their biological and tech-

nological importance, several physical properties of water are not well understood.

Progress in this area requires an accurate description of the proton motion in hydrogen

bonded systems, something that has been difficult to measure directly. Recently new

experimental and simulation techniques have been used to probe the quantum state

of protons in water and ice by examining the proton momentum distribution, n(p),

which is determined almost entirely by quantum effects [5]. Experimentally, n(p)

can be directly measured by Deep Inelastic Neutron Scattering (DINS) [217, 219],

where neutrons probe proton dynamics at high energy, ~ω, and high momentum, ~q,

transfers. As well as providing information on proton quantum dynamics, DINS is

also sensitive to the proton’s local environment, i.e. the potential of mean force ex-

perienced by the protons. In recent years, several DINS studies have addressed the
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study of bulk water in stable liquid [200], solid [218], and supercooled liquid [208,209]

phases. In parallel, novel simulation techniques have been employed to calculate

the n(p) using open path integral simulations [192] implemented with first principles

molecular dynamics[49] within the Path Integral Car-Parrinello Molecular Dynamics

(PICPMD) framework [183]. The path integral simulation has access to the three

dimensional n(~p), and thus provides complementary information to the spherical av-

eraged n(p) obtained via DINS from isotropic ice samples. The calculated n(p) in

ice from Ref. [192] revealed both agreement and discrepancies with that measured in

previous DINS measurements on ice at T=269 K by Reiter et al. [218]. In particular

the calculated n(p) failed to reproduce the tail of the experimental distribution.

This section reports new theoretical and experimental studies of the proton n(p)

in ice at T=269 K and T=271 K. At these temperatures, the momentum distribution

in ice is due almost entirely to zero point motion, providing a sensitive probe of

the proton’s local environment. Here a quasi-harmonic description is expected to be

valid, whereas in the supercooled liquid at 271 K, the large excess of proton mean

kinetic energy was interpreted, in Ref. [208], in terms of possible anharmonicity in

the potential energy surface.

This chapter is organized as follows. The setup of DINS experiment is introduced

in Section 10.2. The analysis of the experimental data is discussed in Section 10.3,

followed by a non-parametric approach of quantifying the uncertainty in the experi-

mental data in Section 10.4. The conclusion of this chapter is given in Section 10.5.

Materials in this chapter have been presented in [84].

10.2 DINS Experiment setup

Refined DINS measurements, using resonance-detector (RD) and foil-cycling tech-

niques (FCT), provide remarkable improvements, with respect to existing measure-
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ments on bulk ice [218], in both energy resolution (32 % narrowing of FWHM),

and counting statistics, (i.e. achieving 1% error at the center of the overall Neutron

Compton profile and of 15% at 1/15 of the peak height, respectively). Perhaps, more

importantly, a much better separation between proton peaks and the peaks from

heavier atoms in the sample and the container is achieved, thus eliminating any pos-

sible spurious distortion due to inaccurate subtraction of the O, Al contributions.

This also considerably reduces the uncertainty in the determined kinetic energy, from

11% in the previous measurements [218], to ≃ 1 % in the present case. Moreover, the

current resolution line shape has a finite variance, allowing us also to carry out non

parametric determinations of kinetic energy as outlined below.

The DINS experiment was performed at the time of flight Vesuvio spectrometer

(ISIS neutron source-UK) in the range 2.5 eV ≤ ~ωr ≤ 30 eV. Scattered neutrons

were detected by 64 scintillator detectors, located in the angular range 32.75◦ ≤ ϑ ≤

72.5◦. The sample was a 65×65×1 mm3 slab of polycrystalline ice contained in an

Al holder, equipped with Rh/Fe thermometers. At each scattering angle the energy

of the scattered neutrons, E1, is selected by using the RD and FCT by Au analyzers

(E1 =4897 meV), providing a resolution in y-space of approximately 2 Å−1 FWHM,

and a complete removal of the sample-independent background. For each detector,

the time of flight data were corrected for multiple scattering, heavy atom (O, Al)

recoil signals, and residual gamma background. The time of flight spectra were then

transformed into fixed-angle experimental NCP, Fl(y, q) = [JIA(y) + ∆Jl(y, q)] ⊗

Rl(y, q) where l refers to the angular position of the l-th detector. The set Fl(y, q) is

expressed in terms of l independent determinations of the longitudinal n(p), JIA(y),

and q-dependent deviations from the impulse approximation (Final State Effects),

∆Jl(y, q), broadened by the instrumental resolution function Rl(y, q). Fixed-angle

histograms of Fl(y, q) have been binned in the range -30 Å−1 ≤ y ≤ 30 Å−1 and then

normalized.
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The overall quality of the DINS spectra can be appreciated in Figure 10.1, which

shows the angle-averaged Fl(y, q), henceforth named F̄ (y).

−20 −10 0 10 20

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

y(Å−1)

F̄
(y

) 
(Å

)

Figure 10.1: Experimental Neutron Compton Profile for ice at T = 271 K averaged
over the whole set of the scattering angles (F̄ (y)=< Fl(y, q) >l) (blue dots with error
bars). The angle-averaged best fit is reported as a red dashed line for the M1 model
(see text for details). The fit residuals are reported as a black continuous line.

10.3 Data analysis by parametric estimation

DINS data were analyzed within the Impulse Approximation (IA), i.e. a neutron-

single atom scattering process with conservation of momentum and kinetic energy.

The recoil energy is: ~ωr = ~
2q2/2M , ~ωr, where M is the proton mass, and q is

the wave vector transfer. The dynamical structure factor for an isotropic system is

related to n(p) by:

S(q, ω) =

∫
n(p)δ(ω − ~q2

2M
− q·p

M
)dp =

M

q
JIA(y) (10.1)
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where y = M
q
(ω − ~q2

2M
) and JIA(y) is the longitudinal n(p). The single particle mean

kinetic energy is: 〈EK〉 = 3~2

2M

∫∞
−∞ y2JIA(y)dy =

3~2

2M
σ2.

The prime objective of the present DINS experiment was to determine the JIA(y)

line shape from the Fl(y, q) spectra, thus determining n(p) and 〈EK〉. This has

been accomplished via : 1) Determination of the kinetic energy 〈EK〉 by numerical

integration of F̄ (y)y2; 2) Full analysis of the DINS line shape via simultaneous fitting

of the individual Fl(y, q) spectra with: a) a model-independent line shape; b) a three

dimensional anisotropic Gaussian line shape derived from a quasi-harmonic model

as suggested by a recent study of the PICPMD simulations for hexagonal ice [167].

As outlined in Ref. [234], the numerical integration of F̄ (y)y2, provides a first-order

estimate of σ2 and 〈EK〉: by integrating F̄ (y)y2 and subtracting the variance of the

angle-averaged resolution (σ2
R = 0.98 Å−2) we obtain σ2 = 27.0±2.7 Å−2 . Systematic

uncertainties, due to the limited range of integration, and residual differences between

angle-averaged and constant-q representations of F̄ (y) are evaluated to be ≃ 0.3 Å−2.

Therefore σ2 = 27 ± 3 Å−2, σ = 5.2 ± 0.3 Å−1, and 〈EK〉 = 169 ± 19 meV. This

determination can be used as a constraint for the variance of n(p) in fitting the

Fl(y, q) data set. The DINS data were then analyzed using a model-independent

form for JIA(y) [226], already used in previous work [5]:

JIA(y) =
e

−y2

2σ2

√
2πσ

[
1 +

∞∑

n=2

an
22nn!

H2n

( y√
2σ

)
]. (10.2)

where H2n are the Hermite polynomials and an the corresponding coefficients. The

n(p) is expressed in terms of a Gaussian times a series of generalized Laguerre polyno-

mials, L
1
2
n (

p2

2σ2
), with coefficients (−1)nan. For finite q values, the deviation from the

IA can be accounted for by additive corrections [5], ∆J(y, q) ≃ c∆
e
−y2

2σ2√
2πσ

H3(y/
√
2σ)/q,

with c∆ ∝ 〈∇2V 〉, where V is the effective proton potential [226]. The simultaneous

fitting of the above line shape, to the whole set of Fl(y, q) spectra, has been performed
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via equation (2). This fit, referred to as M1 in the following, yielded σ = 4.99± 0.03

Å−1, a2 = 0.10± 0.01 and an>2 = 0,c∆ = 0.36± 0.02 and 〈EK〉 = 156 ± 2 meV.

Eq. (10.2) has the most general form, but may not facilitate interpretation of the

data. For example, if the momentum distribution corresponding to an anisotropic

harmonic system V (x, y, z) = m
2
(ω2

xx
2+ω2

yy
2+ω2

zz
2) is to be measured, the harmonic

frequencies ωi cannot be directly reflected in Eq. (10.2). In that case one calculates

the harmonic frequencies ωi by measuring σ2
i , i.e. the variance of the momentum

distribution n(~p) along direction i by

σ2
i =

m~ωi
2

coth
β~ωi
2

. (10.3)

While it is only the spherically averaged momentum distribution that is accessible in

the experiment, the PICPMD is able to access the three dimensional n(~p). As a re-

sult the harmonic frequencies along three directions can be calculated with relatively

small error bars. The frequencies obtained from PICPMD are: ωz= 2639 ± 60 cm−1,

ωx= 1164 ± 25 cm−1, ωy= 775 ± 20 cm−1. The interpretation of these effective fre-

quencies deserves further comment. A careful analysis of the PICPMD result shows

that the effective frequencies ωx,y,z measured from proton n(p) are closely related to

the vibrational spectrum [167]. The experimentally measured vibrational spectrum

of hexagonal ice concentrates at the stretching frequency (centered at ≈ 3200 cm−1),

bending frequency (centered at ≈ 1650 cm−1) and libration frequency (broad spec-

trum centered at ≈ 900 cm−1) respectively [188]. It is shown [167] that ωz, ωy and

ωx represent weighted averages of the stretching frequencies, librational frequencies

and a mix of bending and librational frequencies respectively, with red-shifts due

to network phonon modes with frequencies at and below 200 cm−1. The PICPMD

analysis indicates a clear connection between the quantum momentum distribution

and the vibrational spectrum. It is also possible to extract the effective frequen-
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cies from the experimental (spherically averaged) distribution directly by taking:

n(p) =
〈

1√
8π3σzσxσy

exp
(
− p2z

2σ2z
− p2x

2σ2x
− p2y

2σ2y

)〉
Ω
. The experimental NCP have been

fitted using the above model, labeled M2, with σx,σy, σz as free parameters, and

with Final State Effects as outlined above for M1. However, numerical results show

that σx and σy tend to be degenerate, given the current data set, leaving the error

bars on the effective frequencies poorly defined. Although some studies have used

σt = σx = σy as a parameter for transverse direction[218], this is not an accurate

representation of the physics. Compromise between the numerical optimization and

physical intuition was achieved by adding a weighting term in the least square fit-

ting of the experimental Compton profiles to minimize the deviation between σi from

the fitting and from the PICPMD analysis. The magnitude of the weighting term

reflects the physical range of σi, or equivalently the physical range of the effective

frequency ωi. The estimated effective frequencies in M2 are ωz = 2797±95 cm−1,

ωx = 1233±110 cm−1, ωy = 922±81 cm−1. It is noted that ωz is underestimated

in PICPMD analysis by 200 cm−1 compared to ωz in M2. This underestimation

is likely due to large extent to the error in the exchange-correlation functional in

the simulation based on density functional theory. The BLYP exchange-correlation

functional [22, 149] used in the current simulation overestimates the hydrogen bond

strength because of self-interaction error, and therefore softens the potential along

the hydrogen bond direction. The radial momentum distribution 4πp2n(p) from M1

, M2 and PICPMD analysis are plotted in Figure. 10.2. PICPMD analysis results

in a shorter tail than M1 and M2. The tail behavior is dominated by ωz which is

underestimated in PICPMD. The underestimation can also be confirmed from the

kinetic energy: 156± 2 meV (M1), 154± 2 meV (M2) and 143± 2 meV (PICPMD).
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Figure 10.2: Experimental radial momentum distribution obtained using model M1
(blue solid line), M2 (black dots) and PICPMD (red dashed line) with error bars.
Errors on the radial momentum distribution for M1 and M2 are determined from the
uncertainty in the measured coefficients, through their correlation matrix calculated
by the fitting program.

10.4 Nonparametric uncertainty quantification

The fact that σx and σy tend naturally to be degenerate in M2 also indicates that the

spherical momentum distribution itself is not sensitive enough to distinguish all three

anisotropic frequencies of the system. This confirms the recent theoretical work for

hexagonal ice [166] in which a more sensitive quantity named mean force is proposed.

The mean force is defined as f(x) = (− logn(x))′ − mx
β~2

. n(x) in the first term

is the spherical end-to-end distribution, i.e. the Fourier transform of the spherical

momentum distribution. The second term represents the free particle contribution

which is irrelevant to the potential energy surface. The experimental NCP F̄ (y) has

been corrected for the Final State Effects ∆J(y, q) providing the “asymptotic” F̄IA(y),
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so that the mean force can be directly calculated by

f(x) = −mx
β~2

+

∫∞
0
dy y sin(xy/~)F̄IA(y)

~
∫∞
0
dy cos(xy/~)F̄IA(y)

. (10.4)

The mean force calculated using Eq. (10.4) (blue solid line), from the anisotropic

Gaussian model M2 (black dots) and from PICPMD (red dashed line) are plotted in

Fig. 10.3 with error bars. The three mean forces have good correspondence below 0.4
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Figure 10.3: Mean force calculated directly from the experimental asymptotic Comp-
ton profile, F̄IA(y) (blue solid line), M2 (black dots) and PICPMD analysis (red
dashed line) with error bars.

Å, indicating that the proton quantum state in ice is well described by harmonic and

anisotropic motion. Above 0.4 Å, the mean force calculated from the experimental

Compton profile tends to diverge. The mean force is related to the derivative of the

Fourier transform of the Compton profile, and therefore, at large x, is related to its

highest frequency components, i.e. to the noise. The kinetic energy estimated from

the mean force is 156 ± 9meV. The error bar of the kinetic energy calculated from
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the mean force is larger than that obtained from M1 or M2, since the mean force is

an non-parametric approach and is model independent. The uncertainty of the mean

force indicates the accuracy of the experiment required to resolve the anisotropic

frequencies accurately.

10.5 Conclusion

In conclusion, we have elucidated the connection between the proton momentum

distribution and the underlying potential energy surface in ice. To a large extent,

the physics of the PICPMD simulation is captured by a simple anisotropic Gaussian

model. This does not mean, however, that ice behaves like a harmonic crystal as

the effective frequencies of the distribution differ from those of a harmonic crystal.

The anharmonicity is particularly important in the stretching dominated ω̄1. The

estimated anharmonic shift ( 200 − 300cm−1) is large but consistent with previous

estimates based on optical pump-probe experiments [17, 249]. We should remark,

however, that while the qualitative picture emerging from our calculations is robust,

the path integral data have relatively large statistical errors and the quantitative de-

tails depend on the accuracy of the underlying Born-Oppenheimer potential energy

surface. The latter should reflect the known limitations of the GGA functional used in

this study [109,222] and comparisons with future high resolution experiments should

help to clarify this issue. The cause of the anharmonicity is quantum delocalization

of the protons over an extended range of the potential energy surface. This effect,

already present in stretching modes in the gas phase, is substantially enhanced by H

bonding. Interestingly, we also find non-negligible anharmonicity ( 100cm−1) in ω̄3,

which is dominated by libration modes. Finally, the result that the momentum dis-

tribution is affected, albeit weakly, by network modes is intriguing as it suggests that

fine details of the distribution should also reflect intermediate range order properties
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of the H bond network.

This work illustrates how the theoretical and experimental determination of the

momentum distribution on a benchmark system like polycrystalline ice can directly

access the physical mechanisms describing the proton quantum state. This study

can be further used to investigate the role of nuclear quantum effects in a variety of

hydrogen bonded systems.
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Chapter 11

Correlated tunneling in hydrogen

bonds

11.1 Introduction

Proton tunneling plays an important role in phase transitions such as the ferroelectric

to paraelectric transition in H bonded KDP or the sequence of transitions leading to

H bond symmetrization in pressurized ice. These transitions exhibit large isotope

effects that can only be explained by invoking quantum fluctuations. In this chap-

ter we focus in particular on ice VIII, VII and X as these phases epitomize the H

bond symmetrization transformation that takes place when the oxygen-oxygen near-

est neighbor separation is progressively reduced by applying pressure, thereby mu-

tating the ice crystal from a H-bonded molecular system to an heteroatomic system

with covalent/ionic bonds. The lower pressure phase ice VIII is characterized by the

usual asymmetric H bonds, similar to those found in ice Ih, the stable ice structure at

standard temperature and pressure. In these phases each molecule is bonded to four

neighboring molecules and the proton distribution in the lattice of H bonds satisfies

the ice rules [29, 203]. A configuration satisfies the ice rules if on the four bonds
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connecting an oxygen to its neighbors two hydrogens (protons) are near the central

oxygen and two are near the neighboring oxygens, as is required to keep the water

molecules intact. While disordered in ice Ih, the proton lattice is ordered in ice VIII

engendering an antiferroelectric arrangement of molecular dipoles. Long range an-

tiferroelectric order is lost in the phase occurring at intermediate pressure, ice VII,

where the protons can be found with equal probability on the two bond sites. The

transition from ice VIII to ice VII can be viewed as an order-disorder transition lead-

ing from an antiferroelectric to a paraelectric crystal. Lastly, in ice X, which is the

phase at the highest pressure, H bond symmetrization is complete and the probability

distribution of the proton along the bond is unimodal and centered at midbond.

The important role of quantum tunneling in the transformation from ice VIII to

VII was first suggested by Stillinger and Schweizer in a series of remarkable papers

based on an insightful but simplified model for the proton sublattice. In the first

of these papers [235] the authors adopted a mean field approximation describing the

transition in terms of independent protons tunneling coherently back and forth be-

tween the two off-center bond sites. In the subsequent papers [224,225] they pointed

out that, although qualitatively correct, the mean field description was not to be

trusted quantitatively as it led to a complete ionization catastrophe accompanied by

a large deviation of the ice rules. Correlations among the protons should oppose

coherent tunneling, they noticed, in order to partially restore the ice rules and the

charge neutrality of the water molecules. The crucial role of tunneling in the H bond

symmetrization transitions was confirmed 15 years later in a cutting-edge ab initio

simulation by Parrinello and collaborators [27]. This study adopted Feynman’s path

integral formulation of quantum statistical mechanics to sample the equilibrium con-

figurations of the oxygen and hydrogen nuclei in a periodically repeated supercell

containing 16 water molecules. In this approach the nuclei can take any position in

space (an off-lattice model) and are treated quantum mechanically without recourse
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to mean field or variational approximations as in Refs. [224, 225, 235]. Thermal ef-

fects are also included while Refs. [224, 225, 235] were limited to T = 0K. Finally, in

Ref. [27] the internuclear interactions were generated from first-principles, i.e. they

were obtained on the fly from the instantaneous ground state energy of the electrons,

calculated accurately, albeit approximately, within electronic density functional the-

ory (DFT). This approach avoids empirical parameterization of the interatomic force

field, an important aspect in the context of the H bond symmetrization transformation

in which the character of the interatomic bonds, the electron charge distribution, and

the potential experienced by the protons are all expected to undergo considerable

changes. Besides confirming that proton tunneling drives the transitions Ref. [27]

reported a novel prediction, namely that zero point motion leads to H bond sym-

metrization before the potential experienced by the proton converts from a double to

a single well. This finding suggested the following classification of H bonds: (i) at

large inter-oxygen separations such as dOO ∼ 2.78Å, typical of ice Ih, or dOO ∼ 2.53Å,

typical of ice VIII, standard H bonds are present in which the tunneling splitting is

zero or negligibly small and the protons experience an effective asymmetric single well

potential, (ii) at intermediate separations such as dOO ∼ 2.45Å, typical of ice VII,

so called high barrier H bonds (HBHB) are present in which tunnel splitting is non

negligible and larger than the thermal energy, and at least one of the split levels falls

well below the top of the barrier between the two wells along a bond so that quantum

tunneling originates a bimodal proton distribution, (iii) at shorter separations such

as dOO ∼ 2.31Å within the stability range of ice X, so-called low barrier H bonds

(LBHB) are present in which the potential remains double welled but the proton

distribution is unimodal due to zero-point motion, (iv) at even shorter separations

within the stability range of ice X, the potential becomes single welled as illustrated

in Fig. 11.1.

The picture in Fig. 11.1 is suggestive but still rooted in mean field theory. Even
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VIII VII X

Figure 11.1: Cartoon depicting the understanding established in the literature. As
pressure is increased the bond undergoes a transition from single welled (ice VIII) to
a high-barrier (HBHB, ice VII) and then low-barrier (LBHB, ice X) double welled
potentials until a unimodal form centered at the midpoint (highest pressure, ice X)
persists.

though the path integral simulation included proton correlations consistent with the

finite size of the periodic supercell and with the adopted DFT approximation for the

Born-Oppenheimer potential energy surface, Ref. [27] did not consider the role of

correlations in forming its picture. These could only be monitored to limited extent

in a simulation that only accessed the particle density in space. The proton density

distribution, n(~r), is the diagonal part of the corresponding single particle density

matrix ρ(~r, ~r′). Access to diagonal and off-diagonal components of ρ(~r, ~r′) provide

more direct information about correlations. Indeed, for a system in the ground state

the density matrix is idempotent, i.e. ρ2 = ρ, when correlations are absent, while

deviations from idempotency, signal entanglement due to correlations. Recently, we

performed ab initio path integral simulations of ice Ih [191], VIII, VII, and X [190], in

which we employed the same methodology of Ref. [27] but sampled open in addition

to closed Feynman paths, thus allowing access to the full single-particle density matrix

ρ(~r, ~r′) of the protons. The so called end-to-end distribution of the Feynman paths

ñ(~x) is defined as
∫
d~rd~r′ ρ(~r, ~r′)δ(~r − ~r′ − ~x): it is the distribution of the distances
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separating the two opposite ends of an open Feynman path. The Fourier transform of

ñ(~x) yields the momentum distribution n(~p) of a quantum particle. In the case of the

protons this quantity can be directly compared to available DINS experiments. The

proton momentum distribution was calculated in this way in Ref. [191] for liquid water

and ice Ih, and in Ref. [190] for ice VIII, VII and X. Correlations among the protons,

not considered in the cited publications, are the subject of this chapter. We limit the

discussion to ice. We start by demonstrating that the basic physics can be unveiled

by considering a reduced model in which only the projection of the density matrix

along a bond, ρ(x, x′), is taken into account. This follows from statistical analysis

showing that proton motions along the bond are uncorrelated from the perpendicular

motions, and is consistent with simple intuition suggesting that correlations should

play a role only when the displacements along the bond are so large as to break the

ice rules.

In both ice Ih at T=269 K and in ice VIII at T=100K ρ(x, x′) is idempotent within

the statistical errors of the simulation, indicating that the proton is approximately

in a pure quantum state. Finding that these systems are ground state dominated

is not surprising as stretching motions in common H bonds have frequencies around

3000cm−1 and the zero point energy is much larger than kBT . Interestingly, in ice

VII at T = 100K, a system with HBHB, large deviations from idempotency are

found. Deviations from idempotency reduce significantly but are still visible in ice

X at T=100K, when LBHB are present. The mixed state character of the density

matrix ρ(x, x′) may be due to thermal and/or correlation effects, but our analysis

shows that the latter dominate. Collective tunneling is a consequence of the ice rules

that act to protect the integrity of the water molecules and reduce the likelihood of

ionized configurations such asH3O
+ and OH−. In ice VII correlations favor concerted

tunneling of the protons. Interestingly, correlation effects can also be detected in ice X

when LBHB are present and individual water molecules can no longer be identified as
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the proton density distribution on the bond has become symmetric and unimodal. In

this case correlations manifest as charge density waves that reflect dipolar fluctuations

on the bonds. In both cases, that of HBHB and that of LBHB, the requirement of

local charge neutrality is the mechanism that constrains quantum fluctuations causing

correlated dynamics.

Plots like the one in Fig. 11.1 are very useful to illustrate the H bond symmetriza-

tion transformation but are an oversimplification. To make the picture more quanti-

tative it is convenient to construct the effective potential that simultaneously fits n(x)

and ñ(x), i.e. the positions and the end-to-end distribution of the proton along the

bond. In ice Ih and VIII, which are effectively in a pure quantum state at the tem-

perature of the simulation, position and end-to-end distributions convey the same

information. In fact both distributions are simply expressed in terms of the real

ground state wavefunction ψ(x) of the proton along the bond: n(x) = ψ(x)2 and

ñ(x) =
∫
dy ψ(y + x)ψ(y). The effective bond potential for the proton provides a

unique perspective on the anharmonicity of the proton environment. Anharmonicity

is substantially larger in ice VIII than in ice Ih, as one would expect for a system close

to the onset of tunneling fluctuations. In presence of tunneling we are unable to find

a unique potential that simultaneously fits the position and end-to-end distributions.

This signals that the proton is no longer in a pure state but is in an entangled state

due to its correlations with the other protons. When this occurs the proton can only

be described by a potential ensemble reflecting its mixed quantum state character.

This analysis leads to a new picture of the H bond symmetrization transformation

that is presented in this chapter.

It has been pointed out that proton dynamics hindered by ice rule correlations

has similarities with the physics of strongly correlated electron systems near the

Mott-Hubbard transition [194]. The analogy is even closer with frustrated magnetic

systems, that precisely for that reason have been dubbed spin ices, i.e. materials in
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which spin fluctuations are hindered by constraints equivalent to the ice rules [40].

Correlations in these systems are usually investigated within coarse grained models

that deal with a restricted set of dynamical variables and typically neglect coupling to

the lattice. We use instead a realistic model that includes all the degrees of freedom

and treats thermal and quantum fluctuations on equal footing. As a downside we

face severe limitations on the size of the simulation cell and could only perform few

simulations at different lattice parameters. In spite of these limitations some general

qualitative effects emerged from the simulations: (i) correlations are important when-

ever tunneling occurs; (ii) concerted ring tunneling, i.e. the only process allowed by

ice rules, does occur but less frequently than less extended collective motions indi-

cating some violation of the ice rules (iii) fleeting ionized configurations do occur but

with substantially less charge separation frequency than the mean field prediction.

The chapter is organized as follows. In Section 11.2 we discuss the three high

pressure ice systems under study and the simulation details, and then present the

results of these computations in Section 11.3. In Section 11.4 we discuss the evidence

supporting separability of the equilibrium dynamics along the bond from that in the

plane perpendicular to the bond. We also report a singular value decomposition of the

density matrix ρ(x, x′), yielding occupation numbers and eigenstates. Pure and mixed

states of the proton are discussed in this context, and an analysis is presented to show

that thermal effects are negligible compared to correlation effects in both HBHB and

LBHB cases. In Section 11.5 the correlations are discussed with reference to local

charge neutrality and population of ionized defects, for which simulation results and

mean field values are compared. We also discuss in this section the statistics of the

fluctuating H bond patterns along closed hexagonal rings in the ice VII simulation,

showing substantial deviation from the mean field picture. In Section 11.6 we discuss

how space and end-to-end distributions can be mimicked by an ensemble of effective

bond potentials for the proton. This analysis leads to a new picture of the sequence of
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H bond symmetrization transitions. Finally, in Section 11.7 we conclude with general

considerations and comment on the consequences of the present findings in the more

general context H bonded systems. Materials in this chapter have been presented

in [168, 190].

11.2 Simulation details

Ice possesses a rich phase diagram. At ambient pressure and below 0◦C, water is most

stable in a hexagonal crystal structure. This is the form of ice for which the momen-

tum distribution has been previously studied [47, 191]. However, under conditions of

very high pressure, individual water molecules are arranged in inter penetrating cubic

hydrogen bonded lattices. This arrangement forms an effective body centered cubic

(BCC) lattice structure. The structure and the momentum distribution of ice Ih has

been previously studied [191]. In this study, we will concentrate on three phases,

Ice VII, VIII, and X. Ice VIII is proton ordered, exhibiting an anti-ferroelectric hy-

drogen bonding pattern. In comparison, Ice VII is proton disordered. Under higher

pressures, the oxygen-oxygen distance reduces to the point where the proton’s most

stable position is equidistant between oxygen atoms and is located at the midpoint

of the hydrogen bond axis. This “symmetric” form of ice is known as ice X [148,150].

The work of Benoit and Marx [27, 181] has shown that by varying the lattice

parameter (which changes the volume, and is equivalent to a change in pressure) of

an Ice VIII cell one may, after a suitable equilibration period, generate Ice VII and

Ice X. In the case of Ice VII, the system will tunnel through the barrier along the

hydrogen bond axis, thereby disrupting the proton ordering in the system. At even

smaller volumes, Ice X becomes thermodynamically favored. A schematic is provided

in Figure 11.2 that illustrates these concepts.

Presently, we consider a 2 × 2 × 2 BCC supercell containing 16 water molecules
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at three different lattice constants. The lattice constants, as well as the correspond-

ing molar volumes, pressures, and most probable oxygen-oxygen nearest neighbor

distance are given in Table 11.1. The approximate pressures are garnered from the

equation of state given by Hemley et al. [123].

The first principles open path methodology is employed in order to generate the

trajectories. After an equilibration of 4 ps, each system is simulated for 75 ps, with

the exception of System 2, which is sampled for 120 ps. A time step of 0.0725 fs is

employed in all simulations. Each system is sampled at 100K. The temperature is

controlled by means of massive Nose-Hoover chain thermostats [127, 180, 196]. Each

path contains 32 replicas. The electronic states are evolved utilizing the Car-Parrinello

methodology [49] with a fictitious mass of 340 atomic units. The electronic structure

is described via the Kohn-Sham formulation of Density Functional Theory [143] where

exchange and correlation effects are treated by the BLYP functional [22, 149]. The

valence orbital are expanded in a plane wave basis set with a cutoff of 75 Rydberg.

Troullier-Martins norm-conserving pseudopotentials [241] are utilized to model the

valence effects of core electrons. The dynamical masses associated with the staging

coordinates are set to be a factor of 4 larger than the staging masses.

Despite the small number of water molecules in the simulation cell, there are 2048

electron states (32 replicas × 16 molecules × 4 states per molecule) present in the sys-

tem. This is a relatively large system by the standards of first principles simulation,

and only state-of-the-art computational resources make possible the calculation of the

relatively long trajectories and multiple systems reported in this study. All computa-

tions are performed on IBM Blue Gene/L hardware with the cpmd program, which

has been optimized for this architecture.
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System Lattice Molar Approx. dmp

OO

Number Constant Volume Pressure

1 2.67 Å 5.74 cm3/mol 90 GPa 2.31Å
2 2.84 Å 6.90 cm3/mol 45 GPa 2.45Å
3 2.94 Å 7.62 cm3/mol 31 GPa 2.53Å

Table 11.1: Characteristic values that relay the size of each 16 molecule high pressure
ice cell are given in the table above. The pressure is approximated from the equation
of state given by Hemley et al. [123] The value of dmp

OO is the most probable oxygen-
oxygen distance between nearest neighbor, hydrogen bonded molecules.

11.3 Simulation results

The distributions in position and momentum space are computed in each system.

Open paths are utilized for the computation of the momentum distribution, and closed

paths are appropriate for the position distribution. Since our simulation contains both

open and closed paths, we are able to use the closed paths for position distributions,

and the open paths for the computation of the momentum distribution. The nature of

this system in position space has already been elucidated in previous studies. Here we

repeat this work in order to explore the relation between the position and momentum

space distributions.

In Figure 11.3, the first peak of the oxygen-oxygen radial distribution function is

shown. Shortening of the oxygen-oxygen distance is apparent as the molar volume

is decreased. The position of the first peak of each distribution is reported in Table

11.1. Although there is roughly two-tenths of an angstrom difference between oxygen-

oxygen distances of Systems 1 and 3, this has a dramatic impact upon the nature of

the proton that is confined on the potential energy surface. It is this shortening that

drives the phase transition between the forms of ice under study.

The position space distribution of the proton along the oxygen-oxygen hydrogen

bond axis is illustrated by the oxygen-hydrogen radial distribution functions (Figure

11.4) and the probability distribution of the proton position along the hydrogen bond
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Figure 11.2: A schematic of the atoms involved in a single hydrogen bond in the
three high pressure ice phases presently under study. The gray circles represent
oxygen atoms and the white circles represent hydrogen. As the pressure upon the
system increases the average oxygen-oxygen distance decreases, which has important
consequences for the state of the proton. This may be covalently bonded (Ice VIII),
tunnel between wells (Ice VII) or lie in a symmetric state between the oxygen atoms
(Ice X).

axis (Figure 11.5). It can be seen that the proton in System 3 remains covalently

bonded to its oxygen, although the covalent bond distribution is broader than in

typical water phases. This system retains the Ice VIII structure. It can be seen in

Figure 11.4 that the covalent bond and hydrogen bond peaks of the radial distribution

function of System 1 merge. This broad single peak located at the midpoint between

the two oxygen atoms is indicative of a symmetric hydrogen bond as found in the Ice

X phase.

Evidence of quantum tunneling can be seen in System 2. The bimodal nature of
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Figure 11.3: The first peak of the oxygen-oxygen radial distribution function in Sys-
tem 1 (solid curve), System 2 (dot-dashed curve) and System 3 (dashed curve). As one
would expect, as the molar volume is decreased, the nearest neighbor oxygen-oxygen
distance is as well.

the proton distribution in Figure 11.5, as well as the fact that one peak is near the

covalently bonded peak of System 3 indicates that there are tunneling events from

one well to another along the hydrogen bond axis. It was shown in the work of Benoit

and Marx [27,181] that classical protons at this molar volume and temperature do not

cross the barrier and remain trapped in a single well. This calculation showed that

thermal hopping over the barrier is disfavored and quantum tunneling dominates.

As noted in Section 11.2, the tunneling disrupts the anti-ferroelectric ordering and

engenders the formation of Ice VII. We note that the bimodal distribution in Figure

11.5 is not perfectly symmetric. This may be caused by insufficient sampling or

asymmetries that arise from correlated proton motions.

We note that the present distributions are somewhat more delocalized when com-

pared with the work of Benoit and Marx [27, 181]. This is likely a result of the use

of a larger number of replicas in the present computation. However there are many

other differences in the details of the simulation that may impact this result, including

trajectory length and the choice of exchange-correlation functional. Overall however,

the description of the proton in position space along the hydrogen bond axis is in
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Figure 11.4: The oxygen-hydrogen radial distribution function in System 1 (solid
curve), System 2 (dot-dashed curve) and System 3 (dashed curve). Whereas in System
3 there is a distinction between covalent and hydrogen bonding distances, the two
peaks have merged in System 1.

good agreement with this and later work.

The momentum distribution is plotted along the oxygen-oxygen axis (Figure 11.6),

as well along the two corresponding perpendicular axes (Figure 11.7). These are

effective one-dimensional plots that are computed via the Fourier transform of the

path end-to-end distance distribution along these directions. In Figure 11.7, one can

view a trend that the momentum distributions in the directions perpendicular to the

hydrogen bond broaden with decreasing system molar volume. This is consistent

with the uncertainty principle given that as the protons become more confined in

position space, the corresponding momentum distributions have a greater variance.

Aside from this difference, there is little distinction between the systems under study

in these directions when compared to the momentum distribution projected onto the

hydrogen bonding axis (see Figure 11.6). This is a logical conclusion as the large

qualitative differences in position space occur in the hydrogen bond direction (see

Figure 11.5), as shown presently and in previous work on high pressure ice.

One may also note in Figure 11.7 that the distributions are similar along the two

directions perpendicular to the hydrogen bond axis. This chemically intuitive result
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Figure 11.5: The distance distribution of the proton along the oxygen-oxygen direc-
tion in System 1 (solid curve), System 2 (dot-dashed curve) and System 3 (dashed
curve). This direction is analogous to the hydrogen bonding axis. One may note that
the distribution of System 2 is delocalized across two wells.

.

is in agreement with a previous study of the “shape” of the proton high pressure

ice phases [26], where it was found that the position space distribution in the per-

pendicular directions were of similar extent. In addition, the proton’s variance in the

perpendicular directions was shown to decrease with increasing pressure , thereby pro-

viding complementary information to the momentum space picture discussed above.
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Figure 11.6: The proton momentum distribution in the oxygen-oxygen (OO) direction
in System 1 (solid curve), System 2 (dot-dashed curve) and System 3 (dashed curve).
It is in this orientation that the distinctions between phases occur.

The position space distributions show that System 1 contains symmetric hydrogen
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Figure 11.7: The proton momentum distribution perpendicular to the oxygen-oxygen
direction (denoted “x”) in System 1 (solid curve), System 2 (dot-dashed curve) and
System 3 (dashed curve). Also plotted are the proton momentum distributions in the
mutually orthogonal direction (denoted “y”) in System 1 (triangles pointing down-
ward), System 2 (triangles pointing upward) and System 3 (circles). The differences
in widths of these curves indicates the relative pressure upon each system.

bonds, System 2 exhibits a bimodal proton distribution and in System 3, the protons

are covalently bonded. In Figure 11.6, we present the momentum distributions in the

hydrogen bonding direction. The covalently bonded System 3 possesses the narrow-

est position distribution (see Figure 11.5) and therefore the correspondingly broadest

momentum distribution. The high-momentum tail of this distribution is dominated

by the OH stretch (see Section 11.1). In the symmetric hydrogen bonded case (Sys-

tem 1), the more delocalized bond yields a narrower momentum distribution with a

shortened tail. This signature in proton momentum distributions corresponds to a

red-shift of the OH stretching frequency in stronger hydrogen bonded environments.

This has been observed previously in the experimental [218] and simulation momen-

tum distribution of liquid water and hexagonal ice [191] . The symmetric hydrogen

bond may be considered the “strongest” class of hydrogen bonding. Such an inter-

pretation is bourne out by experiments on symmetric hydrogen bonds observed in

water confined in nanotubes [90] and Rb3H(SO4)2 [126] that exhibit greatly narrowed

momentum distributions with shortened tails.
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The shape of the proton momentum distribution in the tunneling direction in

System 2 lends to a more detailed description. It appears to have an anomalous shape

when compared to the other distributions. Namely, it is narrow at low momentum,

yet its tail behavior is similar to that of the covalently bonded System 3. This tail

behavior is likely engendered by the localization in the covalently bonded well that is

a component of the tunneling system. Therefore the highest frequency components

of the system are similar to those exhibited in System 3. The narrowness exhibited in

the low-momentum region is related to the overall delocalized nature of the proton.

11.4 Reduced longitudinal model

In this section we study how the correlations among the protons are affected by

a changing environment. Our study is greatly facilitated by the fact that, within

the statistical accuracy of the data, the density matrix factorizes into a longitudinal

and a transverse component relative to the bond, i.e. ρ(~r, ~r′) ∼ ρ(x, x′)ρ(~b, ~b′). In

other words position and end-to-end distributions along the bonding direction and

in the plane orthogonal to it are mutually independent. The separation between

bonding and transverse directions is valid in the sense of Spearman’s rank correlation

coefficient R.

Here we give a short introduction to the test of independence using Spearman’s

rank correlation coefficient and apply it to illustrate the separation of the potential

energy surface along and perpendicular to the hydrogen bonding direction for Ice Ih,

VIII, VII and X. Consider a series of observation points (Xi, Yi)
N
i=1 coming from a

two dimensional continuous random variable (X, Y ). In this case X is the end-to-

end distance along the hydrogen bonding direction and Y is the end-to-end vector

projected on the plane orthogonal to the hydrogen bonding direction. If X and Y are

independent, the effective potential experienced by the proton should separate along
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hydrogen bonding direction and orthogonal direction. We sort {Xi}Ni=1 in ascending

order as XS1 , . . . , XSN
, and Si is called the rank of Xi. Similarly we define Ti to be

the rank of Yi. Spearman’s rank correlation coefficient is defined to be the correlation

between the pairs (Si, Ti)
N
i=1 i.e.

R =

∑N
i=1(Si − S̄)(Ti − T̄ )√∑N

i=1(Si − S̄)2
∑N

i=1(Ti − T̄ )2
, (11.1)

with

S̄ = T̄ =
N + 1

2
. (11.2)

Spearman’s rank correlation coefficient can be expressed in the more convenient form

as

R =
12

N(N + 1)(N − 1)

N∑

i=1

SiTi − 3
N + 1

N − 1
. (11.3)

The advantage of Spearman’s rank correlation coefficient is that it is based on the

rank of X and Y rather than on the detailed behavior of these random variables. As

a result, Spearman’s R can be used as a test of independence without assuming that

(X, Y ) follows a Gaussian distribution. This is particularly useful in the present con-

text because we know that anharmonicity exists at least along the hydrogen bonding

direction, and the end-to-end distribution along the hydrogen bonding direction is

not Gaussian. Furthermore, R = ±1 occurs only if X and Y are functionally depen-

dent on each other. This dependence can be linear or non-linear. If Spearman’s rank

correlation coefficient is 0 then X and Y are independent.

The Spearman’s R calculated for the end-to-end distances along and orthogonal

to the hydrogen bonding direction in Ice Ih, VIII, VII and X is listed in Table 11.2.

The Spearman’s R is universally small across the different ice phases, strongly sup-

porting factorization of the density matrix. In the case of ice Ih, factorization could

be expected because in a recent work we have shown that the momentum distribution
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has an effective quasi-harmonic (Gaussian) form with 3 principal frequencies associ-

ated to longitudinal and transverse motions, respectively, relative to the bond [167].

The three high pressure phases considered here are characterized by much stronger

anharmonicity along the bonding direction, well beyond the quasi-harmonic model. It

is interesting that even in these cases quantitative analysis shows that longitudinal-

transverse decoupling holds. It means that anharmonicity remains confined in the

longitudinal direction in accord with simple chemical intuition.

System R
Ih 0.029
VIII 0.032
VII 0.027
X 0.025

Table 11.2: Spearman’s rank correlation coefficient for the end-to-end vector distance
along and orthogonal to the hydrogen bonding direction in ice Ih, VIII, VII and X.

Let ρ(x, x′) = 〈x |ρ|x′〉 be the normalized longitudinal density matrix, i.e. Tr[ρ] =

1. If P (i) denotes the eigenvalues of ρ and |φ(i)〉 are the corresponding eigenvectors,

one has:

ρ =
∑

i

|φ(i)〉P (i)〈φ(i)| (11.4)

Here P (i) is the equilibrium population (occupation probability) of the state |φ(i)〉

and
∑

i P (i) = 1. The spectrum of the density matrix is very instructive. If only one

eigenvalue, P (1), is different from zero, the density matrix is idempotent i.e. ρ2 = ρ

and the equilibrium ensemble of the proton along the bond is pure, corresponding

to the quantum state |φ(1)〉. If more than one eigenvalue is different from zero, the

density matrix deviates from idempotency, i.e. ρ2 < ρ and the equilibrium ensemble

of the proton is mixed.

We bin the PICPMD simulation data for the longitudinal density matrix with a

spacing ∆x = 0.015Å and the corresponding discretized density matrix is diagonal-
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Figure 11.8: The first 5 eigenvalues of the longitudinal density matrix for ice Ih, VIII,
VII and X. Within the accuracy of the simulation, P (1) = 1 for ice Ih and ice VIII,
P (1), P (2), and P (3) are different from zero for ice VII, P (1) and P (2) are different
from zero for ice X. The ice Ih trajectory is shorter and the corresponding eigenvalues
are affected by larger error bars than the three high pressure phases.

ized. The largest 5 eigenvalues of the longitudinal density matrix in ice Ih, VIII, VII

and X are reported in Fig. 11.8. We find that both ice Ih at T = 269 K and ice

VIII at T = 100 K have idempotent density matrix within the statistical errors of the

simulation, indicating that the proton is in a pure quantum state. Thus, in these ices

the proton motions along the bond are on average uncorrelated and the systems are

ground state dominated at their respective temperatures. This is not surprising as the

stretching motions in standard H bonds have typical frequencies around 3000cm−1

corresponding to a zero point energy much larger than kBT . Interestingly, in the case

of ice VII at T = 100 K, which is in the HBHB regime, we find large deviations from

idempotency. Deviations from idempotency are significantly reduced but still visible

in ice X, which is in the LBHB regime. Deviation from idempotency indicates ice VII
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and X are not in a pure but in a mixed quantum state. Mixed state character of the

longitudinal density matrix ρ(x, x′) may result from thermal or correlation effects or

from a combination of both. Our analysis shows that correlations dominate in both

ices at T = 100 K.

To infer the relative importance of thermal and correlation effects we adopt a

two state model. This is a good approximation given the small value of the third

eigenvalue, which is nonzero only in ice VII. In this ice we take P (1) = .72 and

P (2) = .28 by renormalizing to 1 the sum of the first two eigenvalues in Fig. 11.8.

We then consider an effective single particle 1D Hamiltonian that includes a kinetic

energy term (with the proton mass) and a quartic double well potential term. We

optimize the potential so that the 1D Hamiltonian has the two populated eigenvectors

of the reduced density matrix as its two lowest energy states. The optimal potential

is depicted in Fig. 11.9 and is given by

V (x) = 0.1100x4 − 0.0475x2 + 0.0051, (11.5)

where we added a constant term to shift the minimum of the potential wells to 0 .

Fig. 11.10 compares the eigenvectors of the density matrix (labeled “Raw”) and

the eigenvectors of the quartic potential with optimal parameters (labeled “Fit”). The

first two singular vectors of the density matrix are indeed very well approximated by

the optimal potential.

The energies of the two lowest eigenvalues of the 1D Hamiltonian are given in

Fig. 11.9. The corresponding tunneling splitting, 547K, is much larger than the

equilibrium temperature of the simulation (100K), indicating that thermal effects

are not the major cause of the mixed character of the equilibrium proton ensemble.

1 Notice that the barrier height (1614K) is well above the ground state energy

1This result is entirely consistent with a previous study [190] that position and end-to-end dis-
tributions of the proton in ice VII could be modeled by an effective potential only by invoking a
temperature significantly higher than the temperature of the simulation.

304



−0.4 −0.2 0 0.2 0.4
0

1000

2000

3000

4000

5000

x (Å)
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Figure 11.9: The optimized quartic double well potential that reproduces the lowest
two states of the longitudinal density matrix. The horizontal dashed lines indicate
the ground and the first excited state of this potential, respectively.

(1124K), confirming the HBHB character of ice VII. The analysis does not change

appreciably if we include the third populated eigenstate of the density matrix: in

that case the same procedure gives a tunnel splitting of 548K. The potential in

Fig. 11.9 can be viewed as a mean field potential for the proton: it is qualitatively

(and even quantitatively) very similar to the mean field potential that was suggested

for a tunneling proton in Ref. [235] on the basis of phenomenological considerations.

In the mean field approximation each proton moves in a self-consistent potential that

includes the effect of the other protons in an average way. The fact that a system

which is ground state dominated is not in the ground state of the mean field potential

indicates that correlations, neglected in the mean field approximation, are important.

These correlations reflect the ice rules that act to retain the integrity of the water

molecules, i.e. the local charge neutrality, when the protons tunnel between the two
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Figure 11.10: (a) The largest singular vector of the longitudinal density matrix (red
solid line) and the ground state of the quartic potential in Eq. (11.5) (blue dashed
line). (b) The second largest singular vector of the longitudinal density matrix (red
solid line) and the first excited state of the quartic potential in Eq. (11.5) (blue dashed
line).

sides of a bond.

The pure versus mixed state character of the equilibrium ensemble is well char-

acterized in terms of the entanglement (or von Neumann) entropy. This is defined

as S = −Tr[ρ log ρ]. Using the eigenvalues reported in Fig. 11.8 we find that S is

essentially 0 in ice Ih and VIII, indicating pure state character. On the other hand,

S = 0.60 in ice VII and S = 0.20 in ice X, indicating mixed state character in both

cases but with a larger entanglement in ice VII than in ice X.

11.5 Proton correlations

Proton correlations originate from the requirement of local charge neutrality that

favors intact water molecules over ionized configurations such as H3O
+ and OH−.

These effects can be quantified by monitoring the deviation from local charge neu-

306



trality at each oxygen site in terms of the centroids of the Feynman paths for the

protons. According to the position of the centroid along a bond we may assign the

corresponding proton to either one of the two oxygens linked by the bond. We call

the two corresponding proton sites N (near) and F (far), respectively, relative to one

of the oxygens. Local charge neutrality demands that each oxygen has two N and

two F protons on the four bonds with the neighboring oxygens: this is called the ice

rule [29,203]. In our simulation the rule is obeyed with probability P = 1 in ice VIII

and ice Ih, but we find P = 0.85 in ice VII. This is to be compared with the mean

field value PMFA = 0.375 [235] in which protons occupy randomly the two sites. The

large discrepancy between simulation and mean field theory, underlines the impor-

tant role of correlations which oppose the formation of ionized species. The above

discussion corresponds to a two-state model for the proton. We find, however, that

a three-state model, in which the proton can occupy three distinct sites, N , F , and

C(center) represents the simulation data more accurately. A path with a centroid

near the bond center (C) is delocalized on the bond and the corresponding proton

can be assigned with equal weight (1/2) to two oxygens. The boundaries of the re-

spective states are defined according to regions of the centroid distribution projected

along the bond. Although the precise definition of the boundaries is not unique the

physics is consistent for reasonable choices. In this model local charge neutrality is

satisfied not only by configurations like NNFF but also by configurations such as

NFCC and CCCC, which would violate the strict ice rule. In the simulation we find

that C states occur with approximately half the frequency of either N or F states.

Local change neutrality is satisfied with P = 0.75 as compared with a mean field

value PMFA = 0.23, indicating that the fractional deviation of the simulation from

mean field is larger in the three-state than in the two-state model. Furthermore, the

distribution of charged species is far narrower in our results as is illustrated in Fig.

11.11. In particular we find that in > 99% of species that violated charge neutrality
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there is a net charge of only ±0.5, indicating that fully ionized species such as H3O
+

are exceedingly rare.

One mechanism for proton tunneling is the creation of short-lived ionic configura-

tions. This is in contrast to concerted proton tunneling along the closed water rings

that comprise the crystal structure. In our simulation ice VIII and VII have BCC

structure, i.e. we neglect a small tetragonal distortion in ice VIII. The BCC structure

is made of two interpenetrating FCC (Ic) sublattices. Only 6-membered rings, i.e. the

shortest closed loops of connected bonds, are contained in the 16-molecule simulation

cell. There is one such ring per FCC sublattice. As elsewhere in this work, we adopt

the three-state model discussed above. The convention presently used is that the near

side is located clockwise to the left side of the bond. In ice VIII, the anti-ferroelectric

arrangement of the two proton ordered sub lattices yields proton patterns with three

consecutive N and three consecutive F states that are anti-correlated with respect to

each other in the two rings. In ice VII, quantum fluctuations disorder the patterns

but in the simulation there is still residual anti-correlation among the two sublattices.

This result is due to the finite size of the cell and is in agreement with the findings

of Ref. [27]. The probability of a ring configuration possessing a consecutive block

of N , F , or C states is given in Fig. 11.12. This is contrasted to the distribution

one would attain if the proton states along the bonds were randomly distributed with

probabilities PN = PF = 2PC , as predicted by a mean field model. We find that

longer “blocks” are favored in the simulation in contrast to the random case. Notice

that the very small size of the simulation cell prevents us from studying quantita-

tively the spatial extent of proton correlations, but Fig. 11.12 suggests that concerted

jumps on rings longer than 6-fold should be present in the real crystal. At the same

time the figure shows that the number of configurations that correspond to concerted

ring tunneling i.e. NNNNNN , FFFFFF , or CCCCCC comprise less than 10%

of configurations. This finding indicates that mechanisms which violate local charge
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neutrality do occur, albeit to a much smaller degree than in the mean field model and

compete with concerted tunneling processes for state changes.
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MFA

Figure 11.11: The distribution of local charge density in Ice VII according to the
3-state model discussed in the text (gray bars). This result can be seen to be in stark
contrast to the randomly distributed set of charged species predicted by the mean
field approximation (dashed, red bars).

11.6 Effective proton potential

The environmental changes occurring in the H bond symmetrization process are well

illustrated by introducing the effective potential that, in the 1D Schroedinger equation

for the proton dynamics along the bond, gives a ground state solution that simulta-

neously fits the position and end-to-end distributions. This is possible in ice Ih and

VIII as these systems are ground state dominated.

Both ice Ih and VIII exhibit “typical” hydrogen bonding and we utilize the fol-
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Figure 11.12: The probability of a ring configuration having a consecutive block of
N , F , or C states of length L (black dashed line with circles and error bars). The red
dashed line with squares is the resultant random distribution where the probability
of drawing an N or F on a bond along the ring is twice that of drawing a C.

phase a2 a3 x0
Ih 15450 -30666 0.011
VIII 19143 -49764 0.016

Table 11.3: Parameters for the cubic potential in Eq. (11.6) for ice Ih and ice VIII.
an is given in meV/Å

n
and x0 is given in Å.

lowing functional form for the effective potential:

V (x) = a3(x− x0)3 + a2(x− x0)2. (11.6)

The parameters for the fits are given in Table 11.3. The corresponding potentials

are given in Fig. 11.13 and the resulting position and end-to-end distributions are

compared with the raw data in Fig. 11.14.

In ice Ih and VIII the proton is localized in a covalent well and the model potential
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Figure 11.13: The effective cubic potential for ice Ih (red solid line) and ice VIII
(black dashed line) along hydrogen bond direction.

includes harmonic confinement and an anharmonic cubic correction. One may notice

that in ice VIII the spatial distribution is narrower near the maximum and at the

same time spills out more towards the distant O. Overall, however, the proton is more

confined in ice VIII than in ice Ih. The potential in Fig. 11.13 reflects this behavior

and shows clearly greater anharmonicity (and skewness) in ice VIII than in ice Ih.

Interestingly, in ice VII no unique potential that simultaneously fits the position

and end-to-end distributions can be found, even though the system remains ground

state dominated. As explained in Sects. 3 and 4 this is because the proton is in

an entangled state reflecting short range correlations with the other protons that

originate from the requirement of local charge neutrality. The tunneling proton is well

described in terms of a three-state model corresponding to three distinct positions of

the centroid of the Feynman path along the bond: N , C, and F (see Sect. 4). This

suggest that position and end-to-end distributions should be fitted using a mixed

ensemble in which three distinct potentials are used to model the 3 states of the
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Figure 11.14: (a) The position distribution of ice Ih obtained from the PICPMD simu-
lation (blue solid line) and that reconstructed from the cubic potential (blue triangle),
together with the end-to-end distribution of ice Ih obtained from the PICPMD sim-
ulation (red dashed line) and that reconstructed from the cubic potential (red cross);
(b) The position and the end-to-end distributions in ice VIII. The legend is the same
as in (a).

proton. For the three potentials we adopt the following form:

VN(x) = a4x
4 + a2x

2 + a1x,

VC(x) = a4x
4 + a2x

2,

VF (x) = a4x
4 + a2x

2 − a1x.

(11.7)

Each potential i generates a position and end-to-end distribution, respectively. The

total position and end-to-end distributions are given by the ensemble average

n(x) = ωNnN (x) + ωCnC(x) + ωFnF (r),

ñ(x) = ωN ñN (x) + ωCñC(x) + ωF ñF (x).

(11.8)

with weights given by ωF = µ, ωC = 1−2µ, ωF = µ, respectively. Using a, b, c, µ as op-

timization parameters, both position and end-to-end distributions can be accurately
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reproduced as shown in Fig. 11.15 (b). The three types of potentials are depicted in

Fig. 11.16. It is found that both the position and the end-to-end distributions are

fitted accurately with ωN = ωF = 0.40 and ωC = 0.20, which is consistent with the

analysis in Sect. 4. Notice, however, that the three corresponding states of the proton

overlap and are not orthogonal: thus the three weights ωN , ωC , ωF are not equiva-

lent to the eigenvalues of the density matrix discussed in Sect. 3. VN , VF are tilted

towards one or the other side of the hydrogen bond by the linear term in Eq. 11.7.

This term has the effect of lowering the potential when the proton is on the bond

side that maintains charge neutrality at the nearest oxygen site. Thus VN , VF break

inversion symmetry relative to the bond center penalizing ionized configurations. VC

is a double well potential, with the potential barrier lower than the zero-point motion

energy.

It should be noted that a two-state model for the proton and the corresponding

two-state potential ensemble is sufficient to capture the main qualitative features of

the position and end-to-end distributions, but the fit is less accurate than the one

provided by the adopted three-state model. There are physical reasons for this find-

ing. Fractional charge fluctuations are allowed in the 3-state model while only integer

charge fluctuations are possible within the 2-state model. Fractional charge fluctua-

tions minimize the deviation from local charge neutrality (see Sect. 4). Moreover the

3-state model mimics an effect of the coupling of the proton with the lattice: when

the proton is in C the bond length is on average slightly shorter than when it is in

N or F . A similar correlation was already reported in Ref. [27]: it indicates that

quantum fluctuations couple with the geometrical structure, an effect that is quite

important in KDP where it leads to the so-called Ubbelohde effect upon isotopic

substitution [220].

Mixed state character is not as prominent but still noticeable in our ice X sample.

In this case the best fit is provided by the same potential ensemble (11.7) with the
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Figure 11.15: (a) The position distribution of ice VII obtained from the PICPMD
simulation (blue solid line) and that reconstructed from a double well potential (blue
triangle), together with the end-to-end distribution of ice VII obtained from the
PICPMD simulation (red dashed line) and that reconstructed from the same double
well potential (red cross). A unique potential cannot accurately fit position and end-
to-end distributions of ice VII. (b) The position distribution of ice VII obtained from
the PICPMD simulation (blue solid line) and that reconstructed from a three-state
potential ensemble (blue triangle), together with the end-to-end distribution of ice
VII obtained from the PICPMD simulation (red dashed line) and that reconstructed
from the same three-state potential ensemble (red cross).

parameters given in the second row of Table 11.4. We find that position and the

end-to-end distributions are fitted accurately with ωN = ωF = 0.05 and ωC = 0.90,

as illustrated in Fig. 11.17. The proton in ice X is predominately in the C state,

consistent with the LBHB character.

11.7 Conclusion

In this chapter we have presented an investigation of the position and momentum

space distributions of the proton in tunneling and symmetric hydrogen bonded sys-

tems. Novel first principles open path integral molecular dynamics algorithms were

utilized in order to compute the momentum distributions. Three phases of high pres-
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Figure 11.16: Three-state potential ensemble for ice VII. The two tilted potentials
(black and red lines) have equal weights ωN = ωF = 0.40, the double well potential
(dashed blue line) has weight ωC = 0.20.

phase a1 a2 a4
VII 725 -2038 31511
X 1645 -1263 8922

Table 11.4: Parameters for the three-state potential ensemble for ice VII and ice X.
an is given in meV/Å

n
.

sure ice were studied at 100K. Each phase typifies a qualitatively different state of the

proton, covalently bonded (Ice VIII), tunneling (Ice VII), and equally shared between

nearest-neighbor oxygens (Ice X).

We have quantified the role played by correlations in the proton disordering tran-

sition occurring when antiferroelectric ice VIII converts to paraelectric ice VII. At

sufficiently low temperature this transition is driven mostly by quantum fluctuations

that lead to tunneling and delocalization of the protons in the bonds that connect

the oxygen vertices in the crystalline lattice. To analyze the PICPMD simulation

data we used two concepts that are new in this context. We performed a spectral
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Figure 11.17: The position distribution of ice X obtained from the PICPMD simu-
lation (blue solid line) and that reconstructed from a three-state potential ensemble
(blue triangle), together with the end-to-end distribution of ice VII obtained from
the PICPMD simulation (red dashed line) and that reconstructed from the same
three-state potential ensemble (red cross).

decomposition of the single particle density matrix, a property that is available in

simulations that sample not only the spatial distribution of the quantum particles

but also their momentum distribution, or equivalently the end-to-end distribution of

the open Feynman paths. The spectral analysis of the density matrix allowed us to

assess unambiguously the role of correlations by quantifying the entanglement of the

proton state, its deviation from the prediction of mean field theory, and the character-

istic energy scale of the entanglement, which turned out to be much larger than kBT .

Next, we monitored the centroids of the paths to study, in particular, concerted ring

fluctuations of the centroids. This analysis allowed us to associate unambiguously

proton correlations to local charge neutrality. The latter requirement generalizes the

so-called ice rule due to Bernal, Fowler and Pauling [29,203], which applies to coarse

grained models with two proton sites on each bond.
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VIII VII X

Figure 11.18: Classification of H bonds established in this chapter: The proton in
ice VIII (and in ice Ih) is in a pure quantum state and experiences an asymmetric
single well potential that keeps it localized on one side of the bond. The proton in
ice VII (HBHB) and in ice X (LBHB) is in a mixed quantum state and experiences a
potential ensemble that depends on its location on the bond. Dominant potentials are
indicated by full lines and less dominant ones by dashed lines. The proton distribution
is symmetric and bimodal in ice VII and symmetric and unimodal in ice X.

The standard picture used to interpret previous PICPMD studies of the H bond

symmetrization transitions at high pressure was based on mean field theory and did

not take into account the correlations present in the simulations. This picture is

illustrated in Fig. 11.1: it assumes that in ice VII each proton tunnels coherently

back and forth between two sites (N and F ) on the opposite sides of a bond. This

process, if random, would lead to a large number of ionized configurations, such as

H3O
+ and OH− or H4O

++ and O−−, but this so-called ionization catastrophe [235]

is penalized by the energy cost of dissociating the water molecules. To avoid this

cost, concerted tunneling processes take place that reduce the number of ionized con-

figurations. However, charged defects are not entirely suppressed as if only complete

ring tunneling jumps were allowed. Because of correlations the state of the proton

that at low enough temperature is essentially a pure quantum state in ice VIII, be-
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comes a mixed quantum state in ice VII and to some extent as well in ice X, where

charge fluctuations on the bonds are present and the system is in the so-called LBHB

regime. The mixed state character can be described in terms of a potential ensemble,

as illustrated in Fig. 11.18. The new picture provides a more accurate description of

the H bond symmetrization transitions than Fig. 11.1.

Several questions remain open, such as whether or not concerted tunneling pro-

cesses occur on rings longer than 6-fold with measurable frequency or how do collective

fluctuations decay in space. Some answers to these questions may come from future

simulations on larger cells. For instance, simulations on cells that are at least 8 times

bigger than the present 16 molecule one would be feasible on modern supercomputers.

These simulations could take advantage of algorithms like a newly proposed estimator

of the end-to-end distribution [166] to improve accuracy and statistics. Other issues

involve the entropy change between the ordered and the disordered phase. Overall it is

important to understand the precise nature of the quantum many-body ground-state

of the protons in the disordered phase and the nature of the corresponding excitation

spectrum. Coarse grained models using a spin Hamiltonian to describe the proton

system may be very useful in this respect and could benefit from input from realis-

tic off-lattice simulations like the present one. For instance, the present simulation

suggests that a spin 1 model should provide a more accurate representation of the

protons in ice VII than a spin 1/2 model.

Finally, the present study has implications for other H bonded systems where

proton tunneling occurs. Ring tunneling processes like those that we have observed

here have been hypothesized to occur on ordered rings in ice Ih at low temperature

to explain isotope effects in the quasi-elastic neutron peak [39] . In ice Ih the bond

length is significantly longer than in ice VII and concerted tunneling should have

a much lower frequency than in the present simulation. However, the system for

which the present results has more direct implications is KDP, a H bonded molecular
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crystal which is ferroelectric at very low temperature and undergoes a transition to

a paraelectric phase driven by quantum fluctuations at Tc = 121K. The phosphate

groups in KDP are in a local tetrahedral environment and are linked together by

H bonds as the water molecules in ice. The ferro-to-para transition corresponds to

disordering of the H sublattice. The processes that we find in each ferroelectrically

ordered sublattice of ice VIII upon transition to ice VII at low temperature should

have strong similarities with the quantum fluctuations that lead to the disordering

transition in KDP.
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Chapter 12

Conclusion of Part II

Part II of this dissertation introduces novel methodologies for the computation and the

interpretation of the quantum momentum distribution in hydrogen bonded systems.

From computational point of view, the widely used open path integral formalism

only allows the calculation of the quantum momentum distribution for one particle

at a time. This constraint is removed by the displaced path integral formalism de-

veloped in Chapter 8, and the efficiency for calculating the momentum distribution

is greatly improved. The classical contribution and the quantum contribution of the

end-to-end distribution factorize in the displaced path integral formalism, which facil-

itates the interpretation of the momentum distribution. The displaced path integral

formalism introduces a useful quantity called the mean force, which can be used as

a non-parametric method to quantify the uncertainty in the Deep Inelastic Neutron

Scattering experimental data. The displaced path integral formalism gives rise to a

new semiclassical limit analysis of the quantum momentum distribution. Numerical

result shows that this new semiclassical limit is more accurate than the isotropic

semiclassical limit, and is able to capture the quantum momentum distribution quan-

titatively for a large class of systems. The displaced path integral formalism also

provides a new kinetic energy estimator, and can be generalized to systems consisting
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of indistinguishable particles. The practical implementation of the displaced path

integral formalism for bosons will be the future work. Other directions within our

scope are the application of the displaced path integral formalism to ab initio molec-

ular dynamics simulation, as well as more efficient free energy sampling methods for

the calculation of momentum distributions.

Part II of this dissertation also elucidates an important issue in the interpretation

of the quantum momentum distributions, i.e. the relation between anisotropy and

anharmonicity using ice Ih as an example in Chapter 9. This is achieved by a detailed

analysis of the full 3D momentum distribution garnered from PICPMD simulation,

as well as from the related vibrational dynamics. We find that to a large extent

the momentum distribution in ice Ih is a simple anisotropic Gaussian distribution,

and that the potential of the mean force can be well modeled by a quasi-harmonic

model potential. The anisotropic principal frequencies in the potential of the mean

force are the weighted average of the stretching, bending and the libration modes

in the vibrational spectrum. Anharmonicity is particularly visible in the stretching

mode, but is largely suppressed by anisotropy in the spherically averaged momentum

distribution. This analysis is useful for the interpretation of the experimental data

as illustrated in Chapter 10.

Finally Chapter 11 unambiguously assesses the importance of correlated proton

tunneling in high pressure ice by means of spectral decomposition of the single particle

density matrix. Concerted proton tunneling is directly observed and quantified in the

simulation. Concerted proton tunneling reduces the number of ionized configurations

compared to that in a complete ionization catastrophe, and thus partially restores the

local charge neutrality. This dissertation demonstrates that the correlated character

of proton dynamics can be described by an ensemble of potentials of the mean force,

which is found to give accurate description of both the position and the momentum

distribution of protons.
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The analysis and methodology developed in this dissertation are quite general,

and can be useful for further study of experimental and simulation results for the

quantum momentum distribution in more complicated systems. To this end further

work should be done. In order to apply the displaced path integral formalism to

a larger class of systems in practice, modern technique to enhance the statistical

sampling should be included. This work is currently in progress. The analysis of

quantum effects in other challenging systems such as supercooled water and KDP

etc. will also be studied in future.
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