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Abstract
We present a decomposition scheme based on Lie–Trotter–Suzuki product
formulae to approximate an ordered operator exponential with a product of
ordinary operator exponentials. We show, using a counterexample, that Lie–
Trotter–Suzuki approximations may be of a lower order than expected when
applied to problems that have singularities or discontinuous derivatives of
appropriate order. To address this problem, we present a set of criteria that
is sufficient for the validity of these approximations, prove convergence and
provide upper bounds on the approximation error. This work may shed light on
why related product formulae fail to be as accurate as expected when applied
to Coulomb potentials.

PACS numbers: 02.30.Tb, 02.60.Lj

1. Introduction

Ordered operator exponentials arise frequently in physics and applied mathematics [1–4]
because they appear in the solution of systems of first-order linear differential equations. The
general form is

∂λv = A(λ)v(λ), (1)

where λ is real, v is a complex vector and A(λ) is a linear operator. An important example
where equation (1) arises is the Schrödinger equation, in which case the linear operator
A = −iH , where H is the Hamiltonian. The generic solution to (1) can be formally expressed
as U(η,μ)v(μ), where U(η,μ) satisfies the following differential equation:

∂ηU(η, μ) = A(η)U(η, μ) with U(μ,μ) = 11. (2)

The operator U is called an ordered operator exponential if A(λ) is λ-dependent. If U is
known, then the corresponding differential equation (1) can be solved for any initial condition.
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Finding an exact analytical solution to either (1) or (2) is not possible in general, so
approximations are needed. Common methods to approximate the solution to these equations
include Runge–Kutta methods, Magnus expansions [5, 6] and product formulae. Product
formulae assume that a decomposition of A(λ) is known such that

A(λ) =
m∑

j=1

Aj(λ), (3)

where m is the number of operators in the decomposition, and each Aj(λ) is chosen so that
it can be easily exponentiated for every λ ∈ [μ, η]. Product formulae then approximate the
ordered operator exponential U with a product of ordinary operator exponentials of Aj(λ):

U(μ + �λ,μ) ≈
N∏

p=1

eAjp (λp)�λp , (4)

where �λ = η − μ is the interval, �λp is a real number proportional to �λ and N is the
number of terms used in the product. Examples of commonly used product formulae include
the Trotter formula [7], symplectic integrators such as the Forest–Ruth formula [8, 9] and the
Lie–Trotter–Suzuki formula [10–12].

Product formulae have many advantages over alternative approximations. One advantage
is that product formulae can manifestly preserve certain symmetries of U. For example, in many
applications in quantum mechanics, U(η,μ) is a unitary operator. Under these circumstances
a product formula approximates U with a product of unitary operators, which implies that up to
roundoff error (4) is unitary, as opposed to Runge–Kutta methods which will not approximate
U with a unitary operator. Another advantage is that no commutators or integrals need to be
computed in order to use product formulae, unlike the Magnus formula. Product formulae
often involve only sparse matrix vector multiplication, and therefore provide algorithms that
are easily parallelized.

Two hurdles must be overcome when devising a product formula. First, the sequence
of exponentials must account for the λ-dependence of the Aj. Second, because Aj does not
necessarily commute with Aj ′ , it is non-trivial to decompose U into a product of exponentials
such that (4) is valid, even without λ-dependence.

These two issues can be approached separately or holistically. A situation where it may
be preferable to view them separately occurs when the ordering is trivial, such as when A(λ) is
constant. Product formulae have found a host of applications under this assumption [16–20].
However, if A(λ) is not constant, it is simpler to use a single approximation to handle the
decomposition as well as the ordering. One such approximation is the Lie–Trotter–Suzuki
formula for ordered operator exponentials [10–12].

The Lie–Trotter–Suzuki formulae are a family of recursively generated product formula
approximations for ordered or ordinary operator exponentials of A(λ) [10–12]. These formulae
are generated by applying an approximation building formula that can generate higher order
approximations out of lower order formulae. The Lie–Trotter–Suzuki formulae are found by
applying this method iteratively k−1 times to the Lie–Trotter formula to yield an approximation
that is an O(�λ2k+1) Trotter-like approximation to U(μ + �λ,μ). This is significant because
it is difficult to generalize many other product formulae, such as certain symplectic integrators
[13], to arbitrarily high order.

These formulae are particularly promising for quantum computer simulations of quantum
systems because Lie–Trotter–Suzuki approximations provide a sequence of unitary operations
that accurately approximates the time-evolution operator for the simulated system [19].
Since a quantum computer can directly implement unitary operations on an input state, this
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approximation can provide a program that a quantum computer can follow to simulate a
given time-dependent quantum system. Lie–Trotter–Suzuki formulae have also been widely
used to approximate the ordered operator exponentials that appear in molecular dynamics
[21–23], calculate reaction rates [24], solve problems in celestial dynamics [25] and solve
time-dependent Maxwell equations [26].

There are two unresolved problems surrounding the use of Lie–Trotter–Suzuki formulae.
One problem is that the previous work does not examine what conditions are needed to ensure
that the formulae provide approximations of the desired order. It would appear from the
previous work that arbitrarily high-order approximations are obtained for any A(λ), but as we
show below, that is not the case. The other problem is that, although upper bounds on the error
have been proven in the case where A(λ) is constant and anti-Hermitian [19], no bounds have
been proven in the general case. The lack of error bounds for this approximation limits the
utility of the Lie–Trotter–Suzuki formula in situations where the approximation error cannot
be directly measured (such as in quantum computing).

In this work, we find that if the operator or its derivatives change discontinuously, or if
the operator contains singularities (such as in the Coulomb potential), then the Lie–Trotter–
Suzuki formulae may not provide approximations of the desired order. We show that arbitrarily
high-order approximations can be generated if the exponent is sufficiently smooth, provide
error bounds for the approximation and find sufficient conditions for convergence of these
approximations. In contrast, for the case where A(λ) is not sufficiently smooth, we provide
an example where arbitrarily high-order approximations are not obtained. These observations
may also shed light onto why other sixth-order splitting methods, that are based on Suzuki’s
idea, fail to provide the expected accuracy when applied to Coulomb potentials [27].

In section 2 we give the background for Trotter product formulae in detail. In section 3 we
review Suzuki’s decomposition methods, and provide our form of Suzuki’s recursive method.
In section 4 we introduce our terminology and present our main result. Then we rigorously
prove the scaling of the error in section 5, and place an upper bound on the error in section 6.
We then use the error bounds in section 7 to find the appropriate order of the integrator to use.

2. Trotter formulae

Typically there are two different scenarios that may be considered. First, one may consider
a short interval �λ; the goal is then to obtain an error that decreases rapidly as �λ → 0.
Alternatively, the interval �λ may be long, and the goal is to obtain an approximation to
within a certain error with as few exponentials as possible. For example, given λ-independent
operators A and B,

e�λ(A+B) = e�λA e�λB + O(�λ2) (5)

holds. This gives an accurate approximation for small �λ. For large �λ, we may use
equation (5) to derive the Trotter formula

e�λ(A+B) = (e�λA/n e�λB/n)n + O(�λ2/n). (6)

This error scaling is obtained because the error for an interval of length �λ/n is O((�λ/n)2).
Taking the power of n then gives n times this error if the norm of exp[(A + B)�λ] is at most
1 for any �λ > 0, resulting in the error shown in equation (6). To obtain a given error ε, the
value of n must then scale as O(�λ2/ε). The goal is to make the value of n needed to achieve
a given accuracy as small as possible (n is proportional to the total number of exponentials).

More generally, for a sum of an arbitrary number of operators Aj, similar formulae give
the same scaling. To obtain better scaling, one can use a different product of exponentials.
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The Lie–Trotter–Suzuki product formulae [12] replace the product for short �λ with another
that gives error scaling as O(�λp+1).

It can be seen that splitting large �λ into n intervals as in equation (6) yields an error
scaling as O(�λp+1/np) if the norm of U is at most 1. It may at first appear that this gives
worse results for large �λ due to the higher power. In fact, there is an advantage due to the
fact that a higher power of n is obtained. The value of n required to achieve a given error then
scales as O(�λ1+1/p/ε1/p). Therefore, for large �λ, increasing p gives scaling of N that is
close to linear in �λ.

Similar considerations hold for the case of ordered exponentials (i.e. with λ-dependence).
Huyghebaert and De Raedt showed how to generalize the Trotter formula to apply to ordered
operator exponentials [15]. Their formula has a decomposition error that is O(�λ2), but
requires that the integrals of A(λ) and B(λ) are known. Subsequently, Suzuki developed a
method to achieve an error that scales as O(�λp+1) for some ordered exponentials [10], and
does not require the integrals of A(λ) and B(λ) to be known. We find that, in contrast to the
λ-independent case, it is not necessarily possible to obtain scaling as O(�λp+1) for arbitrarily
large p. It is possible if derivatives of all orders exist. If there are higher order derivatives
that do not exist, then it is still possible to use Suzuki’s method to obtain error scaling as
O(�λp+1) for some values of p, but the maximum value of p for which this scaling can be
proven depends on what orders of derivatives exist.

3. Suzuki decompositions

In this section, we explain Suzuki decompositions in more detail. In general, decompositions
are of the form

Ũ (μ + �λ,μ) =
N∏

i=1

eAji
(λi )�λi , (7)

where Ũ (μ + �λ,μ) is a decomposition of U(μ + �λ,μ). There are several types of
decompositions, but the type that we focus on in this paper is symmetric decompositions
because all Suzuki decompositions are symmetric.

Definition 1. The operator Ũ (μ + �λ,μ) is a symmetric decomposition of the operator
U(μ + �λ,μ) if Ũ (μ + �λ,μ) is a decomposition of U(μ + �λ,μ) and Ũ (μ + �λ,μ) =
[Ũ (μ,μ + �λ)]−1.

An important method for generating symmetric decompositions is due to Suzuki [10],
which we call Suzuki’s recursive method. Furthermore, we call any decomposition formula
that is found using this method a Suzuki decomposition.

Suzuki’s recursive method takes a symmetric decomposition formula Up(μ + �λ,μ),
which approximates an ordered operator exponential U(μ + �λ,μ) with an approximation
error that is at most proportional to �λ2p+1 as input, and outputs a symmetric approximation
formula Up+1(μ + �λ,μ) which will often have an approximation error that is proportional
to �λ2p+3. The approximation Up+1(μ + �λ,μ) is found using the recursion relation

Up+1(μ + �λ,μ) ≡ Up(μ + �λ,μ + [1 − sp]�λ)Up(μ + [1 − sp]�λ,μ + [1 − 2sp]�λ)

× Up(μ + [1 − 2sp]�λ,μ + 2sp�λ)Up(μ + 2sp�λ,μ + sp�λ)

× Up(μ + sp�λ,μ) (8)

with sp ≡ (4 − 41/(2p+1))−1.
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Suzuki’s recursive method does not actually approximate U(μ + �λ,μ), but rather it
builds a higher order approximation formula out of a lower order one. Therefore, this method
can only be used to approximate U(μ + �λ,μ) if it is seeded with an appropriate initial
approximation. A convenient approximation formula based on Suzuki’s recursive method is
the kth-order Lie–Trotter–Suzuki product formula which is defined as follows.

Definition 2. The kth-order Lie–Trotter–Suzuki product formula for the operator A(λ) =∑m
j=1 Aj(λ) and the interval [μ,μ + �λ] is defined to be Uk(μ + �λ,μ), which is found by

using

U1(μ + �λ,μ) ≡
⎛
⎝ m∏

j=1

exp(Aj (μ + �λ/2)�λ/2)

⎞
⎠
⎛
⎝ 1∏

j=m

exp(Aj (μ + �λ/2)�λ/2)

⎞
⎠ (9)

as an initial approximation and by applying Suzuki’s recursive method to it k − 1 times.

Based on Suzuki’s analysis [10], Uk should have an approximation error that is proportional
to �λ2k+1. Hence, if �λ is sufficiently small, then the formula should be highly accurate.
One might think that it would be advantageous to increase k without limit, in order to obtain
increasingly accurate approximation formulae. However this is not the case because the
number of terms in the formula increases exponentially with k. The best value of k to use can
be expected to depend on the desired accuracy, as well as a range of other parameters [19].

4. Sufficiency criterion for decomposition

Suzuki’s recursive method is a powerful technique for generating high-order decomposition
formulae for ordered operator exponentials. The kth-order Lie–Trotter–Suzuki product
formula, in particular, seems to be well suited for approximating ordered operator exponentials
that appear in quantum mechanics and in other fields; furthermore, it appears that these
formulae should be applicable to approximating the ordered exponentials of any finite-
dimensional operator A(λ). However, it turns out that Suzuki’s recursive method does not
always generate a higher order decomposition formula from a lower order one.

We show this using the example of the operator Aa(λ) = λ3 sin(1/λ)11. For this operator,
the second-order Lie–Trotter–Suzuki product formula is not an approximation whose error
as measured by the 2-norm is O(�λ5). In figure 1 we see that the error is proportional to
�λ4 for the operator Aa(λ), rather than �λ5 as predicted by Suzuki’s analysis. In contrast,
we do observe this scaling for the analytic operator Ab(λ) = cos(λ)11. This shows that the
second-order Lie–Trotter–Suzuki product formula is not as accurate as may be expected for
some non-analytic operators.

Our analysis will show that this discrepancy arises from the fact that Aa(λ) = λ3 sin(1/λ)11
is not smooth enough for the second-order Lie–Trotter–Suzuki formula to have an error which
is O(�λ5). In the subsequent discussion we will need to classify the smoothness of the
operators that arise in decompositions. We use the smoothness criteria 2k-smooth and �-2k-
smooth, which we define below.

Definition 3. The set of operators {Aj : j = 1, . . . , m} is P-smooth on the interval [μ, η] if,
for each Aj, the quantity

∥∥∂P
λ Aj (λ)

∥∥ is finite on the interval [μ, η].

Here, and throughout this paper, we define ‖·‖ to be the 2-norm. Also, if {Aj } is P-smooth
for every positive integer P, we call {Aj } ∞-smooth.

This condition is not precise enough for all of our purposes. For our error bounds we
need to introduce the more precise condition of �-P-smoothness. This condition is useful

5
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(a) (b)

Figure 1. This is a plot of ζ = ‖U(�λ, 0)−U2(�λ, 0)‖2/�λ5 for Aa = λ3 sin(1/λ)11 in (a) and
Ab = cos(λ)11 in (b). The error in (a) is proportional to �λ4 as opposed to the O(�λ)5 scaling
predicted for Suzuki’s corresponding decomposition. The error in (b) is proportional to �λ5 as
expected for that Suzuki decomposition.

because it guarantees that if the set {Aj } is �-P-smooth and p � P , then ‖A(p)(λ)‖ � �p.
This property allows us to write our error bounds in a form that does not contain any of the
derivatives of A(λ) individually but rather in terms of �, which provides an upper bound on
the magnitude of any of these derivatives. We formally define this condition below.

Definition 4. The set of operators {Aj : j = 1, . . . , m} is �-P-smooth on the interval [μ, η]

if {Aj } is P-smooth and � �
(∑m

j=1

∥∥A(p)

j (λ)
∥∥)1/(p+1)

for all λ ∈ [μ,μ + �λ] and
p ∈ {1, 2, . . . , P }.

This parameter is important because it represents the most significant timescale in the
approximation; furthermore, the failure of the approximation in figure 1 can be understood as a
consequence of this timescale becoming infinite due to the divergence of the second derivative.

For example, if {A} = {sin(2λ)11}, then using definition 4, {A} is 22/3-2-smooth on the
interval [0, π ] because the largest value ‖A(λ)(p)‖1/(p+1) takes is 22/3 for p = 0, 1, 2. It is
also 2-2-smooth because 22/3 � 2; furthermore, since ‖A(λ)(p)‖1/(p+1) < 2 for all positive
integers p, {A} is also 2-∞-smooth.

Using this measure of smoothness, we can then state the following theorem, which is also
the main theorem in this paper.

Theorem 1. If the set {Aj } is �-2k-smooth on the interval [μ,μ+�λ], ε � (9/10)(5/3)k��λ

and maxx>y ‖U(x, y)‖ � 1, then a decomposition Ũ (μ+�λ,μ) can be constructed such that
‖Ũ − U‖ � ε and the number of operator exponentials present in Ũ , N, satisfies

N �
⌈

3m��λk

(
25

3

)k (
��λ

ε

)1/2k
⌉

. (10)

We prove theorem 1 in several steps, with details presented in sections 5 and 6. In
section 5 we construct the Taylor series for an ordered operator exponential, and use this series
to prove that the Lie–Trotter–Suzuki product formula can generate an approximation whose
error is O(�λ2k+1) if {Aj } is 2k-smooth on the interval [μ,μ + �λ]. In section 6 we use the
order estimates in section 5 to obtain upper bounds on the error. The result of theorem 1 then
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follows by counting the number of exponentials needed to make the error bound less than ε.
Finally in section 7 we show that if k is chosen appropriately, then N scales almost linearly
with �λ if there exists a value of � such that {Aj } is �-∞-smooth on [μ,μ + �λ] for every
�λ > 0.

5. Decomposing ordered exponentials

In this section we present a new derivation of Suzuki’s recursive method. Our derivation
has the advantage that it can be rigorously proven that if {Aj } is 2k-smooth, where
A(λ) = ∑m

j=1 Aj(λ), then the kth-order Lie–Trotter–Suzuki product formula will have an
error of O(�λ2k+1). We show this in three steps. We first give an expression for the Taylor
series expansion of an ordered exponential U(μ + �λ,μ). Then, using this expression for
the Taylor series, we show in theorem 2 that Suzuki’s recursive method can be used to
generate approximations to U(μ + �λ,μ) with an error that is O(�λ2k+1), provided {Aj }
is 2k-smooth. Finally, we show in corollary 1 that, if {Aj } is 2k-smooth, then the kth-order
Lie–Trotter–Suzuki product formula has an error that is at most proportional to �λ2k+1.

It is convenient to expand U in a Taylor series of the form

U(μ + �λ,μ) = 11 + T1(μ)�λ +
T2(μ)�λ2

2!
+ · · · . (11)

If A(λ) is not analytic, then this Taylor series must be truncated, and the error can be bounded
by the following lemma.

Lemma 1. If the operator A(λ) is, for P ∈ N0, P times differentiable on the interval
[μ,μ + �λ] ⊂ R, then∥∥∥∥∥∥U(μ + �λ,μ) −

P∑
p=0

(�λ)pTp

p!

∥∥∥∥∥∥ � maxλ∈[μ,μ+�λ] ‖TP +1(λ)U(λ, μ)‖�λP +1

(P + 1)!
, (12)

where Tp(λ) is defined by the recursion relation Tp+1(λ) ≡ Tp(λ)A(λ)+∂λTp(λ), with T0 ≡ 11
chosen to be the initial condition.

Proof. We first show, for the positive integer 
 � P + 1, that if λ ∈ [μ,μ + �λ], then

∂


∂λ

U(λ, μ) = T
(λ)U(λ, μ). (13)

This equation can be validated by using induction on 
. The base case follows by setting 
 = 0
in (13). We then demonstrate the induction step by noting that if (13) is true for 
 � P , then

∂
+1

∂λ
+1
U(λ,μ) = ∂

∂λ
T
(λ)U(λ, μ)

=
[

∂

∂λ
T
(λ)

]
U(λ,μ) + T
(λ)

[
∂

∂λ
U(λ,μ)

]
. (14)

Since T
(λ) contains derivatives of A(λ) up to order 
 − 1, it follows that ∂λT
(λ) contains
derivatives up to order 
. Then, since A(λ) is P times differentiable, ∂λT
(λ) exists if

 � P , which implies that ∂
+1

λ U(λ, μ) exists. We then use the differential equation
in (2) to evaluate the derivative of U(μ + �λ,μ) in (14) and then we use the fact that
T
+1(λ) = T
(λ)A(λ) + ∂λT
(λ) to find that

∂
+1

∂λ
+1
U(λ,μ) = T
+1(λ)U(λ, μ). (15)

7
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This demonstrates the induction step in our proof of (13). Since we have already shown that
(13) is valid for T0, it is also true for all T
(λ) if 
 � P + 1 by induction on 
.

We then use (13) and Taylor’s theorem to conclude that

U(μ + �λ,μ) =
P∑

p=0

(�λ)pTp(μ)

p!
+
∫ �λ

0
TP +1(μ + λ)U(μ + λ,μ)

(�λ − λ)P

P !
dλ. (16)

We rearrange this result and find that∥∥∥∥∥∥U(μ + �λ,μ) −
P∑

p=0

(�λ)pTp

p!

∥∥∥∥∥∥ � maxλ∈[μ,μ+�λ] ‖TP +1(λ)U(λ, μ)‖�λP +1

(P + 1)!
. (17)

�

Lemma 1 provides a convenient expression for the terms in the Taylor series of
U(μ + �λ,μ), and it also estimates the error invoked by truncating the series at order P for
any P ∈ N1. The following theorem uses this lemma to show that Suzuki’s recursive method
will produce a higher order approximation from a lower order symmetric approximation if
{Aj } is sufficiently smooth on [μ,μ + �λ] and A(λ) is the sum of all of the elements in the
set {Aj }.
Theorem 2. If

(i) A(λ) = ∑m
j=1 Aj(λ) where the set {Aj } is, for a fixed p � 1, 2(p + 1)-smooth on the

interval [μ,μ + �λ],
(ii) Up(μ+�λ,μ) is a symmetric approximation formula such that ‖Up(μ+�λ,μ)−U(μ+

�λ,μ)‖ ∈ O(�λ2p+1),
(iii) Up+1(μ + �λ,μ) is found by applying Suzuki’s recursive method on Up(μ + �λ,μ),

then Up(μ + �λ,μ) satisfies

‖U(μ + �λ,μ) − Up+1(μ + �λ,μ)‖ ∈ O(�λ2p+3). (18)

Proof. In this proof we compare the Taylor series of U to that of Up and show that choosing
sp appropriately will cause both the terms proportional to �λ2p+2 and �λ2p+3 to vanish.

Expanding the recursive formula in lemma 1, we see that a Taylor polynomial can be
constructed for U whose difference from U is O(�λ2p+3) because {Aj } is 2(p + 1)-smooth
on [μ,μ + �λ]. A similar polynomial can be constructed for Up by Taylor expanding each
Aj that appears in the exponentials in Up, and then expanding each of these exponentials.
Then, because {Aj } is 2(p + 1)-smooth, Taylor’s theorem implies that this polynomial can
be constructed such that the difference between it and Up is O(�λ2p+3). Therefore, since
‖U − Up‖ ∈ O(�λ2p+1), there exist operators C(μ) and E(μ) that are independent of �λ,
such that

Up(μ + �λ,μ) − U(μ + �λ,μ) = C(μ)�λ2p+1 + E(μ)�λ2p+2 + O(�λ2p+3). (19)

We then use the above equation to write Up+1 as

(U(μ + �λ,μ + [1 − sp]�λ) + C(μ + [1 − sp]�λ)(sp�λ)2p+1 + · · ·) × · · ·
× (U(μ + sp�λ,μ) + C(μ)(sp�λ)2p+1 + · · ·). (20)

Because {Aj } is 2(p+1)-smooth and A(λ) = ∑m
j=1 Aj(λ), it follows that Up+1 is differentiable

2(p +1) times. Then, since U is differentiable 2(p +1) times, it follows from Taylor’s theorem
that C is differentiable, and hence we can Taylor expand each C in this formula in powers of

8



J. Phys. A: Math. Theor. 43 (2010) 065203 N Wiebe et al

�λ to lowest order. By doing so, and defining Ẽ(μ) to be the sum of all the terms that are
proportional to �λ2p+2 in this expansion, we find that

Up+1(μ,μ + �λ) = U(μ + �λ,μ) +
[
4s2p+1

p + [1 − 4sp]2p+1]C(μ)�λ2p+1

+ Ẽ(μ)�λ2p+2 + O(�λ2p+3). (21)

Then we see that if sp = (4−41/(2p+1))−1, then the terms of order 2p + 1 in the above equation
vanish. Hence, the error invoked using Up+1 instead of U is O(�λ2p+2) with this choice of sp.

Next we show that Ẽ(μ) = 0 using reasoning that is similar to that used by Suzuki’s
proof of his recursive method for the case where A(λ) is a constant operator [11, 12]. Because
Up+1 is symmetric, it follows from definition 1 that if we neglect terms of order �λ2p+3 and
higher, then

11 = Up+1(μ,μ + �λ)Up+1(μ + �λ,μ)

= (U(μ,μ + �λ) + Ẽ(μ + �λ)�λ2p+2)(U(μ + �λ,μ) + Ẽ(μ)�λ2p+2) + O(�λ2p+3)

= 11 + [U(μ,μ + �λ)Ẽ(μ) + Ẽ(μ + �λ)U(μ + �λ,μ)]�λ2p+2 + O(�λ2p+3). (22)

This equation is only valid if [U(μ,μ + �λ)Ẽ(μ) + Ẽ(μ + �λ)U(μ + �λ,μ)] ∈ O(�λ).
We then show that Ẽ is zero by taking the limit of the above equation as �λ approaches

zero. We need to ensure that E is continuous to evaluate this limit. The operator Ẽ consists
of products of derivatives of elements from the set {Aj }, and these derivatives are of order at
most 2p + 1. Then, since each Aj is differentiable 2p + 2 times, Ẽ is differentiable, and hence
it is continuous. Then using this fact it follows that

lim
�λ→0

[U(μ,μ + �λ)Ẽ(μ) + Ẽ(μ + �λ)U(μ + �λ,μ)] = 2Ẽ(μ) = 0. (23)

This implies that the norm of the difference between U and Up+1 is proportional to �λ2p+3,
which concludes our proof of theorem 2. �

We will now show that using the kth-order Lie–Trotter–Suzuki product formula invokes
an error that is proportional to �λ2k+1 if {Aj } is 2k-smooth. It should be noted that although
our result in theorem 2 is general, this corollary specifically applies to the Lie–Trotter–
Suzuki formula as defined in definition 2. Similar results can be shown for different initial
approximations by adapting the techniques used below.

Corollary 1. Let A(λ) = ∑m
j=1 Aj(λ), where the set {Aj } is 2k-smooth, for k � 1, on the

interval [μ,μ + �λ], and let U(μ + �λ,μ) be the ordered operator exponential generated by
A(λ). If Uk(μ,μ + �λ) is the kth-order Lie–Trotter–Suzuki formula, then

‖U(μ + �λ,μ) − Uk(μ + �λ,μ)‖ ∈ O(�λ2k+1). (24)

Proof. Our proof of the corollary follows from an inductive argument on k. The validity
of the base case can be verified by using lemma 1. More specifically, {Aj } is 2k-smooth on
[μ,μ + �λ] and k � 1, so A is at least three times differentiable on that interval. This means
that lemma 1 implies

U(μ + �λ,μ) = 11 + A(μ)�λ + [A2(μ) + A′(μ)]�λ2/2 + O(�λ3). (25)

This expansion is also obtained by Taylor expanding exp(A(μ + �λ/2)�λ) to third order, so

‖U(μ + �λ,μ) − exp(A(μ + �λ/2)�λ)‖ ∈ O(�λ)3. (26)

Since U1(μ + �λ,μ) is the Lie–Trotter formula for a constant A(λ) equal to A(μ + �λ/2), it
follows that

‖U1(μ,μ + �λ) − exp(A(μ + �λ/2)�λ)‖ ∈ O(�λ)3. (27)

9
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It follows from the above equations and from the triangle inequality that the norm of the
difference between U1 and U is at most proportional to �λ3.

Since we have shown that U1(μ + �λ,μ) is a symmetric approximation formula whose
error is O(�λ3), it follows from theorem 2 and induction that, if {Aj } is 2k-smooth, then
a symmetric approximation formula whose error is O(�λ2k+1) can be constructed from
U1(μ + �λ,μ) by applying Suzuki’s recursive method to it k − 1 times. �

We have shown in this section that if {Aj } is 2k-smooth on the interval [μ,μ + �λ] and
p � k, then Suzuki’s recursive method can be used to create a symmetric decomposition
whose error is O(�λ)2p+1 out of a symmetric decomposition whose error is O(�λ)2p−1.
Then we have used this fact to show that the norm of the difference between U(μ + �λ,μ)

and the kth-order Lie–Trotter–Suzuki formula is O(�λ2k+1). In the following section, we
strengthen this result by providing an upper bound on the error invoked by using the kth-order
Lie–Trotter–Suzuki product formula.

6. Error bounds and convergence for decomposition

We showed in section 5 that if the kth-order Lie–Trotter–Suzuki product formula is used in
the place of the ordered operator exponential of A(λ), then an error is incurred that is at
most proportional to �λ2k+1, provided A(λ) = ∑m

j=1 Aj(λ) and the set of operators {Aj }
is sufficiently smooth. We also showed that a sufficient condition for smoothness of the set
{Aj } is a condition that we called 2k-smooth, where this condition is defined in definition 3.
In this section, we extend that result by finding upper bounds on the error invoked in using
the Lie–Trotter–Suzuki product formula to approximate ordered operator exponentials if {Aj }
is �-2k-smooth. Unlike the previous section, here we assume that maxx>y ‖U(x, y)‖ is at
most one. This assumption is important because it ensures that our error bounds are not
exponentially large. Our work can be made applicable to the case where this norm is greater
than one by normalizing U. We discuss the implications of this in appendix B. Note that, in the
particular case that A(λ) is anti-Hermitian (e.g. when A = −iH for Hamiltonian evolution),
U is unitary, so maxx>y ‖U(x, y)‖ = 1.

In this section, we first provide an upper bound on the error invoked in using the kth-
order Lie–Trotter–Suzuki product formula to approximate the ordered operator exponential
U(μ + �λ,μ) if �λ is sufficiently short. We then use this result to provide an upper bound
on the error if �λ is not short. More specifically, we show that for every ε > 0 and �λ > 0,

there exists an integer r such that∥∥∥∥∥∥U(μ + �λ,μ) −
r∏

q=1

Uk (μ + q�λ/r, μ + (q − 1)�λ/r)

∥∥∥∥∥∥ � ε (28)

if {Aj } is 2k-smooth on the interval [μ,μ + �λ]. Finally by multiplying the number of
exponentials in each kth-order Lie–Trotter–Suzuki product formula by r, we find the number
of exponentials used in the product in (28). We then use this result to prove theorem 1.

Our upper bound on the error invoked by using a single Uk to approximate the ordered
operator exponential U(μ + �λ,μ) is given in theorem 3. Before stating theorem 3, we
first define the following terms. Since the kth-order Lie–Trotter–Suzuki product formula is
a product of 2m5k−1 exponentials, we can express this product as

∏2m5k−1

c=1 exp(Ajc
(μc)�λc).

We then use this expansion to define the following two useful quantities.

Definition 5. We define qc,2k ≡ �λc

�λ
and Qk ≡ maxc |qc,2k|.

10
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It can be shown that Q1 = 1/2, and that if p > 1 then Qp = |1 − 4s1| · · · |1 − 4sp−1|.
We show in appendix A that for any integer p > 0, Qp � 2p/3p, implying that Qp decreases
exponentially with p. We use this definition of Qk in the following theorem, which gives an
upper bound on the difference between the ordered operator exponential U(μ + �λ,μ) and
the kth-order Lie–Trotter–Suzuki product formula Uk(μ + �λ,μ).

Theorem 3. Let A(λ) = ∑m
j=1 Aj(λ), {Aj } be �-2k-smooth on the interval [μ,μ + �λ] and

maxx>y ‖U(x, y)‖ � 1. If 2
√

2(5)k−1Qk��λ � 1/2, then

‖U(μ + �λ,μ) − Uk(μ + �λ,μ)‖ � 2[3(5)k−1Qk��λ]2k+1, (29)

where Uk is given in definition 2.

The proof of theorem 3 requires us to first prove two lemmas before we can conclude
that the theorem is valid. We now introduce some notation to state these lemmas concisely.
Since we have assumed that {Aj } is 2k-smooth, theorem 2 implies that the difference between
U(μ + �λ,μ) and Uk(μ + �λ,μ) is O(�λ)2k+1. Then using this fact, we know that we only
need to compare the terms of O(�λ2k+1) to bound the difference between U and Uk. We
introduce the following notation to denote only those terms that do not necessarily cancel.

Definition 6. If the operator A(�λ) can be written as A(�λ) = ∑2k
p=0 Ap�λp + R(�λ)

where the norm of R(�λ) is O(�λ)2k+1, then we define R2k[A(�λ)] to be the norm of R(�λ).

This definition simply means that R2k is the error term for a Taylor expansion to order
2k. Then using this definition, it follows from the triangle inequality that the norm of the
difference between U and Uk is at most

R2k[U(μ + �λ,μ)] + R2k[Uk(μ + �λ,μ)]. (30)

Our proof of theorem 3 then follows from (30) and upper bounds that we place on
R2k[U(μ + �λ,μ)] and R2k[Uk(μ + �λ,μ)]. Our bound on R2k[U(μ + �λ,μ)] follows
directly from lemma 1, but the bound on R2k[Uk(μ + �λ,μ)] does not. We will provide the
latter upper bound in lemma 3, but first we provide definition 7 and lemma 2.

Definition 7. Let k be a positive integer and A(λ) = ∑m
j=1 Aj(λ); then Uk(μ + �λ,�λ) can

be written as a product of the form
∏2m5k−1

c=1 exp(Ajc
(μc)�λc). We then define Xp for p < 2k

to be

Xp ≡
2m5k−1∑

c=1

∥∥A(p)

jc
(μ)

∥∥ (μc − μ)p

�λp
|qc,2k|, (31)

and for p = 2k, we define X2k to be

X2k ≡
2m5k−1∑

c=1

max
τ∈[μ,μ+�λ]

∥∥A(2k)
jc

(τ )
∥∥ (μc − μ)2k

�λ2k
|qc,2k|. (32)

Here the quantity qc,2k is given in definition 5.

Then, using this definition, our lemma can be expressed as follows.

Lemma 2. Let A(λ) = ∑m
j=1 Aj(λ) and let the set {Aj } be 2k-smooth on the interval

[μ,μ + �λ]. Then the norm of the difference between Uk(μ + �λ,μ) and its Taylor series in
powers of �λ truncated at order 2k is bounded above by

R2k

⎡
⎣exp

⎛
⎝ 2k∑

p=0

Xp

p!
�λp+1

⎞
⎠
⎤
⎦ . (33)

11
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Proof. We begin our proof of lemma 2 by writing Uk as a product of 2m5k−1 exponentials,
and use Taylor’s theorem to write Uk as

2m5k−1∏
c=1

exp

⎡
⎣
⎛
⎝2k−1∑

p=0

A
(p)

jc
(μ)(μc − μ)p

p!
+
∫ tc

t

A
(2k)
jc

(s)
(μc − s)2k−1

(2k − 1)!
ds

⎞
⎠�λc

⎤
⎦ . (34)

We introduce the terms vc = (μc−μ)/�λ and qc,k = �λc

�λ
, and use them to write Uk(μ+�λ,μ)

as

2m5k−1∏
c=1

exp

⎡
⎣
⎛
⎝2k−1∑

p=0

A
(p)

jc
(μ)v

p
c �λp

p!
+ G

(2k)
jc

(�λ)

⎞
⎠ |qc,k|�λ

⎤
⎦ , (35)

where we have defined

G
(2k)
jc

(�λ) ≡
∫ vc

0
A

(2k)
jc

(μ + x�λ)
(vc − x)2k−1

(2k − 1)!
(�λ)2k dx. (36)

We now prove the lemma by placing an upper bound on R2k[Uk(μ+�λ,μ)]. We expand
this equation in powers of �λ, while retaining only those terms of order 2k + 1 and higher.
As mentioned previously, the lower order terms are irrelevant since theorem 2 guarantees that
they cancel.

By expanding the exponentials in (35), taking the norm, using the triangle inequality,
upper bounding each of the norms present in the expansion, and collecting terms again, we
find that an upper bound on R2k[Uk(μ + �λ,μ)] is

R2k

⎛
⎝exp

⎡
⎣2m5k−1∑

c=1

⎛
⎝2k−1∑

p=0

∥∥A(p)

jc
(μ)

∥∥vp
c �λp

p!
+ G

(2k)
jc

(�λ)

⎞
⎠ |qc,k|�λ

⎤
⎦
⎞
⎠ . (37)

Note that

G
(2k)
jc

(�λ) � max
τ∈[μ,μ+�λ]

∥∥A(2k)
jc

(τ )
∥∥ (vc�λ)2k

(2k)!
. (38)

This equation can be simplified by substituting the constants Xp into it. These constants are
introduced in definition 7. After this substitution our upper bound becomes

R2k

⎡
⎣exp

⎛
⎝ 2k∑

p=0

Xp

p!
�λp+1

⎞
⎠
⎤
⎦ . (39)

�

We use lemma 2 to provide an upper bound on the sum of the norm of all terms in the
Taylor expansion of Uk(μ + �λ,μ) which are of order 2k + 1 or higher. This bound is given
in the following lemma.

Lemma 3. Let A(λ) = ∑m
j=1 Aj(λ), where the set {Aj } is �-2k-smooth on the interval

[μ,μ + �λ], and let 2
√

2(5)k−1Qk��λ � 1
2 . Then the norm of the difference between

Uk(μ + �λ,μ) and its Taylor series in �λ truncated at order 2k is upper bounded by

R2k[Uk(μ + �λ,μ)] � 2(2
√

2(5)k−1Qk��λ)2k+1. (40)

Proof. To simplify the following discussion, we introduce �2k , defined by

�2k ≡ max
p=0,...,2k

X1/(p+1)
p . (41)

12
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We first find an upper bound on �2k . Now, by definition 7,

Xp �
2m5k−1∑

c=1

|qc,k|
(

tc − t

�λ

)p

max
τ∈[μ,μ+�λ]

∥∥A(p)

jc
(τ )
∥∥. (42)

It follows from definition 5 that qc,k � Qk for all c. Also, for a kth-order Lie–Trotter–Suzuki
product formula, tc−t

�λ
� 1. Using these two bounds in the above inequality, and using the fact

that each element of {Aj } occurs 2(5k−1) times in Uk, we obtain

Xp � 2(5)k−1Qk

m∑
j=1

max
τ∈[μ,μ+�λ]

∥∥A(p)

j (τ )
∥∥. (43)

Since we assume that {Aj } is �-2k-smooth,
∑m

j=1

∥∥A(p)

j (τ )
∥∥ � �p+1, so X

1/(p+1)
p �

(2(5)k−1Qk)
1/(p+1)�. We also show in appendix A that Qk � 1

2
1

3k−1 , implying that

2(5)k−1Qk � 1, and thus that X
1/(p+1)
p � 2(5)k−1Qk�. Since this upper bound holds for

all 0 � p � 2k, we conclude that

�2k � 2(5)k−1Qk�. (44)

To show the main inequality in lemma 3, we expand the formula

R2k

⎡
⎣exp

⎛
⎝ 2k∑

p=0

Xp

p!
�λp+1

⎞
⎠
⎤
⎦ , (45)

in powers of �λ. We then use the upper bounds 1
p! � (

√
2)p+1

p+1 and Xp � �
p+1
2k to simplify the

expanded products. Finally we rewrite the resulting expansion as an exponential to find that

R2k

⎡
⎣exp

⎛
⎝ 2k∑

p=0

Xp

p!
�λp+1

⎞
⎠
⎤
⎦ � R2k

⎡
⎣exp

⎛
⎝ 2k∑

p=0

(
√

2�2k�λ)p+1

p + 1

⎞
⎠
⎤
⎦ . (46)

Since Xp is a positive number, then so is �2k , and hence the above expression is upper bounded
by

R2k

⎡
⎣exp

⎛
⎝ ∞∑

p=0

(
√

2�2k�λ)p+1

p + 1

⎞
⎠
⎤
⎦ . (47)

Using the Taylor expansion of ln(1 − x), we rewrite this as

R2k[exp(− ln(1 −
√

2�2k�λ))] = R2k

[
1

1 − √
2�2k�λ

]
=

∞∑
p=2k+1

(
√

2�2k�λ)p. (48)

Provided
√

2�2k�λ � 1
2 , this is upper bounded by 2(

√
2�2k�λ)2k+1. Using inequality (44) in

equation (48) then gives

R2k

⎡
⎣exp

⎛
⎝ 2k∑

p=0

Xp

p!
�λp+1

⎞
⎠
⎤
⎦ � 2(2

√
2(5)k−1Qk��λ)2k+1. (49)

The lemma follows by applying lemma 2. �

Now that we have proven lemma 3 we have an upper bound on R2k[Uk(μ + �λ,μ)]. We
now use this upper bound to prove theorem 3.

13
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Proof of Theorem 3. Our proof of theorem 3 begins by using the fact that

R2k[U(μ + �λ,μ) − Uk(μ + �λ,μ)] � R2k[U(μ + �λ,μ)] + R2k[Uk(μ + �λ,μ)]. (50)

We then place an upper bound on R2k[U(μ + �λ,μ)] using lemma 1. Using the notation
of lemma 1, we write the Taylor series of U(μ + �λ,μ) as

∑
p Tp(μ)�λp/p!. We then

use the assumption that ‖U(μ + �λ,μ)‖ is less than one, to show from lemma 1 that
R2k[U(μ + �λ,μ)] is at most

maxλ∈[μ,μ+�λ] ‖T2k+1(λ)‖�λ2k+1

(2k + 1)!
. (51)

Then using the recursive relations in lemma 1, it follows that T2k+1 can be written as a sum of
(2k +1)! terms that are each products of A and its derivatives. Then since {Aj : j = 1, . . . , m}
is �-2k-smooth and A = ∑m

j=1 Aj , it follows from definition 4 that ‖A(p)(λ)‖ � �p for all
λ in the interval [μ,μ + �λ]. Then it can be verified that each term in T2k+1(λ) must have a
norm that is less than �2k+1. Therefore, it follows that ‖T2k+1(λ)‖ � (2k + 1)!�2k+1 and hence

R2k[U(μ + �λ,μ)] � (��λ)2k+1. (52)

Using (50) and lemma 3, we see that if 2
√

2(5)k−1Qk��λ � 1/2, then an upper bound
on the sum of R2k[U(μ + �λ,μ)] and R2k[Uk(μ + �λ,μ)] is

(��λ)2k+1 + 2[2
√

2(5)k−1Qk��λ]2k+1. (53)

We then replace this upper bound with the following simpler upper bound

2[3(5)k−1Qk��λ]2k+1. (54)

This is the claim in theorem 3, and hence we have proven the theorem. �

The error bound in theorem 3 is vital to our remaining work because it provides us with
an upper bound on the error invoked by approximating an ordered operator exponential by
Uk(μ + �λ,μ) if �λ is short. We will now show a method to devise accurate approximations
to the ordered operator exponential U(μ + �λ,μ), even if �λ is not short. Our approach is
similar to that used by Berry et al in [19] and that used by Suzuki in [14]; we split the ordered
exponential into a product of ordinary exponentials, each of which has a short duration. To
do so, we need to present a method to relate the error invoked by using one Uk to the error
invoked by using a product of them. This result is provided in the following lemma.

Lemma 4. If ‖Ap − Bp‖ � δ/P , where δ is a positive number less than 1/2, and ‖Ap‖ � 1
for every p ∈ {1, 2, . . . , P }, then

∥∥∏P
p=1 Ap −∏P

p=1 Bp

∥∥ � 2δ.

Proof. Our proof begins by assuming that there exists some integer q such that∥∥∥∥∥∥
q∏

p=1

Ap −
q∏

p=1

Bp

∥∥∥∥∥∥ �
qδ
(
1 + δ

P

)q−1

P
. (55)

We then prove lemma 4 by using induction on q. The proof of the base case follows
from ‖Ap − Bp‖ � δ/P . We then begin to prove the induction step by noting that
from ‖Ap − Bp‖ � δ/P there exists an operator C with a norm at most one, such that
Bq+1 = Aq+1 + (δ/P )C. Then, by making this substitution and using the triangle inequality,
it follows that∥∥∥∥∥∥

q+1∏
p=1

Ap −
q+1∏
p=1

Bp

∥∥∥∥∥∥ �

∥∥∥∥∥∥Aq+1

⎛
⎝ q∏

p=1

Ap −
q∏

p=1

Bp

⎞
⎠
∥∥∥∥∥∥ + (δ/P )

∥∥∥∥∥∥C
q∏

p=1

Bp

∥∥∥∥∥∥ . (56)
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Then, because ‖Ap‖ � 1 and ‖Bp‖ � 1+δ/P , it can be verified using our induction hypothesis
that the left-hand side of equation (56) is bounded above by

(q + 1)δ
(
1 + δ

P

)q
P

. (57)

This proves our induction step, and so it follows that
∥∥∏P

p=1 Ap −∏P
p=1 Bp

∥∥ � δ(1+δ/P )P−1

by using induction on q until q = P . The proof of the lemma then follows from the fact that
if δ � 1/2, then (1 + δ/P )P−1 � 2. �

Using lemma 4, we can now place an upper bound on the error for decompositions with
longer �λ.

Lemma 5. If

(i) A(λ) = ∑m
j=1 Aj(λ) is 2k-smooth on the interval [μ,μ + �λ],

(ii) maxx>y ‖U(x, y)‖ � 1
(iii) ε � 3Qk(5)k−1��λ, where Qk is given in definition 6,
(iv) r is a positive integer greater than

2(3Qk(5)k−1��λ)1+1/2k

ε1/2k
, (58)

then we obtain that∥∥∥∥∥∥U(μ + �λ,μ) −
r∏

q=1

Uk(μ + q�λ/r, μ + (q − 1)�λ/r)

∥∥∥∥∥∥ � ε, (59)

where Uk is the kth-order Lie–Trotter–Suzuki product formula, which we introduced in
definition 2.

Proof. We find using the bound ε � 3Qk(5)k−1��λ and (58) that 3Qk(5)k−1��λ/r � 1/2.
Hence, we can use theorem 3 to obtain, for each q = 1, . . . , r ,

‖U(μ + q�λ/r, μ + (q − 1)�λ/r) − Uk(μ + q�λ/r, μ + (q − 1)�λ/r)‖
� 2(3Qk(5)k−1��λ/r)2k+1. (60)

We then rewrite this bound as

2(3Qk(5)k−1��λ/r)2k+1 = 2

r

(3Qk(5)k−1��λ)2k+1

r2k
. (61)

Then from (58) we can see that, because r � 2(3Qk(5)k−1��λ)1+1/2k/ε1/2k , it follows that

2(3Qk(5)k−1��λ/r)2k+1 � 2

r

( ε

22k

)
. (62)

Then, since k � 1, it follows that

‖U(μ + (q − 1)�λ/r, μ + q�λ/r) − Uk(μ + (q − 1)�λ/r, μ + q�λ/r)‖ � ε

2r
. (63)

Then since both ε and maxx>y ‖U(x, y)‖ are less than one, the result of this lemma follows
from lemma 4. �

Lemma 5 shows that if the maximum value of the norm of U is one, then a product of
kth-order Lie–Trotter–Suzuki formulae converges to U as r increases. Furthermore, we can
also use this result to prove theorem 1 by using the value of r from this lemma and multiplying
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it by the number of exponentials in each Uk to find a bound on the number of exponentials that
are needed to approximate U(μ + �λ,μ). This proof is presented below.

Proof of Theorem 1. It can be verified from the definition of Uk(μ + �λ,μ) in theorem
2 that there are at most 2m5k−1 exponentials in each Uk, and since at most r different Uk are
needed to approximate U within an error of ε, then if the conditions of lemma 5 are satisfied,
it follows from the lemma that the number of exponentials used to decompose U(μ + �λ,μ)

is at most

N � 2m5k−1r � 2m5k−1

⌈
2(3(5)k−1�Qk�λ)1+1/2k

ε1/2k

⌉
. (64)

We then use the fact from appendix A that Qk � 2k/3k , and the fact that k1/2k < 1.3, to show
that

N �
⌈

3m��λk

(
25

3

)k (
��λ

ε

)1/2k
⌉

. (65)

It then follows from our bounds on Qk that the requirements on ε in lemma 5 are satisfied if
ε � (9/10)(5/3)k��λ, which then completes our proof of the theorem. �

Theorem 1 provides an upper bound on the number of exponentials that are needed to
decompose an ordered operator exponential using a product of kth-order Lie–Trotter–Suzuki
product formula, while guaranteeing that the approximation error is at most ε. In the following
section we present a formula that provides a reasonable value of k, for a particular set of values
for ε,� and �λ. Furthermore, we show that if {Aj } is �-∞-smooth and that formula for k is
used, then the number of exponentials used scales almost linearly with �λ.

7. Almost linear scaling

Reference [19] shows that there exist operator exponentials that, when decomposed into a
sequence of N exponentials, require that N scale at least linearly with �λ for large �λ. This
implies that any decomposition method that does not use any special properties of the operator
being exponentiated will also require that N scale at least linearly with �λ. We now show
that if there exists a � such that the set of operators {Aj } is �-∞-smooth on [μ,μ + �λ] for
every �λ > 0, then we can choose k such that N scales almost linearly in �λ. Specifically,
we show that N/�λ is sub-polynomial in �λ, i.e. that lim�λ→∞ N

�λ1+d = 0 for all constants
d > 0, provided that maxx>y ‖U(x, y)‖ � 1.

Theorem 1 implies that

N �
⌈

3m��λk

(
25

3

)k (
��λ

ε

)1/2k
⌉

. (66)

We set

k0 =
⌈√

1

2
log25/3

(
��λ

ε

)⌉
, (67)

so that
(

25
3

)k0 �
(

��λ
ε

)1/2k0 . Then

N

�λ
� 3m�k0

(
25

3

)2k0

= 3m�k0 exp

(
k02 ln

(
25

3

))
, (68)

which is sub-polynomial in �λ, though not poly-logarithmic in �λ. In conclusion, if {Aj } is
�-∞-smooth and we choose k = k0, then the number of exponentials needed to decompose
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an ordered operator exponential of A using the kth-order Lie–Trotter–Suzuki formula scales
almost linearly in �λ.

This choice of k0 will cause N to scale nearly linearly with �λ if {Aj } is ∞-smooth;
however, if {Aj } is only 2P -smooth for some positive integer P, then we do not expect this
because theorem 1 cannot be used if k0 > P . Hence, a reasonable choice of k0 is

k0 = min

{
P,

⌈√
1

2
log25/3

(
��λ

ε

)⌉}
. (69)

The choice of k0 in (69) does not allow for near-linear scaling of N with �λ, but it does
cause N to be proportional to �λ1+1/(2P) in the limit of large �λ, and causes N to have the
same scaling with �λ that a �-∞-smooth {Aj } would have if �λ is sufficiently short.

In this section we require that maxx>y ‖U(x, y)‖ � 1 for this near-linear scaling result to
hold, but if this inequality does not hold then U can be normalized to ensure that it does, so it
may seem that this result is more general than we claim. However, we note in appendix B that
the un-normalized error in the decomposition of the un-normalized U can vary exponentially
with �λ. As a result, we can only guarantee that the value of N needed to ensure that
‖U − Ũ‖ � ε can be chosen to scale near linearly with �λ if maxx>y ‖U(x, y)‖ � 1.

8. Conclusions

We have shown how to use high-order integrators to accurately approximate ordered operator
exponentials, shown what order of integrator is possible based on the smoothness of the
operator and explicitly bounded the error. Our method is based on the recursive approximation
building technique developed by Suzuki [10]. In contrast to Suzuki’s work on ordered
exponentials, we do not use a time-displacement operator. The time-displacement operator is
problematic because it is a different type of operator than that for which Suzuki integrators
were originally developed. It is therefore unclear from Suzuki’s analysis what conditions
are needed to ensure validity of the results. Our results show that Suzuki’s approach is only
applicable if the operator is sufficiently smooth, and we have presented an example where
Suzuki’s approach breaks down. We have rigorously shown what conditions are sufficient to
ensure a given order of the integrator, to address such cases. In addition, we have placed upper
bounds on the error, thus showing how the error scales in all relevant quantities.

If the operator to be exponentiated is A(λ) = ∑m
j=1 Aj(λ), and the norm of the 2kth

derivative of each Aj(λ) is bounded at every point in the interval [μ,μ+�λ], then our method
can be used to build an approximation formula for the ordered exponential of A(λ) with an
error that is at most proportional to �λ2k+1. If this condition is not satisfied, then our method
can fail as we show in figure 1. This failure results from the derivatives of A(λ) becoming
large near λ = 0. This suggests that the reason why sixth-order formulae have been observed
to fail when applied to the Coulomb problem [27] (with λ taking the role of position) may be
that the derivatives of A(λ) become significant near the singularity even if the singularity is
outside the interval [μ,μ + �λ].

We have also shown that, if the above conditions are met, maxx>y ‖U(x, y)‖ � 1 and ε

is sufficiently small, then the ordered operator exponential of A(λ) may be approximated with
total error of at most ε using

N �
⌈

3m��λk

(
25

3

)k (
��λ

ε

)1/2k
⌉

(70)

exponentials. If the {Aj } are smooth, with the higher order derivatives suitably bounded, then
the value of k may be taken to be arbitrarily large, yielding a number of exponentials that scales
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nearly linearly with �λ. It has been shown that sub-linear scaling with �λ is impossible for
a generic A(λ) [19, 28], so in this sense our scheme is nearly optimal for analytic A(λ).

One extension of this work will be to develop methods of adapting the step sizes. This is
likely to provide substantial improvements in some cases because the step sizes used depend
on the upper bounds on the norms of the derivatives. For example, in cases where there is a
divergence in the derivatives (as in figure 1), it would be useful to reduce the step size closer to
the divergence. It may also be useful to adapt the order of the integrator in such cases because
the derivatives are bounded away from the singular point, enabling higher order integrators to
be used.
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Appendix A. Derivation of bounds on Qk

When proving bounds on the error introduced by our decomposition of an ordered exponential
in section 6, we use the quantities Qk defined by

Qk = 1
2 max{s1, |1 − 4s1|} max{s2, |1 − 4s2|} · · · max{sk−1, |1 − 4sk−1|} (A.1)

for k > 1 and Q1 = 1
2 , where

sk = 1

4 − 41/(2k+1)
(A.2)

for all k � 1. We now show that Qk decreases exponentially in k,

3

2

1

3k
� Qk � 2k

3k
. (A.3)

The lower bound follows directly by noting that sk � 1
3 for all k � 1.

Set a = 2 ln(4), which is approximately 2.7726. Using that −x � ln(1−x) for 0 � x < 1,
we then have that for k � 1,

−1

2k + 1
ln(4) = −a

2(2k + 1)
� ln

(
1 − a

2(2k + 1)

)
. (A.4)

Taking exponentials on either side yields

4−1/(2k+1) � 1 − a

2(2k + 1)
. (A.5)

Multiplying by 4 and subtracting 1 on either side gives,

42k/(2k+1) − 1 � 3

(
1 − 2a

3(2k + 1)

)
, (A.6)

and taking reciprocals then yields

4sk − 1 = 1

42k/(2k+1) − 1
� 1

3

k + 1
2

k + 1
2 − a

3

� 1

3

k + 1
2

k + 1
2 − 1

. (A.7)
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Noting that 4sk − 1 � sk since sk � 1
3 , and using that s1 � 2

3 , we conclude that

Qk � 1

2

2

3

1

3k−2

k − 1
2

3
2

� 2k

3k
(A.8)

for k � 2. By inspection the inequality Qk � 2k
3k also holds for k = 1.

Appendix B. Norms larger than 1

In this work we have restricted the norm of U(η,μ) to not exceed 1. This means that the
eigenvalues of A(λ) can have no positive real part. In the case where they do, then the analysis
can be performed in the following way. Simply define the new operators

A′(λ) ≡ A(λ) − κ(λ)11, (B.1)

A′
j (λ) ≡ Aj(λ) − (κ(λ)/m)11 (B.2)

for some κ(λ) such that the eigenvalues of A′(λ) have no positive real part. Note that the prime
does not denote a derivative here. Then the result we have given in theorem 1 will hold for A′

and {A′
j } (provided we also define � in terms of these operators). The difference between A

and A′ simply corresponds to a normalization factor, i.e.

U(η,μ) = U ′(η, μ) e
∫ η

μ
κ(x) dx

. (B.3)

We can simply use the Lie–Trotter–Suzuki formula to approximate U ′(η, μ), which gives

U(η,μ) ≈ e
∫ η

μ
κ(x)dx

N∏
i=1

exp(A′
ji
(�λi)�λi)

= K

N∏
i=1

exp(Aji
(λi)�λi), (B.4)

where K is a normalization correction

K = e
∫ η

μ
κ(x) dx−∑N

i=1 κ(λi )�λi . (B.5)

Thus, the same series of exponentials can be used, except for a normalization factor.
There is a difference in the final error that can be obtained because∥∥∥∥∥U ′(η, μ) −

N∏
i=1

exp(A′
ji
(λi)�λi)

∥∥∥∥∥ � ε (B.6)

implies that ∥∥∥∥∥U(η,μ) − K

N∏
i=1

exp(Aji
(λi)�λi)

∥∥∥∥∥ � e
∫ η

μ
κ(x) dx

ε. (B.7)

It might be imagined that the relative error can be kept below ε with similar scaling of N.
That is, that e

∫ η

μ
κ(x) dx can be replaced with ‖U(η,μ)‖ in (B.7). Unfortunately, that is not the

case. The reason is that, due to the submultiplicativity of the operator norm, ‖U(η,μ)‖ can
be much smaller than e

∫ η

μ
κ(x) dx .

For example, consider the case where A(λ) is initially σz (the Pauli operator) over an
interval �λ/2; then is −σz over another interval �λ/2. Then U(η,μ) = 11, and has norm 1,
but e

∫ η

μ
κ(x) dx = e�λ. A small error in between the two intervals of length �λ/2 can then yield
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a large relative error in the final result. For example, consider the error E = eiδσy . That yields
a final result

U(η,μ + �λ/2)EU(μ + �λ/2, μ) =
[

cos δ e−�λ sin δ

−e�λ sin δcos δ

]
. (B.8)

The error in this result scales as e�λ, despite the final norm being small for U(η,μ).
With the possibility that the norm of U(η,μ) exceeds 1, our approach need not give

scaling for N that is close to linear in �λ. In the lower bound on N in theorem 1, the (1/ε)1/2k

will be replaced with

(1/ε)1/2k e
1

2k

∫ η

μ
κ(x) dx

. (B.9)

To prevent this term scaling exponentially in �λ, one would need to take k proportional to
�λ. However, this would result in (25/3)k scaling exponentially in �λ. As a result, it does
not appear to be possible to obtain sub-exponential scaling if there is no bound on the norm of
U(η,μ).
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