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Quantum simulation is an important application of future quantum computers with applications
in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems
presents a specific challenge. The Jordan-Wigner transformation allows for representation of a
fermionic operator by O(n) qubit operations. Here, we develop an alternative method of simulat-
ing fermions with qubits, first proposed by Bravyi and Kitaev [Ann. Phys. 298, 210 (2002); e-
print arXiv:quant-ph/0003137v2], that reduces the simulation cost to O(log n) qubit operations for
one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulat-
ing quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of
molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a sin-
gle Trotter time step of the Bravyi-Kitaev derived Hamiltonian for H2 requires fewer gate applica-
tions than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling
of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for
molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev
method for all quantum computations of electronic structure. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4768229]

I. INTRODUCTION

In his seminal paper, that anticipated the field of quan-
tum information, Feynman argued that simulating quantum
systems on classical computers takes an amount of time that
scales exponentially with the size of the system, while the
cost of quantum simulations can scale in polynomial time
with system size.1 This possibility may offer a path forward
for computational chemistry.2, 3 A quantum simulation algo-
rithm for quantum chemical Hamiltonians enables the effi-
cient calculation of properties such as energy spectra,3 reac-
tion rates,4, 5 correlation functions,6 and molecular properties7

for molecules larger than those that are currently accessible
through classical calculations.

Quantum simulation of electronic structure requires a
representation of fermions by systems of qubits. Significant
progress has been made on efficient quantum simulation of
fermions. In 1997, Abrams and Lloyd proposed a simulation
scheme for fermions hopping on a lattice.8 In 2002, Somma
et al. used the Jordan-Wigner to generalize the simulation
scheme proposed by Abrams and Lloyd.9, 10 The Jordan-
Wigner transformation has since been used to outline a scal-
able quantum algorithm for the simulation of molecular elec-
tron dynamics, and to design an explicit quantum circuit for
simulating a Trotter time step of the molecular electronic
Hamiltonian for H2 in a minimal basis.3, 11 Further refine-
ments of the Jordan-Wigner construction were made by Ver-
straete and Cirac12 and by Bravyi and Kitaev.13 From the point
of view of fundamental physics, such constructions show that
fermonic degrees of freedom can emerge from a microscopic
physics in which they are not present.14 Practically speaking,
such constructions show that quantum computation of elec-

tronic structure does not suffer from an analog of the sign
problem; that is, fermion antisymmetry represents no signifi-
cant obstacle to efficient algorithms.

Theoretical progress in quantum simulation has been ac-
companied by experimental successes. In 2010, Lanyon et al.
calculated the energy spectrum of a hydrogen molecule us-
ing an optical quantum computer.15 For a review of photonic
quantum simulators, see Ref. 16. Du et al. repeated this result
to higher precision with nuclear magnetic resonance shortly
thereafter.17 Digital quantum simulations of the kind consid-
ered in the present paper have been implemented in ion traps
using up to 100 gates and 6 qubits.18 The progress of trapped
ion quantum simulation is detailed in Ref. 19.

Quantum computation of electronic structure has been
the subject of simulation studies3, 20 and has been extended
to cover relativistic systems.21 The history of calculations
in quantum chemistry provides a useful sequence of prob-
lems reaching from calculations that can be performed on
experimental quantum computers today to calculations at
the present research frontier.22 Despite these promising re-
sults, the scaling of the number of gates required by the
algorithm outlined in Refs. 3 and 11 remains challenging.
It is a subject of active research to find improvements to the
(polynomial) scaling of the cost of the algorithm described
in Refs. 3 and 11. Several improvements are described in
Ref. 23, and the techniques of that work could be combined
with those of the present paper to further reduce the resource
requirements.

A fermionic simulation scheme can be broken into two
pieces: first, to map occupation number basis vectors to states
of qubits; and second, to represent the fermionic creation and
annihilation operators in terms of operations on qubits in a
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FIG. 1. A simulation scheme first encodes fermionic states in qubits, then
acts with the qubit operator representing the fermionic operator (obtained by
the associated transformation), then inverts the encoding to obtain the resul-
tant fermionic state. The criterion for a successful simulation scheme is that
this procedure reproduces the action of the fermionic operator, i.e., that Path
1 is equivalent to Path 2, for all basis states—in other words, that this diagram
commutes.

way that preserves the fermionic anti-commutation relations,
as illustrated in Figure 1. Previous simulation algorithms have
used a straightforward mapping of fermionic occupation num-
ber basis states to qubit states that was originally defined
by Zanardi in the context of entanglement.3, 9, 24 The Jordan-
Wigner transformation is then used to write the electronic
Hamiltonian as a sum over products of Pauli spin operators
acting on the qubits of the quantum computer. Subsequently,
the Hamiltonian terms hk, where Ĥ = ∑

k hk , are converted
into the unitary gates that are the corresponding time evolu-
tion operators. Even though the hk do not necessarily com-
mute, their sequential execution on a quantum computer can
be made to approximate the unitary propagator e−iĤ t through
a Trotter decomposition.25–28 Finally, the iterative phase es-
timation algorithm (IPEA) is used to approximate the eigen-
value of an input eigenstate.3, 11, 28

In this paper, we treat the Trotterization process and
IPEA as standard procedures. We develop the Bravyi-Kitaev
basis and Bravyi-Kitaev transformation, both named after the
authors who first proposed such a scheme,13 which provide
a more efficient mapping between electronic Hamiltonians
and qubit Hamiltonians. While the occupation number basis
and the Jordan-Wigner transformation allow for the represen-
tation of a single fermionic creation or annihilation operator
by O(n) qubit operations, the Bravyi-Kitaev basis and trans-
formation require only O(log n) qubit operations to represent
one fermionic operator. It is worth noting that Bravyi and
Kitaev were concerned with exploring the power of fermions
as the basic hardware units of a quantum computer, rather
than with the simulation of fermions by qubits.13 However,
understanding how the structure of fermionic systems can be
employed to process information helps us understand how
standard quantum information procedures can be used to
simulate the structure of fermionic systems. We work out a
detailed application of the Bravyi-Kitaev transformation to
the operators that appear in quantum chemical Hamiltonians,
providing a new way of mapping electronic Hamiltonians

to qubit Hamiltonians. We also give explicit Pauli decom-
positions of the qubit operators derived from this new
transformation for the quantum chemical Hamiltonian for
H2 in a minimal basis. We show that the quantum circuit for
simulating a single first-order Trotter time step of the Bravyi-
Kitaev minimal basis molecular hydrogen Hamiltonian
requires 30 single-qubit gates (SQG) and 44 CNOT gates, as
compared to 46 single-qubit gates and 36 CNOT gates for the
Jordan-Wigner Hamiltonian derived in Ref. 11. Finally, we
show that a chemical-precision estimate of the ground state
eigenvalue of the Bravyi-Kitaev Hamiltonian can be obtained
in 3 first-order Trotter steps, with a total cost of 222 gates,
while the Jordan-Wigner Hamiltonian requires 4 first-order
Trotter steps for a total of 328 gates. Since the Bravyi-Kitaev
transformation is known to be asymptotically more efficient,
this result for the simplest possible case of molecular hydro-
gen in a minimal basis demonstrates the superior efficiency
of the Bravyi-Kitaev method for all molecular quantum
simulations.

In Sec. II, we will review basic quantum chemistry in
second quantized form as well as the Jordan Wigner transfor-
mation. In Sec. III, we discuss alternatives to the occupation
number basis, including the Bravyi-Kitaev basis, which we
go on to describe in detail in Sec. IV. In Sec. V, we present
the Bravyi-Kitaev transformation, which allows us to repre-
sent creation and annihilation operators in the Bravyi-Kitaev
basis. In Sec. VI, we compute the products of these operators
that occur in electronic structure Hamiltonians. In Sec. VII,
we compute the molecular electronic structure Hamiltonian
of H2 in a minimal basis using the Bravyi-Kitaev basis and
transformation. In Sec. VIII, we make an explicit compari-
son between the Bravyi-Kitaev transformation and the Jordan
Wigner transformation by simulating the Trotterization pro-
cedure. We close the paper with some conclusions about the
utility of the Bravyi-Kitaev transformation.

II. BACKGROUND

A. Fermionic systems and second quantization

We may describe fermionic systems using the formalism
of second quantization, in which n single-particle states can
be either empty or occupied by a spinless fermionic parti-
cle. In the context of quantum chemistry, these n states rep-
resent spin orbitals, ideally one-electron energy eigenfunc-
tions and often molecular orbitals found by the Hartree-Fock
method.29, 30 We consider a subspace of the full Fock space
which is spanned by 2n electronic basis states |fn−1 . . . f0〉,
where fj ∈ {0, 1} is the occupation number of orbital j (re-
stricted to these values due to the Pauli exclusion principle).
This is called the occupation number basis.

Any interaction of a fermionic system can be expressed
in terms of products of the creation and annihilation opera-
tors a

†
j and aj, for j ∈ {0, . . . , n − 1}. Due to the exchange

anti-symmetry of fermions, the action of a
†
j or aj introduces

a phase to the electronic basis state that depends on the oc-
cupancy of all orbitals with index less than j in the occupa-
tion number representation. (One can choose instead to de-
fine these operators so that it is the occupation of orbitals with
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index greater than j that determines the phase—the ordering
of orbitals is arbitrary.) These operators act on occupation
number basis vectors as follows:

a
†
j |fn−1 . . . fj+1 0 fj−1 . . . f0〉

= (−1)
∑j−1

s=0 fs |fn−1 . . . fj+1 1 fj−1 . . . f0〉, (1)

a
†
j |fn−1 . . . fj+1 1 fj−1 . . . f0〉 = 0, (2)

aj |fn−1 . . . fj+1 1 fj−1 . . . f0〉
= (−1)

∑j−1
s=0 fs |fn−1 . . . fj+1 0 fj−1 . . . f0〉, (3)

aj |fn−1 . . . fj+1 0 fj−1 . . . f0〉 = 0. (4)

The canonical fermionic anti-commutation relations enforce
the exchange anti-symmetry

[aj , ak]+ = 0, [a†
j , a

†
k]+ = 0, [aj , a

†
k]+ = δjk1, (5)

where the anti-commutator of operators A and B is defined by
[A, B]+ ≡ AB + BA.

The molecular electronic Hamiltonian of interest in the
electronic structure problem is

Ĥ =
∑
i,j

hij a
†
i aj + 1

2

∑
i,j,k,l

hijkl a
†
i a

†
j akal. (6)

The coefficients hij and hijkl are one- and two-electron overlap
integrals, which can be precomputed classically and input to
the quantum simulation as parameters.3, 11, 29

As an application of the techniques presented in this pa-
per (Sec. VII), we treat molecular hydrogen in a minimal
basis. Thus, we construct two spatial molecular orbitals by
taking linear combinations of the localized atomic spatial
wavefunctions: ψg = ψH1 + ψH2 and ψu = ψH1 − ψH2.
Here, the subscripts g and u stand for the German words
gerade and ungerade—even and odd. In general, one must
take a Slater determinant to determine the correctly anti-
symmetrized wavefunctions of the fermionic system, but in
this case we can guess them by inspection. The form of the
spatial wavefunctions is determined by the choice of basis set.
STO-3G is a commonly used Gaussian basis set—for further
details see Refs. 29 and 30.

Molecular spin orbitals are formed by taking the product
of these two molecular spatial orbitals with one of two or-
thogonal spin functions, |α〉 and |β〉. Thus, the four molecular
spin orbitals in our model of the hydrogen molecule (which
correspond to the operators a

(†)
j ) are

|χ0〉 = |ψg〉|α〉, |χ1〉 = |ψg〉|β〉, |χ2〉 = |ψu〉|α〉,
|χ3〉 = |ψu〉|β〉. (7)

In Sec. II B, we will review the occupation number basis and
the Jordan-Wigner transformation, which together have been
established as a standard method for mapping fermionic sys-
tems to quantum computers.3, 9, 11, 15

B. The Jordan-Wigner transformation

The form of electronic occupation number basis vectors
suggests the following identification between electronic basis
states on the left and states of our quantum computer:24

|fn−1 . . . f1 f0〉 → |qn−1〉 · · · ⊗ |q1〉 ⊗ |q0〉,
fj = qj ∈ {0, 1}. (8)

That is, we let the state of each qubit |qj〉 store fj, the occupa-
tion number of orbital j. We refer to this method of encoding
fermionic states as the occupation number basis for qubits.
The next step is to map fermionic creation and annihilation
operators onto operators on qubits.

We can form one-qubit creation and annihilation opera-
tors, Q̂+ and Q̂−, that act on qubits of our quantum computer
as follows:

Q̂+|0〉 = |1〉, Q̂+|1〉 = 0, Q̂−|1〉 = |0〉, Q̂−|0〉 = 0.

(9)

We could proceed by following the standard recipe for turn-
ing p-qubit quantum gates into operators acting on an n-qubit
quantum computer (n ≥ p) by taking the tensor product of the
gates acting on the target qubits with the identity acting on the
other (n − p) qubits. However, it is easy to show that the qubit
creation and annihilation operators formed in this way do not
obey the fermionic anti-commutation relations.

Expressing the qubit creation and annihilation operators
in terms of Pauli matrices suggests a way forward

Q̂+ = |1〉〈0| = 1
2 (σx − iσ y), Q̂− = |0〉〈1| = 1

2 (σx + iσ y).
(10)

The mutual anti-commutation of the three Pauli matrices al-
lows us to recognize that Q̂± anti-commutes with σ z. Thus,
if we represent the action of a

†
j or aj by acting with Q̂±

j and
with σ z on all qubits with index less than j, our qubit opera-
tors will obey the fermionic anti-commutation relations. Put
differently, the states of our quantum computer will acquire
the same phases under the action of our qubit operator as do
the electronic basis states under the action of the correspond-
ing creation or annihilation operator. The effect of the string
of σ z gates is to introduce the required phase change of −1 if
the parity of the set of qubits with index less than j is 1 (odd),
and to do nothing if the parity is 0 (even), where the parity
of a set of qubits is just the sum (mod2) of the numbers that
represent the states they are in.

We can then completely represent the fermionic creation
and annihilation operators in terms of basic qubit gates as
follows:

a
†
j ≡1⊗n−j−1 ⊗ Q̂+ ⊗ [σ z⊗j ],

aj ≡1⊗n−j−1 ⊗ Q̂− ⊗ [σ z⊗j ].
(11)

A more compact notation, of which we will make extensive
use throughout this paper, is

a
†
j ≡ Q̂+

j ⊗ Z→
j−1 = 1

2 (Xj ⊗ Z→
j−1 − iYj ⊗ Z→

j−1), (12)

aj ≡ Q̂−
j ⊗ Z→

j−1 = 1
2 (Xj ⊗ Z→

j−1 + iYj ⊗ Z→
j−1), (13)
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where

Z→
i ≡ σ z

i ⊗ σ z
i−1 ⊗ · · · σ z

1 ⊗ σ z
0 , (14)

and where it is assumed that any qubit not explicitly operated
on is acted on by the identity. The operator Z→

i is a “parity
operator” with eigenvalues ±1, corresponding to eigenstates
for which the subset of bits with index less than or equal to i
has even or odd parity, respectively.

The above correspondence, a mapping of in-
teracting fermions to spins, is the Jordan-Wigner
transformation.3, 10, 11, 31 Jordan and Wigner introduced
this transformation in 1928 in the context of 1D lattice
models, but it has since been applied to quantum simulation
of fermions.3, 9–11 The problem with this method is that as a
consequence of the non-locality of the parity operator Z→

i ,
the number of extra qubit operations required to simulate
a single fermionic operator scales as O(n). In Sec. III, we
consider two alternatives to the occupation number basis that
were suggested by Bravyi and Kitaev.13

III. ALTERNATIVES TO THE OCCUPATION
NUMBER BASIS

A. The parity basis

The extra qubit operations required to simulate one
fermionic operator when using the Jordan-Wigner method re-
sult from operating with σ z on all qubits with index less than
j. This task could be accomplished by a single application of
σ z if instead of using qubit j to store fj, we used qubit j to store
the parity of all occupied orbitals up to orbital j.13 That is, we
could let qubit j store pj = ∑j

s=0 fs . (Throughout this paper,
all sums of binary variables are taken mod2.) We follow13 and
call this encoding of fermionic states in qubit states the parity
basis.

It is useful to define the transformations between bases
we will consider in terms of maps between bit strings. For
all the transformations we consider, which involve only sums
of bits mod2, it is possible to represent their action by
matrices acting on the vector of bit values corresponding
to a given logical basis state. For example, the occupation
number basis state |f7. . . f1 f0〉 is equivalent to the following
vector:

(f7 . . . f1f0)T . (15)

In terms of these vectors, the map to the parity basis is
given by

pi =
∑

j

[πn]ij fj , (16)

where n is the number of orbitals. πn is the (n × n) matrix
defined below. Note that we index the matrix πn from the
lower right corner, for consistency with our orbital number-

ing scheme

[πn]ij =
{

1 i < j

0 i ≥ j
, so that πn =

⎛
⎜⎜⎜⎜⎝

1 1 · · · 1

0 1 · · · 1
...

...
. . .

...

0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ .

(17)

For example, to change the occupation number basis
state |10100111〉 into its corresponding parity basis state
|10011101〉, we act with the matrix π8 on the appropriate bit
string

f7 f6 f5 f4 f3 f2 f1 f0

p7

p6

p5

p4

p3

p2

p1

p0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
0
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
1
1
1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

With this understanding of the parity basis transformation, we
can now derive the transformation that maps fermionic op-
erators into operators in the parity basis. Since the parity of
the set of orbitals with index less than j is what determines
whether the action of a

(†)
j introduces a phase of −1, operating

with σ z on qubit (j − 1) alone will introduce the necessary
phase to the corresponding qubit state in the parity basis.

However, unlike the Jordan-Wigner transformation, we
cannot represent the creation or annihilation of a particle in
orbital j by simply operating with Q̂± on qubit j, because in
the parity basis qubit j does not store the occupation of orbital
j, but the parity of all orbitals with index less than or equal
to j. Thus, whether we need to act with Q̂+ or Q̂− on qubit
j depends on qubit (j − 1). If qubit (j − 1) is in the state |0〉,
then qubit j will accurately reflect the occupation of orbital j,
and simulating a

†
j will require acting on qubit j with Q̂+, as

before. But if qubit (j − 1) is in the state |1〉, then qubit j will
have inverted parity compared to the occupation of orbital j,
and we will instead need to act with Q̂− on qubit j to simulate
a
†
j (and vice versa for the annihilation operator).

The operator equivalent to Q̂± in the parity basis is there-
fore a two-qubit operator acting on qubits j and j − 1

P̂±
j ≡ Q̂±

j ⊗ |0〉〈0|j−1 − Q̂∓
j ⊗ |1〉〈1|j−1

= 1
2 (Xj ⊗ Zj−1 ∓ iYj ). (19)

Additionally, creating or annihilating a particle in orbital j
changes the parity data that must be stored by all qubits with
index greater than j. Thus, we must update the cumulative
sums pk for k > j by applying σ x to all qubits |pk〉, k > j.13

The representations of the creation and annihilation operators
in the parity basis are then

a
†
j ≡ X←

j+1 ⊗ P̂+
j = 1

2 (X←
j+1 ⊗ Xj ⊗ Zj−1 − iX←

j+1 ⊗ Yj ),

(20)
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aj ≡ X←
j+1 ⊗ P̂−

j = 1
2 (X←

j+1 ⊗ Xj ⊗ Zj−1 + iX←
j+1 ⊗ Yj ),

(21)

where

X←
i ≡ σx

n−1 ⊗ σx
n−2 ⊗ · · · σx

i+1 ⊗ σx
i . (22)

This is the equivalent of the Jordan-Wigner transformation
for the parity basis. The operator X←

i is the “update opera-
tor,” which updates all qubits that store a partial sum includ-
ing orbital (i − 1) when the occupation number of that or-
bital changes. It is straightforward to verify that these map-
pings satisfy the fermionic anti-commutation relations. But
to simulate fermionic operators in the parity basis, we have
traded the trailing string of σ z gates required by the Jordan-
Wigner transformation for a leading string of σ x gates whose
length also scales as O(n), and we have not improved on
the efficiency of the Jordan-Wigner simulation procedure. In
Sec. III B, we explore a third possibility.

B. The Bravyi-Kitaev basis

Two kinds of information are required to simulate
fermionic operators with qubits: the occupation of the target
orbital, and the parity of the set of orbitals with index less than
the target orbital. The previous two approaches are dual in
the way that they store this information. With the occupation
number basis and its associated Jordan-Wigner transforma-
tion, the occupation information is stored locally but the parity
information is non-local, whereas in the parity basis method
and its corresponding operator transformation, the parity in-
formation is stored locally but the occupation information is
non-local.

The Bravyi-Kitaev basis is a middle ground. That is, it
balances the locality of occupation and parity information
for improved simulation efficiency. The general form of such
a scheme must be to use qubits |bj〉 to store partial sums∑l

s=k fs of occupation numbers according to some algorithm.
For ease of explanation, in the exposition that follows, when
we write that a qubit “stores a set of orbitals,” what is meant
is that the qubit stores the parity of the set of occupation num-
bers corresponding to that set of orbitals.

Bravyi and Kitaev’s encoding has an elegant binary
grouping structure.13 In this scheme, qubits store the parity
of a set of 2x orbitals, where x ≥ 0. A qubit of index j always
stores orbital j. For even values of j, this is the only orbital
that it stores, but for odd values of j, it also stores a certain
set of adjacent orbitals with index less than j. Just as with the
parity basis transformation, this encoding can be symbolized
in a matrix βn that acts on bit string vectors corresponding
to occupation number basis vectors of length n to transform
them to the corresponding Bravyi-Kitaev-encoded bit strings
(again, all additions done mod2). In terms of these vectors,
the map from the occupation number basis to the Bravyi-
Kitaev basis is

bi =
∑

j

[βn]ij fj , (23)

where the matrix βn is given in Figure 2 below.

FIG. 2. The matrix βn that transforms occupation number basis vectors of
length n into the Bravyi-Kitaev basis. β1 is a (1 × 1) matrix with a single
entry of 1. Subsequent iterations of the matrix that act on occupation number
basis vectors of length 2x are constructed by taking 1 ⊗ β2x−1 and then filling
in the top row of the first quadrant of this matrix with 1’s. βn for 2x < n
< 2x+1 is just the (n × n) segment of β2x+1 that includes b0 through bn−1.
The recursion pattern for the inverse transformation matrix is also shown. An
entry of 1 in row bi, column fj means that bi is a partial sum including fj.

For example, to change the occupation number basis state
|10100111〉 into its corresponding Bravyi-Kitaev basis state
|10101101〉, we act with the matrix β8 on the appropriate bit
string vector

f7 f6 f5 f4 f3 f2 f1 f0

b7

b6

b5

b4

b3

b2

b1

b0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
0
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
1
1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

This encoding strikes a balance between the occupation
number basis and the parity basis methods. The parity of oc-
cupied orbitals up to orbital j is no longer stored in a single
qubit, but the Bravyi-Kitaev encoding stores the parity of or-
bitals with index less than j in a few partial sums whose num-
ber scales as O(log j) ≤ O(log n).13 Likewise, we no longer
need to update all the qubits with index greater than j, but
only those that store partial sums which include occupation
number j. Each occupation number enters an additional par-
tial sum only if the number of single particle states n is dou-
bled, and so the overall cost of simulating a single fermionic
operator with qubits scales as O(log n).13

Given this encoding, we need to determine—for an arbi-
trary index j—which qubits in the Bravyi-Kitaev basis store
the parity of all orbitals with index less than j, which qubits
store a partial sum including orbital j, and which qubits de-
termine whether qubit j has the same parity or inverted parity
with respect to orbital j. These sets of indices will allow us
to explicitly construct the fermionic creation and annihilation
operators in the Bravyi-Kitaev basis. In Sec. IV, we define
these sets of qubit indices.

IV. SETS OF QUBITS RELEVANT
TO THE BRAVYI-KITAEV BASIS

In this section, we define the sets of qubits that are in-
volved in the Bravyi-Kitaev transformation. These are the par-
ity set (the qubits in the Bravyi-Kitaev basis that store the
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parity of all orbitals with index less than j), the update set (the
qubits that store a partial sum including orbital j), and the flip
set (the qubits that determine whether qubit j has the same
parity as orbital j).

A. The parity set

For an arbitrary index j, we would like to know which
set of qubits in the Bravyi-Kitaev basis tells us whether or not
the state of the quantum computer needs to acquire a phase
change of −1 under the action of a creation or annihilation
operator acting on orbital j. The parity of this set of qubits has
the same parity as the set of orbitals with index less than j,
and so we will call this set of qubit indices the “parity set” of
index j, or P(j). To determine the elements of P(j), we con-
sider the transformation from the Bravyi-Kitaev basis to the
parity basis. From Eq. (16), we know that pi = ∑

j[πn]ij fj.
Given the inverse transformation matrix β−1

n , it is also true
that

fj =
∑

k

[
β−1

n

]
jk

bk, (25)

and hence

pi = ∑
j [πn]ij

(∑
k

[
β−1

n

]
jk

bk

)
, (26)

= ∑
k

[
πnβ

−1
n

]
ik

bk. (27)

The matrix πnβ
−1
n is the transformation matrix from the

Bravyi-Kitaev basis to the parity basis. Therefore, the nonzero
entries to the right of the main diagonal in row i of the matrix
πnβ

−1
n give the indices of qubits in the Bravyi-Kitaev basis

that can be used to compute the cumulative parity of orbitals
with index less than i. An entry of 1 in row i, column j of
πnβ

−1
n (where j < i, i.e., to the right of the main diagonal by

our numbering) indicates that j ∈ P(i)

7 6 5 4 3 2 1 0

π8β
−1
8 =

7

6

5

4

3

2

1

0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 0 0 0

0 1 1 0 1 0 0 0

0 0 1 1 1 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 1 1 1 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which implies :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (7) = {6, 5, 3}
P (6) = {5, 3}
P (5) = {4, 3}
P (4) = {3}
P (3) = {2, 1}
P (2) = {1}
P (1) = {0}
P (0) = ∅

. (28)

B. The update set

For arbitrary j, we define the set of qubits (other than
qubit j) that must be updated when the occupation of orbital j
changes. We call this set the “update set” of index j, or U(j).
This is the set of qubits in the Bravyi-Kitaev basis that store a
partial sum including orbital j. Any Bravyi-Kitaev qubit that
stores a partial sum that includes occupation number j is in
U(j). Since even indexed qubits store only the occupation of
the corresponding orbital, update sets contain only odd in-
dices. It is straightforward to determine the elements of U(j)
from the transformation matrix βn that maps bit strings in
the occupation number basis to the Bravyi-Kitaev basis. The
columns of this transformation matrix show which qubits in
the Bravyi-Kitaev basis store a particular orbital, and so the
nonzero entries in column j above the main diagonal deter-
mine the qubits other than qubit j that must be updated when
the occupancy of orbital j changes. These are the elements of
the update set

f7 f6 f5 f4 f3 f2 f1 f0

β8 =

b7

b6

b5

b4

b3

b2

b1

b0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which implies :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U (7) = ∅
U (6) = {7}
U (5) = {7}
U (4) = {5, 7}
U (3) = {7}
U (2) = {3, 7}
U (1) = {3, 7}
U (0) = {1, 3, 7}

. (29)

It should be clear that update sets depend on the size of
the basis used. For example, if 16 basis functions were used
instead of the 8 used in the example above, all the update sets
other than U(15) would also include index 15.

C. The flip set

For arbitrary j, we need to know what set of Bravyi-
Kitaev qubits determines whether qubit j has the same parity
or inverted parity with respect to orbital j. We will call this
set of Bravyi-Kitaev qubits the “flip set” of j, or F(j), because
this set is responsible for whether bj has flipped parity with
respect to fj. This is the set that stores the parity of occupa-
tion numbers other than fj in the sum bj. Since even-indexed
qubits store only the orbital with the same index, the flip set
of even indices is always the empty set. One can determine
the elements of F(j) by looking at the inverse transformation
matrix β−1

n that maps bit strings in the Bravyi-Kitaev basis to
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the occupation number basis. The columns with nonzero en-
tries to the right of the main diagonal in row i of this inverse
transformation matrix give the indices of the Bravyi-Kitaev
qubits that together store the same set of orbitals as is stored
by |bi〉. These are the elements of the flip set

b7 b6 b5 b4 b3 b2 b1 b0

β−1
8 =

f7

f6

f5

f4

f3

f2

f1

f0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 1 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which implies :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (7) = {6, 5, 3}
F (6) = ∅
F (5) = {4}
F (4) = ∅
F (3) = {2, 1}
F (2) = ∅
F (1) = {0}
F (0) = ∅

. (30)

With these sets defined, we can derive the mapping from
fermionic operators to qubit operators that is the equivalent
of the Jordan-Wigner transformation in the Bravyi-Kitaev ba-
sis.

V. THE BRAVYI-KITAEV TRANSFORMATION

In this section, we will give an explicit prescription, in
terms of Pauli matrices, for representing the creation and an-
nihilation operators that act on the Bravyi-Kitaev basis states.
Operating in this basis requires that we find the analogues
to the qubit creation and annihilation operators (Q̂± in the
occupation number basis, P̂± in the parity basis) as well as
the parity operator, Z→

i , and the update operator, X←
i , in the

Bravyi-Kitaev basis. We will first define some notation.
For our purposes, it is the parity of subsets of orbitals

or qubits that matters, not the individual occupation numbers
or states of the qubits in the set. Thus, it is useful to define
operators that project onto the subspace of the Hilbert space of
the entire computer for which the subset of qubits with indices
in S has the parity selected for by the operator (even for ÊS ,
odd for ÔS). We can express these operators in terms of Pauli
matrices as follows:

ÊS = 1

2
(1 + ZS), ÔS = 1

2
(1 − ZS), (31)

where ZS is shorthand for the σ z gate applied to all qubits in
S. With this notation established, we will next write equations
for the qubit operators in the Bravyi-Kitaev basis that repre-
sent creation and annihilation operators acting on orbital j. To
begin we will consider the case for which j is even, because
this will allow us to build intuition for the more difficult case
for which j is odd.

A. Representing a(†)
j in the Bravyi-Kitaev basis

for j even

In the case that j is even, we should act with Q̂± on qubit
j, just as for the Jordan-Wigner transformation, because the
Bravyi-Kitaev encoding stores orbitals with j = 0 (mod2) in
the qubit with the same index. There are then two additional
tasks that dictate how to represent the fermionic operators in
the Bravyi-Kitaev basis: determining the parity of occupied
orbitals with index less than j, and updating qubits with index
greater than j that store a partial sum that includes occupation
number j.

The parity of the set of qubits in P(j) is equal to that of
the set of orbitals with index less than j. By analogy with the
Jordan-Wigner transformation, we act with σ z on all qubits
with indices in P(j), that is, we apply the operator ZP(j). The
number of qubits in P(j) scales as O(log j) ≤ O(log n).13

Second, by analogy with the parity basis method, we also
act with σ x on all qubits in the appropriate U(j); that is, we
apply the operator XU(j). This has the effect of updating all the
qubits that store a set of orbitals including orbital j. The size
of U(j) also scales like O(log n).13 To summarize: to represent
a
†
j or aj in the Bravyi-Kitaev basis, for j even, we act with σ z

on all qubits in P(j), Q̂± on qubit j, and with σ x on all qubits
in U(j)

a
†
j ≡ XU (j ) ⊗ Q̂+

j ⊗ ZP (j )

= 1
2 (XU (j ) ⊗ Xj ⊗ ZP (j ) − iXU (j ) ⊗ Yj ⊗ ZP (j )),

(32)

aj ≡ XU (j ) ⊗ Q̂−
j ⊗ ZP (j )

= 1
2 (XU (j ) ⊗ Xj ⊗ ZP (j ) + iXU (j ) ⊗ Yj ⊗ ZP (j )).

(33)

In Sec. V B, we will consider the case for which j is odd.

B. Representing a(†)
j in the Bravyi-Kitaev basis

for j odd

To represent the creation or annihilation of a particle in
orbital j in the Bravyi-Kitaev basis, for j even, we could sim-
ply act with Q̂± on qubit j because that qubit stores only the
occupation of orbital j. For j odd, qubit j stores a partial sum
of occupation numbers of orbitals including, but not limited
to, orbital j. Thus, in this case the state of Bravyi-Kitaev qubit
j is either equal to the occupation of orbital j (if the parity of
the other orbitals that it stores is even), or opposite to that of
orbital j (if the parity of the other orbitals that it stores is 1).
Thus, whether representing the creation or annihilation of a
particle in orbital j requires that we act with Q̂+ or Q̂− on
qubit j in the Bravyi-Kitaev basis depends on the parity of all
occupation numbers other than fj that are included in the par-
tial sum bj—i.e., the parity of the flip set of index j. If the
parity of the set of qubits with indices in F(j) is even, then
the creation or annihilation of a particle in orbital j requires
acting with Q̂+ or Q̂−, respectively, as usual. But if the par-
ity of this set of qubits is odd, then the creation of a particle
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requires acting with Q̂− and the annihilation of a particle re-
quires acting with Q̂+. The Bravyi-Kitaev analogues to the
qubit creation and annihilation operators are therefore

	̂±
j ≡ Q̂±

j ⊗ ÊF (j ) − Q̂∓
j ⊗ ÔF (j ) = 1

2 (Xj ⊗ ZF (j ) ∓ iYj ).
(34)

The updating procedure in this case in which j is odd works
in exactly the same way as it does in the case that j is even. In
applying the parity operator, however, we need only consider
the qubits that are in P(j) but not in F(j), because the relative
sign in the 	̂±

j operator implicitly calculates the parity of the
subset of the parity set that is also in the flip set of index j. It
is convenient to therefore introduce the new “remainder set”

R(j ) ≡ P (j )\F (j ). (35)

Thus, the fermionic creation and annihilation operators acting
on orbital j for j odd are represented in the Bravyi-Kitaev basis
as follows:

a
†
j ≡ XU (j ) ⊗ 	̂+

j ⊗ ZR(j )

= 1
2 (XU (j ) ⊗ Xj ⊗ ZP (j ) − iXU (j ) ⊗ Yj ⊗ ZR(j )),

(36)

aj ≡ XU (j ) ⊗ 	̂−
j ⊗ ZR(j )

= 1
2 (XU (j ) ⊗ Xj ⊗ ZP (j ) + iXU (j ) ⊗ Yj ⊗ ZR(j )).

(37)

It is evident by inspection that the only difference in the
algebraic form of the operators between the even- and odd-
indexed cases is that the second term involves ZP(j) for the
even case, but ZR(j) for the odd case. Therefore, we define

ρ(j ) ≡
{

P (j ) if j is even,

R(j ) if j is odd.
(38)

Now the fermionic creation and annihilation operators
acting on arbitrary j are represented in the Bravyi-Kitaev basis
as

a
†
j ≡ XU (j ) ⊗ 	̂+

j ⊗ ZR(j )

= 1
2 (XU (j ) ⊗ Xj ⊗ ZP (j ) − iXU (j ) ⊗ Yj ⊗ Zρ(j )),

(39)

aj ≡ XU (j ) ⊗ 	̂−
j ⊗ ZR(j )

= 1
2 (XU (j ) ⊗ Xj ⊗ ZP (j ) + iXU (j ) ⊗ Yj ⊗ Zρ(j )).

(40)

These are useful basic results, but the operators that
appear in the molecular electronic Hamiltonian are actu-
ally products of these creation and annihilation operators. In
Sec. VI, we derive general expressions for products of these
second-quantized operators.

TABLE I. The five classes of Hermitian second quantized operators that
appear in electronic Hamiltonians. In general, the overlap integrals hij and
hijkl may be complex.

Operator Second quantized form

Number operator hii a
†
i ai

Coulomb/exchange operators hijji a
†
i a

†
j aj ai

Excitation operator hij (a†i aj + a
†
j ai )

Number-excitation operator hijjk (a†i a
†
j aj ak + a

†
ka

†
j aj ai )

Double excitation operator hijkl (a†i a
†
j akal + a

†
l a

†
kaj ai )

VI. PAULI REPRESENTATIONS
OF SECOND-QUANTIZED OPERATORS
IN THE BRAVYI-KITAEV BASIS

In this section, we derive simplified algebraic expressions
for classes of Hermitian second-quantized fermionic opera-
tors in the Bravyi-Kitaev basis. The five relevant classes of
operators are summarized in Table I. We will give complete
compact algebraic expressions for only the number operators
and the Coulomb and exchange operators. It is not possible
to give the algebraic form for the remaining three classes of
operators without considering an impractical number of sub-
cases, so we opt to give general expressions for products of
the form a

†
i aj , and show how to use these results to generate

algebraic expressions for the remaining classes of operators.

A. Number operators: hii a†
i ai

The number operators are of the form hii a
†
i ai and have

eigenvalues corresponding to the occupation number of or-
bital i. We would like to find a simplified expression for this
class of operators in the Bravyi-Kitaev basis.

Given the results of Sec. V, we can write the following:

a
†
i ai = 1

2 (XU (i) ⊗ Xi ⊗ ZP (i) − iXU (i) ⊗ Yi ⊗ Zρ(i))

× 1
2 (XU (i) ⊗ Xi ⊗ ZP (i) + iXU (i) ⊗ Yi ⊗ Zρ(i)).

(41)

Given that σxσ x = σyσ y = σ zσ z = 1, it follows that
(XS)2 = (YS)2 = (ZS)2 = 1. We are left with

a
†
i ai = 1

4 [1 + i(XiYi) ⊗ ZP (i)\ρ(i) − i(YiXi) ⊗ ZP (i)\ρ(i) +1],

(42)

= 1
2 (1 − Zi ⊗ ZP (i)\ρ(i)). (43)

Now, when i is even, ρ(i) = P(i), and so P(i)\ρ(i) = ∅. When
i is odd, ρ(i) = R(i), and so P(i)\ρ(i) = F(i). Conveniently,
F(i) = ∅ for i even, so if we define the following:

F (i) ≡ F (i) ∪ {i}, (44)

then we can represent the number operators for arbitrary i
(even or odd) as follows:

a
†
i ai = 1

2 (1 − ZF (i)). (45)

In Sec. VI B, we consider the Coulomb and exchange
operators.
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B. Coulomb and exchange operators: hijji a†
i a†

j ajai

The Coulomb operators are of the form a
†
i a

†
j ajai ,

while the exchange operators are of the form a
†
i a

†
j aiaj

= −a
†
i a

†
j ajai . Since these two kinds of operators can be

grouped together algebraically, we consider them as one
case. The fermionic anti-commutation relations ensure that
a
†
i a

†
j ajai = −a

†
i a

†
j aiaj = (a†

i ai)(a
†
j aj ). Thus, we can con-

sider the Coulomb and exchange operators as a product of
two number operators. With the result from Sec. VI A, we
can write the following:

a
†
i a

†
j ajai = 1

2 (1 − ZF (i)) × 1
2 (1 − ZF (j )), (46)

= 1
4 (1 − ZF (i) − ZF (j ) + ZF (i)ZF (j )). (47)

Any overlap between supp(ZF (i)) and supp(ZF (j )), where

supp(Ô) is the support of the operator Ô, i.e., those tensor
factors on which it acts nontrivially, will result in the local
product σ zσ z = 1. Thus, we only actually need to act with σ z

on the union of F (i) and F (j ) minus their intersection, i.e.,
the symmetric difference of these two sets. Thus, we define
the following notation:

Fij ≡ F (i) � F (j ) = (F (i) ∪ F (j ))\(F (i) ∩ F (j )). (48)

We can then give the algebraic expression for the Coulomb
and exchange operators

a
†
i a

†
j aj ai = 1

4 (1 − ZF (i) − ZF (j ) + ZFij
). (49)

In Sec. VI C, we consider general products of the form a
†
i aj .

C. Products of the form a†
i aj

We can assume without loss of generality that i < j. The
algebraic form for products of this kind depends on the parity
of the indices. There are four cases and we will work through
the first case in detail, and simply present the results for the
other cases.

Using the result of Sec. V, we obtain the following when
i and j are even:

a
†
i aj = 1

2 (XU (i) ⊗ Xi ⊗ ZP (i) − iXU (i) ⊗ Yi ⊗ ZP (i))

× 1
2 (XU (j ) ⊗ Xj ⊗ ZP (j ) + iXU (j ) ⊗ Yj ⊗ ZP (j )).

(50)

For each of the four terms resulting from multiplying out
the operators in Eq. (50) above, we must consider what prod-
ucts of local qubit operators can result. There are three poten-
tial sources of local qubit operator products: overlap between
the update set of qubit i and the update set of qubit j, overlap
between the update set of qubit i and the parity set of qubit
j, and overlap between the parity set of qubit i and the parity
set of qubit j. Any overlap between the update sets of qubits
i and j will result in the local product σxσ x = 1; any overlap
between the update set of qubit i and parity set of qubit j will
result in the local product ±iσ y; and any overlap in the parity

sets of qubits i and j will result in the local product σ zσ z = 1.
Thus, we define the following sets:

Uij ≡ U (i) � U (j ), αij ≡ U (i) ∩ P (j ),

P 0
ij ≡ P (i) � P (j ). (51)

Note that in the case that i and j are even, we do not need
to consider the possibility that j ∈ U(i) because U(i) contains
only odd elements. Similarly, we do not need to consider the
possibility that i ∈ P(j), because P(j) for j even contains only
odd elements.

As an example, we will show how to use the sets defined
above to simplify the term (XU(i) ⊗ Xi ⊗ ZP(i))(XU(j) ⊗ Xj

⊗ ZP(j)). For this term, we need only apply σ x to the set of
qubits Uij\αij∪{i, j}, σ y to the qubit with index in αij (which
set in general has at most 1 element, and in the case that i and
j are even always contains 1 element), and σ z to the qubits in
the set P 0

ij\αij . Thus, this term simplifies to

(XU (i) ⊗ Xi ⊗ ZP (i))(XU (j ) ⊗ Xj ⊗ ZP (j ))

= −i XUij \αij ∪{i,j}Yαij
ZP 0

ij \αij
. (52)

Using the same reasoning for the other terms, we arrive at the
following result:

a
†
i aj = 1

4XUij \αij
Yαij

ZP 0
ij \αij

[YjXi −XjYi − i(XjXi +YjYi)].
(53)

This is our result for the case that i and j are even. The al-
gebraic expressions for the other cases can be derived in the
same manner, with the added complication that the expression
for the product a

†
i aj varies, depending on if i ∈ P(j) and/or

j ∈ U(i). This complication results in a proliferation of sub-
cases: two for the case that i is odd and j is even, three for the
case that i is even and j is odd, and four for the case that i and
j are odd. The only additional sets we need to define are the
analogs of P 0

ij for when one or both of the indices are odd

P 1
ij ≡ P (i) � R(j ), P 2

ij ≡ R(i) � P (j ),

P 3
ij ≡ R(i) � R(j ). (54)

The results for all cases are summarized below in Table II. In
Subsections VI D–VI F, we show how to use the contents of
Table II to generate algebraic expressions for the excitation
operators, the number-excitation operators, and the double-
excitation operators.

D. Excitation operators: hij (a†
i aj + a†

j ai )

Providing for the possibility that the integral hij is com-
plex, we can write

hij (a†
i aj + a

†
j ai)

= �{hij }(a†
i aj + a

†
j ai) + �{hij }(a†

i aj − a
†
j ai). (55)
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TABLE II. The algebraic expressions for general products of the form a
†
i aj in the Bravyi-Kitaev basis. These expressions vary in form depending on the parity

of the indices i and j, as well as on the overlaps between the parity and update sets of the indices. The notation OS is shorthand to indicate that the operator O
does not operate on the qubits in the set S (i.e., Z

P 0
ij
Zj = Z

P 0
ij

\j ).

Conditions

Index parity i ∈ P(j) j ∈ U(i) |αij| Algebraic expression for a
†
i aj

i, j even No No 1 1
4 XUij \αij

Yαij
Z

P 0
ij

\αij
[YjXi − XjYi − i(XjXi + YjYi )]

i odd, j even No No 1 1
4 XUij \αij

Yαij
Zαij

[(YjXi − iXjXi ) Z
P 0

ij
− (XjYi + iYj Yi ) ZP 2

ij
]

Yes No 0 1
4 XUij

Zi [(YjYi − iXjXiYi ) Z
P 0

ij
+ (XjXi + iYj Xi ) ZP 2

ij
]

i even, j odd No No 1 1
4 XUij \αij

Yαij
Zαij

[−(XjYi + iXjXi ) Z
P 0

ij
+ (Yj Xi − iYj Yi ) ZP 1

ij
]

No Yes 1 1
4 XUij \j [−Xαij

(Yi − iXi ) Yαij
Z

P 0
ij

\αij
+ (iYi − Xi ) ZP 1

ij
∪j ]

Yes Yes 0 1
4 XUij \j [(Xi − iYi ) + (iYi − Xi ) ZP 1

ij
∪j ]

i, j odd No No 1 1
4 XUij \αij

Yαij
Zαij

[−iXjXiZP 0
ij

+ Yj XiZP 1
ij

− XjYiZP 2
ij

− iYj YiZP 3
ij

]

Yes No 0 1
4 XUij

Zi [(−iXjYiZP 0
ij

+ Yj YiZP 1
ij

) + XjXiZP 2
ij

+ iYjXiZP 3
ij

]

No Yes 1 1
4 XUij \j [−Xαij

(YiZP 2
ij

+ iXiZP 0
ij

)Yαij
Zαij

− (XiZP 1
ij

− iYiZP 3
ij

)Zj ]

Yes Yes 0 1
4 XUij \j [Zi (−iYiZP 0

ij
+ XiZP 2

ij
) + Zj (−XiZP 1

ij
+ iYiZP 3

ij
)]

Applying this to the case when i and j are even, we find the
following:

hij (a†
i aj + a

†
j ai)

= 1
2XUij \αij

Yαij
ZP 0

ij \αij
[�{hij }(YjXi − XjYi)

+�{hij }(XjXi + YjYi)]. (56)

Similar expressions for other cases are easily generated by
taking the appropriate form of a

†
i aj from Table II.

E. Number-excitation operators:
hijjk (a†

i a†
j ajak + a†

k a†
j ajai )

Due to the fermionic anti-commutation relations, the fol-
lowing is true:

a
†
i a

†
j ajak + a

†
ka

†
j ajai = (a†

i ak + a
†
kai)(a

†
j aj ). (57)

We see that this is simply a product of an excitation operator
and a number operator. We have previously given algebraic
expressions for both of these classes of operators, so it is not
difficult to combine them for an expression for the number-
excitation operators. Let us consider the example when i and
k are even. Then we have the following:

hijjk (a†
i ak + a

†
kai)a

†
j aj

= 1
2XUik\αik

Yαik
ZP 0

ik\αik
[�{hijjk}(YkXi − XkYi)

+�{hijjk}(XkXi + YkYi)] × 1

2
(1 − ZF (j )). (58)

To simplify, all we need to consider is the intersection be-
tween F (j ) and the support of (a†

i ak + a
†
kai). In this case, the

support of the excitation operator is Uik ∪ αik ∪ P 0
ik ∪ {i, k}.

The form of the simplification will vary depending on these
sets, but the process of reducing local operator products by
exploiting the relationship between the three Pauli matrices
is unchanged. In the cases when i and k are not both even,
all that changes is the form of the excitation operator from
Table II that must be used.

F. Double-excitation operators:
hijk l (a†

i a†
j ak al + a†

l a†
k ajai )

The double-excitation operators involve four distinct in-
dices, and are obviously the most algebraically complicated
class of operators we are considering. The impractical num-
ber of sub-cases depending on the specific combination of in-
dices i, j, k, l means that we only outline the procedure for
deriving algebraic expressions for this class of operators. The
fermionic commutation relations ensure that the following is
true:

(a†
i a

†
j akal + a

†
l a

†
kajai) = (a†

i al)(a
†
j ak) + (a†

l ai)(a
†
kaj ). (59)

Allowing for the integral hijkl to be complex, we can write

hijkl (a†
i a

†
j akal + a

†
l a

†
kajai)

= [�{hijkl}(a†
i ala

†
j ak + a

†
l aia

†
kaj )

+�{hijkl} (a†
i ala

†
j ak − a

†
l aia

†
kaj )]. (60)

Since (a†
i ala

†
j ak)† = a

†
l aia

†
kaj , we can simply consider the al-

gebraic expression for the product of two operators of the
form a

†
i aj as given in Table II, and then add or subtract it to

its Hermitian conjugate. Each of the operators a
†
i al and a

†
j ak

will fit into one of the ten cases presented in Table II. In mul-
tiplying out the algebraic expressions for these two products,
what is important is the set {supp(a†

i al) ∩ supp(a†
j ak)}. Any

qubits in this set will have a product of local operators acting
on it which must be simplified.

VII. THE MOLECULAR ELECTRONIC HAMILTONIAN
FOR THE HYDROGEN MOLECULE IN THE
BRAVYI-KITAEV BASIS

The molecular electronic Hamiltonian (6) may be divided
into one and two-electron terms

Ĥ =
∑
i,j

hij a
†
i aj + 1

2

∑
i,j,k,l

hijkla
†
i a

†
j akal = Ĥ (1) + Ĥ (2).

(61)
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TABLE III. The overlap integrals for molecular hydrogen in a minimal ba-
sis. The integrals were obtained through a restricted Hartree-Fock calculation
in the PyQuante quantum chemistry package at an internuclear separation of
1.401000 a.u. (7.414 × 10−11 m).

Integrals Value (a.u.)

h00 = h11 − 1.252477
h22 = h33 − 0.475934
h0110 = h1001 0.674493
h2332 = h3223 0.697397
h0220 = h0330 = h1221 = h1331 0.663472
=h2002 = h3003 = h2112 = h3113

h0202 = h1313 = h2130 = h2310 = h0312 = h0132 0.181287

We treat molecular hydrogen in a minimal basis, so the
sums above run over the four spin orbitals defined above.
These spin orbitals will be indexed 0 through 3, as will be the
fermionic creation and annihilation operators. We derive the
simplified expressions for the individual terms of this Hamil-
tonian in the Bravyi-Kitaev basis. The overlap integrals hij and
hijkl for 0 ≤ i ≤ 3 are given in Table III. These are the same as
were used in Ref. 11 and were calculated using a restricted
Hartree-Fock calculation in the PyQuante quantum chem-
istry package.32 With these integrals and the algebraic ex-
pressions for second quantized operators given in Sec. VI, we
can express the molecular electronic Hamiltonian for H2 as a
sum of products of Pauli matrices. In Subsections VII A and
VII B, we consider the one- and two-electron Hamiltonians
separately.

A. The Bravyi-Kitaev Pauli representation of Ĥ(1)

We can write the one-electron terms in the Hamiltonian
as

Ĥ (1) = h00a
†
0a0 + h11a

†
1a1 + h22a

†
2a2 + h33a

†
3a3. (62)

Using the expressions for number operators derived in Sec. V,
we know that in the Bravyi-Kitaev basis, these operators are

a
†
0a0 = 1

2

(
1 − σ z

0

)
, (63)

a
†
1a1 = 1

2

(
1 − σ z

1 σ z
0

)
, (64)

a
†
2a2 = 1

2

(
1 − σ z

2

)
, (65)

a
†
3a3 = 1

2

(
1 − σ z

3 σ z
2 σ z

1

)
. (66)

We now proceed to the simulation of Ĥ (2).

B. The Bravyi-Kitaev Pauli representation of Ĥ(2)

Following the work of Whitfield et al.,11 Ĥ (2) simplifies
to the following expression for molecular hydrogen in a min-

imal basis:

Ĥ (2) = h0110a
†
0a

†
1a1a0 + h2332a

†
2a

†
3a3a2 + h0330a

†
0a

†
3a3a0

+h1221a
†
1a

†
2a2a1 + (h0220 − h0202)a†

0a
†
2a2a0

+ (h1331 − h1313)a†
1a

†
3a3a1 + h0132(a†

0a
†
1a3a2

+ a
†
2a

†
3a1a0) + h0312(a†

0a
†
3a1a2 + a

†
2a

†
1a3a0). (67)

This term in the Hamiltonian is made up of six
Coulomb/exchange operators and two double-excitation op-
erators. Using Sec. VI, it is easy to give algebraic expressions
for the Coulomb and exchange operators

a
†
0a

†
1a1a0 = 1

4

(
1 − σ z

0 − σ z
1 σ z

0 + σ z
1

)
, (68)

a
†
2a

†
3a3a2 = 1

4

(
1 − σ z

2 − σ z
3 σ z

2 σ z
1 + σ z

3 σ z
1

)
, (69)

a
†
0a

†
3a3a0 = 1

4

(
1 − σ z

0 − σ z
3 σ z

2 σ z
1 + σ z

3 σ z
2 σ z

1 σ z
0

)
, (70)

a
†
1a

†
2a2a1 = 1

4

(
1 − σ z

2 − σ z
1 σ z

0 + σ z
2 σ z

1 σ z
0

)
, (71)

a
†
0a

†
2a2a0 = 1

4

(
1 − σ z

2 − σ z
0 + σ z

2 σ z
0

)
, (72)

a
†
1a

†
3a3a1 = 1

4

(
1 − σ z

3 σ z
2 σ z

1 − σ z
1 σ z

0 + σ z
3 σ z

2 σ z
0

)
. (73)

The two double-excitation operators are somewhat more com-
plicated. As an example, we will derive the Pauli representa-
tion of h0312(a†

0a
†
3a1a2 + a

†
2a

†
1a3a0). Following in Sec. VI, we

consider a
†
0a

†
3a1a2 as (a†

0a2)(a†
3a1), a product of two operators

of the form a
†
i aj . The term a

†
0a2 is of the type when i and j are

both even, while the term a
†
1a3 is of the type when i and j are

odd, and i ∈ P(j), j ∈ U(i), and |αij| = 0. Using the appropriate
expressions from Table II, we find the following:

a
†
0a2 = 1

4

(
σ

y

2 σ
y

1 σx
0 − σx

2 σ
y

1 σ
y

0 − iσ x
2 σ

y

1 σx
0 − iσ

y

2 σ
y

1 σ
y

0

)
,

(74)

a
†
1a3 = 1

4

( − iσ z
2 σ

y

1 σ z
0 + σ z

2 σx
1 − σ z

3 σx
1 σ z

0 + iσ z
3 σ

y

1

)
. (75)

Now we note that supp(a†
0a2) ∩ supp(a†

1a3) ={2, 1, 0},
and so we must expect to simplify local operator products on
qubits with these indices. Taking the product, we find the fol-
lowing:

a
†
0a2a

†
1a3

= 1
16

(
σx

2 σx
0 − iσ x

2 σ
y

0 + σx
2 σ z

1 σx
0 − iσ x

2 σ z
1 σ

y

0

+ iσ
y

2 σx
0 + σ

y

2 σ
y

0 + iσ
y

2 σ z
1 σx

0 + σ
y

2 σ z
1 σ

y

0

+ σ z
3 σx

2 σx
0 − iσ z

3 σx
2 σ

y

0 + σ z
3 σx

2 σ z
1 σx

0 − iσ z
3 σx

2 σ z
1 σ

y

0

+ iσ z
3 σ

y

2 σx
0 + σ z

3 σ
y

2 σ
y

0 + iσ z
3 σ

y

2 σ z
1 σx

0 + σ z
3 σ

y

2 σ z
1 σ

y

0

)
.

(76)
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Since the integral h0132 is real, we can simply add the above result to its Hermitian conjugate to find the expression for
the double-excitation operator. Repeating the above procedure for the second double excitation operator, we arrive at the
following results:

a
†
0a

†
3a1a2 + a

†
2a

†
1a3a0 = 1

8

( − σx
2 σx

0 + σx
2 σ z

1 σx
0 − σ

y

2 σ
y

0 + σ
y

2 σ z
1 σ

y

0 − σ z
3 σx

2 σx
0

+ σ z
3 σx

2 σ z
1 σx

0 − σ z
3 σ

y

2 σ
y

0 + σ z
3 σ

y

2 σ z
1 σ

y

0

)
, (77)

a
†
0a

†
1a3a2 + a

†
2a

†
3a1a0 = 1

8

(
σx

2 σx
0 + σx

2 σ z
1 σx

0 + σ
y

2 σ
y

0 + σ
y

2 σ z
1 σ

y

0 + σ z
3 σx

2 σx
0

+ σ z
3 σx

2 σ z
1 σx

0 + σ z
3 σ

y

2 σ
y

0 + σ z
3 σ

y

2 σ z
1 σ

y

0

)
. (78)

Thus, using the integrals from Table III and the Pauli expressions for the number operators derived in Sec. VII A, as
well as the Coulomb/exchange operators and the double-excitation operators derived in this section, we can represent the
molecular electronic Hamiltonian for the hydrogen molecule as a sum of products of Pauli matrices in the Bravyi-Kitaev
basis

ĤBK = −0.81261 1 + 0.171201 σ z
0 + 0.16862325 σ z

1 − 0.2227965 σ z
2 + 0.171201 σ z

1 σ z
0

+ 0.12054625 σ z
2 σ z

0 + 0.17434925 σ z
3 σ z

1 + 0.04532175 σx
2 σ z

1 σx
0 + 0.04532175 σ

y

2 σ z
1 σ

y

0

+ 0.165868 σ z
2 σ z

1 σ z
0 + 0.12054625 σ z

3 σ z
2 σ z

0 − 0.2227965 σ z
3 σ z

2 σ z
1

+ 0.04532175 σ z
3 σx

2 σ z
1 σx

0 + 0.04532175 σ z
3 σ

y

2 σ z
1 σ

y

0 + 0.165868 σ z
3 σ z

2 σ z
1 σ z

0 . (79)

This Hamiltonian is isospectral to the Jordan-Wigner derived Hamiltonian11

ĤJW = −0.81261 1 + 0.171201 σ z
0 + 0.171201 σ z

1 − 0.2227965 σ z
2 − 0.2227965 σ z

3

+ 0.16862325 σ z
1 σ z

0 + 0.12054625 σ z
2 σ z

0 + 0.165868 σ z
2 σ z

1 + 0.165868 σ z
3 σ z

0

+ 0.12054625 σ z
3 σ z

1 + 0.17434925 σ z
3 σ z

2 − 0.04532175 σx
3 σx

2 σ
y

1 σ
y

0

+ 0.04532175 σx
3 σ

y

2 σ
y

1 σx
0 + 0.04532175 σ

y

3 σx
2 σx

1 σ
y

0 − 0.04532175 σ
y

3 σ
y

2 σx
1 σx

0 . (80)

Writing the electronic Hamiltonians in the form of
Eqs. (79) and (80) allows for a comparison of the compu-
tational resources required to simulate them on a quantum
computer. Not all tensor products of Pauli matrices that appear
in these Hamiltonians commute with one another, so expo-
nentiating them requires the use of a Trotter approximation.
Section VIII details the Trotterization process for the
Hamiltonian in the Bravyi-Kitaev basis.

VIII. TROTTERIZATION

Ideally, one could simulate the propagator e−iĤ t , where
Ĥ = ∑

k hk , by sequentially exponentiating the individual
terms hk on a quantum simulator. However, e−iĤ t = ∏

e−ihk t

only in the case that the set of hk all mutually commute. Both
the Bravyi-Kitaev and Jordan-Wigner Hamiltonians contain
terms that do not commute with one another, and so a Suzuki-
Trotter approximation must be used. The first four orders of
Suzuki-Trotter formulae are27

e(A+B)t ≈ (eAt/neBt/n)n + O(t�t), (81)

e(A+B)t ≈ (eAt/2neBt/neAt/2n)n + O(t(�t)2), (82)

e(A+B)t ≈ (e
7
24 At/ne

2
3 Bt/ne

3
4 At/ne

−2
3 Bt/ne

−1
24 At/neBt/n)n

+O(t(�t)3), (83)

e(A+B)t ≈
(∏

5
i=1e

piAt/2nepiBt/nepiAt/2n
)n

+ O(t(�t)4),

(84)

where in the 4th order equation, the constants are given by

p1 = p2 = p4 = p5 = 1

4 − 41/3
, p3 = 1 − 4p1. (85)

The terms of both the Bravyi-Kitaev Hamiltonian and the
Jordan-Wigner Hamiltonian can be broken into two subsets,
where the terms in each subset all mutually commute but the
subsets do not commute with one another. These groups are
as follows:
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ĤBK,Z = −0.81261 1 + 0.171201 σ z
0 + 0.16862325 σ z

1 − 0.2227965 σ z
2 + 0.171201 σ z

1 σ z
0

+ 0.12054625 σ z
2 σ z

0 + 0.17434925 σ z
3 σ z

1 + 0.165868 σ z
2 σ z

1 σ z
0

+ 0.12054625 σ z
3 σ z

2 σ z
0 − 0.2227965 σ z

3 σ z
2 σ z

1 + 0.165868 σ z
3 σ z

2 σ z
1 σ z

0 , (86)

ĤBK,XY = 0.04532175 σx
2 σ z

1 σx
0 + 0.04532175 σ

y

2 σ z
1 σ

y

0 + 0.04532175 σ z
3 σx

2 σ z
1 σx

0

+ 0.04532175 σ z
3 σ

y

2 σ z
1 σ

y

0 , (87)

ĤJW,Z = −0.81261 1 + 0.171201 σ z
0 + 0.171201 σ z

1 − 0.2227965 σ z
2 − 0.2227965 σ z

3

+ 0.16862325 σ z
1 σ z

0 + 0.12054625 σ z
2 σ z

0 + 0.165868 σ z
2 σ z

1 + 0.165868 σ z
3 σ z

0

+ 0.12054625 σ z
3 σ z

1 + 0.17434925 σ z
3 σ z

2 , (88)

ĤJW,XY = −0.04532175 σx
3 σx

2 σ
y

1 σ
y

0 + 0.04532175 σx
3 σ

y

2 σ
y

1 σx
0 + 0.04532175 σ

y

3 σx
2 σx

1 σ
y

0

−0.04532175 σ
y

3 σ
y

2 σx
1 σx

0 . (89)

To understand what computational resources are required
for exponentiating operators of this kind, consider the exam-
ple of the exponentiation of a fourfold product of σ z matri-
ces, ei(σ z⊗σ z⊗σ z⊗σ z), which is depicted in a circuit diagram in
Figure 3.28

In general, an n-fold tensor product of Pauli-Z matrices
will require 2(n − 1) CNOT gates and one SQG to exponen-
tiate on a quantum computer. If there are Pauli-X or Y ma-
trices in the tensor product, we must apply the single-qubit
Hadamard or Rx gate to change basis to the X or Y basis, re-
spectively, before we compute the parity of the set of qubits
with CNOTs, and also apply the inverse gates as part of the
uncomputing stage.28 These gates are given by

H = 1√
2

[
1 1
1 −1

]
Rx = 1√

2

[
1 i

i 1

]
. (90)

Thus, each non-σ z term in a tensor product of Pauli matrices
adds 2 single-qubit gates to the cost of exponentiation. For
example, the circuit for exponentiating the term σ

y

3 σx
2 σx

1 σ
y

0 is
depicted in Figure 4.

FIG. 3. A demonstration of how to exponentiate tensor products of Pauli
matrices. First, the parity of the four qubits is computed with CNOT gates,
and then a single-qubit phase rotation Rz is applied. Then, we uncompute the
parity with three further CNOT gates.

Using the resource counting methods detailed above, we
can count the number of SQGs and CNOT gates required to
exponentiate (for arbitrary propagation time) the subsets of
the Hamiltonians for both encodings. The results of this anal-
ysis are in Table IV.

We now have the tools to compare the number of
gates required to compute the ground state eigenvalue of
either the Bravyi-Kitaev Hamiltonian or the Jordan-Wigner
Hamiltonian to chemical precision (±10−4 a.u.). Due to the
small size of our model of the hydrogen system, it is easy for
a classical computer to simulate the behavior of the quantum
simulator. The true propagator U = e−iĤ t can be computed
to sufficient precision by a matrix exponential function in
MATHEMATICA or a similar software package. Time
evolution of the ground state by the true propagator will
result in phase evolution

U |ψg〉 = e−iEgt |ψg〉. (91)

FIG. 4. A demonstration of how to exponentiate tensor products of Pauli-X
and Y matrices. First, the qubits are put in the correct basis by the application
of Rx or Hadamard gates. Then, the parity of the four qubits is computed with
CNOT gates, and then a single-qubit phase rotation Rz is applied. Then, we
uncompute the parity with more CNOT gates, and finally change back to the
computational (Z) basis.
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TABLE IV. The number of single-qubit gates and CNOT gates required
to exponentiate subsets of the electronic Hamiltonian for the hydrogen
molecule, represented in terms of spin variables through either the Bravyi-
Kitaev transformation or the Jordan-Wigner transformation.

SQGs CNOTs Totals

ĤBK,Z 10 24 34
ĤBK,XY 20 20 40
Totals 30 44 74
ĤJW,Z 10 12 22
ĤJW,XY 36 24 60
Totals 46 36 82

We can therefore compute the exact eigenvalue as follows:

〈ψg|U |ψg〉 = 〈ψg|e−iEgt |ψg〉 = e−iEgt . (92)

We set the propagation time to unity, and extract the true
eigenvalue Eg from the complex phase e−iEg . To approximate
the eigenvalue, we use a Suzuki-Trotter approximation to the
true propagator, Ũ , and perform an analogous procedure

〈ψg|Ũ |ψg〉
|〈ψg|Ũ |ψg〉|

= e−iẼg t . (93)

The approximation to the true ground state eigenvalue, Ẽg ,
becomes better as we increase the number of Trotter steps n.
Figure 5 below plots the estimated eigenvalues of the minimal
basis Jordan-Wigner and Bravyi-Kitaev Hamiltonians as a
function of the number of gates required, for the first four
orders of Suzuki-Trotter formulae.

We now compare this result to previous estimates. The
benchmark is the gate count given in Ref. 11 for approximat-
ing the Jordan-Wigner Hamiltonian’s ground state eigenvalue.
It is clear from Figure 5 that our first order approximation re-
quires ≈900 gates to obtain chemical precision for the Jordan-
Wigner Hamiltonian, while the gate estimate in Ref. 11 was

FIG. 5. The approximation to the ground state eigenvalue, for both the
Bravyi-Kitaev Hamiltonian (squares) and Jordan-Wigner Hamiltonian (cir-
cles), as a function of the number of gates required. The solid curves are the
first order Suzuki-Trotter approximations, the dotted-dashed second order,
the dotted third order, and the dashed fourth. The dotted horizontal line rep-
resents the true eigenvalue, while the solid lines above and below represent
the bounds for chemical precision.

about 500 for the same task. This discrepancy arises from the
fact that any number of variants on the first order Suzuki-
Trotter formula could have been used in Ref. 11. Given a non-
commuting set of Hamiltonian terms, there is some optimal
ordering that will produce the best accuracy. It is not possi-
ble to know in advance which ordering is optimal, and given
that the number of terms in an electronic Hamiltonian scales
as O(n4), in general, it is difficult to optimize over the space
of possible orderings. We have used the most naïve variant of
the first order Suzuki-Trotter formula in Figure 5

e−iĤ t = e−i(ĤZ+ĤXY )t ≈ (e−iĤZ
t
n e−iĤXY

t
n )n. (94)

However, due to the small size of our model of the hy-
drogen molecule, it is easy to find an ordering that produces
better accuracy. A second, more sophisticated, variant of the
first order formula is to arrange the terms in ĤZ and ĤXY in
order of descending coefficient magnitude. For example, for
the Bravyi-Kitaev Hamiltonian, we have

ĤZ : {hZ0, hZ1, hZ2, . . . } = {−0.81261 1,−0.2227965 σ z
2 ,

− 0.2227965 σ z
3 σ z

2 σ z
1 , . . . },

(95)

ĤXY : {hXY0, hXY1, hXY2, . . . }
= {0.04532175 σx

2 σ z
1 σx

0 , 0.04532175 σ
y

2 σ z
1 σ

y

0 , . . . }.
(96)

Then, we approximate the propagator by alternately exponen-
tiating one term from the ordered list of ĤZ terms and one
term from the ordered list of ĤXY terms until we have used

FIG. 6. The approximation to the ground state eigenvalue, for both the
Bravyi-Kitaev Hamiltonian (squares) and Jordan-Wigner Hamiltonian (cir-
cles), as a function of the number of gates required. The solid curve is the
naïve first order Suzuki-Trotter approximation, while the dashed curve is the
result from alternating the noncommuting terms. The dotted horizontal line
represents the true eigenvalue, while the solid lines above and below repre-
sent the bounds for chemical precision. The ground state eigenvalue of the
Bravyi-Kitaev Hamiltonian can be approximated to chemical precision with
222 gates, while it takes 328 gates to do the same for the Jordan-Wigner
Hamiltonian.
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FIG. 7. The gate savings of using the Bravyi-Kitaev method instead of the
Jordan-Wigner method, as a function of the precision in the estimate of the
ground state eigenvalue for the first four orders of Suzuki-Trotter formulae.
The vertical line is the threshold error for chemical precision. The triangle
data points are first order, the squares second, the circles third, and the dia-
monds fourth.

all terms from ĤXY . Then we exponentiate the rest of ĤZ

e−iĤ t ≈ (e−ihZ0
t
n e−ihXY0

t
n e−ihZ1

t
n e−ihXY1

t
n · · ·

× e−ihXY3
t
n e−ihZ4

t
n e−ihZ5

t
n · · · )n. (97)

With this method, we find that the number of gates required
to obtain a chemical precision estimate of the ground state
eigenvalue of the Jordan-Wigner Hamiltonian is ≈300, fewer
than the result from Ref. 11. Figure 6 compares the eigenvalue
approximations for the naïve first order method and the more
sophisticated variant.

The point is that the systematic advantage of the Bravyi-
Kitaev method over the Jordan-Wigner method is not ob-
scured by the kind of term-ordering optimization that we
have demonstrated above. Exponentiating the Bravyi-Kitaev
Hamiltonian requires 74 gates per first order Trotter step (of
any variant), while the Jordan-Wigner Hamiltonian requires
82 gates per first order Trotter step. To obtain a precision
of ±10−4 a.u. to the true eigenvalue with the naïve first or-
der Suzuki-Trotter approximation requires 11 Trotter steps
for both the Bravyi-Kitaev and Jordan-Wigner Hamiltonian,
for a total cost of 814 gates versus 902 gates. With the non-
commuting terms intermixed, it takes only 3 Trotter steps
to obtain the same precision for the Bravyi-Kitaev Hamilto-
nian, and 4 Trotter steps for the Jordan-Wigner Hamiltonian.
Thus, if we intermix the noncommuting terms, the Bravyi-
Kitaev transformation allows one to utilize 222 gates instead
of the 328 gates required by the Jordan-Wigner transforma-
tion to obtain an equally precise estimate of the hydrogen
molecule’s ground state eigenvalue when using a first or-
der Suzuki-Trotter approximation. When using higher-order
Suzuki-Trotter approximations to obtain better than chemical
precision, the gate savings increases (Fig. 7).

IX. CONCLUSIONS

In this paper, we have worked out a detailed applica-
tion of the Bravyi-Kitaev transformation to Hermitian sec-
ond quantized operators that appear in quantum chemical
Hamiltonians. We suggest that this transformation should re-
place the Jordan-Wigner transformation for fermionic quan-
tum simulation algorithms. We have demonstrated that the
Bravyi-Kitaev transformation results in a small reduction in
the number of gates, from 328 gates to 222 gates, required to
implement a quantum simulation algorithm for electron dy-
namics in the simplest possible molecular system of H2 in a
minimal basis.

In some sense, molecular hydrogen in a minimal basis is
a poor showcase of the power of the Bravyi-Kitaev transfor-
mation. Our description of this molecule utilizes four molec-
ular orbitals, and hence four qubits. The spin Hamiltonians
we derive using either the Bravyi-Kitaev transformation or
the Jordan-Wigner Hamiltonian involve four-local Pauli ten-
sor products, the result being that the cost of simulating time
evolution under the Bravyi-Kitaev Hamiltonian on a quantum
computer is only slightly reduced from that for the Jordan-
Wigner Hamiltonian. However, were we to use a more sophis-
ticated description of the H2—for example, with eight molec-
ular orbitals—the Jordan-Wigner spin Hamiltonian would
contain up to eight-local Pauli tensor products, while the
Bravyi-Kitaev spin Hamiltonian would not. Given the asymp-
totically better O(log n) scaling of the Bravyi-Kitaev method
as compared to the O(n) scaling of the Jordan-Wigner trans-
formation, the difference between the two methods will be-
come greater for larger basis sets and larger molecules—the
simulation of which is, after all, is the true goal of quantum
simulation for quantum chemistry, since the small molecules
are within the reach of conventional computers. However, by
showing that the Bravyi-Kitaev method is more efficient for
the smallest conceivable chemical system, we have demon-
strated that there is no algorithmic overhead inherent to the
Bravyi-Kitaev method that must be overcome by scaling up
the size of problems to which it is applied. We have demon-
strated the superior efficiency of the Bravyi-Kitaev transfor-
mation for all quantum chemical simulations. Thus, making
use of the Bravyi-Kitaev transformation for fermionic quan-
tum simulation will make simulations of larger molecules and
with larger basis sets more readily accessible to experiment.
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