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Quantum impurity models describe an atom or molecule embedded in a host material with which it

can exchange electrons. They are basic to nanoscience as representations of quantum dots and

molecular conductors and play an increasingly important role in the theory of ‘‘correlated electron’’

materials as auxiliary problems whose solution gives the ‘‘dynamical mean-field’’ approximation to

the self-energy and local correlation functions. These applications require a method of solution

which provides access to both high and low energy scales and is effective for wide classes of

physically realistic models. The continuous-time quantum Monte Carlo algorithms reviewed in this

article meet this challenge. Derivations and descriptions of the algorithms are presented in enough

detail to allow other workers to write their own implementations, discuss the strengths and

weaknesses of the methods, summarize the problems to which the new methods have been

successfully applied, and outline prospects for future applications.
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I. INTRODUCTION

A. Overview

This article aims to provide a comprehensive overview of

recent developments which have made continuous-time quan-

tumMonte Carlo (CT-QMC) approaches the method of choice

for the solution of broad classes of quantum impurity models.

We present derivations and descriptions of the algorithms in

enough detail to allow other workers to write their own codes

and give a general introduction to diagrammatic Monte Carlo

methods on which these algorithms are based. We discuss the

strengths and weaknesses of the methods and their range of

applicability. We summarize the problems to which the new

methods have been successfully applied and outline prospects

for future applications. We hope that readers will come away

from the review with an appreciation of the power and flexi-

bility of the techniques and with the knowledge needed to

apply them to new generations of problems in nanoscience,

correlated electron physics, nonequilibrium systems, and other

areas. But before entering into specifics, it is worth askingwhat
are quantum impurity models and also why study them with
continuous time methods?

B. Quantum impurity models: Definitions and examples

Quantum impurity models were introduced to describe the
properties of a nominally magnetic transition metal ion em-
bedded in a nonmagnetic host metal. A magnetic transition
metal atom such as Fe and Co has a partly filled d shell, and
the intra-d Coulomb interactions act to organize the electrons
in the d shell into a high-spin local moment configuration.
Hopping from the d shell to the metal or vice versa favors
nonmagnetic configurations and thus competes with the local
interactions. Anderson (1961), following earlier work of
Friedel (1951, 1956), wrote down a mathematical model
(now referred to as the Anderson impurity model) which
encodes this competition. Anderson’s concept has proven
enormously fruitful, with implications extending far beyond
its original context of impurity magnetism. Quantum impurity
models are basic to nanoscience as representations of quantum
dots and molecular conductors (Hanson et al., 2007) and have
been used to understand the adsorption of atoms onto surfaces
(Brako and Newns, 1981; Langreth and Nordlander, 1991).
They are of theoretical interest as solvable examples of non-
trivial quantum field theories (Wilson, 1975; Affleck, 2008)
and in recent years have played an increasingly important role
in condensed matter physics as auxiliary problems whose
solution gives the dynamical mean-field (DMFT) approxima-
tion to the properties of correlated electron materials such as
high temperature copper oxide and pnictide superconductors
(Georges et al., 1996; Held et al., 2006; Kotliar et al., 2006).

A quantum impurity model [see, e.g., Mahan (2000)] may
be represented as a Hamiltonian with three basic terms: Hloc,
which describes the ‘‘impurity,’’ a system with a finite (typi-
cally small) number of degrees of freedom; Hbath, which
describes the noninteracting but infinite (continuous spectrum)
system to which the impurity is coupled; andHhyb which gives

the coupling between the impurity and bath. Thus,

HQI ¼ Hloc þHbath þHhyb: (1)

The physics represented by HQI is in general nontrivial be-

cause ½Hloc; Hhyb� � 0 (in physical terms, coupling to the bath

mixes the impurity eigenstates).
In the situation of primary physical interest, Hloc may be

represented in terms of a set of single-particle fermion states
labeled by quantum numbers a ¼ 1; . . . ; N (including both
spatial and spin degrees of freedom) and created by operators

dya as

Hloc ¼ H0
loc þHI

loc; (2)

H0
loc ¼

X
ab

Eabdyadb; (3)

HI
loc ¼

X
pqrs

Ipqrsdypdyqdrds þ � � � : (4)

The ab components of the matrix E describe the bare level
structure, I parametrizes electron-electron interactions, and the
ellipsis denotes terms with 6 or more fermion operators.
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Hbath may be thought of as describing bands of itinerant
electrons, each labeled by a one-dimensional momentum
coordinate k or band energy "k and an index (spin and orbital)
�. One usually writes

Hbath ¼
X
k�

"k�c
y
k�ck�: (5)

The most commonly used form of the mixing term is char-
acterized by a hybridization matrix V

Hhyb ¼
X
k�b

V�b
k cyk�db þ H:c:; (6)

although exchange couplings of the form

H
exchange
hyb ¼ X

k1k2abcd

Jabcdk1k2
cyk1ack2bd

y
c dd (7)

also arise, most famously in the ‘‘Kondo problem’’ of a spin
exchange coupled to a bath of conduction electrons (Kondo,
1964).

Coupling of impurity models to oscillators (representing,
for example, phonons in a solid) has also been considered. A
discussion in the CT-QMC context is presented in Sec. VII.

It is sometimes convenient to represent the partition func-
tion Z of the impurity model as an imaginary-time path
integral (Negele and Orland, 1988). In this representation it
is easy to formally eliminate the bath degrees of freedom [a
technique pioneered by Feynman and Vernon (1963)], obtain-
ing an action which for Hamiltonians involving a hybridiza-
tion of the form of Eq. (6) is

Z ¼
Z

D½dy; d�e�S; (8)

S ¼ X
ab

ZZ �

0
d�d�0dya ð�Þ½ð@� þ EabÞ�ð�� �0Þ

þ �abð�� �0Þ�dbð�0Þ þ
Z �

0
d�HI

locð�Þ: (9)

In this formulation the hybridization function

�abði!nÞ ¼
X
k�

V�a�
k ði!n � "k�Þ�1V�b

k (10)

compactly encapsulates those aspects of the bath that are
relevant to the impurity-model physics. It will play a crucial
role in our subsequent discussions. It is also often useful to
define the noninteracting impurity-model Green’s function
G0 via

G0 ¼ �ð@� þ Eþ �Þ�1: (11)

The paradigmatic quantum impurity model is the single-
impurity single-orbital Anderson model (Anderson, 1961). In
this model, Hloc describes a single orbital, so the label a is
spin up or down, Eab is (in the absence of magnetic fields) just
a level energy "0, and the interaction term collapses to Un"n#.
Thus,

HAIM ¼ X
�

"0d
y
�d� þ Un"n# þ

X
k�

ðVkc
y
k�d� þ H:c:Þ

þX
k�

"kc
y
k�ck�: (12)

Impurity models with more degrees of freedom are assum-
ing increasing importance. More degrees of freedom means a
richer variety of physical phenomena, implying a more com-
plicated structure for the interactions. For example, in transi-
tion metal oxide materials with partially filled d shells or in
compounds involving rare-earth or actinide atoms with par-
tially filled f shells, the interactions express not only the
energy cost of multiply occupying the atom but also the
Hund’s rule physics that states of maximal spin and orbital
angular momentum are preferred. Thus, the interaction
Hamiltonian describing the energetics of different configura-
tions of electrons in the d orbitals which play an important role
in the physics of transition metal oxides with cubic perovskite
structures is normally written in the ‘‘Slater-Kanamori (SK)’’
form (Mizokawa and Fujimori, 1995; Imada et al., 1998):

HI
loc ¼ HSK � U

X
a

na"na# þ ðU� 2JÞX
a�b

na"nb#

þ ðU� 3JÞ X
a>b;�

na�nb�

� J
X
a�b

ðdya"dya#db"db# þ dya"d
y
b#db"da#Þ: (13)

In nanoscience applications the impurity typically repre-
sents the highest occupied and lowest unoccupied molecular
orbitals and the interactions are computed from Coulomb
matrix elements involving these orbitals. In ‘‘cluster’’ dy-
namical mean-field applications the impurity is thought of
as a (typically small) number of sites with the Eab represent-
ing an intersite hopping Hamiltonian, thus in a two-site
approximation to the Hubbard model

Hloc ¼ Hcl ¼
X
�

"0ðdy1�d1� þ dy2�d2�Þ

þX
�

tðdy1�d2� þ dy2�d1�Þ þ Uðn1"n1# þ n2"n2#Þ:

(14)

Solving the quantum impurity model means computing the
correlation functions of the d operators. Of these the most
important is the dGreen’s function (T� denotes time ordering)

Gab
d ð�Þ ¼ �hT�dað�Þdyb ð0Þi: (15)

In the absence of interactions, Gab
d ði!nÞ ¼ G0;ab

d ði!nÞ �
½ði!n � E� �Þ�1�ab. The effect of interactions may be pa-
rametrized by the self-energy �ði!nÞ ¼ ðG0Þ�1 �G�1.

Solving the quantum impurity model is conceptually and
algorithmically challenging. As Eq. (9) demonstrates, a quan-
tum impurity model is a quantum field theory in 0 space þ 1
time dimension. While (0þ 1)-dimensional quantum field
theories are easier to solve than higher dimensional ones,
they are still (in the general case) nontrivial. Only in a few
cases are exact solutions known. In many cases the form of
the ‘‘universal’’ low energy behavior has been determined,
but the dynamical mean-field and nanoscience applications
require information about behavior beyond the universal
limit, as well as quantitative information about the parameters
describing the universal limit. A further complication is
that impurity models typically involve several energy scales,
including an interaction scale, often high, a hybridization
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scale, typically intermediate, and one or more dynamically

generated energy scales, which in many cases are very low
relative to the basic interaction and hybridization scales. A

robust method which works for general models over a range
of energy scales is required.

C. State of the art prior to continuous-time QMC

Quantum impurity models have been of long-standing

interest and a wide range of approximate techniques have

been developed to solve them, including perturbative expan-
sions in coupling constant (Yosida and Yamada, 1975) and

in flavor degeneracy (Read and Newns, 1983; Coleman,
1984), perturbative (Anderson et al., 1970; Solyom and

Zawadoswki, 1974) and functional (Hedden et al., 2004)
renormalization group, as well as ‘‘X-operator’’ techniques
(Hubbard, 1964; Keiter and Kimball, 1970; Gunnarsson and
Schönhammer, 1983) and different formulations of auxiliary

(‘‘slave’’) particle methods (Abrikosov, 1965; Barnes, 1976;

Read and Newns, 1983; Coleman, 1984; Florens and
Georges, 2004). An important subclass of analytical methods

is based on the resummation to all orders of a particular
subset of diagrams. In the impurity-model context the most

important of these are the noncrossing approximation (NCA)
(Bickers, 1987) and its generalizations (Pruschke and Grewe,

1989; Haule et al., 2001). The terminology refers to the
structure of diagrams in an expansion in the hybridization. In

this expansion contractions of bath operators are represented

as lines. If one uses a time-ordered perturbation theory,
diagrams may be classified by the number of times that

lead operator lines cross and all diagrams with zero or one
crossing may be analytically summed by solving an integral

equation. While uncontrolled, these approximations capture
many aspects of the physics of impurity models and can be

formulated on the real frequency axis. They have therefore
been used as inexpensive solvers for impurity models and to

study nonequilibrium phenomena in nanocontacts (Wingreen

and Meir, 1994). Recently, techniques closely related to those
described here have been used to formulate a numerically

exact solution based on an expansion around the NCA (Gull,
Reichman, Millis, 2010). It is found that the approximations

are accurate in the Mott insulating phase but they do not
capture the important diagrams in the metallic phase of the

Anderson impurity model. Powerful field-theoretical and
Bethe-ansatz-based analytical methods have been developed

to classify and compute exactly the universal low energy

behavior (Wilson, 1975; Andrei et al., 1983; Affleck,
2008) of broad classes of quantum impurity models.

However, the dynamical mean-field and nanoscience appli-
cations require an approach that works for wide classes of

physically relevant impurity models and gives access to
physics beyond the universal limit. Thus, while analytical

methods provide valuable insights, they do not provide the
comprehensive solutions, valid over a wide range of frequen-

cies, that are needed for modern applications.
Starting from the work of Wilson (1975) and subsequently

of White (1992) [see Schollwöck (2005) for a review], an

important set of numerical methods has been developed
based on intelligently chosen truncations of the Hilbert space

of the many-body problem in question. The numerical renor-

malization group (NRG) methods are based on iterative diag-

onalization using a logarithmic discretization of the energy

spectrum of the lead states and are reviewed, for example, by

Bulla et al. (2008) while the density matrix renormalization

group (DMRG) techniques involve an isolation of the relevant

low-lying states. These methods are complementary to the

methods discussed here: CT-QMCmethods are most naturally

formulated in imaginary time and efficiently handle a wide

range of energy scales and relatively general classes ofmodels,

but require analytical continuation to obtain real-time infor-

mation and have difficulty resolving subtle low energy features

such as the fine structure of quantum criticality. On the other

hand, theNRGandDMRGmethods can be formulated directly

on the real frequency axis or in real time and are particularly

powerful in resolving ground states and low-lying levels but

encounter difficulties in providing information over a wide

range of frequencies and the difficulties increase rapidly as one

moves beyond the simple Anderson and Hubbard models.

Both DMRG (Hallberg, 2006; Nishimoto et al., 2006) and

NRG (Bulla et al., 2008) methods have been implemented as

‘‘solvers’’ for the quantum impurity models of dynamical

mean-field theory. But, except for the single-orbital

Anderson model, where NRG methods have proven to be

useful, especially in situations where a precise understanding

of the very low energy behavior is crucial, NRG and DMRG

solvers are not in widespread and general use in the DMFT

community.
A more widely applied class of techniques is based on the

exact-diagonalization (ED) idea introduced in the early days

of dynamical mean-field theory by Caffarel and Krauth

(1994). They approximated the continuum of bath energies

and values of the hybridization by a small number of varia-

tionally chosen eigenstates and hybridization functions. HQI

then becomes a finite system, which is exactly diagonalized,

leading to a Gd characterized by a delta function spectrum.

The cost scales exponentially with the number of sites con-

sidered. The largest systems which are typically studied

contain on the order of 15 sites with one nondegenerate

orbital on each site. Thus, in the single-impurity Anderson

model, Eq. (12), the continuum of bath states ck� may be

approximated by 7 or 8 (� 2 for spin) orbitals, while for say a
three orbital model only two or three bath orbitals per impu-

rity state can be accommodated. With the development of

more modern algorithms and computers, enough bath sites

can be included that for the single-orbital Anderson impurity

model the temperature dependence can be computed, the

convergence of results with bath size can be studied

(Capone et al., 2007), and systematic comparisons to other

methods can be made (Werner et al., 2006; Comanac et al.,

2008). Recently, results on small clusters (Civelli et al.,

2005; Kyung et al., 2006a; Kancharla et al., 2008;

Liebsch and N.-H., 2009) and single-impurity, multiorbital

models (Liebsch, 2005, Liebsch et al., 2008) have also been

obtained, although here the number of bath sites per orbital is

limited and the convergence with bath site number cannot yet

be addressed rigorously (Koch et al., 2008).
Quantum Monte Carlo techniques provide a general

method for solving quantum field theories, and prior to the

development of CT-QMC methods the principal impurity

solver was the Hirsch-Fye quantum Monte Carlo method
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(Hirsch and Fye, 1986). This method is based on writing an
imaginary-time functional integral, discretizing the interval
½0; �Þ into M equally spaced time slices �� ¼ �=M and
then on each time slice i applying a discrete Hubbard-
Stratonovich transformation which for the single-orbital
Anderson model is

e���U½n"n#�ðn"þn#=2Þ� ¼ 1

2

X
si¼�1

e�siðn"�n#Þ; (16)

� ¼ arcosh½expð12��UÞ�: (17)

For a fixed choice of Ising variables fsig, the problem thus
becomes a noninteracting fermion model in a time-dependent
z-oriented magnetic field hð�iÞ ¼ si which may be formally
solved, so one is left with the problem of sampling the trace
over the 2M-dimensional space of the si.

The Hirsch-Fye method was for almost two decades the
method of choice, but ultimately three difficulties limit its
power. The first is that it requires an equally spaced time
discretization. [A linear-in-� method for impurity models
(Khatami et al., 2010), while fast, similarly requires discre-
tization of both the bath and the imaginary-time axis.] The
second is that at large interactions and low temperatures
equilibration may become an issue. While techniques have
been developed to ameliorate these problems (Blümer,
2008; Gorelik and Blümer, 2009) and new update techniques
have been proposed (Alvarez et al., 2008; Nukala, et al.,
2009), the difficulties of managing the discretization and
equilibration issues within the Hirsch-Fye method are real.
It appears that the CT-QMC methods discussed here are now
preferred by most practitioners. The third, and most funda-
mental difficulty, is that for interactions other than the simple
one-orbital Hubbard model the Hubbard-Stratonovich fields
required to decouple the interactions proliferate and may
have to be chosen complex so sampling the space of auxiliary
fields becomes prohibitively difficult (Sakai et al., 2006b).

D. Why continuous time?

Imaginary-time path integral representations of quantum
problems such as Eq. (9) are mathematically defined [see,
e.g., Negele and Orland (1988) and references therein] in
terms of the result of a limiting process in which one rewrites
the partition function Z ¼ expð��HÞ of a system described
by a Hamiltonian H at temperature T ¼ 1=� by defining
�� ¼ �=N, �j ¼ j�� as

Z ¼ e�ð�N��N�1ÞHe�ð�N�1��N�2ÞH � � � e�ð�1��0ÞH: (18)

The path integral is defined by inserting complete sets of
states between every pair of exponentials and then taking the
limit �� ! 0. This mathematical definition motivates a nu-
merical approach (Suzuki, 1976) in which one approximates
the path integral by (i) retaining a nonzero �� and (ii) using a
Monte Carlo method to estimate the sums over all intermedi-
ate states. The exact partition function is recovered after the
twin steps of converging the Monte Carlo method and ex-
trapolating the results to �� ¼ 0. While clever and efficient
methods [for example, the Hirsch-Fye procedure (Hirsch and

Fye, 1986) mentioned in the previous section] have been

devised for performing the Monte Carlo method, the time

step extrapolation remains an issue. The difficulties are par-

ticularly severe for the quantum impurity problems of interest

here because the basic object in the theory is the Green’s

function, which drops rapidly as � is increased from 0 and has

discontinuous derivatives at � ¼ 0, � which need to be

correctly evaluated [see, e.g., Fig. 2 in Werner et al.

(2006)]. The discretization errors are large, and a very small

�� and a precise extrapolation to �� ¼ 0 are required to

obtain accurate results. However, the low energy behavior of

interest is carried by times �� �=2, so that simulations on a

homogeneous grid require many points. Methods which do

not involve an explicit time discretization would therefore

appear to be advantageous.
The basic idea behind all continuous-time methods dis-

cussed in this review is to avoid the time discretization

entirely by sampling the terms in a diagrammatic expansion,

instead of sampling the configurations in a complete set of

states. One of the first important methods to do this is

Handscomb’s method (Handscomb, 1962, 1964). This

method and its generalization, the stochastic series expansion

algorithm (Sandvik and Kurkijärvi, 1991), are based on a

Taylor expansion of the partition function in powers of �H
and have been successful for quantum magnets. However,

they require that the spectrum of the Hamiltonian is bounded

from above so applications to boson problems require a

truncation of the Hilbert space while applications to fermion

problems are limited by a bad sign problem.
The continuous-time methods in use now stem from the

work of Prokof’ev et al. (1996) and Beard and Wiese (1996),

who showed that simulations of bosonic lattice models can be

implemented simply and efficiently in continuous time by a

stochastic sampling of a diagrammatic perturbation theory for

the partition function. The general scheme for treating dia-

grams with continuous variables of arbitrary nature (diagram-

matic Monte Carlo) has been formulated by Prokof’ev and

Svistunov (1998) and Prokof’ev et al. (1998). In these

methods the systematic errors associated with time discreti-

zation and the Suzuki-Trotter decomposition were elimi-

nated. The gain in computational efficiency is so large that

the problem of simulating unfrustrated bosonic lattice models

can now be considered as solved, although special cases, for

example, bosons coupled to a gauge field (rotating atomic

gases, charged bosons in a magnetic field), remain

challenging.
The success of CT-QMC methods for bosons stimulated

efforts to adapt the technique to fermionic problems

(Rombouts et al., 1999). However, in contrast to standard

(unfrustrated) bosonic systems, where diagrams all have the

same signs, in fermionic models individual diagrams may

have positive or negative signs, so that the sampling of

individual diagrams suffers from a severe sign problem.

This sign problem may be reduced by combining classes of

diagrams analytically into determinants. Unfortunately,

Rombouts and collaborators found that a prohibitively severe

sign problem remained in the parameter regimes relevant to

strong correlation physics. This, and the fact that the lattice

algorithm given by Rombouts et al. (1999) was restricted to

density-density interactions, caused many researchers to
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abandon the approach—except for the special case of sign-

problem-free models with an attractive interaction, where

CT-QMC methods have successfully been used to investigate

the Bose-Einstein condensation to Bardeen-Cooper-

Schrieffer crossover in ultracold atomic gases (Burovski

et al., 2006a, 2006b, 2008).
The increasing importance of impurity models has moti-

vated a reexamination of CT-QMC methods. Impurity models

turn out to have a much less severe sign problem than the full

lattice problem (indeed in some cases the sign problem is

absent). The reduction in severity of the sign problem has

allowed the development of flexible and powerful

continuous-time quantum Monte Carlo impurity solvers, first

in a weak-coupling formulation (Rubtsov and Lichtenstein,

2004; Rubtsov et al., 2005), soon thereafter in a comple-

mentary hybridization expansion formulation (Werner et al.,

2006), and more recently in an auxiliary-field formulation

(Gull et al., 2008a). These methods have quickly been

extended in many directions and applied to numerous dy-

namical mean-field studies of model Hamiltonians. They

enabled accurate simulations of the Kondo lattice model

(Otsuki et al., 2009a), the first quantitative studies of multi-

orbital models with realistic rotationally invariant (nondiag-

onal) interactions (Rubtsov et al., 2005; Werner and Millis,

2006; Haule, 2007; Werner and Millis, 2007c; Werner et al.,

2008; Chan et al., 2009) and allowed much more efficient

simulations of the multisite clusters needed to study spatial

correlation effects within dynamical mean-field theory

(Haule and Kotliar, 2007b; Gull et al., 2008b; Park et al.,

2008a; Ferrero et al., 2009a; Gull et al., 2009, Mikelsons

et al., 2009a; Werner et al., 2009a; Sordi et al., 2010). They

have also enabled more realistic LDAþ DMFT (local den-

sity approximation combined with dynamical mean field)

studies of materials (Marianetti et al., 2007).
Continuous-time quantum Monte Carlo methods can also

be used to efficiently compute four-point correlation func-

tions, which are important for susceptibilities, phase bounda-

ries, and in connection with recently developed extensions of

dynamical mean-field theory (Kusunose, 2006; Toschi et al.,

2007; Rubtsov et al., 2008; Slezak et al., 2009). The

methods have been applied to nanoscience topics including

the properties of transition metal clusters on metal surfaces

(Savkin et al., 2005; Gorelov, 2007). Previously inaccessible

physics questions such as the quasiparticle dynamics and

thermal crossovers in heavy fermion materials are being

addressed (Haule and Kotliar, 2007a; Shim et al., 2007;

Park et al., 2008b) and applications to questions motivated

by experiments on fermions in optical lattices have begun to

appear (Dao et al., 2008; De Leo et al., 2008). Extensions to

nonequilibrium problems are now under development

(Mühlbacher and Rabani, 2008; Schiró and Fabrizio, 2009;

Werner, Oka, and Millis, 2009, 2010).
While the new CT-QMC methods have been transforma-

tive, opening wide classes of problems to systematic study,

they have not solved the fermion sign problem. As far as is

known, sign problems are physical and unavoidable, at least

in itinerant phases with unpaired fermions (Troyer and Wiese,

2005). They set the ultimate limits on the problems and

parameter regimes which can be studied by the continuous-

time methods discussed here. Further discussion of sign

problems will be given in Sec. II.D and in the context of
the discussion of specific algorithms.

II. DIAGRAMMATIC MONTE CARLO ALGORITHMS IN

CONTINUOUS TIME

A. Basic ideas

The basic idea of the CT-QMC methods is simple. One
begins from a Hamiltonian H ¼ Ha þHb, which is split into
two parts labeled by a and b, writes the partition function
Z ¼ e��H in the interaction representation with respect to
Ha, and expands in powers of Hb, thus (T� is the time-
ordering operator)

Z ¼ TrT�e
��Ha exp

�
�
Z �

0
d�Hbð�Þ

�

¼ X
k

ð�1Þk
Z �

0
d�1 � � �

Z �

�k�1

d�k Tr½e��HaHbð�kÞ

�Hbð�k�1Þ � � �Hbð�1Þ�: (19)

The trace evaluates to a number and diagrammatic
Monte Carlo methods (Prokof’ev and Svistunov, 1998) en-
able a sampling over all orders k, all topologies of the paths
and diagrams, and all times �1; . . . ; �k in the same calculation.
Because the method is formulated in continuous time from
the beginning, time-discretization errors do not have to be
controlled and the simulation can be arranged to ensure that
the method focuses attention on the time regions which are
most important to the process under study. Provided the
spectrum of the perturbation term is bounded from above,
the contributions of very large orders are exponentially sup-
pressed by the factor 1=k!, originating from the expansion of
an exponential. Thus the sampling process does not run off to
infinite order and no truncation of the diagram order is
needed. [Note that for bosonic operators a perturbation in
the interaction would be divergent since the spectrum cannot
be bounded from above unless a cutoff in bosonic occupation
number is introduced (Itzykson and Zuber, 2006), so an
expansion in the hybridization is usually employed.]

The method does not rely on an auxiliary-field decompo-
sition although it may be advantageously combined with one
(Gull et al., 2008a). Further, the method does not rely on a
particular partitioning into ‘‘interacting’’ and ‘‘noninteract-
ing’’ parts; in principle the only requirement is that one may
decompose the Hamiltonian in such a way that the time
evolution associated with Ha and the contractions of opera-
tors Hb may easily be evaluated. In practice, the sign asso-
ciated with interchanges of fermion operators means that the
expansion must be arranged such that terms differing only in
the contractions of fermion operators are combined, for
example, into determinants.

In the impurity-model context four types of expansion have
been formulated. We refer to them as CT-HYB [Hb ¼ Hhyb,

Eq. (6)], CT-INT [Hb ¼ HI
loc, Eq. (4)], CT-AUX (Hb ¼ HI

loc

but with an additional auxiliary-field decomposition), and

CT-J [an expansion for Kondo-like problems with Hb ¼
H

exchange
hyb , Eq. (7)]. The advantage of the hybridization expan-

sion is that arbitrarily complicated impurity interactions
can easily be treated; the disadvantage is that because
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½Hhyb; Hloc� � 0 at least one of the operators is nondiagonal,

so the expansion generically requires the manipulation of
matrix blocks whose size grows exponentially with the num-
ber of impurity orbitals. The present state of the art is that 5
spin-degenerate orbitals can be treated. Various truncation
and approximation schemes provide limited access to larger
problems, but as the number of orbitals is increased the
difficulties rapidly become insurmountable.

CT-INT and CT-AUX are variations of an ‘‘interaction
expansion.’’ They are sometimes referred to as weak-
coupling expansions, but this is a misnomer—the expansion
is in powers of the interaction but is not (in principle)
restricted to small interactions. The series is always conver-
gent for nonzero temperature and a finite number of orbitals.
In CT-INT and CT-AUX the scaling with the number of
impurity orbitals is not exponential, so much larger systems
can be treated. However, the methods are most suited to
Hubbard-like models with a single local density-density in-
teraction. More complicated interactions typically require
multiple expansions in the several vertices, and if the inter-
actions do not commute (as is the case for the components of
the spin exchange), the difficulties increase.

CT-J is an expansion organized for Kondo-like models,
where the interaction vertex also creates particle-hole pairs in
the conduction bands. It combines aspects of both the inter-
action and hybridization expansion.

While all of the expansions are based on the same general
idea, there are significant differences in the specifics of how
the expansion is arranged, the measurements are done, and
the errors are controlled. We therefore devote a separate
section to each expansion. In the remainder of this section
we provide an overview of general aspects of continuous-time
Monte Carlo methods.

B. Monte Carlo basics: Sampling, errors, Markov chains, and

the Metropolis algorithm

In this section we recall some basic results pertaining to the
Monte Carlo evaluation of high dimensional integrals. For the
reader unfamiliar with the Monte Carlo method, Landau and
Binder (2000) and Krauth (2006) gave an extensive introduc-
tion to the technique.

In the CT-QMC methods, as in many other classical or
quantum many-body problems, one is faced with the issue of
evaluating sums over phase spaces or configuration spaces
which we denote generically by C. C is typically of a very high
dimension, so Monte Carlo techniques are the only practical
methods of evaluation. A crucial quantity is the partition
function Z, which we will write formally as an integral over
configurations x 2 C with weight pðxÞ:

Z ¼
Z
C
dxpðxÞ: (20)

In a classical system x might be a point in phase space with a
Boltzmann weight pðxÞ ¼ expð� �EðxÞÞ, where EðxÞ is the
energy of the configuration x. In the quantum problems
described here x will represent a particular term in a dia-
grammatic partition function expansion.

The expectation value of a quantity A is given by the
average, over the configuration space C with weight p, of a
quantity AðxÞ:

hAip ¼ 1

Z

Z
C
dxAðxÞpðxÞ: (21)

The auxiliary quantity AðxÞ depends on the specific repre-
sentation chosen in a particular algorithm.

The average (21) can be estimated in a Monte Carlo
procedure by selectingM configurations xi with a probability
pðxÞ=Z and averaging the contributions AðxiÞ:

hAip 	 hAiMC � 1

M

XM
i¼1

AðxiÞ: (22)

According to the central limit theorem, if the number of
configurations is large enough the estimate (22) will be nor-
mally distributed around the exact value hAip with variance

ð�AÞ2 � hðAMC � ApÞ2i ¼ VarA

M
: (23)

It will sometimes be advantageous or necessary to sample
configurations xi with a distribution �ðxÞ different from pðxÞ.
The expectation value hAi� in the ensemble then has to be

reweighed:

hAi¼ 1

Z

Z
C
dxAðxÞpðxÞ¼

R
CdxAðxÞ½pðxÞ=�ðxÞ��ðxÞR

Cdx½pðxÞ=�ðxÞ��ðxÞ

� hAðp=�Þi�
hp=�i� : (24)

To estimate this expectation value one needs to sample both
the numerator and denominator and collect averages of
AðxiÞpðxiÞ=�ðxiÞ and pðxiÞ=�ðxiÞ. Care must be taken in
estimating the statistical errors of such ratios, since cross
correlations will make naive error propagation unreliable. A
jackknife or bootstrap procedure [see, e.g., Vetterling et al.
(1992)] is needed.

Integrals with general distributions such as Eqs. (20) and
(24) are best sampled by generating configurations using a
Markov process. AMarkov process is fully characterized by a
transition matrix Wxy specifying the probability to go from

state x to state y in one step of the Markov process.
Normalization (conservation of probabilities) requiresP

yWxy ¼ 1. Starting from an arbitrary distribution the

Markov process will converge exponentially to a stationary
distribution pðxÞ if two conditions are satisfied.


 Ergodicity: It has to be possible to reach any configu-
ration x from any other configuration y in a finite
number of Markov steps: For all x and y there exists
an integerN <1 such that for all n � N the probability
ðWnÞxy � 0.


 Balance: Stationarity implies that the distribution pðxÞ
fulfills the balance conditionZ

C
dxpðxÞWxy ¼ pðyÞ; (25)

that is, pðxÞ is a left eigenvector of the transition matrix
Wxy . A sufficient but not necessary condition usually
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used instead of the balance condition is the detailed
balance condition

Wxy

Wyx

¼ pðyÞ
pðxÞ ; (26)

which we will use below.
The first, and still most widely used, algorithm that sat-

isfies detailed balance is the Metropolis-Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970). There an update
from a configuration x to a new configuration y is proposed
with a probability W

prop
xy but accepted only with probability

Wacc
xy . If the proposal is rejected, the old configuration x is

used again. The transition matrix is

Wxy ¼ W
prop
xy Wacc

xy ; (27)

and the detailed balance condition (26) is satisfied by using
the Metropolis-Hastings acceptance rate

Wacc
xy ¼ min½1; Rxy�; (28)

with the acceptance ratio Rxy given by

Rxy ¼ pðyÞWprop
yx

pðxÞWprop
xy

(29)

and Ryx ¼ 1=Rxy . To simplify the notation we often quote

just Rxy , and imply that min½1; Rxy� is the actual acceptance

probability. Note that the acceptance ratio Rxy includes both

the weights and the proposal probabilities. In the following
sections we always specify both the proposal probabilities
W

prop
xy and the acceptance ratios Rxy .

C. Diagrammatic Monte Carlo Method: The sampling of path

integrals and other diagrammatic expansions

The partition function Eq. (19) may be expressed as a sum
of integrals originating from a diagrammatic expansion:

Z ¼ X1
k¼0

X
�2�k

Z �

0
d�1 � � �

Z �

�k�1

d�kwðk; �; �1; . . . ; �kÞ;

(30)

which has the form of Eq. (20). The individual configurations
are of the form

x ¼ ðk; �; ð�1; . . . ; �kÞÞ; (31)

where k is the expansion or diagram order and �1; . . . ; �k 2
½0; �Þ are the times of the k vertices in the configuration. The

parameter � 2 �k includes all discrete variables, such as the
topology of the diagram and spin, orbital, lattice site, and
auxiliary spin indices associated with the interaction vertices.

A configuration x has a weight

pðxÞ ¼ wðk; �; �1; . . . ; �kÞd�1 � � � d�k; (32)

which we assume to be non-negative for now. The case of
negative weights is discussed in Sec. II.D. Although these
weights are well-defined probability densities they involve
infinitesimals d�, which one might worry could cause diffi-
culties with proposal and acceptance probabilities in the
random walk in configuration space. As Beard and Wiese
(1996), Prokof’ev et al. (1996), Prokof’ev and Svistunov
(1998), and Prokof’ev et al. (1998) showed, this is not
the case.

The various algorithms reviewed here differ in the repre-
sentations, weights, and updates, as well as in the most
convenient representation for the measurement of observ-
ables, but all express the partition function in the general
form (30). To illustrate the Monte Carlo sampling of such
continuous-time partition function expansions and, in par-
ticular, to demonstrate that the infinitesimal does not cause
problems, we consider the simple partition function

Z ¼ X1
k¼0

Z �

0
d�1

Z �

0
d�2 � � �

Z �

0
d�k

wðkÞ
k!

; (33)

which using time ordering can be rewritten as

Z ¼ X1
k¼0

Z �

0
d�1

Z �

�1

d�2 � � �
Z �

�k�1

d�kwðkÞ: (34)

The distribution describing the probability of a diagram of
order k with vertices at times f�jg is (here we make the times

explicit)

pððk; �1; . . . ; �kÞÞ ¼ wðkÞYk
i¼1

d�i: (35)

In the following we always assume time ordering �1 � �2
� � � � � �k and visualize the configurations using a diagram-
matic representation as in Fig. 1.

Transitions between configurations x and y are realized by
updates. Updates in diagrammatic Monte Carlo codes typi-
cally involve (i) updates that increase the order k by inserting
an additional vertex at a time �, and (ii) updates that decrease
the order k by removing a vertex �j. These insertion

and removal updates are necessary to satisfy the ergodicity
requirement and are often sufficient: We can reach any

FIG. 1 (color online). Diagrammatic representation of configurations x ¼ fðk; �1; . . . ; �kÞg 2 C showing examples with orders k ¼ 0, 1, 2, 3
and vertices (represented by dots) at times �1; . . . ; �3.
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configuration from another one by removing all the existing
vertices and then inserting new ones. Additional updates
keeping the order k constant are typically not required for
ergodicity but may speed up equilibration and improve the
sampling efficiency. In some special circumstances, for ex-
ample, if all odd order diagrams have zero weight, updates
which insert or remove multiple vertices are required.

In the following we focus on the insertion and removal
updates, shown in Fig. 2. For the insertion we start from a
configuration ðk; ~�Þ ¼ ðk; �1; . . . ; �kÞ of order k. We propose
to insert a new vertex at a time � uniformly chosen in the
interval ½0; �Þ, to obtain a new time-ordered configuration
ðkþ1; ~�0Þ¼ ðkþ1;�1; . . . ;�; . . . ;�kÞ� ðkþ1;�01; . . . ;�0kþ1Þ. The
proposal rate for this insertion is given by the probability
density

W
prop
ðk; ~�Þ;ðkþ1; ~�0Þ ¼

d�

�
: (36)

The reverse move is the removal of a randomly chosen
vertex. The probability of removing a particular vertex to go
back from (kþ 1, ~�0) to ðk; ~�Þ is just 1 over the number of
available vertices:

W
prop
ðkþ1; ~�0Þ;ðk; ~�Þ ¼

1

kþ 1
: (37)

To obtain the Metropolis acceptance rates we first calculate
the acceptance ratio

Rðk; ~�Þ;ðkþ1; ~�0Þ ¼ pððkþ 1; ~�0ÞÞ
pððk; ~�ÞÞ

W
prop
ðkþ1; ~�0Þ;ðk; ~�Þ

W
prop
ðk; ~�Þ;ðkþ1; ~�0Þ

¼ wðkþ 1Þd�01 � � � d�0kþ1

wðkÞd�1 � � � d�k
1=ðkþ 1Þ
d�=�

¼ wðkþ 1Þ
wðkÞ

�

kþ 1
: (38)

Observe that all infinitesimals cancel: The additional infini-
tesimal in the weight pððkþ 1; ~�0ÞÞ is canceled by the infini-
tesimal of the proposal rate for insertions.

Equation (38) implies that the acceptance rates Wacc are
well-defined finite numbers given by

Wacc
ðk; ~�Þ;ðkþ1; ~�0Þ ¼ min½1; Rðk; ~�Þ;ðkþ1; ~�0Þ�; (39)

Wacc
ðkþ1; ~�0Þ;ðk; ~�Þ ¼ min½1; 1=Rðk; ~�Þ;ðkþ1; ~�0Þ�: (40)

Acceptance rates for updates that preserve the order k, such
as shifting some of the �i times or updating the discrete
parameters �, are straightforward to evaluate since there all
infinitesimals cancel trivially.

The general scheme of diagrammatic Monte Carlo algo-
rithms is shown in Fig. 3. One cannot stress often enough that
measurements are performed again on the old configuration if
the proposed update has been rejected.

D. The negative sign problem

Until now we have tacitly assumed that the expansion
coefficients of our partition function expansion are always
positive or zero. This has allowed us to interpret the weights
as probability densities on the configuration space and the
stochastic sampling of these configurations in a Monte Carlo
simulation. If the weights pðxÞ become negative, as is often
the case in fermionic simulations due to the anticommutation
relations between fermionic operators, they can no longer be
regarded as probabilities. The common solution is to sample
with respect to the absolute value of the weight �ðxÞ ¼
jpðxÞÞj and reweight the measurements according to
Eq. (24). The ratio pðxÞ=�ðxÞ is then just sgnðpðxÞÞ ¼
pðxÞ=jpðxÞj. This gives for the average (21)

hAi ¼ hAsgnijpj
hsgnijpj ; (41)

FIG. 2 (color online). An insertion update (top to bottom) insert-

ing a vertex at time �3 and the corresponding removal update

(bottom to top), removing the vertex at time �3.

FIG. 3 (color online). Continuous-time quantum Monte Carlo

flow diagram.
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which can be evaluated by sampling the numerator and
denominator separately with respect to the positive weight
jpðxÞj.

While sampling with the absolute value and reweighing
allows Monte Carlo simulations of systems with negative
weights, it does not solve the ‘‘sign problem.’’ Sampling
Eq. (41) suffers from exponentially growing errors. To see
this consider the average sign

hsgni ¼
R
C dx sgnðxÞjpðxÞjR

C dxjpðxÞj
¼ Z

Zjpj
; (42)

which is just the ratio of the partion function Z and the
partition function of a ‘‘bosonic’’ system with positive
weights jpðxÞj. This ratio can be expressed through the
difference �F in free energies of these two systems

hsgni ¼ Z

Zjpj
¼ expð���FÞ; (43)

and decreases exponentially as the temperature is lowered or
the volume of the system increased.

The sign problem is thus the accurate measurement of this
near-zero sign from individual measurements that are þ1 or
�1, a cancellation problem. The variance of the sign is

Varsgn¼hsgn2i�hsgni2¼1�expð�2��FÞ	1 (44)

and the relative error after M measurements

�sgn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var sgn

p
=M

hsgni 	 expð��FÞffiffiffiffiffi
M

p (45)

grows exponentially with decreasing temperature and in-
creasing system size.

The sign problem has been proven to be nondeterministic
polynomial (NP) hard, and hence in general no polynomial
time solution is believed to exist (Troyer and Wiese, 2005).
However, the severity of the sign problem [in the notation of
Eq. (45) the magnitude of the coefficient expð��FÞ] depends
both on the model considered and on the representation
chosen for the model. Impurity models tend to have less
severe sign problems than comparable finite-sized lattice
models (‘‘turning off’’ the coupling to the bath often makes
the sign problem worse). In special cases the sign problem is
absent. For example, Yoo and co-workers proved that there is
no sign problem in Hirsch-Fye simulations of the single-
impurity single-orbital Anderson impurity model (Yoo
et al., 2005), and this proof can be easily extended to some
multiorbital models and adapted to the continuous-time algo-
rithms presented in this review.

A trivial sign problem arises if the operator Hb is negative
and odd perturbation orders are allowed. A simple example is
the weak-coupling expansion of the repulsive (positive U)
Hubbard model. In this particular case the sign problem may
be avoided by a trick discussed in Sec. III.A.

In the hybridization expansion a severe sign problem may
occur if the hybridization function and the bare level energy
do not commute ½�ab; Eab� � 0 (Wang and Millis, 2010). An
apparently related difficulty occurs in the weak-coupling
approach if the hybridization function and interaction are
not diagonal in the orbital-spin occupation number basis

(Gorelov et al., 2009). In the larger systems dealt with in
cluster dynamical mean-field theory, fermion loops occur and
produce a sign problem. Because the sign problem is model
and representation dependent, further discussion is postponed
to the sections pertaining to specific algorithms.

III. INTERACTION EXPANSION ALGORITHM CT-INT

The interaction expansion algorithm CT-INT was the first
continuous-time impurity solver to be introduced (Rubtsov
and Lichtenstein, 2004). It proceeds from Eq. (19), with Hb

taken to be the interaction part HI
loc of Eq. (4), and Ha ¼

Hbath þHhyb þH0
loc [see Eqs. (1) and (2)]. It has a better

scaling with system size than the hybridization algorithm and
can treat more general interactions than CT-AUX. A ‘‘trivial’’
sign problem arises for repulsive interactions, where terms of
the form ð�UÞk appear. Elimination of this sign problem is an
important issue in the design of the algorithm.

A. Partition function expansion

We illustrate the method by considering the simplest
model, the one-orbital single-site Anderson impurity model
Eq. (12) which, for this expansion, is most conveniently
formulated in terms of the action S ¼ S0 þ SU with

S0 ¼ �X�
�

ZZ �

0
d�d�0dy�ð�ÞG0

�ð�� �0Þ�1d�ð�0Þ; (46)

SU ¼ U
Z �

0
d�n"ð�Þn#ð�Þ; (47)

where G0
� ¼ ði!n � 	0 � ��Þ�1, and 	0 is the impurity

energy level. We consider more general models in
Sec. III.D. The expansion of the partition function in powers
of U reads

Z=Z0 ¼ 1þ ð�UÞ
1!

Z �

0
d�1hn"ð�1Þn#ð�1Þi0

þ ð�UÞ2
2!

ZZ �

0
d�1d�2hn"ð�1Þn#ð�1Þn"ð�2Þ

� n#ð�2Þi0 þ � � � ; (48)

where the notation h� � �i0 ¼ ð1=Z0Þ
R
D½dy; d�e�S0 ½� � �� de-

notes an average in the noninteracting ensemble with qua-
dratic action S0 (see low order terms in Fig. 4), and
Z0 ¼

R
D½dy; d�e�S0 . Employing Wick’s theorem (Wick,

1950) we can express the expectation value in terms of
determinants of the noninteracting Green’s function
�hTdð�iÞdyð�jÞi0 ¼ G0ð�i � �jÞ:

hn"ð�1Þn#ð�1Þn"ð�2Þn#ð�2Þ � � � n"ð�kÞn#ð�kÞi0
¼ detD"

k detD
#
k; (49)

ðD�
k Þij ¼ G0

�ð�i � �jÞ: (50)

Summing the contractions into a determinant instead of
sampling them individually reduces the size of the configu-
ration space and avoids a sign problem coming from fermi-
onic exchange.
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We thus arrive at the following series for the partition
function:

Z=Z0 ¼
X1
k¼0

ð�UÞk
k!

Z �

0
d�1 � � � d�k

�Y
�

detD�
k

�
: (51)

Two sign problems may potentially occur in this expansion:
an intrinsic sign problem arising from fermion exchange
because the determinants might become negative and a trivial
sign problem, arising for U > 0 from the ð�UÞk factor. The
arguments of Yoo et al. (2005) prove that for the single-
impurity Anderson model each of the determinants is non-
negative, so there is no intrinsic sign problem. This is not
necessarily the case for the more general models considered
in Sec. III.D. The trivial sign problem arising for U > 0 can
be managed in several ways. For the single-band, single-
impurity Anderson model, Rubtsov(2003) showed that the

replacement dy# ! ~d#, d# ! ~dy# leads to the following changes
in the parameters of the effective action:

	0# ! �	0#; �#ð�Þ ! ��#ð��Þ;
	0" ! 	0" þ U; U ! �U:

(52)

The repulsive interaction becomes attractive and the trivial
sign problem due to the interaction term vanishes.

This approach performs a particle-hole transformation on
the down spins only such that up and down spins are treated
inequivalently. While the entire series formally maintains
spin inversion symmetry (in the absence of a magnetic field),
restoring it dynamically by Monte Carlo sampling is chal-
lenging in practice. It is better to avoid the symmetry break-
ing as follows.

Observe that the transformed Hamiltonian can be viewed
in the original variables as an expansion in Un"ðn# � 1Þ; this
leads to a down-spin determinant with diagonal elements
replaced by G0

# ð0Þ � 1. The absence of a sign problem means

that the down-spin determinant must generate a minus sign
that compensates the (� U) factor. This approach may be
generalized: Expanding in powers of

SU ¼ U
Z �

0
d�ðn"ð�Þ � �"Þðn#ð�Þ � �#Þ; (53)

with the corresponding change 	0� ! 	0� � U���,

G0 ! ~G0 in S0, leads to

detD�
k ¼hT�½n�ð�1Þ�������½n�ð�kÞ����i0

¼

��������������������

~G0
�ð0Þ���

~G0
�ð�1��2Þ ��� ~G0

�ð�1��kÞ
~G0
�ð�2��1Þ ~G0

�ð0Þ���
. .
. ..

.

..

. . .
. . .

. ..
.

~G0
�ð�k��1Þ ��� ��� ~G0

�ð0Þ���

��������������������
(54)

Rubtsov (2003) showed that for �" þ �# ¼ 1; �"�# � 0 the

trivial sign problem is absent.
Finally, it is advantageous to avoid this explicit symmetry

breaking at the cost of introducing an auxiliary field s ¼" , #
and expanding in powers of

SU ¼ U

2

Z �

0
d�
X
s�

½n"ð�Þ � �s�"�½n#ð�Þ � �s�#�: (55)

Expanding this action we get an additional random variable
si ¼" , # at each vertex that needs to be sampled over. In
practice this does not introduce any difficulties: All expres-
sions remain unchanged, apart from an additional index �si�

instead of �� in the determinants of Eq. (54).
In the actual calculation it is useful to take the parameter

�s� ¼ 1=2þ � for s ¼ � and �s� ¼ �� otherwise. In prin-
ciple, � can be taken to be zero but setting it to a small
positive value � 	 0:01 allows one to avoid numerical insta-
bilities due to nearly singular matrices.

An interaction expansion has also been derived by Assaad
and Lang (2007) for retarded interactions such as

Sret ¼
X
ab

Z �

0
d�d�0Oað�ÞWabð�� �0ÞObð�0Þ; (56)

where O denotes a fermion bilinear. This formalism will be
discussed in Sec. VII.C.

B. Updates

The series (51) and the corresponding one for (55) are of the
type (30), and we can employ continuous-time sampling as
described in Sec. II.C.We insert and remove interactionvertices
on the imaginary-time axis, corresponding to the terms
U½n"ð�Þ � �s�"�½n#ð�Þ � �s�#� (see Fig. 5). Proposing a vertex

insertion update with probability d�=ð2�Þ (for the imaginary-
time location and the orientation of the auxiliary spin s�) and a
removal update with probability 1=ðkþ 1Þ we obtain

R ¼ �U

ðkþ 1Þ
Y
�

detD�
kþ1

detD�
k

: (57)

Note that for the interaction defined inEq. (55) the prefactor 1=2
is compensated by a factor of 2 in the ratio of proposal proba-
bilities, which comes from the two possible values of s�, so that
the acceptance ratio is the same as in the straightforward
approach.

This update and its inverse are sufficient to be ergodic. In
evaluating the determinant ratios the fast-update technique
described in Sec. X.A should be used, since it allows one to
calculate the ratio R in Oðk2Þ operations, substantially faster

FIG. 4 (color online). Depiction of a third-order term in the weak-

coupling expansion. Upper panel: Hubbard interaction vertices

denoted by circles. Each Un"ð�Þn#ð�Þ vertex has four operators.

Lower panel: One possible contraction of the interaction vertices.
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than the naive evaluation of determinants with Oðk3Þ
operations.

C. Measurements

Monte Carlo averages are calculated using Eqs. (21) and
(22), where the distribution p of Eq. (21) is given by the
coefficients of Eq. (51). In particular, the Green’s function

G�ð���0Þ¼�Z0

Z

X1
k¼0

ð�UÞk
k!

Z
d�1 ���d�khT�d�ð�Þdy�ð�0Þ

�n1"ð�1Þn1#ð�1Þ���nk#ð�kÞi0 (58)

is estimated by G�1�1;...;�k�k ð�; �0Þ [corresponding to AðxÞ in
Eq. (21)]:

G�ð�� �0Þ ¼ hG�1�1;...;�k�k ð�; �0ÞiMC; (59)

G�1�1;...;�k�kð�; �0Þ ¼ � hT�d�ð�Þdy�ð�0Þn1�n2� � � � nk�i0
hn1�n2� � � � nk�i0 :

(60)

The h� � �iMC denotes a Monte Carlo average, while the h� � �i0
denotes all possible Wick’s contractions of one particular
Monte Carlo configuration. The denominator is a determinant
that cancels the Wick’s contraction of a partition function
configuration p, and the numerator determinant consists
of a matrix with an additional row ½G0

�ð�� �0Þ;
G0

�ð�� �1Þ;G0
�ð�� �2Þ; . . . ;G0

�ð�� �kÞ� and column
½G0

�ð�� �0Þ;G0
�ð�1 � �0Þ;G0

�ð�2 � �0Þ; . . . ;G0
�ð�k � �0Þ�.

The configuration G�1�1;...�k�kð�; �0Þ in Eq. (60) depends on

two independent arguments �, �0, while the observable aver-
age Eq. (58) is time-translation invariant. This symmetry
of the effective action is restored only after the averaging in
Eq. (59). It will be shown in Sec. X.C that it is best either to
measure a quantity corresponding to �G or to perform a
Fourier transform to Matsubara frequencies analytically, so
that the Green’s function is calculated directly in the fre-
quency domain.

There is one particular observable estimate that can be
obtained just from the properties of the random walk itself,
without any additional calculation: the average value of the
perturbation operator. One can see from a term-to-term com-
parison of the respective series that the average perturbation
order hki is proportional to the average value of the interac-
tion part,

hkiMC ¼ hSUi: (61)

Therefore, the expectation value of the interaction operator
Un"n# is hkiMC=�.

D. Generalization to clusters, multiorbital problems, and

retarded interactions

In the case of the Hubbard model on a cluster, the only
difference to the single-orbital case is that creation and
annihilation operators acquire an additional site index. We
can absorb all quadratic hopping terms in G0 and perform the
interaction expansion in

SU ¼ U
X
i

ðni" � �i"Þðni# � �i#Þ; (62)

where i runs over the sites of the cluster. The �i� terms are
chosen as in the single-site case, optionally with an auxiliary
spin si at each site.

The Green’s functions G0
ijð�i � �jÞ are site dependent, but

the spin-up and spin-down contributions still factor into
separate determinants:

Z

Z0

¼ X1
k¼0

Z
d�1 � � � d�k

X
s1 ���sk¼�1

i1 ���ik

ð�UÞk
k!

Y
�

detD�
k ; (63)

where ðD�
k Þij ¼ G0

ij;�ð�i � �jÞ � �ij�i�. It follows immedi-

ately that there is no sign problem in the half-filled case,
where the determinants of the up and down matrices are
identical. However, away from half-filling a sign problem
occurs in general; see, e.g., Fig. 5 in Gull et al. (2008a).

For the updates a generalization of Eq. (57) should be used,
where � is replaced by the factor �Nc, with Nc the number of
sites in the cluster.

In the general case of multiple orbital problems intrinsic
sign problems typically occur, and management even of the
trivial sign problem becomes more involved. The basic idea is
to express the interaction HI

loc [Eq. (2)] in action form as

Sloc¼
X
pqrs

ZZ
d�d�0Ipqrsðdypds��psÞðdyqdr��qrÞ

(64)

and then perform a multiple expansion in the interactions
Ipqrs. In multioribtal systems the number of terms prolifer-
ates; for N orbitals there are of order N4 terms, although in

FIG. 5 (color online). Local updates for the CT-INT algorithm. (a) Starting configuration; (b) insertion of a vertex; (c) removal of a vertex;

and (d) shift of a vertex in imaginary time.
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practice some of them vanish by symmetry. Denoting the
tuple (pqrs) at vertex i by 
i we have

Z

Z0

¼X1
k¼0

XN



1���
k

Z
d�1 ���d�k

ð�1ÞkI
1
���I
k

k!
hv
1 ���v
k

i0;

v
�ðdyp

ds
 ��psÞðdyq
dr
 ��qrÞ: (65)

If we insert random (nonzero) matrix elements at random
times in ½0; �Þ, the prefactor of the acceptance probability
ratios in Eq. (57), �U=ðkþ 1Þ, is modified by a factor N
,

becoming �IN
=ðkþ 1Þ.
Wick’s theorem of Eq. (65) yields a determinant similar to

(54). If the Green’s function matrix G0
ij for the different

orbitals is diagonal in the orbital indices, the determinant
factorizes into smaller-size determinants. However, in general
there is no reason for the determinant of D to have the same
sign for all configurations. The choice of � terms has an
influence on the sign statistics, and they need to be adjusted
for each problem such that the expansion is sign free or at
least has an average sign that is as large as possible. How this
is best done is still an open question. An ansatz has been
presented by Gorelov (2007). The basic principle is to treat
the off-diagonal interaction terms with small but nonzero �,
whereas the symmetrized form (55) is used for the density-
density part.

IV. CONTINUOUS-TIME AUXILIARY-FIELD ALGORITHM

CT-AUX

A first continuous-time auxiliary-field method for fermi-
onic lattice models was developed by Rombouts et al. (1998,
1999), and applied to the nuclear Hamiltonian and small
Hubbard lattices. We present here a different formulation
(Gull et al., 2008a) that is also applicable to (cluster)
impurity problems. This continuous-time auxiliary-field
(CT-AUX) algorithm is based on an interaction expansion
combined with an auxiliary-field decomposition of the inter-
action vertices. One may view CT-AUX as an ‘‘optimal’’
Hirsch-Fye algorithm, on a nonuniform time grid and with
a varying number of time slices that are chosen automatically
for given parameters. The approach allows the combination
of numerical techniques developed for the Hirsch-Fye algo-
rithm (see, e.g., Sec. X.B.1) with the advantages of a
continuous-time method. It was shown to be equivalent to
the weak-coupling algorithm in the case of the single-band
Hubbard model (Mikelsons et al., 2009b). Currently the CT-
AUX impurity solver is the method of choice for large cluster
simulations.

A. Partition function expansion

We present the derivation for the case of a cluster impurity
problem with Nc cluster sites. The generalization to multi-
orbital models with density-density interactions is straight-
forward. Application to more general multiorbital models
would involve techniques similar to Sakai et al. (2006a,
2006b) and has not yet been attempted. Starting from the
partition function Z ¼ Tre��ðH0þHUÞ we add a nonzero con-
stant K to HU:

HU ¼ U
XNc

i

�
ni"ni# � ni" þ ni#

2

�
� K

�
; (66)

H0 ¼ HAIM �HU þ K=�; (67)

such that

Z ¼ Tr½e��H0T�e
R

d�fðK=�Þ�U
P

Nc
i

½ni"ni#�ðni"þni#Þ=2�g�:
(68)

Expanding the exponential in powers of HU and applying the
auxiliary-field decomposition (Rombouts et al., 1999)

1� �U

K

XNc

i

�
ni"ni# � ni" þ ni#

2

�
¼ 1

2Nc

X
i;si¼�1

e�siðni"�ni#Þ;

(69)

coshð�Þ ¼ 1þU�Nc

2K
; (70)

we obtain

Z¼X1
k¼0

X
s1 ;...;sk¼�1

Z �

0
d�1 � � �

Z �

�k�1

d�k

�
K

2�Nc

�
k
Zkðfsk;�k;xkgÞ;

(71)

Zkðfsi; �i; xigÞ � Tr
Y1
i¼k

e���iH0esi�ðnxi "�nxi #Þ; (72)

with ��i � �iþ1 � �i for i < k and ��k � �� �k þ �1.
Equation (72) is similar to the equations for the BSS

(Blankenbecler et al., 1981) or Hirsch-Fye (Hirsch and
Fye, 1986) algorithms [see also Georges et al. (1996),

Appendix B1]. Using the identity Trdy
i
;di
fe�

P
ij
dyi Aijdj

e
�P

ij
dyi Bijdje

�P
ij
dyi Cijdj g ¼ detð1þ e�Ae�Be�CÞ and follow-

ing the derivation by Gull et al. (2008a), we obtain

Zkðfsi; �i; xigÞ
Z0

¼ Y
�¼";#

detN�1
� ðfsi; �i; xigÞ; (73)

N�1
� ðfsi; �i; xigÞ � eV

fsig
� �Gf�i;xig

0� ðeVfsig
� � 1Þ; (74)

eV
fsig
� � diagðe�ð�1Þ�s1 ; . . . ; e�ð�1Þ�sk Þ; (75)

with the notations ð�1Þ" � 1, ð�1Þ# � �1, and ðGf�i;xig
0� Þi;j ¼

G0
xixj;�ð�i � �jÞ for i � j, ðGf�i;xig

0� Þi;i ¼ G0
xixi;�ð0þÞ [we as-

sume in this section that G0
xixi;�ð0þÞ> 0]. As we handle a

variable number of time slices at constantly shifting
imaginary-time locations, it is advantageous to formulate
the algorithm in terms of a matrix N�, defined by G� ¼
N�G0� instead of G. With Eq. (74) we express the weight of
any (auxiliary spin, time, site) configuration in terms of the
bath Green’s function G0

�, the constant � defined in Eq. (69),
and the determinant of two matrices N�. The contribution of
such a configuration to the whole partition function is given
by Eq. (73).
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B. Updates

In the CT-AUX algorithm, the partition function Eq. (71)
consists of a sum over all expansion orders k up to infinity,
another discrete sum over auxiliary fields s and sites x, and a
k-dimensional time-ordered integral from zero to �, so we
can employ the sampling scheme of Sec. II.C.

In addition to the imaginary-time locations of the interac-
tion vertices, we also need to sample auxiliary spins sj
associated with each vertex. Thus, the configuration space C
[Eq. (20)] is given by the set

C ¼ ffg; fðs1; �1; x1Þg; fðs1; �1; x1Þ; ðs2; �2; x2Þg; . . . ;
� fðs1; �1; x1Þ; . . . ; ðsk; �k; xkÞg; . . .g; (76)

where the sj are auxiliary Ising spins that take values�1, k is

the expansion order, xj denotes cluster sites, and the �j are

continuous variables between 0 and �, which we assume to
be time ordered, i.e., �1 < �2 < � � �< �k (see Fig. 6).

Note that this representation is different from the one
proposed by Rombouts et al. (1999), where the configuration
space consists of a number Nmax of fixed ‘‘slots’’ at which
interaction operators can be inserted into an operator chain (a
‘‘fixed length’’ representation). This leads to additional com-
binatorial factors in the acceptance probabilities.

Although they are not sufficient for an ergodic sampling,
we first consider spin-flip updates at constant order which are
fast to compute and useful for reducing autocorrelation times:

½ðs1;�1;x1Þ; . . . ;ðsj;�j;xjÞ; . . . ;ðsk;�k;xkÞ�
!½ðs1;�1;x1Þ; . . . ;ð�sj;�j;xjÞ; . . . ;ðsk;�k;xkÞ�: (77)

The probability density ratios of the two configurations are
computed from Eq. (73) as

R ¼ pðx0Þ
pðxÞ ¼

Q
�
detN�1

� ðfs0i; �0i; x0igÞQ
�
detN�1

� ðfsi; �i; xigÞ
: (78)

Vertex insertion updates from configuration x ¼ fsi; �i; xig
to configuration y ¼ fs0i; �0i; x0ig, on the other hand, have to be

balanced by removal updates (see Fig. 7). The proposal
probability accounts for choosing a random time between 0
and �, a random site, and a random spin direction:

W
prop
xy ¼ 1

2Nc

d�

�
: (79)

The proposal probability of removing a spin, going from
order kþ 1 to order k, consists of choosing one of the kþ
1 spins:

W
prop
yx ¼ 1

kþ 1
: (80)

Therefore we obtain, following Eq. (28),

Rxy ¼ K

kþ 1

detN"ðyÞ detN#ðyÞ
detN"ðxÞ detN#ðxÞ : (81)

The efficient numerical computation of these expressions is
discussed in Secs. X.A and X.B.

C. Measurements

1. Measurement of the Green’s function

The main observable of interest is the Green’s function
Gpq;�ð�; �0Þ for cluster sites p and q and spin �. Note that we

are free to add two additional noninteracting spins s ¼ s0 ¼ 0
to Eq. (72) at any arbitrary time � and �0 (we denote the
corresponding matrices of size nþ 2 with a tilde).
ZGpq;�ð�; �0Þ is then given by an expression similar to

Eq. (76), with an insertion of d�ð�Þ and dy�ð�0Þ at the corre-
sponding times. Using the same linear algebra as in the
Hirsch-Fye algorithm [Eq. (118) of Georges et al. (1996)]
we obtain

Gpq;�ð�; �0Þ ¼ 1

Z

X
k�0

�
K

2�Nc

�
k X
si¼�1
1�i�k

Z �

0
d�1 � � �

Z �

�k�1

d�k

� Zkðfsi; �i; xigÞ ~Gfsi;�i;xig
pq;� ð�; �0Þ; (82)

with ~Gfsi;�i;xig
pq;� ¼ ~N�;prðfsi; �i; xigÞ ~Gf�ig

0;rq;�. Since s ¼ s0 ¼ 0, a

block calculation yields

FIG. 6 (color online). Pictorial representation of configurations fk; ðsj; �jÞg 2 C which are sampled by the CT-AUX algorithm. Diagrams for

orders 0, 1, 2, and 3. In this algorithm, an auxiliary spin sj (represented here by the vertices and the direction of the arrows) needs to be

sampled in addition to the imaginary-time location �j of a vertex.

FIG. 7 (color online). An insertion update and its corresponding

removal update within the CT-AUX algorithm.
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~Gfsi;�i;xig
pq;� ð�; �0Þ ¼ G0

pq;�ð�; �0Þ þ
Xk

l;m¼1

G0
pxl;�ð�; �lÞMlm

� G0
xmq;�ð�m; �0Þ; (83)

Mlm ¼ ½ðeVfsig
� � 1ÞN�ðfsi; �i; xigÞ�lm; (84)

and Gpq;�ð�; �0Þ ¼ h ~Gpq;�ð�; �0ÞiMC. As in the CT-INT algo-

rithm we may Fourier transform the above expression to
obtain a measurement formula in frequency space:

~Gpqði!nÞ ¼ G0
pqði!nÞ �

X
lm

G0
plði!nÞG0

mqði!nÞ
�

� ei!n�lMlme
�i!n�m : (85)

By accumulating the Fourier coefficients directly, we avoid
many of the discretization and related high-frequency expan-
sion problems (see Sec. X.C).

A closer analysis of Eq. (83) shows that it is possible and
advantageous to measure S ¼ MG0 ¼ �G directly, as will
be discussed in Sec. X.C.1.

2. Role of the potential energy parameter K

Similar to the weak-coupling expansion parameter � of
Sec. III, the parameter K of Eq. (66) can be freely adjusted.
The average perturbation order hkctauxi is related to K, the
potential energy and filling by

hkctauxiMC ¼ K� �Uhn"n# � ðn" þ n#Þ=2i; (86)

and hence the perturbation order in the continuous-time
auxiliary-field method grows linearly with K.

V. HYBRIDIZATION EXPANSION SOLVERS CT-HYB

A. The hybridization expansion representation

A complementary approach to the CT-INT and CT-AUX
solvers described in Secs. III and IV is the hybridization
expansion algorithm (CT-HYB) developed by Werner,
Millis, Troyer, and collaborators (Werner et al., 2006;
Werner and Millis, 2006). It proceeds from Eq. (19) with
Hb taken to be the hybridization termHhyb andHa ¼ Hbath þ
Hloc. An advantage of this approach is that the average
expansion order for a typical problem near the Mott transition
is much smaller than in the interaction expansion methods
and therefore lower temperatures are accessible (Gull et al.,
2007). General interactions can easily be treated as long as
the local Hilbert space is not too large. Werner et al. (2006)
first presented an algorithm and applications for the single-
impurity Anderson model. A generalization to multiorbital
models with complex interactions and the Kondo model soon
followed (Werner and Millis, 2006), and this formalism was
later extended by Haule (2007) who introduced the ideas
of basis truncation and sector statistics and implemented
the algorithm for models with off-diagonal hybridization
functions.

Since Hhyb ¼
P

pjðVj
pc

y
pdj þ Vj�

p dyj cpÞ ¼ ~Hhyb þ ~Hy
hyb

contains two terms which create and annihilate electrons on
the impurity, respectively, only even powers of the expansion

and contributions with equal numbers of ~Hhyb and ~Hy
hyb can

yield a nonzero trace. The partition function therefore
becomes

Z ¼ X1
k¼0

Z �

0
d�1 � � �

Z �

�k�1

d�k
Z �

0
d�01 � � �

Z �

�k0�1

d�0k

� Tr½T�e
��Ha ~Hhybð�kÞ ~Hy

hybð�0kÞ � � �
� ~Hhybð�1Þ ~Hy

hybð�01Þ�: (87)

Inserting the ~Hhyb and ~Hy
hyb operators explicitly yields

Z ¼ X1
k¼0

Z �

0
d�1 � � �

Z �

�k�1

d�k
Z �

0
d�01 � � �

Z �

�0
k�1

d�0k

� X
j1 ;...;jk
j0
1
;...;j0

k

X
p1 ;...;pk
p0
1
;...;p0

k

Vj1
p1
V
j0
1
�

p0
1
� � �Vjk

pk
V
j0
k
�

p0
k

� Tr½T�e
��Hadjk ð�kÞcypk

ð�kÞcpk0 ð�0kÞ
� dy

j0
k
ð�0kÞ � � � dj1 ð�1Þcyp1

ð�1Þcp0
1
ð�01Þdyj0

1
ð�01Þ�: (88)

Separating the bath and impurity operators we obtain

Z ¼ X1
k¼0

Z �

0
d�1 � � �

Z �

�k�1

d�k
Z �

0
d�01 � � �

Z �

�0
k�1

d�0k

� X
j1 ;...;jk
j0
1
;...;j0

k

X
p1 ;...;pk
p0
1
;...;p0

k

V
j1
p1
V
j0
1
�

p0
1
� � �Vjk

pk
V
j0
k
�

p0
k

� Trd½T�e
��Hlocdjkð�kÞdyj0

k
ð�0kÞ � � � dj1ð�1Þdyj0

1
ð�01Þ�

� Trc½T�e
��Hbathcypk

ð�kÞcpk0 ð�0kÞ � � � cyp1
ð�1Þcp0

1
ð�01Þ�:
(89)

We can now integrate out the bath operators cpð�Þ, since they
are noninteracting, and the time evolution (given by Ha) no
longer couples the impurity and the bath. Defining the bath
partition function

Zbath ¼ Tre��Hbath ¼ Y
�

Y
p

ð1þ e��"p Þ; (90)

and the antiperiodic hybridization function � [Eq. (10)],

�lmð�Þ ¼
X
p

Vl�
p V

m
p

e"p� þ 1
�
��e�"pð���Þ; 0< �< �;
e�"p�; ��< � < 0;

(91)

we obtain the determinant

1

Zbath

Tr

�
T�e

��Hbath

X
p1;...;pk

X
p0
1
;...;p0

k

Vj1
p1
V
j0
1
�

p0
1
� � �Vjk

pk
V
j0
k
�

p0
k

� cypk
ð�kÞcpk0 ð�0kÞ � � � cyp1

ð�1Þcp0
1
ð�01Þ

�
¼ det�; (92)

for an arbitrary product of bath operators. Here � is a k� k
matrix with elements �lm ¼ �jljm ð�l � �mÞ. In practice, and

in analogy to the algorithms in previous sections, it will be
more convenient to handle the inverse of this matrix�, which
we denote by M ¼ ��1 (see Sec. X.A).
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The partition function expansion for the hybridization
algorithm now reads (for time-ordered configurations)

Z ¼ Zbath

X
k

ZZZ
d�1 � � � d�0k

X
j1;...;jk

X
j0
1
;...;j0

k

Trd½T�e
��Hloc

� djk ð�kÞdyj0
k
ð�0kÞ � � � dj1 ð�1Þdyj0

1
ð�01Þ� det�: (93)

If the coupling to the bath is diagonal in the ‘‘flavor’’ (spin,
site, orbital, etc.) indices j, then � is a block-diagonal matrix
and Eq. (93) simplifies to

Z ¼ Zbath

Y
j

X1
kj¼0

Z �

0
d�j1 � � �

Z �

�0j
kj�1

d�0jkj Trd½T�e
��Hloc

� djð�jkjÞdyj ð�
0j
kj
Þ � � � djð�j1Þdyj ð�0j1 Þ� det�j: (94)

B. Density-density interactions

We first consider (multiorbital) models with density-
density interactions. In this case, the local Hamiltonian Hloc

commutes with the occupation number operator of each
orbital. We may therefore represent the time evolution of
the impurity by collections of ‘‘segments’’ which represent
time intervals in which an electron of a given flavor resides on
the impurity. An example of such a segment configuration for
a single-orbital model (two spin flavors) is shown in Fig. 8.

Since the local Hamiltonian is diagonal in the occupation
number basis, the contribution of the trace factor can be
computed for each segment configuration. For a model with
n orbitals and a total length Lj of segments in orbital j and a

total overlap Oij between segments of flavor i and j, one

obtains (s is a sign depending on the operator sequence)

wlocðxÞ ¼ Trd½� � �� ¼ se
�
P

n
j
Lje

�Pn
i<j

ðUijOijÞ; (95)

except in the trivial case where there are no operators
for certain flavors. In the latter case, several segment

configurations, involving ‘‘full’’ and ‘‘empty’’ lines, contrib-
ute to the trace.

C. Formulation for general interactions

If Hloc is not diagonal in the occupation number basis

defined by the dy�, a separation of flavors, as in the segment
formalism, is no longer possible (see Fig. 9) and the calcu-

lation of wlocðxÞ ¼ Trd½T�e
��Hloc

Q
�d�ð��k� Þdy�ð�0�k� Þ � � �

d�ð��1 Þdy�ð�0�1 Þ� becomes more involved. One strategy, pro-

posed by Werner and Millis (2006), is to represent the

operators d� and dy� as matrices in the eigenbasis of Hloc,
because in this representation the time-evolution operators
e�Hloc� become diagonal. The evaluation of the trace factor
thus involves the multiplication of matrices whose size is
equal to the size of the Hilbert space of Hloc. Since the
dimension of the Hilbert space grows exponentially with
the number of flavors, the calculation of the trace factor
becomes the computational bottleneck of the simulation,
and the matrix formalism is therefore restricted to a relatively
small number of flavors ( & 10). The technical part of eval-
uating these traces is described in detail in Sec. X.F.

Haule (2007) observed that conserved quantum numbers
may be exploited to facilitate the calculation of the trace. If
the eigenstates of Hloc are ordered according to conserved
quantum numbers, the evaluation of the trace is reduced to
block-matrix multiplications (see Sec. X.F) of the form

wlocðxÞ ¼
X

contr:m

Trm½� � � ðOÞm00;m0 ðe�ð�0��ÞHloc Þm0

� ðOÞm0 ;mðe��Hloc Þm�; (96)

where O is either a creation or annihilation operator, m
denotes the index of the matrix block, and the sum runs
over those sectors which are compatible with the operator
sequence. With this technique, 3-orbital models or four-site
clusters can be simulated efficiently (Haule and Kotliar,
2007b; Gull et al., 2008b; Park et al., 2008b; Werner
et al., 2008; Chan, 2009). However, since the matrix blocks

FIG. 8 (color online). Segment configuration of a k ¼ 6 order term in hybridization expansion of the single-orbital Anderson model. Upper

line: spin-up orbital; lower line: spin-down orbital; heavy line: orbital occupied; light line: orbital empty. For each orbital, the length of the

black line (occupied orbitals) determines the chemical potential contribution to the weight factor (95). Shaded areas: Regions where both up

and down orbitals are filled, so the impurity is doubly occupied. The length of the shaded area enters into an overall weighting factor for the

potential energy (Hubbard U).

FIG. 9 (color online). A typical term in the expansion (93): Three ‘‘flavors’’ of fermionic creation and annihilation operators (denoted by

filled and empty diamonds, squares, and circles) are placed at times between 0 and �. In the general case, orbital occupation is not conserved

by the local Hamiltonian, so two operators of the same type may follow each other.
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are dense and the largest blocks still grow exponentially with
system size, the simulation of 5-orbital models becomes al-
ready quite expensive and the simulation of 7-orbital models
with 5, 6, or 7 electrons is only feasible with current computer
resources if the simulation is restricted to a few valence states
and, within this subspace, the maximum size of the blocks is
truncated (see Sec. X.F.2). Simulations based on such a
truncated version of the matrix formalism were used by
Shim et al. (2007) and Marianetti et al. (2008). The
Krylov method described in the next section avoids trunca-
tions to a large extent.

D. Krylov implementation

An alternative strategy to evaluate the trace in Eq. (93) was
proposed by Läuchli and Werner (2009) based on the obser-
vation that in the occupation number basis both the

dðyÞi -operator matrices and Hloc are typically very sparse, so

the dðyÞi operators can easily be applied to any given state while

efficient Krylov-space methods can be used to evaluate the
imaginary-time evolution. This implementation involves only
matrix-vector multiplications with sparse operators dðyÞ and
Hloc, and is thus doable even for systems for which the multi-
plication of dense matrix blocks becomes prohibitively ex-
pensive. Furthermore, no explicit truncation of states of the
local Hamiltonian is required, so that all excited states remain
accessible at intermediate times � in the trace. The outer trace
may be approximated by a sumover the lowest energy states. If
this is done, it is important to measure the various local
observables at � ¼ �=2 in order to be least affected by the
truncation of the trace at � ¼ 0 (and equivalently at � ¼ �).

The complexity of the Krylov algorithm isOðNdim � Ntr �
Nhyb � NiterÞ, where Ndim is the size of the impurity Hilbert

space,Ntr the number of states kept in the outer trace,Nhyb the

number of hybridization events, and Niter the number of
Krylov iterations used for the calculation of the time evolu-
tion from one operator to the next. Hochbruck and Lubich
(1997) showed rigorously that these Krylov-space algorithms
converge rapidly as a function of Niter, typically reaching
convergence for very small iteration numbers p  Ndim,
although the number of iterations depends on the time inter-
val �. In the worst case, all states in the trace are retained
(Ntr ¼ Ndim), and the complexity scales as N2

dim, where as in

the best case Ntr ¼ Oð1Þ and the complexity is linear in the
dimension of the Hilbert space. In comparison, the complex-
ity of the approach described in Sec. V.C is cubic in Ndim.
Läuchli and Werner (2009) showed that the Krylov approach
with outer trace truncated to the lowest energy states becomes
favorable for models with more than 4 orbitals (or 4 sites).
The systematic error resulting from the truncation of the outer
trace becomes negligible at temperatures below a few percent
of the bandwidth. The Krylov-based hybridization expansion
thus provides a method for the systematic investigation of
larger problems such as the dynamical mean-field theory of
transition metal and actinide compounds.

E. Updates

In order to sample Eq. (93) we perform a Monte
Carlo simulation as described in Sec. II.C. We explain the

sampling procedure for the formulation with density-density
interactions. The two basic updates required for ergodicity
are the insertion and the removal of a segment.

Starting from a configuration of segments xk ¼ fð�s1; �e1Þ;
ð�s2; �e2Þ; . . . ; ð�sk; �ekÞg, we attempt to insert a new segment skþ1

starting at �s to obtain a configuration ykþ1. This move is
rejected if �s lies on one of the existing segments, since we
cannot create two identical fermions at the same site.
Otherwise, we choose a random time uniformly in the interval
½�s; �s0 Þ of length lmax (see Fig. 10), where �s

0
is the start of

the next segment in xk. For the reverse move, the proposal
probability is given by the probability of selecting that given
segment for removal.

Therefore, the proposal probabilities are

W
prop
xy ¼ d�2

�lmax

; (97)

W
prop
yx ¼ 1

kþ 1
; (98)

and the acceptance ratio becomes

Rxy ¼
pyW

prop
yx

pxW
prop
xy

¼ �lmax

kþ 1

wlocðyÞ det�ðyÞ
wlocðxÞ det�ðxÞ : (99)

An important second update, equivalent to the insertion of
a segment, is the insertion of an ‘‘antisegment’’: the insertion
of a annihilator-creator pair istead of a creator-annihilator
pair. The formulas for the acceptance ratio are the same as
Eq. (99). Besides smaller autocorrelation times these updates
cause the two zero-order contributions ‘‘full occupation’’ and
‘‘no segment’’ to be treated on equal footing.

Further updates, such as the shift of a segment or the shift
of one or both end points, do not change the order of the
expansion, but help to reduce autocorrelation times. The shift
moves are ‘‘self-balancing’’ (proposal probabilities for shift
moves and their inverse are the same), so

Rxy ¼ wlocðyÞ det�ðyÞ
wlocðxÞ det�ðxÞ : (100)

A sequence of updates is illustrated in Fig. 11.

FIG. 10 (color online). An insertion update and its corresponding

removal update within the hybridization algorithm.
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Global updates (see Sec. X.G), for example, the exchange
of all segments of two orbitals, may be required to ensure
ergodicity, i.e., that the random walk does not get trapped in
one part of phase space. Such updates require the configura-
tion to be recomputed from scratch and are in general of order
Oðk3Þ. They are essential in calculations of magnetic phase
boundaries (Poteryaev et al., 2008; Chan et al., 2009; Kuneš
et al., 2009).

F. Measurements

The CT-HYB algorithm generates configurations with the
weight that they contribute to the partition function Z. To
obtain expectation values of an observable we can either
simulate the series of that observable (which, for the
Green’s function, corresponds to the ‘‘worm’’ algorithm de-
scribed in Sec. X.D) or estimate the observable according to
Eq. (21).

The single most important observable for quantum
Monte Carlo impurity solvers is the finite temperature

imaginary-time Green’s function Glmð�Þ¼�hT�dlð�Þdymð0Þi.
The series for this observable is

Glmð�l; �mÞ ¼ �Zbath

X
k;j1 ;...;jk

j0
1
;...;j0

k

Z
d�1 � � � d�0k det�k

� Trd½T�e
��Hlocdlð�lÞdymð�mÞdjkð�kÞ

� dy
j0
k
ð�0kÞ � � � dj1 ð�1Þdyj0

1
ð�01Þ�: (101)

This shows that Green’s function configurations at expansion
order k are partition function configurations at expansion

order k with additional dl and dym operators or, alternatively,
partition function operators at order kþ 1 with no hybridiza-

tion line connecting to dlð�lÞ and dymð�mÞ. In practice we

obtain an estimator of Glmð�l; �mÞ by identifying

two operators dlð�lÞ and dymð�mÞ in a partition function con-
figuration that are an imaginary-time distance � ¼ �l � �m
apart, and removing the hybridization line connecting them
(see Fig. 12). The insertion of local operators into a partition
function configuration, as it is done in the interaction expan-
sion formalism, is not ergodic in the hybridization expansion.

The size ðk� 1Þ � ðk� 1Þ hybridization matrix �
�l;�m
k�1 of

all hybridization operators except for dlð�lÞ and dymð�mÞ
corresponds to � with the column and row sl and sm corre-

sponding to the operators dl and dym removed, and the weight
of a Green’s function configuration Glmð�l; �mÞ is

pGlm

Z
¼ det��l;�m

k�1

det�
: (102)

An expansion by minors or the inverse matrix formulas of
Sec. X.A describe how such a determinant ratio is computed:

pGlm

Z
¼ ð�Þ�1

smsl ¼ Msmsl : (103)

We can bin this estimate into fine bins to obtain the Green’s
function estimator

Glmð�Þ¼ 1

�

�Xk
ij

Mji
~�ð�;�m��lÞ�tðiÞl�tðjÞm

	
MC

; (104)

~�ð�; �0Þ ¼
�
�ð�� �0Þ; �0 > 0;
��ð�� �0 � �Þ; �0 < 0;

(105)

with tðiÞ denoting the orbital index of the operator at row or
column i. For a configuration at expansion order kwe obtain a
total of k2 estimates for the Green’s function—or one for
every creation-annihilation operator pair or every single
element of the ðk� kÞ matrix M ¼ ��1. The measurement
in Eq. (105) may suffer from bad statistics if very few

FIG. 11 (color online). Updates of the hybridization algorithm as described in the text: (a) original configuration; (b) removal of a segment;

(c) shift of an end point of a segment; (d) insertion of an antisegment; (e) removal of an antisegment; (f) removal of another antisegment such

that the remaining segment ‘‘wraps’’ around �.

FIG. 12 (color online). Hybridization algorithm: Green’s function configuration. A typical configuration for a Green’s function, created by

taking the partition function configuration of order k ¼ 3 and identifying the creation operator at �s3 and the annihilation operator at �e1 as the

Green’s function operators to obtain a Green’s function configuration corresponding to a partition function configuration at one order lower.

366 Emanuel Gull et al.: Continuous-time Monte Carlo methods for . . .

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011



hybridization lines are present (k is small) in an orbital. In this
case, the Green’s function measurement should be based on
the insertion of operators.

In the segment representation, efficient estimators exist for
the density, the double occupancy, and the potential energy
(and similarly for all observables that commute with the local
Hamiltonian):

Epot ¼
X
i>j

UijDij; (106)

Dij ¼ hninjiMC: (107)

The occupation nj of the jth flavor is estimated by the length

Lj [Eq. (95)] of all the segments nj ¼ hLj=�i. Double occu-
pancies and interaction energies are obtained from the over-
lap Oij of segments as Dij ¼ hOiji=�. The system has a total

magnetization of Sz ¼ ðhLtot
" � Ltot

# iÞ=�. Overlaps and

lengths of segments are computed at every Monte Carlo
step, and thus these observables may be obtained with high
accuracy at essentially no additional cost.

Finally the average expansion order of the algorithm is an
estimator for the kinetic energy (Haule, 2007), similar to Epot

in the case of the CT-INT and CT-AUX algorithms:

Ekin ¼ 1

�
hkiMC: (108)

VI. Infinite-U METHOD CT-J

A. Overview

In many cases the physics of interest is captured by low-
energy effective theories in which some (often high energy)
degrees of freedom have been integrated out, leaving a model
described by a restricted Hilbert space. A standard example is
the Schrieffer-Wolf transformation which obtains the Kondo
Hamiltonian (describing a single S ¼ 1=2 spin exchange
coupled to a conduction band) as the low-energy theory of
the single-impurity Anderson model in the regime, where the
charge fluctuations are suppressed and the impurity is occu-
pied by only one electron.

The projection is conceptually advantageous, because it
allows one to focus on the important degrees of freedom.
There is also a computational advantage: While the CT-HYB
method accomplishes the projection (because the simulation
produces a large weight for the relevant states and a small
weight for the states which are projected out), transitions
between the states in the low-energy manifold require excur-
sions to states with very small weight, leading to large
autocorrelation times. The direct study of a projected
Hamiltonian avoids this problem.

Otsuki et al. (2007) presented a CT-QMC method for
dealing with projected Hamiltonians. Their papers focused on
a particular class of Coqblin-Schrieffer (CS) or generalized
Kondo models arising in the context of the physics of heavy
fermion compounds. We follow their presentation here.

Coqblin-Schrieffer models arise when an impurity spends
most of its time in a state of definite charge, with occasional
virtual fluctuations into different charge states. An example is
the Anderson model, Eq. (12), in the large U, weak V limit

where, if the level energy is correctly tuned, at almost all
times the impurity is occupied by one electron which may be
of spin up or down. Fluctuations into a state with density
n ¼ 0 or 2 followed by a return to a state n ¼ 1 allow the
impurity to exchange spin with the bath. More generally, the
dominant charge state will have an N-fold degeneracy in-
cluding spin and orbital degrees of freedom, and virtual
transitions will lead to a variety of exchange processes which
may be encoded in a Hamiltonian of the Coqblin-Schrieffer
form (Coqblin and Schrieffer, 1969)

HCS ¼ Hbath þHspin þHJ (109)

with impurity states labeled by a spin or orbital quantum
number � and a bath described by an energy quantum number
k and a spin or orbital quantum number b:

Hb ¼
X
kb

"kc
y
kbckb; (110)

Hspin ¼
X
�

E�X��; (111)

HJ ¼ � X
��0 ;bb0

kk0

Jkk
0;bb0

��0 X��0ckbc
y
k0b0 : (112)

Here X��0 ¼ j�ih�0j and without loss of generality we have
chosen a basis in which the impurity (spin) Hamiltonian is
diagonal. The exchange parameters J are typically of order
V2=U and in most treatments the k dependence is neglected.
Furthermore, in the applications presented to date the spin-
orbit quantum numbers of the bath electrons are those of the
impurity states and are conserved so that HJ ! HCS

J , where

HCS
J ¼ �X

��0
J��0X��0c�c

y
�0 ; (113)

and c� ¼ 1=
ffiffiffiffi
N

p P
kck�. The consequences of removing this

approximation are an important open question.
The formalism of Otsuki et al. follows Eq. (19) with HJ

playing the role of the expansion term Hb. While formally
this is a perturbative expansion in an interaction parameter, it
is in a practical sense closely related to the hybridization
expansion: Each vertex changes the state of the impurity, just
as does the V term in CT-HYB; the difference is that at each
event, one electron and one hole is created. In what follows
we summarize the main features of the CT-J algorithm,
following the presentation by Otsuki et al. (2007).

B. Partition function expansion

The partition function Z divided by the conduction electron
contribution Zbath ¼ Trce

��Hbath is
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Z

Zbath

¼X1
k¼0

ð�1Þk
Z �

0
d�1 ���

Z �

�k�1

d�k

� X
�1�

0
1

��� X
�k�

0
k

J�1�
0
1
���J�k�

0
k
s

�Y
�

hT�c
y
�ð�01Þc�ð�001 Þ���cy�ð�0k� Þc�ð�00k� Þic

�Trspin½T�e
��HspinX�1�

0
1
ð�1Þ���X�k�

0
k
ð�kÞ�:

(114)

Here the conduction electron operators are grouped by com-
ponent index � (a resultant sign in the permutation is repre-

sented by s), k� is the number of operators cy�c� for each
component �, and

P
�k� ¼ k. We also used the notation

h� � �ic ¼ Z�1
bath Trc½e��Hbath � � ��. Wick’s theorem for the con-

duction electrons implies

Z

Zbath

¼ X1
k¼0

Z �

0
d�1 � � �

Z �

�k�1

d�k
X
�1�

0
1

� � � X
�k�

0
k

wk; (115)

wk¼ð�1ÞkJ�1�
0
1
���J�k�

0
k
�sY

�

detDðk�Þ
�

�Trspin½T�e
��HspinX�1�

0
1
ð�1Þ���X�k�

0
k
ð�kÞ�: (116)

The k� � k� matrix Dðk�Þ
� is defined by ðDðk�Þ

� Þij ¼ G0
�ð�00i �

�0jÞ, with G0
�ð�Þ ¼ �hT�c�ð�Þcy�ð0Þic, and wk is the weight of

a Monte Carlo configuration of order k. This configuration
can be represented in terms of the numbers f�ig ¼
ð�1; . . . ; �kÞ and f�ig ¼ ð�1; . . . ; �kÞ, or, as shown in
Fig. 13, by a decomposition of the imaginary-time interval
into k segments ½�i; �iþ1Þ (modulo periodic boundary condi-
tion) with flavor �i. These variables define the sequence of
X operators

X�k�k�1
ð�kÞ � � �X�i�i�1

ð�iÞ � � �X�1�k
ð�1Þ; (117)

and a corresponding sequence of c operators:

ð�1Þkþ1cy�k
ð�1Þc�k

ð�kÞ���cy�i
ð�iþ1Þ

�c�i
ð�iÞ���cy�1

ð�2Þc�1
ð�1Þ: (118)

An expression equivalent to Eq. (116) was presented in the
landmark Anderson and Yuval study of the Kondo model
(Yuval and Anderson, 1970), but at that time could not be
used as a starting point for numerical calculations.

C. Updates

Updates which change the order k are required for ergodic-
ity, and updates which shift one of the operators increase
sampling efficiency. In this section, we discuss updates which
change the perturbation order by �1. Note that if some cou-
pling constants are 0, the straightforward sampling may not be
ergodic. For example, when the interaction lacks diagonal
elements in the N ¼ 2 model, the perturbation order must be
changed by �2. See Otsuki et al. (2007) for a discussion of
updates which insert or remove several operators.

Consider the process of adding � and �, which are
randomly chosen in the range ½0; �Þ and from the N
components, respectively. If � satisfies �nþ1 > �> �n, f�ig
and f�ig change into ð�1; . . . ; �n; �; �nþ1; . . . ; �kÞ and
ð�1; . . . ; �n; �; �nþ1; . . . ; �kÞ, respectively. In other words,
one of the X operators is replaced by

X�nþ1�n
ð�nþ1Þ ! X�nþ1�ð�nþ1ÞX��n

ð�Þ; (119)

which corresponds to the change shown in Fig. 13: A segment
� is inserted between �n and �nþ1 with shortening of the
segment �n. In the corresponding removal process, one
removes a randomly chosen segment.

Following the discussion in Sec. II.C and taking into
account the proposal probabilities d�=N� and 1=ðkþ 1Þ for
insertion and removal (N is the number of local states), the
ratio R of Eq. (29) becomes

R ¼ pkþ1

pk

N�

kþ 1
; (120)

with pk ¼ wkd�1 � � � d�k as in Eq. (35), where for k � 0 the
ratio pkþ1=pk is given by

pkþ1

pk

¼ J�nþ1�J��n

J�nþ1�n

e�lðE��E�n Þ detD
ðþÞ
�

detD�

det ~D�n

detD�n

: (121)

Here l ¼ �nþ1 � � is the length of the new segment. DðþÞ
� is

the matrix with cy�ð�nþ1Þc�ð�Þ added to D�, and ~D�n
is the

matrix with one of the operators shifted in time according to

cy�n
ð�nþ1Þ ! cy�n

ð�Þ. The ratio of determinants can be eval-
uated in OðkÞ using fast-update formulas (see Sec. X.A). If
� ¼ �n in Fig. 13, the change is just an addition of a diagonal
element X��ð�Þ, so that Eq. (121) is reduced to

pkþ1

pk

¼ �J��
detDðþÞ

�

detD�

: (122)

Here DðþÞ
� is a matrix in which cy�ð�Þc�ð�þ 0Þ is added to the

original one. The equal-time Green’s function in DðþÞ
� should

be G0
�ðþ0Þ to keep the probability positive (for J > 0). For

J < 0, see the appendix in Hoshino et al. (2010). In the case
k ¼ 0 all states contribute to the trace, and therefore p1=p0 is
given by

p1

p0

¼ �J��
e��E�P

�0
e��E�0

g�ðþ0Þ: (123)

FIG. 13 (color online). Illustration of an insertion of a segment.

The diagrams represent the configurations of f�ig and f�ig.
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The ratios of the weights in Eqs. (121)–(123) change their
signs depending on the signs of the coupling constants. It was
found by Otsuki et al. (2007) that the probability remains
positive in the case of antiferromagnetic couplings, i.e.,
J��0 > 0. This is consistent with the fact that the CS model
with antiferromagnetic couplings is derived from the Anderson
model, where the minus sign problem does not appear.

Staggered susceptibilities and other two-particle correla-
tion functions are discussed by Otsuki et al. (2009b).

D. The Kondo model

Perhaps the most important projected model is the spin
S ¼ 1=2 Kondo model which is typically written as

H ¼ X
k�

"kc
y
k�ck� þ JS � ~�c; (124)

where ~�c ¼ c y
c ~�c c is the local spin operator for conduction

electrons [c y
c ¼ ðcy" ; cy# Þ]. While it is possible to simulate this

model directly using CT-HYB (Werner and Millis, 2006), it
may be more convenient for some applications to reexpress it
in Coqblin-Schrieffer form by introducing pseudofermion
operators fy and f to represent the different states of the

local moment S ¼ ð1=2Þc y
f ~�c f. Rearranging gives

H¼X
k�

"kc
y
k�ck�þv

X
�

cy�c�þJ
X
�;�0

fy�f�0cy
�0c�; (125)

which is of the Coqblin-Schrieffer form (113) with J��0 ¼ J
and with an additional potential scattering given by v ¼
�J=2.

Carrying out the CT-J expansion requires knowledge of the
c-electron Green’s function ~GðzÞ in the presence of the
potential scattering v. ~GðzÞ may be expressed in terms of
the bare (v ¼ 0) Green’s function G0ðzÞ as

~G ¼ G0

1� vG0
: (126)

In the simulation of the CS model, G0ðzÞ is replaced by ~GðzÞ
and the calculation yields the impurity t matrix tJðzÞ, com-
puted with respect to ~GðzÞ. To obtain the t matrix tðzÞ of the
Kondo model, Eq. (124), the contribution of the potential
scattering should be subtracted from ~GðzÞ. The full Green’s
function GðzÞ can be expressed as

G ¼ ~Gþ ~GtJ ~G ¼ G0 þ G0tG0: (127)

Solving Eq. (127) for tðzÞ gives
t ¼ v

1� vG0
þ tJ

ð1� vG0Þ2 : (128)

VII. PHONONS AND RETARDED INTERACTIONS

A. Models

In this section we present the application of CT-QMC
techniques to models of electrons coupled to harmonic oscil-
lators or, equivalently, to models of electrons subject to time-
dependent (retarded) interactions. Such models arise in the
study of electron-phonon coupling and if dynamical screen-
ing is important (Werner and Millis, 2010).

In Hamiltonian form the quantum impurity model HQI is

supplemented by a boson Hamiltonian HB and an electron-
boson coupling Hel-B so that HQI ! HQI þHB þHel-B with

HB þHel-B ¼ X
�a

ga�Oaðby� þ b�Þ þ
X
�

!�b
y
�b�: (129)

Here by� is the creation operator for a boson mode labeled by
�, Oa denotes a bilinear fermion operator, and !�, g

a
� are the

boson frequency and electron-boson coupling constant, re-
spectively. In the widely studied Holstein-Hubbard model, for
example, there is just one boson mode and the operator O is
the on-site electron density.

An alternative representation in terms of an action may be
obtained by integrating out the bosons, leading to the con-
tribution

Sret ¼
X
ab

Z �

0
d�d�0Oað�ÞWabð�� �0ÞObð�0Þ; (130)

with

Wabð�Þ ¼
Z 1

0

d!0


ðWabÞ00ð!0Þ cosh½ð�� �=2Þ!0�

sinhð�!0=2Þ ;

(131)

ðWabÞ00ð!Þ¼�
X
�

ga�g
b
�½�ð!�!�Þ��ð!þ!�Þ�:

(132)

Conversely, models of electrons subject to time-dependent
(retarded) interactions are defined by an action involving a
term such as Sret, and reversing the above arguments shows
that these interactions may be represented in Hamiltonian
form by adding a coupling to bosons, as defined in Eq. (129).

Solving HQI þHB þHel-B requires keeping track of the

bosonic sector of the Hilbert space, which in principle in-
volves an infinite number of additional states. Previous ap-
proaches to the problem have involved either treating the
bosons semiclassically (Deppeler and Millis, 2002; Blawid
et al., 2003) or truncating the boson Hilbert space, retaining
only a finite number of boson states (Capone et al., 2004;
Koller et al., 2004a, 2004b; Sangiovanni et al., 2005, 2006).
The semiclassical approach cannot account for quantal pho-
non effects such as electronic mass renormalization or super-
conductivity, while treating the boson Hilbert space directly
adds considerably to the computational overhead and there-
fore limits what can be done.

Two approaches have been used in the CT-QMC context.
One (Werner and Millis, 2007b) is based on a canonical
transformation applied to the CT-HYB method and is (at
least in its present form) restricted to models in which the
operators O to which the phonons couple commute with the
local Hamiltonian. For models (such as the single-site dy-
namical mean-field theory of the Holstein-Hubbard model or
of the dynamically screened Hubbard U) that fulfill these
conditions an electron-boson coupling can be added at essen-
tially no additional computation cost. The other method
(Assaad and Lang, 2007) is a generalization of CT-INT to
time-dependent interactions and can treat more general mod-
els, although at a substantially higher computational cost.
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B. CT-HYB

In models where the oscillator degree of freedom couples
to a conserved quantity of the local Hamiltonian, the phonons
can be decoupled from the electrons by a canonical trans-
formation of the sort originally introduced by Lang and
Firsov (1962). By using the transformed variables to evaluate
the trace over the phonon states, the hybridization expansion
can be performed with negligible extra computational over-
head (Werner and Millis, 2007b).

We present the idea in the context of the single-site dy-
namical mean-field description of the Holstein-Hubbard
model, for which the local Hamiltonian may be written as

Hloc ¼ ��ðn" þ n#Þ þ Un"n# þ
ffiffiffi
2

p
�ðn" þ n# � 1ÞX

þ!0

2
ðX2 þ P2Þ: (133)

Here the boson coordinate X and momentum P satisfying
½P; X� ¼ i are related to the familiar boson creation and

annihilation operators by X ¼ ðby þ bÞ= ffiffiffi
2

p
and P ¼ ðby �

bÞ=i ffiffiffi
2

p
, and the

ffiffiffi
2

p
in the coupling term and the notation of

the coupling constant as � are conventional.
Following Lang and Firsov (1962), the boson and fermion

operators may be decoupled by shifting X by X0 ¼
ð ffiffiffi

2
p

�=!0Þðn" þ n# � 1Þ. The shift is accomplished by the

unitary transformation eiPX0 so that the Hamiltonian ~Hloc ¼
eiPX0Hloce

�iPX0 becomes

~Hloc ¼ � ~�ð~n" þ ~n#Þ þ ~U~n"~n# þ!0

2
ðX2 þ P2Þ: (134)

~Hloc is of the Hubbard form but with modified chemical
potential ~� and interaction strength ~U, where

~� ¼ �� �2=!0; (135)

~U ¼ U� 2�2=!0: (136)

The impurity electron creation and annihilation operators are
transformed according to

~dy� ¼ eiPX0dy�e�iPX0 ¼ eð�=!0Þðby�bÞdy�; (137)

~d� ¼ eiPX0d�e
�iPX0 ¼ e�ð�=!0Þðby�bÞd�; (138)

and this factor propagates into the hybridization.
After the transformation, the electron and boson sectors are

decoupled and the expectation value h� � �ib becomes the
product of a term involving electron operators which is
analogous to that computed for the Hubbard model without
phonons, and a phonon term which is the expectation value of
a product of exponentials of boson operators. The total weight
of a configuration is

wðfOið�iÞgÞ ¼ wbðfOið�iÞgÞ ~wHubbardðfOið�iÞgÞ: (139)

Here ~wHubbard is the weight of a corresponding configuration
in the pure Hubbard impurity model [with parameters modi-
fied according to Eqs. (135) and (136)], while the phonon
contribution is

wbðfOið�iÞgÞ¼hes2nAð�2nÞes2n�1Að�2n�1Þ ���es1Að�1Þib (140)

with 0 � �1 < �2 < � � �< �2n < �, si ¼ 1 (� 1) if the nth
operator is a creation (annihilation) operator and Að�Þ ¼
ð�=!0Þðe!0�by � e�!0�bÞ. The expectation value is to be
taken in the thermal state of free bosons. The standard dis-
entangling of operators leads to

wbðfOið�iÞgÞ ¼ exp

�
� �2=!2

0

e�!0 � 1

�
nðe�!0 þ 1Þ

þ X
2n�i>j�1

sisjfe!0½��ð�i��jÞ� þ e!0ð�i��jÞg
��

: (141)

The phonon contribution can be interpreted as an interac-
tion Kð�� �0Þ between all pairs of operators [see Fig. 14 and
Werner and Millis (2010)] of the form

Kð�Þ¼��2

!2
0

cosh½!0ð���=2Þ��cosh½!0�=2�
sinh½!0�=2� ;

(142)

which is the twice integrated retarded interaction [Eq. (131)]
produced by the phonon coupling. The inclusion of phonons
(or more generally any operator which commutes with Hloc)

∼0 β
spin

spin
µ

UΚ
∼

FIG. 14 (color online). Illustration of an order n ¼ 4 diagram for

the Holstein-Hubbard model. Empty (full) circles and squares

represent Vy (V) hybridization events. Dashed lines indicate inter-

actions Kð�Þ connecting all pairs of hybridization events. Adapted

from Werner and Millis, 2010.
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FIG. 15. Distribution of perturbation orders in converged single-

site DMFT solutions of the half-filled Holstein-Hubbard model with

a semicircular density of states with bandwidth 4t, phonon fre-

quency !0 ¼ 0:2t, inverse temperature �t ¼ 400, and values of

electron-electron (U) and electron-phonon interaction strength (�)
indicated. In both the insulating (U=t ¼ 6) and metallic (U=t ¼ 4)
phases, the distribution shifts little as � is increased except near the

phase boundary to the bipolaronic phase (�=t ¼ 0:6, U=t ¼ 4).
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is thus possible without any truncation and with negligible
extra computational cost.

Figure 15 shows statistics on the perturbation order for a
DMFT simulation of the Holstein-Hubbard model with semi-
circular density of states with bandwidth 4t and phonon
frequency !0 ¼ 0:2t. The average perturbation order is
seen to be little affected by the strength of the phonon
coupling. Additional results on the Holstein-Hubbard model
have been given by Werner and Millis (2007b).

A closely related method has also been applied to study the
consequences of dynamical screening of the Hubbard inter-
action by other degrees of freedom in the solid. Screening
leads to a retarded interaction of the form of Eq. (130) with
Oa the on-site density and W 00 determined by the dynamical
charge susceptibility of the other degrees of freedom in the
solid. The passage back to Eq. (129) provides an oscillator
representation and the formalism described above may be
applied. Details are given by Werner and Millis (2010).

C. CT-INT

Assaad and Lang (2007) showed that the CT-INT approach
also allows a transparent treatment of phonon degrees of
freedom. Their algorithm enables the simulation of wider
classes of models than the canonical transformation approach
but at much greater computational expense. To date it has
been formulated for the Holstein-Hubbard model and applied
(Assaad, 2008) to cluster dynamical mean-field studies of the
one-dimensional Holstein model, and we follow this formu-
lation in our description below. The formalism, however,
appears to apply also to non-Holstein couplings and further
investigation along these lines would be of great interest.

The treatment begins from an action formulation, with
an interaction term which Assaad and Lang write as S ¼
S ~U þ SW , with S ~U the usual Hubbard interaction and

SW ¼ X
i

Z �

0
d�d�0½nið�Þ � 1�Wð�� �0Þ½nið�0Þ � 1�;

(143)

with W given by Eq. (131). As in other CT-INT calculations,
it is advantageous to introduce auxiliary fields in the interac-
tion terms to eliminate a trivial sign problem. Assad and Lang
chose

S ~U ¼
Z �

0
d�

~U

2

X
i;s

Y
�

½ni;�ð�Þ � ��ðsÞ�; (144)

with � the physical spin, s ¼ �1 an auxiliary spin, and
��ðsÞ ¼ 1=2þ �s�, with � some constant (see also
Sec. III.A). The phonon term is shifted as

SW ¼
Z �

0
d�d�0

X
�;�0

X
s¼�1

Wð�� �0Þ½ni;�ð�Þ � �þðsÞ�

� ½ni;�0 ð�0Þ � �þðsÞ�: (145)

Assaad and Lang then performed an expansion of the CT-INT
type, but employed a general vertex

Vð�Þ ¼ fi; �; �; �0; �0; s; �g; (146)

where � enumerates the vertex types Hubbard (� ¼ 0) or
phonon (� ¼ 1). The sum over the available phase space
becomes

X
Vð�Þ

¼ X
i;�;�0 ;s;�

Z �

0
d�0; (147)

and the weight of the vertex is

w½Vð�Þ� ¼ ��;0

~U

2
�ð�� �0Þ þ ��;1Wð�� �0Þ: (148)

Furthermore, using the notation

H½Vð�Þ� ¼ ��;0��;"��0;#�ð�� �0Þ½n"ð�Þ � �þðsÞ�½n#ð�Þ
� ��ðsÞ� þ ��;1½n�ð�Þ � �þðsÞ�½ni;�0 ð�0Þ
� �þðsÞ�;

the partition function can be written as

Z

Z0

¼ X1
n¼0

ð�1Þn
Z �

0
d�1

X
V1ð�1Þ

w½V1ð�1Þ� � � �
Z �n�1

0
d�n

� X
Vnð�nÞ

w½Vnð�nÞ�hT�H½V1ð�1Þ� � � �H½Vnð�nÞ�i0:

(149)
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FIG. 16. Single-particle spectral function of the one-dimensional

Holstein model, computed as a function of frequency using CDMFT

cluster dynamical mean-field methods on an Lc ¼ 12 cluster at

filling n ¼ 1=4 at high temperature (left panel) and low temperature

(right panel). The spectra reveal a temperature-dependent line

broadening and the appearance at low T of a near-Fermi-level

structure associated with the development of intersite correlations.

From Assaad, 2008.
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The Monte Carlo procedure follows the scheme described
in Sec. III, with the addition and removal of general
vertices.

In a cluster dynamical mean-field calculation of the one-
dimensional Holstein model [Eq. (133) with U ¼ 0], the
method reveals interesting near-Fermi-level structures in the
electron spectral function related to intermediate range corre-
lations (Assaad, 2008); see Fig. 16 for representative results.

The flexibility of the method, which seems applicable also
to CT-HYB and CT-J, and the importance of electron-phonon
couplings in materials science suggests that the implementa-
tion and investigation of more general types of electron-
phonon couplings would be worthwhile.

VIII. EXPANSION ON THE KELDYSH CONTOUR:

REAL-TIME AND NONEQUILIBRIUM PHYSICS

A. Introduction

In this section we describe diagrammatic Monte Carlo
techniques capable of computing the real-time and nonequi-
librium properties of quantum impurity models. These meth-
ods have been used to calculate the transport properties and
relaxation dynamics of current-biased quantum dots and as
impurity solvers for dynamical mean-field studies of the
nonequilibrium properties of solids. Real-time CT-QMC
methods were pioneered by Mühlbacher and Rabani (2008)
who used a hybridization expansion method to study a prob-
lem of electrons coupled to phonons. The nonequilibrium
hybridization expansion was generalized to the case of
electron-electron interactions by Schmidt et al. (2008),
Schiró and Fabrizio (2009), Werner, Oka, and Millis
(2009), and Schiró (2010), while the real-time version of
the CT-AUX method was given by Werner, Oka, and Millis
(2009) and Werner et al. (2010) and used by Eckstein et al.
(2009, 2010), Eurich et al. (2010), and Tsuji et al. (2010). It
is important to bear in mind that unlike in the equilibrium
case, where the algorithms have been tried, tested, and opti-
mized, the nonequilibrium extensions of CT-QMC are still in
an experimental stage. The methods which have been imple-
mented so far are more or less straightforward adaptations of
the equilibrium CT-QMC algorithms. Significant improve-
ments may be possible.

While both CT-AUX and CT-HYB based methods have
been studied, we restrict our explicit discussion in this section
to the CT-AUX algorithm, which has allowed an accurate
study of the steady-state current-voltage characteristics of
half-filled quantum dots in the weak- and intermediate-
correlation regimes. For a discussion of the real-time
CT-HYB algorithm see Mühlbacher and Rabani (2008), and
Schiró and Fabrizio (2009), and also Werner et al. (2010),
where both CT-AUX and CT-HYB real-time algorithms are
presented in detail.

B. Keldysh formalism

The basic theoretical task is to evaluate the expectation
value of some operator O at some time t, given that the
system was prepared at time t ¼ 0 in a state described by

the density matrix �0. Using the Heisenberg representation
the expectation value may be expressed mathematically as

hOðtÞi ¼ Tr½�0e
i
R

t

0
dt0Hðt0ÞOe�i

R
t

0
dt00Hðt00Þ� (150)

(the generalization to operators with multiple time dependen-
cies is straightforward and will not be written explicitly). A
nonequilibrium situation may arise through a time depen-
dence ofH (as occurs, for example, in a system ‘‘pumped’’ by
a laser), through nonequilibrium correlations expressed by �0

(as occurs for a quantum dot with current flowing across it) or
through an initial density matrix �0 which is different from
the long-time (thermal equilibrium) limit, as occurs if a
system is ‘‘quenched’’ into a different state.

One may (Kadanoff and Baym, 1962) view the expectation
value in Eq. (150) as an evolution on Schwinger-Keldysh
contours; examples are given in Fig. 17. In each panel the
upper contour represents the evolution from initial time t ¼ 0
to measurement time t via e�iHt, the operator O is positioned
at the bend where the lower and upper contours meet, and the
lower contour represents the evolution from t back to t ¼ 0
via eiHt.

The two panels of Fig. 17 also show two ways to prepare
the initial state of the system. The upper panel indicates the
standard approach, which we call the interaction quench. In
this approach one imagines that at times t < 0 the interactions
are turned off, so that �0 is the density matrix of the non-
interacting, but potentially nonequilibrium system. At t ¼ 0
the interactions are turned on, and one studies the subsequent

V>0
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β−i

max

1st1 s22t s33t

4s4tt5 s5

1st1 s22t

4s4t

tmax

U>0 V>0

t s3 3

0
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V>0

t s

t s

6 6

7 7

V=0

U>0
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FIG. 17 (color online). Illustration of the Keldysh contour for a

CT-AUX study of the Anderson model with interaction quench (top

panel) and voltage quench (bottom panel). In an interaction quench

starting from U ¼ 0, the imaginary-time branch of the contour is

shifted to t ¼ �1 and need not be explicitly considered in a weak-

coupling Monte Carlo simulation. The arrows represent auxiliary

Ising spin variables. The top panel shows a Monte Carlo configu-

ration corresponding to perturbation order nþ ¼ 2, n� ¼ 2, and

the bottom panel shows a configuration corresponding to nþ ¼ 3,
n� ¼ 2, n� ¼ 2. From Werner et al., 2010.
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evolution of the system. The lower panel indicates an alter-
native approach, the voltage quench. In this approach one
prepares the system by performing an equilibrium simulation
of the interacting model (accomplished formally by propagat-
ing along the imaginary branch of the contour shown in the
figure) and then turns on the nonequilibrium effects at time
t ¼ 0.

The general strategy for evaluating Eq. (150) is the same as
in the equilibrium case, namely, to write H as a sum of two
terms: one, Ha, for which the time evolution can be treated
exactly and another, Hb, which is treated by a formal pertur-
bative expansion. The expansion in Hb generates diagrams
which are sampled stochastically, using an importance sam-
pling which accepts or rejects proposed diagrams on the basis

of their contributions to h ~Oi, with, for example, ~O ¼ 1. Time
plays the role of � ¼ 1=T.

There are crucial differences. In equilibrium calculations,
the expansion can be formulated on the imaginary-time axis
0 � � < 1=T as an expansion of TrT�e

��Ha�
exp½�R�

0 d�Hbð�Þ�. Thus one can work with real (or

Hermitian) quantities and only one exponential must be
expanded. In the nonequilibrium situation one must expand
two exponentials, doubling the perturbation order required to
reach a given time. Also, the result of a measurement at a
finite time depends on the initial preparation of the system. It
is thus essential that the computation proceed for long enough
to build up the correct entanglement between the impurity
and the bath before steady-state quantities are measured. The
main difficulty of nonequilibrium calculations, however, is
that the expansion must be done for real times, so diagrams
come with factors of i raised to powers determined by the
perturbation order. The terms in the expansion are complex so
a ‘‘phase’’ problem exists, but in all cases known to date the
expansion can be arranged so that all terms are real. A sign
problem however remains. Convergence of the perturbation
theory is thus oscillatory rather than exponential and the
result is a sign problem which severely limits the maximum
perturbation order that can be attained and hence the maxi-
mum time which can be reached.

C. Real-time CT-AUX

Here we present the formalism needed for a nonequilib-
rium application of the CT-AUX method. For simplicity we
focus on a nonequilibrium version of the single-impurity
Anderson model, Eq. (12), where the local Hamiltonian is
coupled to two leads (left and right) which may be at different
chemical potentials ��. Thus the bath and hybridization
terms in the Hamiltonian become

Hbath ¼
X

�¼L;R

X
p

ð"�p;� ���Þc�yp;�c�p;�; (151)

Hhyb ¼
X

�¼L;R

X
p;�

ðV�
p c

�y
p;�d� þ H:c:Þ: (152)

A crucial parameter is the level broadening

��ð!Þ ¼ 
X
p

jV�
p j2�ð!� "�pÞ (153)

associated with lead �. The total level broadening is

� ¼ �L þ �R: (154)

� is the imaginary part of the real axis hybridization function.
It plays a crucial role in what follows so we identify it by a
separate symbol.

In nanoscience applications one is interested in the current
flowing through the impurity. The flow of charge into, say, the
left lead may be determined from the time derivative of

the number of left lead electrons N̂L ¼ P
p�a

Ly
p�aLp�. Taking

the commutator of N̂L with the Hamiltonian shows that the
current flowing through the impurity into the left lead is
determined by the t ! t0 limit of the quantity

Aðt; t0Þ ¼ X
p�

VL
p hTCc

Ly
p�ðtÞd�ðt0Þi: (155)

TC is the contour ordering operator, which exchanges the
product AðtÞBðt0Þ of two operators if t is earlier on the contour
than t0 (a minus sign is added if the exchange involves an odd
number of Fermi operators). Finding an efficient means of
measuring A is an important part of the algorithm.

In the nonequilibrium Anderson model an interaction
quench corresponds to taking U ¼ 0 for times t < 0 with
an instantaneous step to a nonzero U at t ¼ 0, while the
chemical potential difference is time independent and the
initial density matrix is appropriate to noninteracting elec-
trons in the given bias voltage. A voltage quench corresponds
to taking �L ¼ �R for time t < 0 with an instantaneous step
to a nonzero �L ��R at t ¼ 0. One assumes that the lead
electrons equilibrate instantly to the new chemical potential
so that the equal-time correlators of lead operators are

hc�yp;�c�p0 ;�0 i ¼ ��;��p;p0��;�0fT�
ð"�p;� ���Þ, with fTðxÞ ¼

ðex=T þ 1Þ�1 the Fermi distribution function for temperature
T and �� the value of the chemical potential for lead � at the
appropriate time.

A compact derivation of all measurement formulas for both
voltage and interaction quenches may be obtained from
manipulations of the partition function (more precisely, an
expression for the expectation value of the operator O ¼ 1)
on the contour shown in the lower panel of Fig. 17:

Z ¼ e�K� Tr½e��ðHeq
bath

þH0
dot
þHhybþH ~U�K�=�Þ

� eitðH
neq
bath

þH0
dot
þHUþHhyb�Kt=tÞ

� e�itðHneq
bath

þH0
dot
þHUþHhyb�Kt=tÞ�: (156)

The notation H
neq
bath indicates that on the real-time portion of

the contour the two leads may have different chemical po-
tentials, whereas H

eq
bath means that on the imaginary-time

portion of the contour the two leads have the same chemical
potential. At this stage K� and Kt are arbitrary constants.

Convenient choices for K�;t will be discussed below.

In Eq. (156) the interaction ~U on the imaginary-time
branch need not be the same as the interaction U on the
real-time branches. The generalization to time-dependent
UðtÞ or �L;RðtÞ is straightforward (Eurich et al., 2010;

Tsuji et al., 2010). In the voltage quench ~U ¼ U, while in
the interaction quench ~U ¼ 0, and the imaginary-time portion
of the contour drops out of the problem.
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The time evolution along the real-time and imaginary-time
contours is expanded in powers of HU � Kt=t and HU �
K�=�, respectively. Each interaction vertex is then decoupled

using Ising spin variables (x ¼ t or �)

HU � Kx=x ¼ �Kx

2x

X
s¼�1;1

e�xsðnd;"�nd;#Þ; (157)

coshð�xÞ ¼ 1þ xU=ð2KxÞ; (158)

as in Eq. (69). The resulting collection of Ising spin variables
on the contour represents the Monte Carlo configuration
fðt1; s1Þ; ðt2; s2Þ; . . . ; ðtn; snÞg, with ti denoting the position of
spin i on the L-shaped contour (see Fig. 17). There are nþ
spins on the forward branch, n� spins on the backward
branch, and n� spins on the imaginary-time branch of the

contour (n ¼ nþ þ n� þ n�). The weight of such a configu-

ration is obtained by tracing over the dot and lead degrees of
freedom and can be expressed in terms of two determinants of
n� n matrices N�1

� :

pðfðt1; s1Þ; ðt2; s2Þ; . . . ; ðtn; snÞgÞ
¼ ð�in�ÞðinþÞðKtdt=2tÞn�þnþ

� ðK�d�=2�Þn�
Y
�

detN�1
� ; (159)

N�1
� ¼ eS� � ðiG0;�ÞðeS� � IÞ: (160)

Here ðG0;�Þij ¼ G0;�ðti; tjÞ is the ij element of the n� n

matrix of noninteracting Green functions

G0;�ðt; t0Þ ¼ �ihTCd�ðtÞdy�ðt0Þi0 (161)

computed using the possibly time-dependent chemical poten-
tials and evaluated at the time arguments defined by the Ising
spins. The quantity eS� ¼ diagðe�1s1�; . . . ; e�nsn�Þ is a diago-
nal matrix depending on the spin variables (with �i ¼ �t for
spins located on the real-time branches and �i ¼ �� for spins

on the imaginary-time branch).
A Monte Carlo sampling of all possible spin configurations

is then implemented based on the absolute value of the
weights (159). The contribution of a specific configuration
c ¼ fðt1; s1Þ; ðt2; s2Þ; . . . ; ðtn; snÞg to the Green’s function (Gc

�)
and current (Ac

�) is given by (Werner, Oka, and Millis, 2009)

Gc
�ðt; t0Þ ¼ G0;�ðt; t0Þ þ i

Xn
i;j¼1

G0;�ðt; tiÞ

� ½ðeS� � IÞN��i;jG0;�ðtj; t0Þ; (162)

Ac
�ðt; t0Þ ¼ A0;�ðt; t0Þ þ i

Xn
i;j¼1

G0;�ðt; tiÞ

� ½ðeS� � IÞN��i;jA0;�ðtj; t0Þ; (163)

with the first term on the right-hand side giving the contribu-
tion to the noninteracting Green’s function or current and the
second term a correction due to the interactions. In Eq. (163)

A0;�ðt; t0Þ ¼
X
p�

VL
p hTCc

Ly
p�ðt0Þd�ðtÞi0 (164)

denotes a dot-lead correlation function of the noninteracting
model. The Green’s function and current expectation value
are

G�ðt; t0Þ ¼ hGc
�ðt; t0Þ�ci=h�ci; (165)

IðtÞ ¼ �2 Im
X
�

½hAc
�ðt; tÞ�ci=h�ci�; (166)

where h�i denotes the Monte Carlo average and �c the phase
of the weight of the configuration c. As in Eq. (198), it is
advantageous to accumulate the quantity

X�ðs1; s2Þ ¼ i
Xn
i;j¼1

�Cðs1; tiÞ½ðeS� � 1ÞN��i;j�Cðs2; tjÞ;

(167)

which is related to the self-energy � by X ? G0 ¼ � ? G
(with ? denoting a contour convolution). Furthermore, it
follows from Eq. (159) that the weight of a Monte Carlo
configuration changes sign if the last spin (corresponding to
the largest time argument) is shifted from the forward contour
to the backward contour or vice versa. Since the absolute
value of the weight does not change, these two configurations
will be generated with equal probability. As a result, all the
terms in Eq. (167) which do not involve the last operator on
the contour will cancel. It is therefore more efficient to
accumulate

X�ðs1; s2Þ ¼ i½1� �ðftigÞ�
Xn
i;j¼1

xðs1; i; s2; jÞ þ i�ðftigÞ

� Xn
l�last

½xðs1; last; s2; lÞ þ xðs1; l; s2; lastÞ�;

(168)

with xðs1; i; s2; jÞ � �Cðs1; tiÞ½ðe�� � 1ÞN��i;j�Cðs2; tjÞ and

�ðftigÞ ¼ 1 if maxiReðtiÞ> 0 and 0 otherwise.
In an interaction quench starting from U ¼ 0, the

imaginary-time evolution is not explicitly considered in the
Monte Carlo simulation and temperature appears only as a
parameter in the noninteracting Green’s functions (see
Fig. 17). Moreover, the latter depend only on time differences
and thus can be easily expressed in terms of their Fourier
transform. Assuming a large band cutoff and neglecting the
real part of the lead self-energy we find (Jauho, et al., 1994;
Werner, Oka, and Millis, 2009)

G0ðt; t0Þ ¼ 2i
X

�¼L;R

Z d!

2
e�i!ðt�t0Þ

� ��ð!Þ½fð!���Þ ��Cðt; t0Þ�
ð!� "d � U=2Þ2 þ �2

; (169)
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A0ðt;t0Þ¼�2i
Z d!

2
e�i!ðt�t0Þ

��Lð!Þ�Rð!Þ½fð!��LÞ�fð!��RÞ�
ð!�"d�U=2Þ2þ�ð!Þ2

þ2
Z d!

2
e�i!ðt�t0Þ

��Lð!Þð!�"d�U=2Þ½fð!��LÞ��Cðt;t0Þ�
ð!�"d�U=2Þ2þ�2

:

(170)

In the voltage quench, on the other hand, the interaction is
nonvanishing on the imaginary-time portion of the contour
(see Fig. 17), while the chemical potential difference jumps
instantaneously from zero (on the imaginary branch) to V (on
the real branches). Because of the time dependence of the
chemical potentials, the noninteracting Green’s functions are
not time translation invariant and we cannot express G0;� and

the dot-lead correlator A0;� in the form of a Fourier transform.

Instead, those functions must be computed numerically from
their equations of motion, as explained by Werner et al.
(2010).

D. Sign problem

The sign (phase) problem in the real-time CT-QMC meth-
ods grows exponentially with the average perturbation order
on the real-time branches, which in turn is proportional to the
simulation time. Operators on the imaginary-time branch do
not add significantly to the sign problem. While accurate
results can be obtained for average signs down to 10�3, this
threshold is reached if the expected number of operators on
the real-time contour is approximately ten. To reach long
times or strong interactions, it is therefore important to reduce
the average perturbation order on the real-time branches as
much as possible. In this context it is worth nothing that in the
particle-hole symmetric case, the parameters Kx of the CT-
AUX algorithm can be chosen such that only even perturba-
tion orders appear in the expansion. In fact, for

Kx ¼ �xU=4; (171)

the spin degree of freedom effectively disappears
(e�s� ¼ �1) and the algorithm becomes the real-time
version of the weak-coupling solver (see Sec. III) for
the particle-hole symmetric interaction term HU � Kx=x ¼
Uðnd;" � 1=2Þðnd;# � 1=2Þ. The odd perturbation orders are

continuously suppressed as Kx approaches �xU=4. This
suppression of odd perturbation orders was essential in the
nonequilibrium dynamical mean-field calculations of
Eckstein et al. (2009, 2010) and the current calculations of
Werner et al. (2010).

IX. COMPARISON OF THE EFFICIENCY OF THE

DIFFERENT METHODS

A. Average expansion orders and matrix sizes

For all diagrammatic quantum Monte Carlo algorithms
discussed here, the computational effort scales as the cube

of the expansion order or matrix size, as discussed in detail by
Gull et al. (2007). For a Hirsch-Fye (1986) solver the matrix
size is determined by the time discretization �� ¼ �=N. In
the case of the continuous-time solvers it is determined by the
perturbation order k, which is peaked roughly at the mean
value hki determined by the probability distribution pðkÞ. In
Fig. 18 we plot these matrix sizes as a function of inverse
temperature � for fixed U=t ¼ 4 and as a function of U=t for
fixed �t ¼ 30, for a semicircular density of states with
bandwidth 4t.

It is obvious from the upper panel of Fig. 18 that the
matrix size in all three algorithms scales linearly with �.
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FIG. 18 (color online). Upper panel: Bethe lattice, single-site

DMFT, scaling of matrix size with temperature at U=t ¼ 4 for

the Hirsch-Fye, CT-INT, and CT-HYB algorithms. For the Hirsch-

Fye algorithm, the resolution N ¼ �U has been chosen as a

compromise between reasonable accuracy and acceptable speed,

while the average matrix size is plotted for the continuous-time

solvers. Lower panel: Scaling of matrix size with U=t for fixed

�t ¼ 30. The solutions for U � 4:5 are metallic, while those

for U � 5:0 are insulating. The much smaller matrix size in the

relevant region of strong interactions is the reason for the higher

efficiency of the hybridization expansion method. From Gull et al.,

2007.
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The Hirsch-Fye data are for a number of time slices N ¼ �U,

which is apparently a common choice, although Fig. 19

shows that it may lead to considerable systematic errors.

Thus, the grid size should in fact be chosen much larger (N *
5�U).

While the matrix size in the CT-INT approach is approxi-

mately proportional to U=t, as in the Hirsch-Fye solver, the

U dependence of the hybridization expansion algorithm is

very different: A decrease in average matrix size with in-

creasing U=t leads to much smaller matrices in the physically

interesting region 4 & U=t & 6, where the Mott transition

occurs in this model. The results in Fig. 18 and the cubic
dependence of the computational effort on matrix size show

why the continuous-time solvers are much more powerful

than the Hirsch-Fye solver and why the hybridization expan-

sion is best suited to study strongly correlated impurity

models with density-density interactions.
There is of course a prefactor to the cubic scaling, which

depends on the computational overhead of the different algo-
rithms and on the details of the implementation. However, the

results presented here indicate large enough difference be-

tween the methods that the effects of optimization are of

secondary importance.

B. Accuracy for constant CPU time

The CT-INT, CT-HYB, and Hirsch-Fye algorithms consid-

ered here work in different ways. Not only are the configu-

ration spaces and hence the update procedures entirely

different, but so are the measurement procedures of the

Green’s functions and other observables.
Gull et al. (2007) proposed that the performance of solvers

should be compared by measuring the accuracy to which

physical quantities can be determined for fixed CPU time.

This is the question which is relevant for implementations and
avoids the tricky (if not impossible) task of separating the
different factors which contribute to the uncertainty in the
measured results. Because the variance of the observables
measured in successive iterations of the self-consistency loop
turned out to be considerably larger than the statistical error
bars in each step, the mean values and error bars were
determined by averaging over 20 DMFT iterations starting
from a converged solution.

The Hirsch-Fye solver suffers from additional systematic
errors due to time discretization. These systematic errors are
typically much larger than the statistical errors. In order to
extract meaningful results from Hirsch-Fye simulations it is
essential to do a careful (and time-consuming) �� ! 0
analysis (Blümer, 2002). The continuous-time methods are
free from such systematic errors.

The high precision of the hybridization expansion results
for the kinetic energy indicate that this algorithm can accu-
rately determine the shape of the Green’s function near � ¼ 0
and �.

For the self-energy,

�ði!nÞ ¼ G0ði!nÞ�1 � Gði!nÞ�1; (172)

the Matsubara Green’s functions have to be inverted and
subtracted. This procedure amplifies the errors of the self-
energy especially in the tail region where G0ði!nÞ and
Gði!nÞ have similar values. Figure 19, in contrast, shows
low-frequency results Im�ði!0Þ=!0 for U=t ¼ 4 and several
values of �. This quantity is related to the quasiparticle
weight Z 	 1=½1� Im�ði!0Þ=!0�. Again, the Hirsch-Fye
results show systematic errors due to the time discretization
which must be extrapolated. The results from the continuous-
time solvers agree within error bars, but the size of the error
bars is very different. The hybridization expansion approach
yields accurate results for low Matsubara frequencies in
general.

The advantage of measuring in Matsubara frequencies as
opposed to imaginary time in the CT-INT and CT-AUX
algorithms becomes apparent for large !n. Only the differ-
ence of G to the bare Green’s function G0 has to be measured
in this algorithm [see Sec. X.C, in particular, Eq. (196)].
These differences decrease with 1=!n for large !n and
Eq. (196) yields an accurate high-frequency estimate, so
that the tail of the self-energy can be computed without
amplification of errors.

Further discussion of the relative advantages of different
methods can be found in Gull et al. (2007).

X. TECHNICAL ASPECTS

The following sections, independent from each other,
are referenced from the algorithm sections and explain as-
pects of updates, measurements, and numerical methods
needed for the efficient implementation of these
continuous-time algorithms. Efficient and accurate measure-
ment, especially of the high-frequency behavior, remains a
bottleneck in the computations; further progress in this area
would be desirable.
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FIG. 19 (color online). Self-energy Im�ði!0Þ=!0 at the lowest

Matsubara frequency !0 ¼ T as a function of � for U=t ¼ 4:0.
The Hirsch-Fye results exhibit large discretization errors, while the

continuous-time methods CT-INT and CT-HYB agree within error

bars. CT-HYB is particularly suitable for measuring quantities

which depend on low-frequency components, such as the quasipar-

ticle weight. From Gull et al., 2007.
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A. Inverse matrix formulas

The dominating computational task in most continuous-
time quantum Monte Carlo impurity solver algorithms is the
computation of ratios r of determinants of matricesDk of size
k and Dkþ1 of size kþ 1,

r ¼ detDkþ1

detDk
; (173)

with matrices that have one row and one column (sometimes
two rows and two columns) changed, added, or removed. The
only exceptions are given by the hybridization expansion in
its general formulation (see Sec. V.C), which is dominated by
a trace computation, and the bold CT-QMC method (Gull
et al., 2010), where the determinant structure is replaced by
an analytic resummation of diagrams.

To compute the determinant of large matrices directly, it is
best to first perform a factorization such as the LU or QR
factorization, where the matrix A is written as the product of a
matrix of which the determinant is known and another matrix
where the determinant is easy to compute, e.g., the diagonal
of an upper or lower triangular matrix. The cost of such a
straightforward factorization is Oðk3Þ.

Determinant ratios of two matrices that differ only by one
or two rows and columns can be computed much more
efficiently if the inverse of one of the matrices is known.
This is the reason for computing the inverse Green’s function
matrix M ¼ D�1 in the CT-INT algorithm, the inverse hy-
bridization function matrix M ¼ ��1 in the hybridization
algorithm, and the matrix N in the CT-AUX algorithm. We
illustrate the linear algebra in the example of the CT-AUX
matrix N of Eq. (74) introduced in Sec. IV. The formulas for
Eq. (49) (CT-INT) and Eq. (92) (CT-HYB) are computed
analogously.

We start by considering a configuration at expansion order
k, characterized by an N matrix of size k� k, and consider
the insertion of a vertex, thereby enlarging the configuration
to kþ 1 vertices. For ease of writing we choose a basis such
that the rows and columns changed are the last ones, though,
of course, in the code any row or column can be changed.
Inserting a vertex into the configuration of order k leaves most
of the inverse of N unchanged [Eq. (74)]: It adds one row
(here called R) and one column Q to it, enlarging it to a
ðkþ 1Þ � ðkþ 1Þ matrix. However, changes to the new
Nkþ1 matrix, denoted by quantities with a tilde, are dense:

ðNkþ1Þ�1 ¼ ðNkÞ�1 Q
R S

� �
; (174)

Nkþ1 ¼ ~P ~Q
~R ~S

 !
: (175)

~P is of size k� k, the vectorsQ, ~Q and R, ~R have size (k� 1)
and (1� k), and S, ~S are scalar. A block calculation shows
that the elements of the matrix Nkþ1 may be computed from
Nk, R, S, and Q:

~S ¼ ðS� ½R�½NðkÞQ�Þ�1; (176a)

~Q ¼ �½NðkÞQ�~S; (176b)

~R ¼ �~S½RNðkÞ�; (176c)

~P ¼ NðkÞ þ ½NðkÞQ�~S½RNðkÞ�: (176d)

The determinant ratios needed to accept or reject an update
in Eq. (57), (81), or (99) are given by

detðNkþ1Þ�1

detðNkÞ�1
¼ 1

det~S
¼ detðS� RNkQÞ; (177)

as can be seen from an LU decomposition of the block matrix
ðNkþ1Þ�1.

The computational effort for computing the insertion
probability Wacc

xy of a spin (or vertex, or segment) is Oðk2Þ,
or a matrix-vector multiplication followed by an inner prod-
uct, as in Eq. (176a). The removal probability is computed in
Oð1Þ, as ~S is an element ofNkþ1 and therefore already known.
If an update is accepted, an Oðk2Þ rank one update has to be
performed for Eq. (176d). As approximately k updates are
needed to decorrelate a configuration, the overall algorithm
scales as Oðhki3Þ, with hki the average expansion order. Note
that the acceptance probabilities for vertex insertions or
removals are more expensive than spin flips in the case of
the Hirsch-Fye algorithm [Oðk2Þ vs Oð1Þ], while accepted
updates require rank 1 updates ½Oðk2Þ� in both cases.

B. Spin-flip updates

In CT-AUX, if only the value of an auxiliary spin is
changed and not the imaginary time or site index of a vertex,
a Dyson equation similar to the Hirsch-Fye Dyson equation
may be employed. For a spin flip from interaction Vpq

to V 0
pq

of spin pq at Monte Carlo step q we obtain, using the notation

of Sec. IV,

ðNG0Þqþ1
ij ¼ ðNG0Þqij þ ½ðNG0Þqipq

� �ipq
��qðNG0Þqpqj

;

(178)

Nqþ1
ij ¼ Nq

ij þ ½ðNG0Þqipq
� �ipq

��qðNÞqpqj
; (179)

�q ¼ �q

1þ ½1� ðNG0Þqpqpq
��q ¼ �q

Rq ; (180)

�q ¼ eV
0
pq�Vpq � 1; (181)

Rq ¼ 1þ ½1� ðNG0Þqpqpq
��q: (182)

Rq is the spin-flip acceptance ratio. The expression
ðNG0Þqlm ¼ Gq

lm can easily be computed from the identity

NizG
0
zjðeVj � 1Þ ¼ Nije

Vj � �ij; (183)

ðNG0Þlm ¼ ðNlme
Vm � �lmÞ=ðeVm � 1Þ: (184)

Spin-flip proposals are Oð1Þ (as in Hirsch-Fye) and the same
linear algebra applies. Spin-flip updates are not ergodic in
continuous-time
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algorithms; moves which change the expansion order and
vertex times are needed.

1. Delayed spin-flip updates

Spin-flip updates can be separated into two parts: the
computation of the acceptance ratio R [Eq. (182)], and the
update of the Green’s function after an accepted spin-flip
move. ‘‘Delayed’’ updates, a concept developed by Alvarez
et al. (2008) for the Hirsch-Fye algorithm, delay the (expen-
sive and slow) update of the Green’s function to a later time,
while computing a sequence R1; . . . ; Rqmax of Monte Carlo
spin-flip acceptance ratios. In analogy to Alvarez et al.
(2008), we define two vectors aqi and bqj [cf. Eq. (179)] as

aqi ¼ �q½ðNG0Þqipq
� �ipq

�; (185)

bqj ¼ Nq
pqj

: (186)

For Rq we need to know ðNG0Þqpqpq
¼ Gq

pqpq
, which is com-

puted by Eq. (184) from Nq
pqpq

.

At the first step (q ¼ 1), N ¼ N0 is known. We start by
selecting a spin p1. We then compute R1 according to
Eq. (182) and accept or reject the update.

In a next step (q ¼ 2), we choose the spin p2. In order to
compute R2, we need to know N1

p2p2
, which we compute as

N1
p2p2

¼ N0
p2p2

þ a1p2
b1p2

: (187)

More generally, the jth diagonal element dqj ¼ Nq
jj after q

(accepted) spin flips is given by

dqj ¼ N0
jj þ

Xq
l¼1

aljb
l
j: (188)

We define two vectors, colq and rowq, that iteratively recom-
pute the elements of the matrix N for the row and column pq:

colqj ¼ N0
jpq

þXq
l¼1

aljb
l
pq

¼ Nq
jpq

; (189)

rowq
j ¼ N0

pqj
þXq

l¼1

alpq
blj ¼ Nq

pqj
: (190)

These are sufficient to compute the new qth column (row) of
the matrices aqj (bqj ) [Eqs. (185) and (186)] and the new

diagonal vector dj:

aqi ¼ �q½ðNG0Þqipq
� �ipq

�
¼ �q½ðNipq

eVpq � �ipq
Þ=ðeVpq � 1Þ � �ipq

�
¼ �q½ðcolqi eVpq � �ipq

Þ=ðeVpq � 1Þ � �ipq
�; (191)

bqj ¼ rowq
j ; (192)

dqþ1
j ¼ dqjj þ aqj b

q
j ¼ Nqþ1

jj : (193)

As seen in Eq. (182), dqþ1
pqþ1

is needed to accept or reject the

next spin flip at the next proposed position pqþ1. After some

steps qmax we retrieve the full N matrix by computing

Nqmax

ij ¼ N0
ij þ

Xqmax

l¼1

ailblj: (194)

A complexity analysis shows the cost of the delayed spin-
flip updates: Eqs. (189) and (190) are OðqkÞ, Eq. (193) is
OðkÞ, and Eq. (194) is an Oðk2qmaxÞ matrix-matrix multi-
plication. The reason for performing delayed spin-flip opera-
tions instead of straightforward spin flips or insertion and
removal updates is that, on current hardware architectures,
the final matrix multiplication in Eq. (194) is about a factor of
10 faster for large (i.e., out-of-cache) matrices than succes-
sive rank one updates, as fast matrix operations that reuse
data can be employed. The additional overhead of computing
a, b, d, row, and col will dominate the algorithm for large
qmax. We therefore recompute N often enough that the over-
head does not dominate, but that we can still take advantage
of the matrix operations. In practice qmax ¼ 32 or 64 are
reasonable values (Alvarez et al., 2008). For more informa-
tion see Mikelsons (2009) and Gull, Staar et al. (2011).

C. Efficient measurements in the CT-AUX and CT-INT

formalisms

In the CT-AUX and CT-INT algorithms the Green’s func-
tion measurement formula, Eqs. (60) and (83), for sites i and j
and at times �i and �j, is

Gij;�ð�i � �jÞ ¼ G0
ij;�ð�i � �jÞ �

�X
pq

G0
ixp;�

ð�i � �pÞ

� G0
xqj;�

ð�p � �jÞMpq

	
MC

; (195)

where xp ðxqÞ and �p (�q) denote the site and time of the

vertex at row (column) p (q) of M. Fourier transformed to
Matsubara frequencies, the Green’s function is estimated as

Gij;�ði!nÞ¼G0
ij;�ði!nÞ� 1

�

�X
pq

G0
ixp;�

ði!nÞ

�G0
xqj;�

ði!nÞei!n�pMpqe
�i!n�q

	
MC

: (196)

Measurement usingEq. (195) in the imaginary-time domain
has a crucial drawback: To sample the smooth functionGijð�Þ
the formulas need to be evaluated for definite � on some grid
(whichmay be chosen nonequidistant). Further processing, for
example, Fourier transforms, may introduce discretization
errors caused by this grid. As the cost of computingG straight-
forwardly is proportional to the number of imaginary-time
points at which it needs to be evaluated, a fine grid of time
points becomes prohibitively expensive. In addition, G esti-
mated by Eq. (195) has a further drawback: The observable
average Gð�i � �jÞ is translationally invariant, while the esti-
mator explicitly depends on two times �i and �j, so that trans-

lation symmetry needs to be restored by the random walk.
In the Matsubara-frequency domain, Eq. (196), there al-

ready is a discrete grid of frequencies !n ¼ ð2nþ 1Þ=�,
n ¼ 0; 1; 2; . . . . The summands inside h�iMC decay as 1=!2

n.
A measurement method implemented directly in frequency
space measures all frequencies up to a maximum cutoff!max.
To obtain the number of frequency points needed we
use information from a high-frequency expansion of the
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self-energy or the Green’s function and automatically adjust
the cutoff frequency such that systematic errors from the
cutoff are much smaller than statistical (Monte Carlo) errors.
This controllability makes this method the preferred one for
high accuracy measurements of the Green’s function.

In translationally invariant clusters, only diagonal entries
of the Green’s function in k space are nonzero. For a cluster
with Nc sites this implies that only Nc independent k-space
Green’s functions need to be measured (instead of N2

c real-
space Green’s functions), at the small cost of performing a
(real-space) Fourier transform.

Computing the exponential factors expð�i!n�Þ needed for
the frequency measurement is expensive. Even with fast
vectorized functions available as part of numerical libraries,
these operations are so time consuming that they may domi-
nate computer time in large simulations. An obvious simpli-
fication consists of creating a fine imaginary-time grid. At the
start of the simulation, expði!n�Þ is computed for all !n

needed and all � on that grid, and the exponentials in
Eq. (196) are taken from it. This eliminates the expensive
calculation of ei!n� at the run time at the cost of some (but
relatively little) additional memory. We did not observe any
inaccuracies introduced by this discretization.

1. Self-energy binning measurement

An efficient measurement method, presented by Gull et al.
(2008a), is based on measuring�G � S.M plays the role of a
T matrix: MG0 ¼ �G. This measurement method works in
imaginary time but does not have the drawbacks described in
the previous section. The measurement formula (omitting the
spin index) is rewritten as

Gijð�Þ ¼ G0
ijð�Þ �

�X
pq

G0
ixp
ð�� �pÞMpqG0

xqj
ð�qÞ

	
MC

¼ G0
ijð�Þ �

Z
d�z

X
l

G0
ilð�� �zÞ

�X
pq

�ð�z

� �pÞ�xplMpqG0
xpj

ð�qÞ
	
MC

¼ G0
ijð�Þ �

Z �

0
d�z

X
l

G0
ilð�� �zÞhSljð�zÞiMC:

(197)

The Matsubara Green’s function can similarly be extracted
directly from the expectation value of S:

Gijði!nÞ ¼ G0
ijði!nÞ � G0

ilði!nÞ

�
Z �

0

X
l

d�ze
i!n�z hSljð�zÞiMC: (198)

In the Monte Carlo process only the quantity hSiMC is mea-
sured and binned into fine (typically 10 000) bins. The cost of
this binning process is independent of the number of time-
discretization points of S and only requires the evaluation of
MG0 at run time. In practice we employ the translational
invariance in the time domain to obtain multiple estimates of
the Green’s function at the same step and perform a matrix-
matrix multiplication of the matrix Mpq and a matrix G0

qj ¼
G0

sqsjð�q � �jÞ with randomly chosen �j to obtain estimates

for S. The method is accurate and significantly faster than the
other methods presented here and is therefore the measure-
ment method of choice for the CT-AUX and CT-INT algo-
rithms, unless access to large clusters or high precision in the
high-frequency part of the self-energy is needed (e.g., for
analytic continuation), in which case we use the frequency
measurement.

D. Green’s function (worm) sampling

In all algorithms discussed so far, diagrams or configura-
tions were generated with the weight that they contribute to
the partition function (see Sec. II.C). For measurements,
Green’s function diagrams were then obtained by modifying
such partition function configurations. A priori it is not clear
that the Green’s function configurations with large weight are
the ones created by modifying configurations important for
the partition function. If the Green’s function estimates gen-
erated by importance sampling of partition function configu-
rations are not the ones with large contributions to the Green’s
function, the Green’s function estimator obtains a large vari-
ance and therefore the measurement of the Green’s function
becomes inefficient. This problem may be overcome by
employing a worm algorithm. The concept was originally
developed in the bosonic context by Prokof’ev et al. (1998)
and, among other problems, applied to the attractive U
Hubbard model (Burovski et al., 2006b). The name worm
refers to two dangling Green’s function lines in the diagrams
that build the head and tail of the worm.

Instead of generating configurations of Z and measuringG,
a worm method stochastically samples both the series for Z
and the series for Gij;�ð�i � �jÞ simultaneously. To this end

the configuration space C is enlarged to include both the set of
diagrams for Z, CZ and the set of diagrams CG for G:

C ¼ CZ [ CG: (199)

A new partition function of the combined system is defined
by extending Z by the sum over all Green’s function dia-
grams, with an arbitrary factor � that controls the relative
importance of the Green’s function sector CG and the partition
function sector CZ,

Ztot ¼ Zþ �
X
ij;�

ZZ
d�1d�2Gij;�ð�1; �2Þ: (200)

In practice, � is chosen such that both summands for Ztot have
nonvanishing weight.

The random walk and updates are modified such that the
entire space C is sampled: In addition to the partition function
updates, ‘‘worm insertion’’ and ‘‘removal’’ updates, i.e.,
updates that transition between CZ and CG by inserting or
removing Green’s function operators, as well as updates in
the Green’s function space such as the shift of Green’s
function lines or vertex insertions (and removals) in the
Green’s function space need to be considered. Updates that
change the vertex part of a Green’s function configuration are
important, as they allow importance sampling for all elements
of a Green’s function diagram.

Measurements in real space and imaginary time are
straightforward: A histogram of worm positions with the
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appropriate sign needs to be recorded. Such an imaginary-

time measurement yields estimates for the Green’s function

with continuous times. These estimates are best measured on

a fixed, but preferably nonuniform, grid by proposing ‘‘worm

shift’’ updates onto measurement locations.
Worm methods have been implemented for both CT-HYB

and CT-INT algorithms (Gull, 2008). For equilibrium DMFT

simulations, without reweighing, the worm algorithm did not

result in much better statistics than the partition function

algorithm, as sampling problems appear to be minimal.

Combined with Wang-Landau techniques the worm method

offers the possibility to perform reweighing of the Green’s

function to obtain better statistics. Worm updates are, how-

ever, crucial in a ‘‘bold’’ sampling method (Gull et al., 2010)

where, due to a partial resummation of some diagrams, there

is no direct relation between Green’s function and partition

function diagrams.

E. Wang-Landau sampling

In the usual sampling process of the partition function

CT-INT algorithm, as well as in the other algorithms de-

scribed in Secs. IV and V, diagrams of the expansion (ele-

ments of the configuration space) are sampled with the weight

that they contribute to the partition function. Observables are

then measured in this ensemble. However, we are free to

sample any arbitrary ensemble as long as the proper reweigh-

ing according to Eq. (24) is performed. While the samples

generated are likely to have a larger variance [Eq. (23)], there

may be other advantages, in particular, smaller autocorrela-

tion times. Here we describe so-called flat-histogram sam-

pling methods. These methods are particularly useful for

problems, such as first-order phase transitions, with barriers

in the configuration space of the Markov walker.
Wang and Landau (2001a, 2001b) presented a general

reweighing scheme that is designed to find and overcome

barriers and phase transitions without prior knowledge of

their location in phase space. The method was extended to

quantum problems by Troyer et al. (2003). In the quantum

Wang-Landau method the key is to reweigh the perturbation

series so that all orders up to some kmax are sampled with

approximately equal probability (see Fig. 20). kmax has to be

chosen in such a way that all local minima of phase space

have some overlap with order kmax, so they can be reached by

flat-histogram sampling.

For the reweighed system, the acceptance ratio (57) is
replaced with R�kþ1=�k with

�ðkÞ ¼
8<
:

1
pðkÞ ; k < kmax;

1; k > kmax;

(201)

where pðkÞ is the probability of having expansion terms at
order k in a nonreweighed sampling. Reweighing factors also
need to be taken into account while calculating averages
[Eq. (24)].

The probability pðkÞ is unknown at the start of the simu-
lation. Therefore, the reweighing coefficients are adjusted as
the simulation proceeds: The value of �ðkÞ is slightly de-
creased for the frequently visited values of k and increased for
rarely visited ones, until the histogram is flat. As the en-
semble �ðkÞ does not enter the expectation value of the
observables, it is not important to have an accurate estimate
of it, as long as it is sufficient to ensure ergodicity.

The reweighed algorithm generates diagrams both at the
physically interesting orders and at orders that are very close
to zero, i.e., the bare Green’s function or noninteracting
partition function in CT-INT. Deliberately generating con-
figurations that contribute little weight to the partition func-
tion may seem inefficient, as the idea behind importance
sampling is to generate diagrams with the importance they
contribute to the partition function. However, when revisiting
the noninteracting case at zeroth order of the series, all
vertices and therefore all correlations are removed, and
when the series is rebuilt it will likely end up in a different
part of phase space—for example, in a different global sym-
metry sector, thereby avoiding trapping in local minima. In
other words, the method aims to provide a reduction of the
autocorrelation time for the Markov walker. Closer analysis
shows that the algorithm can be improved by minimizing the
round-trip time between low and high order states (Dayal
et al., 2004; Trebst et al., 2004).

In practice, flat-histogram sampling turned out to be effi-
cient at obtaining symmetrized, paramagnetic Green’s func-
tions (Gull, 2008). The fact that most configurations sampled
have low order and contribute next to nothing to the observ-
ables is compensated by the fact that they are quick to sample
due to the Oðk2Þ scaling of the matrix operations.

A further important application of the flat-histogram
methods is the calculation of thermodynamic potentials.
The grand potential of the Hubbard model on a finite lattice
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FIG. 20 (color online). Sketch of the histogram of the expansion order for flat-histogram sampling. x axis: expansion order k; y axis:

histogram hðkÞ. Left panel: no flat-histogram sampling. Middle panel: flat-histogram sampling up to one-half of the maximum order. Right

panel: flat-histogram sampling up to the maximum contributing order. From Gull, 2008.
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at temperature T, for example, can be found by the integration

of d� ¼ �Nd�þDdU, because the quantities on the right-

hand side can be measured in a standard simulation. Such a

procedure, however, requires several simulations for a finite

U range. For the Hubbard model (with no DMFT self-

consistency) a more elegant and efficient way (Li et al.,

2009) is to employ flat-histogram methods to obtain the

partition function Z directly, as the zero-order term for Z is

just 1. Given the reweighing factors �ðkÞ and frequency Pk

with which different perturbation orders have been visited

during the random walk, the partition function is computed as

Z ¼ ½P0�ð0Þ��1
P

Pk�ðkÞ. Knowing Z, all thermodynamic

potentials can be calculated. As an example, we show in

Fig. 21 the graph for the entropy of a 4� 4 Hubbard cluster.

If a converged solution of an impurity model is available, the

same technique may be used to compute the impurity model

partition function, but relating this to the thermodynamic

properties of the full lattice model requires taking into ac-

count the variation of the bath density of states. This has not

yet been explored.

F. Computation of the trace for general interactions in the

hybridization expansion

In the general formulation of the hybridization expansion,

as derived in Eq. (93), the principal computational difficulty

is the evaluation of the trace of a product of operators and

exponentials of the local Hamiltonian. In a given basis this

corresponds to taking the trace of a product of OðkÞ (large)
matrices that have the linear size nloc of the local Hilbert

space. Matrix-matrix multiplications of matrices with size

nloc scale as Oðn3locÞ. It is therefore important to find a way to

reduce both the size of the matrices that need to be multiplied

and the number of matrix-matrix multiplications that have to

be performed.
Computing the exponential of a matrix (Moler and Loan,

2003) is an expensive operation. In the following we

transform to the eigenbasis of the local Hamiltonian by

diagonalizing it. In the eigenbasis, expð�H�Þ is diagonal.

The (formerly sparse) local creation and annihilation opera-
tors become dense matrices.

1. Block diagonalization

The local Hamiltonian Hloc has symmetries. While these
symmetries are dependent on the exact form of the local
Hamiltonian, usually the total particle number Ntot, the total
spin z-component Sz, and rotational or translational symme-
tries of the impurity Hamiltonian are conserved:
½Hloc; Ntot� ¼ 0 ¼ ½Hloc; S

z
tot�. This implies that the local

Hamiltonian may be decomposed into a block-diagonal
form, containing several blocks with size nblock  nloc.
This procedure is shown in Fig. 22.

The advantage of changing to a block-diagonal form

(Haule, 2007) is that operators di and dyj are also in block-

matrix form (see Figs. 22 and 23). The operator dyi", for

example, raises both the total particle number and the total
Sz component by 1 and therefore consists of off-diagonal
blocks connecting the ðSz; nÞ-symmetry sector with the
(Sz þ 1, nþ 1) sector. As the most expensive part of the
code is the computation of matrix products, which scales as
OðPblockn

3
blockÞ or Oðn3max blockÞ instead of Oðn3loc: HamÞ, the

advantage of using symmetries is obvious (Haule, 2007;
Gull et al., 2008b).

A typical example is the four-site Hubbard plaquette with
next-nearest neighbor (t0 � ) hopping. The local Hamiltonian
has a size of 256� 256 elements (44 local states). However,
H commutes with n", n# and has a fourfold rotational sym-

metry (or a couple of inversion and mirror symmetries). This
allows us to split up the 256� 256 matrix into 84 small
blocks that have at most 16� 16 elements.

An appropriate basis choice also allows insight into the
physics. The CT-HYB formalism allows one to determine
which impurity-model states make the dominant contribution
to the computation of an observable, and the matrix of
eigenstate occupation probabilities is the projection of the
density matrix onto the localized orbital basis. This informa-
tion is much more easily interpreted if a physically motivated,
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FIG. 21 (color online). Entropy per site of the half-filled Hubbard

model with t ¼ 1, computed for a periodic 4� 4 cluster at different

temperatures. From Li et al., 2009.

FIG. 22 (color online). Sketch of results of applying rotation and

block diagonalization operations to the local Hamiltonian. The

Hamiltonian in the occupation number basis (shown in the left

panel) is sparse but not blocked. A first permutation operation builds

blocks according to the occupation number and spin of the local

Hamiltonian, leading to a Hamiltonian (shown in the middle panel)

which is nearly block diagonal with dense blocks. A second

(rotation) matrix further reduces block size by considering rota-

tional and translational invariance of the impurity Hamiltonian,

leading to the sparse block structure shown in the right panel.
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symmetry-related basis choice is made. For examples see

Figs. 30 and 42.

2. Basis truncation

As noted by Haule (2007), in situations where the local

Hilbert space is prohibitively large, for example, in the case

of large multiorbital problems or clusters, the computation of

the trace is only feasible if the size of the local Hilbert space

is reduced by an appropriate truncation of the basis. In

systems with very highly excited states that are unlikely to

contribute (e.g., the 5-, 6-, or 7-electron states in cerium), it is

common practice to simply truncate the local Hilbert space

and eliminate these states entirely. The same can be done for

high energy and high momentum states in clusters. In addi-

tion, the highest few excited states of the local Hamiltonian in

a particular symmetry sector may be truncated.
Simple truncation based on some a priori criterion is an

uncontrolled approximation justified only by a need to solve a

particular problem with available resources. Truncation based

on the eigenvalues of the local Hamiltonian only is especially

dangerous, as the hybridization may broaden and shift levels.

Truncation is likely to introduce systematic errors. Short

excursions into infrequently visited states are often needed

to produce transitions between frequently visited states. For

example, in the largeU Anderson impurity model it is the rare

transitions into the states with n ¼ 0, 2 that produce spin

flips. If truncation is to be used, it is advantageous to do so in

two steps: First one does a short simulation, keeping as many

states as feasible, while keeping a histogram of visited states.

Even if this simulation is not fully thermalized or long

enough to allow accurate measurements, it will enable an

identification of frequently and infrequently visited states,

which may be used to construct a truncated Hilbert space

for extensive simulation.
A ‘‘dynamic’’ truncation method that speeds up the calcu-

lation of the trace without introducing errors involves check-

ing to see if expð���HlocÞ falls below machine precision or

some other threshold, and if so, not computing the remainder

of the product of that particular part of the trace. Unlike in the

‘‘static’’ truncation case described above, short excitations

into highly excited states are still possible, but the computa-
tional gain is significantly smaller.

3. Binning and tree algorithms for the hybridization expansion

The most expensive part of the algorithm is the computa-
tion of the trace, which is linear in the numbers of hybrid-
ization operators present in the configuration. Computing the
complete trace in the general case will be OðkÞ, as each
operator matrix must be accessed at least once. However,
recomputing the trace after an operator insertion or removal
update allows simplifications: A first step is trivial to imple-

ment and reduces the effort to Oð ffiffiffi
k

p Þ. The operator trace is

chopped into around
ffiffiffiffiffiffihkip

intervals between zero and �. We
then store the matrix product of all operators within this
interval, such that each subinterval contains approximatelyffiffiffiffiffiffihkip

operators. If we insert two operators, we change the
matrix product of one or two intervals, which need to be

recomputed at the cost of
ffiffiffi
k

p
operations. The whole recom-

pute operation is therefore of Oð ffiffiffi
k

p Þ, and a sweep of Oðk3=2Þ.
This algorithm is shown in the upper panel of Fig. 24.

A better, but more complicated algorithm uses the proper-
ties of self-balancing binary trees. AVL (Adelson-Velskii and
Landis, 1962a, 1962b; Knuth, 1997) trees are one possibility.
Denoting dense matrices from the hybridization operators
with capital letters and the exponential vectors pð�iþ1 �
�iÞ ¼ e��H0 ¼ pi;iþ1 with lower case letters, we can write

the trace in Eq. (93) as

Tr½pi
0AAijp

j
ABBjkp

k
BCCklp

l
CD � � �Zpip

i
Z��; (202)

and arrange all operators in Eq. (202) in a binary tree. It is
easy to see that for every exponential pð� ! �iþ1Þ ¼
eH0ð�i��iþ1Þ between the first and last operator we can assign
one branch of the tree. These are ‘‘propagators’’ from time �i
to time �iþ1, where a right branch contains the propagator
from the node to the smallest time of the right subtree, and a
left branch contains the propagation from the largest time of
the left subtree to the node (see Fig. 24).

The main idea of the algorithm is that each node stores
products of the matrix product of the left subtree times the

FIG. 23 (color online). Sketch of one of the optimizations in the general representation: Four symmetry sectors are drawn, for which Sz and
N are different. After the trace of dy" and d# is taken only one of the symmetry sectors still contributes. In the implementation, we first identify

which symmetry sectors contribute, and then compute the matrix product and trace only for these sectors. Additional symmetries vastly

simplify the computation.
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propagator to the left, the operator, and the propagator to the
right times the matrix product of the right subtree. This
requires an extra storage cost of OðkÞ in memory and addi-
tional functions for the rebalancing of binary trees, but
reduces the computational effort of a sweep to Oðk logkÞ.

G. Use of symmetries and global updates

Global updates are updates that affect many or all vertices
of a configuration. Two simple examples are a spin flip of all
auxiliary spins in a CT-AUX simulation and the exchange of
the segments of two orbitals in CT-HYB.

If the update corresponds to an exact symmetry (global
spin flips in a paramagnetic system, segment interchange for
degenerate orbitals, etc.), the weight of a configuration re-
mains unchanged and a proposal of the global update will
always be accepted. In cases with exact symmetries the same
effect may be achieved by enforcing the symmetry at the end
of the simulation.

Global updates are useful for the systems with weakly
broken symmetries, in particular, near a phase transition,
where they may help to radically reduce autocorrelation
times. Weakly spin-polarized states are an example. In all
instances considered in the literature so far, global updates
required the recalculation of determinants to estimate
acceptance probabilities, at the cost of Oðk3Þ operations.
Hence they should be performed at most once per hki update
steps. The concept has proven to be useful to describe an
insulating state with a small polarization by Poteryaev et al.
(2007, 2008), and similarly by Chan et al. (2009) and Kuneš
(2009).

H. Vertex functions

For some applications, in particular, the determination of
phase boundaries, response functions, or ‘‘dual-fermion’’
(Rubtsov et al., 2008), dynamical vertex approximation
(D�A) (Toschi et al., 2007), and other (Kusunose, 2006;
Slezak et al., 2009) extensions beyond dynamical mean-field
theory, the expectation values of observables with four
(or even six) creation and annihilation operators are needed.

An example is �4
abcdð�1; �2; �3; �4Þ ¼ hT�d

y
a ð�1Þdbð�2Þ�

dyc ð�3Þddð�4Þi. These correspond to reducible vertices.
Time-translation invariance implies that the four-point

vertex is dependent on three time differences or three fre-

quencies. Orbital or cluster symmetries of the impurity
model may further reduce the number of independent
indices abcd. Nevertheless, for most of these problems the
number of observables that need to be measured—especially
for clusters or multiorbital problems—is overwhelming: In a
single-orbital model, retaining 100 Matsubara frequencies in
each of the three momentum indices requires obtaining and
storing results of 106 measurements. In a four-site cluster
calculation, the same number would lead to 64� 106

observables.
In the CT-AUX and CT-INT algorithms, the four-point

correlation functions are computed using the fact that for a
fixed auxiliary spin configuration the problem is Gaussian
and Wick’s theorem can therefore be used together with
Eq. (83). Thus the problem reduces to the accumulation of
the determinant of a 2� 2 matrix (Rubtsov et al., 2005; Gull
et al., 2008a)

*��������ðG12
0 þG1k

0 Mfsi;�i;xig
kl Gl2

0 Þ ðG14
0 þG1k

0 Mfsi;�i;xig
kl Gl4

0 Þ
ðG32

0 þG3k
0 Mfsi;�i;xig

kl Gl2
0 Þ ðG34

0 þG3k
0 Mfsi;�i;xig

kl Gl4
0 Þ
��������
+

(203)

with M
fsi;�i;xig
kl defined in Eq. (84). If only a few correlation

functions are measured, Eq. (203) is best evaluated at run
time. If many or all correlation functions have to be measured
at n� time points and the size nM ofM is comparatively small,

it is advantageous to accumulate only hMfsi;�i;xig
ij i and

hMfsi;�i;xig
ij Mfsi;�i;xig

kl i and reconstruct the correlation function

at the end of the computation. While binning the latter
expression is Oðn3�Þ in memory, it is only Oðn3MÞ computa-

tionally (using the time-translation symmetry).
For larger problems, in particular cluster problems,

Gabð!1; !2Þ, the instantaneous single-particle Green’s func-
tions, are computed directly in frequency (and in some cluster
schemes, momentum) space for a given spin configuration.
The four-point functions are then obtained by computing the
Monte Carlo average of the instantaneous Green’s function
products �abcd ¼ hGabGcd � GadGcbi and using symmetries
to reduce the number of observables. For many problems,
only some of the four-point functions are needed (e.g., only
the ones with energy transfer 0, or diagonal cluster momenta
in DCA). Direct frequency measurement allows selective
measurement of only these observables.

In the CT-HYB, configurations with four local operators
are generated by removing two hybridization lines from
configurations of the partition function, similar to how
Green’s function configurations are generated by removing
one hybridization line.

Some applications [see, e.g., Toschi et al. (2007); Slezak
et al. (2009)] require the computation of irreducible two-
particle quantities. In order to obtain these vertices from the
reducible ones, Bethe-Salpeter equations have to be inverted.
This process can be numerically unstable, and how it is best
done is currently still an open question.

Our experience is that vertices measured directly in fre-
quency space by the CT-AUX and CT-INT methods are most
accurate, so that this is the method that should be used.

FIG. 24 (color online). Top panel: Binning algorithm—binning of

the k operators into
ffiffiffiffiffiffihkip

bins, each having approximately
ffiffiffi
k

p
elements, reduces the effort of computing the trace after inserting

or removing an operator to Oð ffiffiffiffiffiffihkip Þ. Bottom panel: binary tree for

the tree algorithm, OðloghkiÞ. From Gull, 2008.
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I. High-frequency expansions of the self-energy

In many of the CT-QMC algorithms the self-energy is
obtained as the difference between the inverses of the full
(G) and bare (G0) Green’s functions. Because both of these
become small at high frequencies while their errors remain
constant, the errors of the difference of the inverses become
large and �ð!Þ is difficult to measure accurately for large !.
It is therefore useful to have an analytical representation of
the self-energy at high frequencies. In a general N orbital
model the self-energy is an N � N matrix � and its high-
frequency expansion is

�ði!nÞ ¼ �1 þ 1

i!n

�1 þO
�
1

!2
n

�
: (204)

The coefficients �0;1 may be obtained from the coefficients in

the high-frequency expansions of the full and bare Green’s
functions (Potthoff et al., 1997) using

Gði!nÞ ¼ 1

i!n

G0 þ 1

ði!nÞ2
G1 þ 1

ði!nÞ3
G2; (205)

the analogous equation for G0, and for � ¼ G0�1 �G�1.
The coefficients in the high-frequency expansions ofG and

G0 are in turn obtained from the discontinuities in the de-
rivatives of G and G0 across � ¼ 0 as

Gn ¼ @ðnÞ� Gð� ¼ 0þÞ � @ðnÞ� Gð� ¼ 0�Þ: (206)

The time derivatives themselves may be computed from the
definition

Gabð�� �0Þ ¼ �hT�dað�Þdyb ð�0Þi (207)

by performing a small-time expansion of

dað�Þ ¼ eH�dae
�H� (208)

and its conjugate. The structure of the second derivative term
is simplified by exploiting time-translation invariance to
place the derivative on the first or second operator as appro-
priate. The result is

Gab
0 ¼ hfda; dyb gi ¼ �ab; (209)

Gab
1 ¼ hf½H; da�; dyb gi; (210)

Gab
2 ¼ hf½H; da�; ½H; dyb �gi: (211)

The coefficients for G0 are obtained using the Hamiltonian
without the interaction term.

We illustrate the procedure for the generic Hamiltonian

H ¼ X
ab

Eabdyadb þ
X

a1a2b1b2

Ia1a2b1b2dya1d
y
a2db1db2

þX
k�b

ðV�b
k cyk�db þ H:c:Þ þX

k�

"k�c
y
k�ck� (212)

(fermion antisymmetry implies that Ia1a2b1b2 ¼ �Ia2a1b1b2).
Important for the self-energy are the commutators with
the interaction term, which are (bearing in mind the antisym-
metry)

Ĵa � ½Î; da� ¼ 2
X

a1b1b2

Iaa1b1b2dya1db1db2 ; (213)

Ĵyb � ½Î; dyb � ¼ 2
X

a1a2b1

Ia1a2b1bdya1d
y
a2db1 : (214)

Expanding and comparing terms we find that the constant
term in the self-energy is the familiar Hartree term

�ab1 ¼ 4
X
a1b1

Iaa1b1bhdya1db1i; (215)

while

�ab
1 ¼ hfĴa; Ĵyb gi: (216)

The expectation values in Eqs. (215) and (216) must in
general be measured.

For the single-orbital Anderson impurity model we find
(with a chemical potential shift of U=2 usually employed)
(Blümer, 2002; Knecht, 2003; Comanac, 2007)

�ð!Þ ¼ U

�
hn��i � 1

2

�
þ U2

i!n

hn��ið1� hn��iÞ

þO
�

1

i!2
n

�
: (217)

Expressions for multiorbital models with density-density
interactions are derived by Gull (2008), for plaquette CDMFT
by Haule (2007) and Haule and Kotliar (2007b), and for
multiorbital models with the Slater-Kanamori form of inter-
actions by Wang (2010).

XI. APPLICATIONS I: DMFT

A. Overview

Dynamical mean-field theory provided an important initial
motivation for the development of CT-QMC impurity solvers
and is perhaps the domain to which the new solvers have
made the most important contributions. We therefore con-
sider dynamical mean-field applications in some detail. We
do not review the dynamical mean formalism in detail here,
instead referring the interested reader to reviews of the
original ‘‘single-site’’ (Georges et al., 1996) and subsequent
cluster (Maier et al., 2005a) formulations [see also Potthoff
(2006)] and to reviews of the combination of the formalism
with modern electronic structure theory which provides an
important step toward an ab initio description of strongly
correlated compounds (Kotliar et al., 2006; Held, 2007).
However, for clarity we provide a brief explanation of the
essential ideas.

A common strategy in theoretical physics is to obtain an
approximation to the solution of a problem in terms of a
solution of a more tractable auxiliary problem, which is speci-
fied by a self-consistency condition. Weiss mean-field theory
and density functional band theory are examples. Dynamical
mean-field theory provides an approximate solution of a lattice
fermion problem in terms of an auxiliary quantum impurity
model with interaction terms specified by the interactions in
the original lattice model and single-particle energies and
hybridization functions determined by a self-consistency con-
dition. Onemay think of it as based on an approximation of the
full self-energy �abðk; !Þ, which depends on a discrete set of
orbital labels a, b and continuous momentum and frequency
variables k, !, in terms of N functions of frequency
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�j¼1���Nð!Þ which are the self-energies of an N-orbital impu-

rity model. Different flavors of dynamical mean-field theory

correspond to different prescriptions for reconstructing the

lattice self-energy from the �jð!Þ and to different forms of

the self-consistency condition. All formulations require a

solution of the quantum impurity model which is of high and

reasonably uniform accuracy over awide frequency range. It is

not unfair to say that it is the development of CT-QMC

techniques that has given DMFT the computational power

needed to address the full range of problems arising in the

physics of correlated electron physics.
The first applications of dynamical mean-field theory were

single-site DMFT approximations to the physics of model

systems such as the one-orbital Hubbard model and the one-

orbital Anderson models (Georges et al., 1996). For these

two cases the auxiliary impurity model is the single-impurity

Anderson model [Eq. (12)], which can be solved to sufficient

accuracy for most purposes by pre-CT-QMC techniques, in

particular, the Hirsch-Fye approach. While the greatly im-

proved efficiency of CT-QMC methods has enabled a more

refined study of some aspects of the physics and has shed

light on some special cases, the single-site, single-orbital case

has mainly served as a test bed for investigating and evaluat-

ing CT-QMC methods.
A second class of DMFT applications is the cluster exten-

sions (Maier et al., 2005a), which can treat the short-ranged

correlations characteristic of high temperature superconduc-

tors and other low-dimensional systems. In the single-site

DMFT method the self-energy is replaced by its average over

the Brillouin zone. Cluster-DMFT methods allow for some

coarse-grained momentum dependence and include some

aspects of intersite correlations. They are thus of interest in

the context of understanding the strong momentum-space

differentiation observed in high-Tc cuprates and other low-

dimensional systems. Currently, most of the cluster-DMFT

literature has focused on models with a Hubbard interaction.

For models with Hubbard interactions considerable progress

has been made by use of the Hirsch-Fye (Jarrell et al., 2001;

Maier et al., 2005a, 2005b; Macridin et al., 2006;

Vidhyadhiraja et al., 2009) and exact-diagonalization

(Kyung et al., 2006b; Kancharla et al., 2008; Liebsch

et al., 2008; Liebsch and Tong, 2009) methods [see also

Koch et al. (2008)]. However, the more efficient CT-QMC

methods have permitted the examination of much wider

regions of phase space, leading to new results and insights.
A third class of DMFT applications is the study of mate-

rials such as transitional metal oxides and actinides with

partially filled d or f shells (Kotliar and Vollhardt, 2004;

Held et al., 2006; Kotliar et al., 2006; Held, 2007). In these

materials multiplet interactions such as Eq. (13) are crucial to

many aspects of the physics. CT-QMC methods have pro-

vided the first reliable solvers for this class of models and

have yielded new insight into their physics.
A fourth class of DMFTapplications are extensions such as

the dual-fermion and dynamical vertex approximations

(Kusunose, 2006; Toschi et al., 2007; Rubtsov et al.,

2008; Slezak et al., 2009). These methods require the

accurate calculation of the full four-point vertices of impurity

models, and this computationally challenging task seems

feasible only with CT-QMC methods.

In the remainder of this section we summarize the appli-
cations in the order presented above and close with remarks
about future challenges.

B. Single-site DMFT approximation to the single-orbital

Hubbard model

An important early success of single-site dynamical mean-
field theory was an improved understanding of the Mott or
correlation-driven metal-insulator transition. This is one of
the fundamental questions in electronic condensed matter
physics (Mott, 1949; Imada et al., 1998). The essential
physics is captured by the one-band Hubbard model, specified
by a hopping tij between sites i and j and an on-site interac-

tion U:

H ¼ X
ij

tijc
y
i�cj� þ U

X
i

ni"ni#: (218)

It has been known for many years (Imada et al., 1998) that
at a carrier concentration n ¼ 1 per site the model exhibits a
paramagnetic metal to paramagnetic (Mott) insulator transi-
tion as the interaction strength U is increased above a critical
value of the order of the bandwidth. The state obtained by
doping the large U Mott insulating state has many unusual
properties.

A single-site dynamical mean-field theory of the Hubbard
model was formulated by Georges and Kotliar (1992). As
shown by Müller-Hartmann (1989) and by Metzner and
Vollhardt (1989), it becomes exact in a limit of spatial
dimensionality d ! 1 and is believed to be reasonably reli-
able in d ¼ 3. Kotliar and Vollhardt (2004) showed that
corrections are significant in d ¼ 2 and d ¼ 1. The corre-
sponding quantum impurity model is Eq. (12). Studies prior
to the advent of CT-QMC established that in the single-site
dynamical mean-field approximation the phase diagram at
half filling involves a first-order transition with a critical end
point in the T-U plane and a higher temperature crossover
regime, as shown in Fig. 25. Physics beyond the single-site
approximation will correct the phase diagram. In two spatial
dimensions the change is qualitative, but in higher dimension
the changes are less severe and the single-site phase diagram
remains relevant. The scales are low, presenting a challenge
to computational methods.

The metal-insulator transition may be characterized by the

‘‘kinetic energy,’’ essentially hPijti�jc
y
i�cj�i, which gives a

measure of the degree to which electron motion is blocked by
the interaction U (Millis, 2004). At low T the transition from
insulator to metal is marked by the appearance of a very
narrow band of quasiparticle states inside the gap, which
itself remains well formed for a range of U below the
transition. These states form a Fermi liquid, but with very
low Fermi temperature. Theoretical arguments (Fisher et al.,
1995; Kotliar et al., 2002) established that the doping-driven
transition is also first order at low T, marked by the sudden
appearance of states inside the Mott gap. However, the
transition in this case is only weakly first order and for
many years proved difficult to observe. These and other
somewhat unusual features of the phase diagram occur
because in the single-site approximation the paramagnetic
insulating state has an extensive entropy of ln2 per site
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(Georges et al., 1996). In the physical situation the entropy
will be quenched below some scale, but in real three-
dimensional materials the scales may be low enough that
the single-site phase diagram remains experimentally relevant
(Kotliar and Vollhardt, 2004).

The top panel of Fig. 26 shows results from the first CT-
HYB study of the interaction-driven metal-insulator phase
transition (Werner et al., 2006). It compares the kinetic
energy calculated in the single-site dynamical mean-field
theory for the one-band Hubbard model via a Hirsch-Fye
simulation, an exact-diagonalization method, and the
CT-HYB method. One can see that the CT-HYB method
agrees with the other methods (where there is overlap), allows
access to very low temperatures, reveals the T2 behavior
associated with a strongly renormalized Fermi liquid, and
captures the first-order Mott transition. The bottom panel,
from Werner and Millis (2007a), shows the dependence of
carrier concentration on chemical potential for interaction
strengths above and below the Mott transition providing the
first clear verification that the doping-driven Mott transition is
first order. Results such as these established that the CT-HYB
method provides a successful description even of subtle, low
temperature properties of impurity models.

Another long-standing question in correlated electronic
theory was Nagaoka’s prediction (Nagaoka, 1966) of ferro-
magnetism in the Hubbard model at carrier concentrations
very near to half filling and very strong interactions. The
status of this result was unclear for many years because
Nagaoka’s original arguments rigorously applied only to
one hole in a Mott insulator, not to a thermodynamic density
of holes. Park, Haule, Marianetti, and Kotliar (2008) used the
CT-HYB method to establish the existence of a thermody-
namic Nagaoka phase, at least in the d ¼ 1 limit.

While quantum Monte Carlo methods are most effective

for imaginary-time (thermodynamic) simulations, it is of

course important to attempt to obtain spectra which can be

compared to experimental response functions. The standard

method is a maximum-entropy analytical continuation of the

imaginary-time data (Jarrell and Gubernatis, 1996). One

question of particular importance is the value of the insulating

gap in the strong correlation limit at half filling. Here a

weakness of the CT-QMC methods reveals itself: Because

the Green’s function is numerically very small in the middle

of the imaginary-time window, the simulation does not visit

this region much and the statistics are relatively poor. But it is

precisely this region which is important for the value of the

insulating gap. Straightforward analytical continuation of the

FIG. 25 (color online). Metal-insulator phase diagram of para-

magnetic two-dimensional Hubbard model in the single-site DMFT

approximation, plotted against normalized interaction strength

Ur ¼ ðU�UMITÞ=UMIT with UMIT ¼ 9:35t for this model. The

transition is first order, with the coexistence region indicated by

shading. The dashed line indicates the bad metal and bad insulator

crossover determined from the condition in which the imaginary

part of the self-energy at the few lowest Matsubara frequencies is

flat at the crossover value of U. From Park et al., 2008a.
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FIG. 26. Top panel: Kinetic energy obtained using the indicated

impurity solvers plotted as a function of temperature for the

Hubbard model with a semicircular density of states and bandwidth

4t and interactions indicated. For U ¼ 4t the model is in a strongly

renormalized metallic phase, for U ¼ 4:95t a low T metal to higher

T insulator transition occurs, visible as a jump in kinetic energy at

ðT=tÞ2 	 0:0007. From Werner et al., 2006. Bottom panel: Doping

per spin, 0:5� n, as a function of chemical potential for �t ¼ 400
and indicated values of U=t. At this temperature, the transition at

half filling (� ¼ �1 ¼ U=2) occurs at UcðTÞ 	 5:65. For U >Uc

the n ¼ 1 state is insulating and shifting the chemical potential

induces a first-order metal-insulator transition visible as a disconti-

nuity in nð�Þ. From Werner and Millis, 2007a.
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Green’s function leads to broadened gap edges. Wang et al.

(2009) discussed this issue in detail, arguing that one should

instead continue the self-energy and construct the Green’s
function from the continued self-energy.

C. Cluster dynamical mean-field theory of the single-orbital

Hubbard model

The single-site dynamical mean-field theory neglects spa-

tial correlations and, while it becomes exact in an appropri-
ately defined infinite dimensional limit (Metzner and

Vollhardt, 1989), it is known to provide an insufficient de-

scription of the metal-insulator transition in finite dimen-

sional models. Deviations from the single-site dynamical

mean-field picture are particularly large in the case of two
spatial dimensions relevant for high temperature supercon-

ductivity. A striking and still ill-understood feature of hole-

doped high temperature cuprate superconducting materials is

the ‘‘pseudogap,’’ a suppression of the electronic spectral
function occurring for momentum states along the Brillouin

zone face but not for states along the zone diagonal. [In

electron-doped cuprates a phenomenologically somewhat

different effect, confusingly also sometimes termed pseudo-

gap is now understood as arising from proximity to a state
with long-ranged two sublattice antiferromagnetic order

(Kyung et al., 2004; Zimmers et al., 2005; Motoyama

et al., 2007; Armitage et al., 2009]. The pseudogap is a

dramatic example of the more general phenomenon of

momentum-space differentiation: an increase in the variation
of physical quantities around the Fermi surface as the insu-

lating phase is approached. Its origin and consequences

remain hotly debated topics.
Attention in recent years focused on cluster dynamical

mean-field theories (Maier et al., 2005a), which capture at
least some aspects of spatial correlations. These methods

produced a range of exciting results with strong qualitative

similarities to the cuprates (Tremblay et al., 2006), but are

computationally very demanding. To date, cluster dynamical
mean-field approximations have mainly been used to study

the single-band, two-dimensional Hubbard and t-J (Zhang

and Rice, 1988) models, although some work on Hubbard-

like models related to heavy fermions has appeared (Sun and

Kotliar, 2005). Significant results were obtained with ap-
proximate analytical and semianalytical methods (Parcollet

et al., 2004; Kyung et al., 2006b; Chakraborty et al., 2008),

exact-diagonalization (Civelli et al., 2005; Kancharla et al.,

2008; Koch et al., 2008; Liebsch et al., 2008; Liebsch and
Tong, 2009), and Hirsch-Fye QMC (Lichtenstein and

Katsnelson, 2000; Huscroft et al., 2001; Jarrell et al.,

2001; Maier et al., 2005a, 2005b, Macridin et al., 2006;

Maier et al., 2006, 2007a, 2007b; Vidhyadhiraja et al., 2009)

approaches. While ED results have been reported only for
clusters up to 4 sites, Hirsch-Fye approaches have been

extended up to clusters of size 64 (at weak interaction

strength) (Moukouri and Jarrell, 2001) and 16

(Vidhyadhiraja et al., 2009) (at moderate to strong interac-

tion strength), although the magnitude of the computations
required meant that studies were restricted to select dopings.

The advent of CT-QMC methods greatly increased the

ranges of parameters that could be studied with reasonable

computational resources. Scans of parameter space became
feasible and phase diagrams have been established.
Hybridization expansion methods have been used to study
two-site (Ferrero et al., 2009a, 2009b) and four-site (Gull
et al., 2008b; Park et al., 2008a) clusters. In the case of these
small clusters, the analysis of cluster eigenstate occupation
probabilities provided new insights. For larger clusters the
dimension of the local Hilbert space is so large that the
hybridization expansion method has not been successfully
applied. CT-AUX methods have been used to study eight-site
clusters (Gull et al., 2009; Werner et al., 2009a) and, at
U ¼ 4t, a range of cluster sizes up to 32 (Kozik et al., 2010).

We present here a few representative CT-QMC cluster-
DMFT results which illustrate the power of the methods and
the nature of the new results which has been obtained. The
convergence of cluster schemes with cluster size is shown in
Fig. 27, which compares CT-AUX cluster-DMFT results to a
direct Monte Carlo evaluation (diag-MC) of diagrams of the
lattice problem (Kozik et al., 2010). While diag-MC as of
now works only for relatively weak interactions, the results
do not contain a k-space discretization of the self-energy, so
that the results are exact within error bars. As shown in
Fig. 27 for U ¼ 4, convergence of the cluster-DMFT results
to the exact ones is achieved with 32 sites.

We now turn to results relating to stronger coupling phys-
ics, beginning with results obtained for four-site clusters,
which have been studied using CDMFT (Kotliar et al.,
2001) and DCA (Hettler et al., 1998) versions of cluster
dynamical mean-field theory. The four-site cluster calcula-
tions may be thought of as approximating the full momentum
dependence of the self-energy by its value at the four points
S ¼ ð0; 0Þ, Py ¼ ð0; Þ, Px ¼ ð; 0Þ, and D ¼ ð;Þ.

The physics brought by the added momentum dependence
changes the character of the Mott transition in dimension

FIG. 27 (color online). Comparison of the momentum dependence

of the self-energy of the two-dimensional Hubbard model with

parameters U=t ¼ 4, �=t ¼ 3:1, and T=t ¼ 0:4 calculated at the

Matsubara frequency !0 ¼ 
 ¼ =�, calculated for along the cut

ð0; 0Þ � ð; 0Þ � ð;Þ � ð0; 0Þ in the first Brillouin zone using a

numerically exact diagrammatic Monte Carlo procedure and using

CT-AUX simulations of single site and 4-, 8-, 16-, and 32-site DCA

DMFT approximations. From Kozik et al., 2010.
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d ¼ 2. Figure 28 shows the phase diagram of the two-

dimensional Hubbard model obtained in a detailed

CT-HYB study of the four-site CDMFT approximation

(Park et al., 2008a). It should be compared to Fig. 25 which

presents single-site DMFT results for the same model. The

interaction-driven transition was found to be first order, as in

the single-site case. However, not only is the critical interac-

tion strength much less than in the single-site approximation,

but the phase boundary bends in the opposite direction from

that found in the single-site calculation, indicating that in the

multisite approximation the insulating phase has lower en-

tropy than the metallic phase. The narrow band of in-gap

states whose appearance characterizes the Mott transition in

high dimension (Fisher et al., 1995; Kotliar et al., 2002) is

not found in cluster calculations for 2D systems.
Insight into the metal-insulator transition is enhanced by

the ability of CT-HYB to provide sector occupation statistics

(Haule, 2007). These are indicated in Fig. 28 by pie-chart

insets. The low temperature insulating phase was found to be

characterized by a strongly dominant occupation of one state,

corresponding to a singlet configuration of the four electrons

on the plaquette. This correlation was argued by Gull et al.

(2008b) to indicate that in the cluster dynamical mean-field

methods the metal-insulator transition was driven by the

appearance of strong short-ranged order (most likely related

to a columnar dimer phase). By contrast, the high temperature

‘‘bad insulator’’ state, which has entropy of the order of lnð2Þ,
populates many states of the plaquette with significant

probability.
Further evidence of the importance of short-ranged order

was obtained from the electron spectral functions (Gull et al.,

2008b; Park et al., 2008a) computed by maximum-entropy

analytical continuation and shown in Fig. 29. The insulating

state has a gap. The dotted line gives the spectral function

calculated in a mean-field approximation based on a two

sublattice order; the strong similarity indicates that short-
ranged order is responsible for the insulating behavior.

The left panel of Fig. 30 presents the changes in the density

of states in the P ¼ ð0; Þ; ð; 0Þ sector as electrons are

added. The curves are obtained by analytical continuation
of quantumMonte Carlo data. The Mott gap visible in Fig. 29

has filled in even at the lowest doping shown, but for the

lower dopings a small pseudogap (suppression of density of

states) appears near the Fermi level while for x ¼ 0:15 the
value of the spectral function at the Fermi level approaches

that of the noninteracting model, indicating the restoration of

Fermi-liquid behavior, consistent with experiment and with
many previous theoretical results.

Examination of the sector statistics shown in the right panel

of Fig. 30 indicated that the transition from pseudogapped to

Fermi-liquid behavior occurred at the doping at which the
plaquette singlet state ceased to dominate the physics. An

intriguing and still open question concerns the degree towhich

the level crossing in sector statistics is related to the ‘‘avoided
criticality’’ discussed by Haule and Kotliar (2007a).

Recently CT-AUX methods were used to examine the

larger eight-site cluster shown in Fig. 31. The greater effi-

ciency of the CT-AUX method permitted a comprehensive
examination of the behavior as a function of interaction

strength, carrier concentration, second neighbor hopping,

and temperature (Gull et al., 2009; Werner et al., 2009a).
A striking new result is that both the interaction-dependent

and doping-dependent metal-insulator transitions are multi-

staged, where different regions of the Fermi surface are

successively gapped as carrier concentration or interaction
strength is varied. [Similar behavior was also found in a two-

site cluster with a clever choice of momentum-space patching

(Ferrero et al., 2009a)]. The phase diagram for the
interaction-driven transition is shown in the right-hand panel

of Fig. 31.

FIG. 28 (color online). Metal-insulator phase diagram of the

paramagnetic phase of the two-dimensional Hubbard model in the

plane of temperature T=t and interaction U=t measured relative to

the critical end-point value UMIT ¼ 6:05t in the 4-site CDMFT

cluster approximation. Band parameters are identical to those used

in Fig. 25. Inset: Pie-chart histogram of occupancy probability of the

two insulating states at low and high temperatures. From Park et al.,

2008a.
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FIG. 29 (color online). Solid line: On-site spectral function com-

puted for different momentum sectors by maximum-entropy ana-

lytical continuation of QMC data for U ¼ 6t and doping x ¼ 0.

Dashed line: Spectral function in the P ¼ ð0; Þ; ð; 0Þ-momentum

sector. Dotted and dash-dotted lines: P ¼ ð0; Þ; ð; 0Þ and local

spectral functions obtained by performing the DCA momentum

averages of the standard spin density wave (SDW) mean-field

expressions for the Green’s function, with gap � ¼ 1:3t. From

Gull et al., 2008b.

388 Emanuel Gull et al.: Continuous-time Monte Carlo methods for . . .

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011



Identification of a gapped region in a spectrum can be
based on analytical continuation. However, obtaining data of
the requisite quality for analytical continuation is expensive,
and analytical continuation is in any event a notoriously ill-
posed problem. Methods for identifying metal-insulator
phase boundaries directly from imaginary time are therefore
valuable. At present it appears that the most reliable method
is to plot �GKð�=2Þ in momentum sector K, related to the
density of states at the Fermi energy by

�GKð�=2Þ ¼
Z d!

2T

AKð!Þ
cosh½!=ð2TÞ� :

This is shown as a function of interaction strength or chemi-

cal potential for several temperatures as shown in Fig. 32.

The sector gapping transitions were identified from the

temperature dependence of �GKð� ¼ �=2Þ. One sees from

Fig. 32 that a gap opens in sector C at lower � than in

sector B. Remarkably, this sector selectivity occurs on the

hole-doped but not on the electron-doped side of the phase

diagram. The successive gapping bears an intriguing

similarity to the behavior of high Tc cuprates in the pseu-

dogap regime. The interpretation and implications of the

CT-QMC results are at present the subject of active

investigation.

-8 -6 -4 -2 0 2 4
ω [t]

0

0.1

0.2

0.3

0.4

0.5

0.6
A

P(ω
)

0 0.1 0.2

Doping

0

0.2

0.4

0.6

0.8

Pr
ob

ab
ili

ty

4 electron singlet
4 electron triplet
5 electron spin 1/2
6 electron singlet

FIG. 30 (color online). Left panel: Doping dependence of P ¼ ð0; Þ; ð; 0Þ-sector density of states obtained by an analytical continuation

of quantum Monte Carlo data obtained from the DCA approximation at U ¼ 5:2t, temperature T ¼ t=60, and dopings x ¼ 0:04 (solid line),

x ¼ 0:08 (dashed line), and x ¼ 0:15 (dash-dotted line). The dotted line denotes the noninteracting density of states. Right panel: Evolution

of the occupation probabilities with doping at U ¼ 5:2t and temperature T ¼ t=30. From Gull et al., 2008b.

FIG. 31 (color online). Left panel: Brillouin zone partitioning

associated with the eight-site cluster DCA approximation with

definition of the four inequivalent momentum sectors A, B, C,
and D. The noninteracting Fermi surface for t0 ¼ �0:15t and

density n ¼ 1 is indicated by the line. Right panel: Sketch of the

paramagnetic state DCA phase diagram of the Hubbard model,

calculated for the cluster shown in the left panel at half filling, as a

function of interaction strength U and next-nearest neighbor hop-

ping t0. A Fermi-liquid metal phase (left, shaded area), a sector

selective intermediate phase (middle, shaded area) in which the

sectors labeled as C are gapped but those labeled as B remain

gapless, and a fully gapped insulating phase (right, shaded area) are

shown. From Gull et al., 2009.
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FIG. 32 (color online). �Gð�=2Þ calculated in DCA approxima-

tion to eight-site cluster for sectors B (full symbols) and C (empty

symbols), at U=t ¼ 7 and t0=t ¼ �0:15. The strong temperature

dependence in the sector C curves arises from the van Hove

divergence in the density of states. The crossing points indicate

the onset of gapping in the sectors. From Gull et al., 2009.
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D. Dual-fermion calculations for the single-orbital Hubbard

model

Cluster dynamical mean-field methods suffer from
several drawbacks. A cluster of a given size corresponds to
a coarse-graining in either real or reciprocal space, which
may bias the physics. At model parameters relevant for
high Tc cuprates, the sign problem limits the range of cluster
sizes that can be studied, even with CT-QMCmethods, so that
systematics of scaling with cluster size has been established
only for weak interactions (see Fig. 27, Maier et al., 2005a,
2005b; Kozik et al., 2010).

Alternative ways to handle nonlocal correlations have been

proposed (Kusunose, 2006; Toschi et al., 2007; Rubtsov

et al., 2008; Slezak et al., 2009). These methods are system-

atic expansions around the single-site DMFT approximation

and have the advantage that both short- and long-range

fluctuations are treated simultaneously, but require evaluation

of vertex functions. We discuss here the dual-fermion

approach where CT-QMC methods have been extensively

applied; the computational issues for the other methods are

similar. The dual-fermion approach (Rubtsov et al., 2008) is

formulated as a standard diagrammatic technique in terms of

auxiliary, so-called dual variables, introduced via a continu-

ous Hubbard-Stratonovich transformation. The corrections to

single-site DMFT appear as diagrams containing the reduc-

ible vertex parts of single-site DMFT impurity problems at

nodes, whereas lines are propagators for dual Green’s func-

tions corresponding to nonlocal parts of the DMFT lattice

Green’s function.
Technically, the method requires an impurity solver that

can provide not only single-electron Green’s functions of the

(single-site) impurity problem, but also the full four-point

vertices (also of the single-site impurity problem) as a func-

tion of all frequencies. The CT-QMC algorithms allow such

calculations in both the interaction and hybridization expan-

sion formalisms and have been employed for dual-fermion

analyses of the Hubbard model.
Rubtsov et al. (2009) studied the pseudogap regime of the

doped t-t0 Hubbard model. A CT-INT solver was used to

obtain both the Green’s function G and the four-point vertex

�ð4Þ in the Matsubara frequency domain. The spectral func-

tion Ak ¼ �1= ImG!¼0;k for the entire Brillouin zone is

shown in Fig. 33 for 14% doping. The phenomenon of

momentum-space differentiation is clearly seen: The Fermi

surface in the antinodal direction is relatively diffuse,

whereas sharp quasiparticles appear near the nodal points.
CT-INT was used by Hafermann et al. (2009) to sum the

particle-hole ladders in dual diagrams for the half-filled

Hubbard model, revealing a pseudogap formed by antiferro-

magnetic correlations even in the absence of a explicit sym-

metry breaking. Further investigation of this and related

approximations is an active area of research. Some of the

results are shown in Fig. 34.

FIG. 33 (color online). Spectral function A!¼0;k at the Fermi level

calculated for the Hubbard model at t ¼ 0:25, t0 ¼ �0:075, U ¼
4:0, � ¼ 80, and doping x ¼ 0:14 using the lowest-order

momentum-dependent diagram in the dual-fermion method, with

analytical continuation performed by polynomial extrapolation from

Matsubara frequencies. An anisotropic destruction of the Fermi

surface in the pseudogap regime is clearly visible. From Rubtsov

et al., 2009.
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Hafermann et al., 2009.
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XII. APPLICATIONS II: DMFT FOR MULTIORBITAL AND

KONDO MODELS

Most correlated electron materials involve transition metal,
rare-earth, or actinide states with multiply degenerate levels.
The electrons in these levels are subject to complicated
interactions such as the Slater-Kanamori couplings shown
in Eq. (13) and exhibit a richer variety of physical effects
than found in the single-orbital Hubbard model, including
high-spin to low-spin transitions, orbital ordering, and orbi-
tally selective Mott transitions. Until recently, investigation
of these models was hampered by a lack of good numerical
methods: There were no good auxiliary-field transformations,
so Hirsch-Fye methods could not be used unless the rotational
symmetry of the interaction was broken so only the Jz
(density) component of the spin exchange was retained
and the ‘‘pair-hopping’’ terms in the Slater-Kanamori
Hamiltonian were neglected. There were too many states
for exact-diagonalization or NRG methods. The situation
has now changed. Studies of realistic models of materials
involving electrons in twofold or threefold degenerate orbi-
tals are straightforward, five orbital problems (i.e., the full d
multiplet, needed for the pnictides) are manageable, and
problems involving one electron or hole in the sevenfold
degenerate f shell are becoming possible. However, for
materials such as Pu in which the f shell is multiply occupied
and rotationally invariant interactions are important, a com-
plete single-site DMFT computation cannot be done with

present methods: Basis truncations (Sec. X.F.2) or other
approximations (for example, the Krylov techniques dis-
cussed in Sec. V.D) are required. Calculations are generally
done with the hybridization solver because the interactions
are strong and multiple interactions are important and so far
have been restricted to the single-site dynamical mean-field
approximation, because the proliferation of orbitals means
that multisite models involve too many states to be practical
at present.

Figure 35 shows the phase diagram (Chan et al., 2009)
calculated for a model of electrons moving among three
degenerate orbitals with the full rotationally invariant inter-
actions. The effect of Hund’s coupling on the multiorbital
Mott transition was determined and a rich multiplicity of
phases was found. The orbital degree of freedom is important
to stabilize the metallic phase at relevant interaction strengths
[the two orbital model with two electrons and J=U ¼ 1=6 is
insulating for U * 3:7t (Werner and Millis, 2007c)].
Suppressing the L ¼ 1 orbital angular momentum states by
applying a crystal field rapidly leads to an insulator.

A remarkable feature of the phase diagram is the line
indicating an apparent quantum ‘‘spin freezing’’ transition
with unusual properties (Werner et al., 2008). The phase
exists only in the window 0< J < U=3. For J ¼ 0 the
frozen-moment phase does not exist, while for J > U=3
the term U0 � J ¼ U� 3J in Eq. (13) changes sign and
the physics of the model becomes different. The spin freezing
transition was originally identified from an unusual behavior
of the self-energy and its nature was confirmed by an exami-
nation of the local spin and orbital correlation functions.

Figure 36 shows results for the imaginary-time impurity-
model spin-spin and orbital-orbital correlators COOð�Þ ¼
hOð�ÞOð0Þi, with O representing either the electron spin
density

Sz ¼ 1

3

X
�

1

2
ðdy�;"d�;" � dy�;#d�;#Þ

FIG. 35 (color online). Phase diagram of the three-band model

with semicircular density of states at �t ¼ 50 and J ¼ U=6 in the

plane of particle density n and interaction strength U. The vertical

lines indicate the Mott insulating phases at integral values of n. The
magnetic state is labeled by P (paramagnetic), F (ferromagnetic),

and A (two sublattice antiferromagnetic), while the labels OðNÞ
denote the 3 classes of orbital ordering discussed by Chan, et al.

(2009). The heavy dashed line gives the boundary of the non-Fermi-

liquid frozen-moment phase discovered by Werner et al. (2008).

Inset: Hartree-Fock phase diagram for magnetic phases of the same

model. Magnetic phase boundaries are indicated by solid lines and

orbital ordering boundaries by dashed lines. OO and OS stand for

the orbitally ordered and orbitally symmetric phases, respectively.

All transitions are second order except the FM-AFM transition and

the orbital ordering transitions at U * 12t and small n. From Chan

et al., 2009.
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FIG. 36 (color online). Imaginary time dependence of the spin-

spin correlation function hSzð0ÞSzð�Þi (positive correlation function,

full symbols) and orbital correlation function hn1ð0Þn2ð�Þi (negative
correlation function, open symbols) calculated for a three-band

model with U ¼ 8t and J ¼ U=6 using CT-HYB at carrier concen-

trations n indicated. The convergence of the spin correlations to a

value different from zero while the orbital correlation convergence

to zero indicates spin but not orbital freezing in the model. From

Werner et al., 2008.
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or the orbital density

n̂� ¼ X
�

dy�;�d�;�:

In a Fermi liquid at low temperature T, CSSð�Þ �
½T= sinð�TÞ�2 for imaginary times � sufficiently far from
either � ¼ 0 or � ¼ 1=T. The DMFT results are consistent
with this form in the Fermi-liquid phase, but in the non-
Fermi-liquid phase the spin-spin correlator CSS is seen to
approach a constant at long times indicating the presence of
frozen moments, whereas the orbital correlator is seen to
decay rapidly with time on both sides of the phase transition.

The hybridization expansion solver yields information
(Haule, 2007) on which of the different eigenstates of Hloc

are represented in the partition function. At J > 0 at cou-
plings (U * 4t) only a few states are relevant. The large-U
density-driven transition is marked by a change in the
dominant states from the one-electron states S ¼ 1=2,
L ¼ 1 to a ninefold degenerate manifold of two electron
states with S ¼ 1 and L ¼ 1, with the two manifolds becom-
ing degenerate at the transition. The interaction-driven
transition is, on the other hand, marked by a change in the
weight of the two subleading states S ¼ 1=2, L ¼ 1 and
S ¼ 3=2, L ¼ 0, implying a change in the magnitudes of
coupling strengths. The ability to combine measurements of
response functions with an analysis of which states contribute
appreciably to the partition function is a great advantage of
the CT-HYB method. This ability has been used recently to
gain important new insights into the ‘‘hidden order’’ phase of
the heavy fermion material URu2Si2 (Haule and Kotliar,
2009).

A. Heavy fermion compounds and the Kondo lattice model

‘‘Heavy fermion’’ compounds pose one of the great con-
ceptual challenges of correlated electron physics (Stewart,
1984). These materials are intermetallic compounds in which
one element is a rare earth (such as Ce or Yb) or actinide
(such as U or Pu) with a partially filled f shell, while the other
elements contribute s, p, or d electrons to broad, weakly
correlated bands. The f electrons are weakly hybridized to
the other bands and are subject to strong interactions, so that
typically one f valence state is strongly dominant. At tem-
peratures of the order of room temperature, the materials
appear as two-component systems, with magnetic moments
(arising from the f shells) embedded in and weakly coupled
to a Fermi sea of s, p, and d electrons. At low temperatures,
however, the spins and conduction electrons combine into a
new object, which may become a heavy mass Fermi liquid or
a narrow gap Kondo insulator, or may become unstable to
unconventional superconductivity, magnetic order, or may
exhibit a variety of quantum critical behavior (Stewart,
2001; Löhneysen et al., 2007). Our understanding of the
heavy fermion state has been hampered by a lack of unbiased
numerical methods. While numerics is still far from being
able to address the full richness of heavy fermion physics, the
combination of dynamical mean-field theory and methods
including the CT-QMC approach is beginning to have an
impact on the field.

CT-HYB methods have been applied to the study of heavy
fermion materials (Shim et al., 2007; Haule and Kotliar,
2009), but it appears at present that difficulties arising in the
course of dealing with realistic models of heavy fermions are
sufficiently large so that CT-HYB methods have been mainly
used to spot check the results of other, approximate but much
less computationally expensive, solvers. A realistic treatment
of heavy fermion materials must deal with the full complexity
of the f shell and is characterized by a multiplicity of
interactions, all of which are strong, a strong spin-orbit
coupling and (in many of the interesting materials) a low
point group symmetry, leading to a complicated multiplet
structure imposed on a local Hilbert space of dimension 47.
This Hilbert space is too large to treat directly by a straight-
forward application of the CT-HYB method. However, in
many if not all cases only a small portion of the Hilbert space
is relevant to the physics, so truncation schemes in which only
a portion of the Hilbert space is retained may be appropriate.
In some cases, such as elemental Ce or Ce-based heavy
fermion compounds the relevant valence states are f0, f1,
and perhaps f2 and a straightforward truncation in which all
higher occupancies of the f state are forbidden works well. In
other situations, such as Pu, more elaborate schemes involv-
ing truncation in energy, in valence, and in size of subma-
trices is required. CT-J methods, which in effect reduce the
Hilbert space of the local problem to the minimum possible
size, are a promising alternative route.

In an interesting first step in this direction, Otsuki et al.
(2009a, 2009b) used the CT-J method to perform a detailed
study of the single-site dynamical mean-field solution of the
spin 1=2 Kondo lattice model, defined by the Hamiltonian

HKL ¼ X
k�

"kc
y
k�ck� þ J

X
i

~Si � ~�i; (219)

while Matsumoto et al. (2009) used the CT-J method along
with input from ab initio band theory to describe trends across
families of heavy fermion compounds.

This model with antiferromagnetic J is a minimal model
for heavy fermion physics and also may be used to address
other theoretical issues, for example, by changing the sign of
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J. In the physically relevant antiferromagnetic J case the

model is believed to have a small J magnetic phase and a

larger J nonmagnetic phase: a Fermi liquid if the density of

the conduction band is different from 1 per site and a Kondo

insulator if the conduction-band density is 1 per site. The

qualitative form of the phase diagram has been understood

since the work of Doniach (1977). The band theory phase

diagram calculated by the CT-J method is shown in Fig. 37. It

has the qualitative form proposed by Doniach but the CT-J

method enables one to understand in detail how the high

temperature local moment phase crosses over to the Fermi

liquid (Otsuki et al., 2009a), and provides insight into the

relation of the Fermi-liquid coherence to the magnetic phase

diagram and allows one to include material-specific

information.
Figure 38 shows the single-particle spectral function

Að�;!Þ computed by Otsuki et al. (2009a) using an analyti-

cal continuation based on Padé approximants. This continu-

ation method requires data of extremely high precision,

available only with the CT-QMC methods. The vertical white

lines labeled �S indicate the positions of the Fermi surface

defined by the conduction-band electrons in the absence of

any Kondo effect; the lines labeled �L indicate where the

Fermi surface would be if the local moment became an

itinerant electron and were folded into the conduction band.

Figure 38(a) shows Að�;!Þ for high T ¼ 0:25. The spectrum
exhibits a behavior of almost noninteracting electrons at high

energies. However, a suppression of density of states is seen

near the conduction electron Fermi surface �S.
Figure 38(b) shows the spectral function at T ¼ 0:0025,

which is much lower than the impurity Kondo temperature

defined by TK ¼ ffiffiffi
g

p
e�1=g � 0:1 with g ¼ 2J�cð0Þ. Here the

spectral function takes a form closely resembling that ex-

pected if the conduction band is weakly hybridized with a

very flat band near the Fermi level and the Fermi surface has

shifted to the point �L, indicating that the local moments in

fact contribute to the Fermi volume. This behavior was

expected, based on the detailed understanding obtained for

the single-impurity Kondo problem, but it is remarkable to

see the phenomenon clearly exhibited in a lattice calculation.

The facts that the bands are well defined at all k, and that the

Kondo hybridization gap which opens up at �S is well

defined, are new and somewhat unexpected.
In a related study, Hoshino et al. (2010) considered the

Kondo lattice model at conduction-band densities n ¼ 1,
where at larger J the ground state is a paramagnetic Kondo

insulator. At smaller J the paramagnetic Kondo insulator is

unstable to an antiferromagnetic insulator ground state.

Figure 39(a) shows the spectrum for an intermediate J ¼
0:2, where a Kondo insulator phase is established at inter-

mediate temperatures and at lower T becomes unstable to

antiferromagnetism [Fig. 39(b)]. In the region of the Brillouin

zone presented in the figures the form of the spectral function

is remarkably similar in the two phases; the magnetism

merely sharpens the spectral function and increases the gap

size. Again the hybridization of the local moment into

the conduction band is the only reasonable interpretation of

the formation of the paramagnetic insulating state.
It is interesting to contrast these results with those obtained

for ferromagnetic Kondo coupling, shown in Fig. 40. Here we

see that in the paramagnetic state there is a band crossing the

Fermi level: The material is not an insulator because the
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FIG. 38 (color online). The single-particle excitation spectrum Að�;!Þ for J ¼ 0:3 and nc ¼ 0:9 at (a) T ¼ 0:25 and (b) T ¼ 0:0025. The
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FIG. 39 (color online). False-color plot of electron spectral function in frequency ! and scaled momentum � plane for Kondo lattice model

with antiferromagnetic coupling J ¼ 0:2 in (a) the paramagnetic phase at T ¼ 0:035 and (b) the antiferromagnetic phase at T ¼ 0:010. From
Hoshino et al., 2010.

Emanuel Gull et al.: Continuous-time Monte Carlo methods for . . . 393

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011



Kondo effect does not occur [a similar effect was demon-
strated by Werner and Millis (2006) using the CT-HYB
method] and it is only when the antiferromagnetic instability
occurs that a gap opens up.

Application of CT-J methods to Kondo-like problems is
still in its early stages, and it seems likely that further
extensions to more realistic models, and to cluster dynamical
mean-field approaches, will yield further insights.

B. Dynamical mean-field theory for realistic models of

correlated materials

Dynamical mean-field methods are more and more widely
used in ab initio based studies to model, in a realistic way, the
properties of interesting materials. These studies involve
many subtle issues relating to mapping the orbitals and
energies derived, for example, from a density functional
band theory calculation onto a theoretical model appropriate
for solution with dynamical mean-field methods. The subject
is reviewed by Kotliar et al. (2006) and we will not attempt to
summarize the discussion here. For the purposes of the
present review it is enough to note that the correlated electron
aspects of real materials typically involve multiple orbitals
and several interaction parameters, so a mapping onto a
simple one-band Hubbard model is typically not appropriate,
while the demanding nature of the band theory computations
places a premium on having efficient impurity solvers for the
dynamical mean-field calculations. The development of
CT-QMC methods has therefore had a significant impact on
the field. The range of applications is large and growing
rapidly; it will not be summarized here. Rather, we focus
on recent results pertaining to one particularly challenging,
and particularly topical system, the iron-based superconduc-
tors, where CT-HYB methods have made an important con-
tribution to understanding the physics. These calculations
may be considered as reflective of the present state of the
art of the realistic DMFT field.

The unusually high superconducting critical temperatures
together with unusual normal state properties are generally
agreed to place the iron oxypnictides in the broad category of
strongly correlated superconductors, which also includes the
� organics, cerium and plutonium based heavy fermions, and
cuprate high temperature superconductors. The correlated
electrons reside mainly on d orbitals associated with the Fe
site and it appears to be necessary to retain all five of the
states in the d multiplet and to carefully treat both the effects

of the U interaction which constrains charge fluctuations and
the J-type interactions which select different states at fixed
total charge. Because the couplings are neither extremely
large nor extremely small, approximate methods may not
be reliable: The full interacting problem must be treated by
a numerically exact method. The low point symmetry of each
Fe site means that ligand field effects compete nontrivially
with the interaction effects while the hybridization function is
complicated, and must be determined using band theory
input. From the dynamical mean-field side the complexity
of the problem is such that only single-site DMFT calcula-
tions have been attempted, sometimes with a further restric-
tion to density-density interactions.

In order to investigate the correlation effects in such
complicated compounds it is important to have consistent
one-electron and many-body parts of the LDAþ DMFT
Hamiltonian. For example, Aichhorn et al. (2009) studied
the material LaO1�xFxFeAs using an optimized basis of the
localized dpp Wannier functions which was constructed
from the 22 Bloch bands, corresponding to the 10 Fe-3d,
6 As-p, and 6 O-p states (note each unit cell contains two
formula units and the point symmetry of the two Fe is the
same). The Green’s function and hybridization function are
constructed from the matrix elements of the Kohn-Sham
Hamiltonian in the Wannier basis, while matrix elements of
the Coulomb interactions were calculated from the static limit
of a constrained random phase approximation. The dynamical
mean-field theory was constructed by retaining the on-site
intra-d interactions and projecting the k-integrated Green’s
function onto the subspace of d Wannier functions. Other
groups use slightly different procedures; for example,
Kutepov et al. (2010) used a self-consistent GW procedure
to compute the interaction and an orbital-based procedure
rather than a Wannier function-based procedure to define the
basis of local states.

Aichhorn et al. (2009) then used CT-HYB simulations (but
with only density-density interactions) at room temperature
to obtain the full local spectral function for the dpp
Hamiltonian corresponding to the experimental crystal struc-
ture of LaFeAsO and the realistic Coulomb matrix elements.
Results are shown in Fig. 41: The LDAþ DMFT density of
states (DOS) near the Fermi level displays characteristic
features of a metal in an intermediate range of correlations.
Both occupied and empty states are shifted toward the Fermi
level due to the Fermi-liquid renormalizations. No high
energy features that would correspond to lower or upper

FIG. 40 (color online). False-color plot of electron spectral function in frequency ! and scaled momentum � plane for Kondo lattice model

with ferromagnetic interaction J ¼ �0:2 in (a) the paramagnetic phase at T ¼ 0:035 and (b) the antiferromagnetic phase at T ¼ 0:010. From

Hoshino et al., 2010.
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Hubbard bands can be seen in this LDAþ DMFT electronic
structure.

In untangling the physics of the materials the ability
of the CT-HYB method to provide the components of the
local density matrix, in particular, the probability that any
one of the atomic states of the iron 3d orbital is occupied,
is important. This is plotted for the material BaFe2As2 in
Fig. 42 (Kutepov et al., 2010). Even the most probable
atomic states have a probability of only a few percent; hence
a naive strong correlation atomic limit is qualitatively
wrong for this compound. The wide spread of energies within
a given submanifold is a consequence of the additional
‘‘J-like’’ interactions.

Figure 43 shows a false-color representation of the mo-
mentum resolved spectral function

P
LAðk; !ÞLL in the near-

Fermi-surface energy range (Kutepov et al., 2010). Near the
Fermi level the quasiparticle bands are well defined, while at
higher energies the structures become blurred, reflecting the

increased phase space for scattering. The quasiparticle veloc-
ities are renormalized relative to the band theory result (not
shown) by factors of 2 for x2 � y2 and 3z2 � r2 orbitals and 3
for the xy, xz, and yz orbitals. The momentum-space posi-
tions of the Fermi surface crossings are in good agreement
with photoemission results, as are the renormalized veloc-
ities. Comparisons of these sorts of calculations to the rapidly
growing body of experimental data are enabling a compre-
hensive understanding of the physics of novel materials.

XIII. APPLICATIONS III: NANOSCIENCE

A. Transport through quantum dots: Linear response and

quantum phase transitions

One important application of quantum impurity models is
as representations of ‘‘single molecule’’ conductors and other
nanodevices (Hanson et al., 2007). Much attention in the
nanoscience community has been focused on weakly inter-
acting systems or on simple Hubbard-like dots. Standard
perturbative or Hirsh-Fye QMC methods suffice for these
situations, although CT-QMC methods have been used in a
study of the accuracy of the GW approximation (Wang et al.,
2008). As the field moves toward consideration of quantum
dots with richer physics, other approaches including
CT-QMC methods are likely to become important.

An example is provided by the two-level, two-lead quantum
dot system uncovered by Yacoby et al. (1995). Golosov and
Gefen (2006) suggested that this system could display a quan-
tum phase transition between two different relative occupan-
cies as level energies were varied. This issue was investigated
using the CT-HYB method by Wang and Millis (2010). In the
general case of the model presented by Gefen, the imaginary
part of the hybridization function (giving decay of the dot
electrons into the leads) does not commute with the combina-
tion of the level Hamiltonian and the real part of the hybrid-
ization function (giving the renormalization of the dot
energies). This causes a severe sign problem, which prevented
any useful simulations in the general case. Wang and Millis
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FIG. 41 (color online). Full (all bands) spectral function for the

dpp Hamiltonian description of LaOFeAs. Black line: LDA; gray

line: LDAþ DMFT (computed retaining only density-density in-

teractions). From Aichhorn et al., 2009.

FIG. 42 (color online). Histogram of occupation probabilities for

each 3d atomic state in the DMFT calculation for BaFe2As2 at T ¼
150 K. The states are sorted by total d occupancy and within each

manifold of fixed occupancy by energy. From Kutepov et al., 2010.

FIG. 43 (color online). Momentum-resolved spectral function

Aðk; !Þ calculated for BaFe2As2. Inset: angle resolved photoemis-

sion spectroscopy (ARPES) intensity. From Brouet et al., 2010 and

Kutepov et al., 2010.
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(2010) argued that the universal behavior at a quantum critical
point (if one existed) could be described by a sign problem-free
model (essentially because at the critical point the combination
of the dot Hamiltonian and real part of the hybridization
function becomes the unit matrix).

To investigate the criticality, Wang and Millis (2010)
considered the imaginary-time dependence of correlation
functions of variables defined on the quantum dot.
Figure 44 shows three different behaviors at times ��=2: a
T2 dependence expected for a Fermi liquid for small U=t, a
power law at the critical point, and a constant long time
behavior for large U=t in the non-Fermi liquid phase.
However, impurity problems may be characterized by
exponentially small scales such as the Kondo effect.
Distinguishing a very small scale from a true phase transition
is numerically challenging. The ability of CT-HYB to access
very low temperatures �10�3t provides reasonable evidence
of a critical point. However, for problems such as this where
the key question concerns the asymptotic low energy behav-
ior, quasianalytical functional renormalization group meth-
ods (Karrasch et al., 2006) and NRG approaches (Karrasch
et al., 2007; Bulla et al., 2008) may be more powerful.

B. Metal atom clusters on surfaces

An active area of nanoscience research concerns the prop-
erties of one or more transition metal ions on a metal surface.
Of particular interest is the density of states, which may be
compared to scanning-probe microscopy data. Savkin et al.
(2005) applied the CT-INT scheme to a model of three
interacting Kondo impurities on a metallic surface. The
ability of the CT-QMC methods to treat realistic interactions
allowed an accurate investigation of the interplay of cluster
geometry, interadatom hopping, local Coulomb interactions,
and the Heisenberg exchange interactions between magnetic

impurities. Savkin et al. (2005) found that the rotationally
invariant antiferromagnetic exchange interaction is almost
twice as efficient in suppression of the single-site Kondo
effect as is the Ising-like interaction which was all that could
be treated by previous methods.

The possibility of making quantitative comparisons to
experiment highlights the need to incorporate as much mate-
rial specificity as possible into the calculation. Gorelov
(2007) performed a realistic study of Co atoms in the bulk
or at the surface of a Cu host. They found that a complete
treatment of the problem, including all inequivalent terms of
the Coulomb interaction, was essential for obtaining physi-
cally relevant results. Inclusion of all interaction terms, how-
ever, produces a severe sign problem. While the sign problem
can be mitigated to some extent by an appropriate choice of
basis, it severely limits the range of temperatures over which
results can be obtained. These calculations represent the
current state of the art: They push the CT-INT technique to
its limits and demonstrate the need for further algorithmic
developments.

To set up the problem, density functional band theory
techniques were applied to appropriately chosen supercell
geometries. From these calculations, wave functions diðrÞ
for the Co d states and itinerant electron wave functions
�nkðrÞ were extracted. The bare local Green’s function is
then obtained as

G0
ijði!nÞ ¼

X
nk

hdij�nkih�nkjdji
i!n þ�� "nk

; (220)

while the Coulomb interaction

Hint ¼ 1

2

X
ijkl��0

Uijklc
y
i�c

y
j�0ck�0cl�

involves matrix elements of the form

Uijkl ¼
�
diðr1Þdjðr2Þ e2

"jr1 � r2jdkðr2Þdlðr1Þ
	
:

The number of interaction terms which must be considered is
large and depends on the choice of basis in the d sector.

The use of symmetries to rearrange the interaction and
eliminate redundant terms was also found to be important.
Implementing the symmetries and making an optimal basis
choice led Gorleov et al. to an expression for the partition
function as an expansion in 129 independent interaction
parameters:

Z

Z0

¼ X
n

ð�1Þn
n!2n

X
fijkl��0g

Z �

0
d�1 � � �

Z �

0
d�n

�Ui1j1k1l1 � � �Uinjnknln detG
2n�2n: (221)

The expansion exhibits a trivial sign problem which may
be mitigated by the appropriate choice of � parameters as
discussed in Sec. III.A, although the multiplicity of interac-
tions requires a multiplicity of � parameters; for further
details see Gorelov (2007) and Gorelov et al. (2009). The
expansion also suffers from an intrinsic sign problem (not
curable by the choice of �) whose severity was found to
depend on the basis choice. Three orbital terms Uikkl with
l � i were found to produce a severe sign problem but do not

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

104(T/t)2

W
(τ

=
β/

2)
/W

(τ
=

β/
2,

 T
=

0.
01

t)

U12/t=0.6
U12/t=0.4
U12/t=0.3
U12/t=0.2

U12/t=0

FIG. 44 (color online). Imaginary-time density-density correlation

function W of two-level, two-lead model evaluated using CT-HYB

at the midpoint of the imaginary-time interval and normalized to

value at T ¼ 0:01t, as a function of interaction strength with level

energies tuned to be equal. Weak T and � dependence is seen in the

non-Fermi-liquid phase (U ¼ 0:4, 0.6) and strong T and � depen-

dence in the Fermi-liquid phase (U ¼ 0, 0.2). For details see Wang

and Millis (2010).
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occur if a spherical harmonic basis is used. However, non-

diagonal terms Uijkl with (i � j, k � l) cannot be eliminated

by transformations, make important contributions to the

physics, and give rise to a sign problem, of a severity which

depends on other features such as the Green’s functions.
To test both the expansion and the importance of the

nondiagonal terms, Gorelov et al. determined the Green’s

function for one orbital of the isolated atom (i.e., with no

hybridization function) using both CT-INT based on

Eq. (221) (with the 129 interaction parameters) and by ex-

actly diagonalizing the problem. Figure 45 shows that the

CT-INT expansion reproduces the exact result and that the

nondiagonal terms in the interaction are important.
Gorelov et al. then computed the local density of states of a

Co atom in bulk Cu (far from a surface). For this case the sign

problem, while present, is not severe for the temperatures

studied (T 	 1200 K). Results are shown in the left panel of

Fig. 46. The nondiagonal interactions have an important

effect on the line shape. (Note that T 	 1200 K is well above
the Kondo temperature, so no peak is evident at the Fermi
surface.)

Finally, Gorelov et al. considered a Co impurity at a
surface (right panel of Fig. 46). Here the relatively large
nondiagonal elements of the bath Green’s function lead to a
serious sign problem. To make a simulation on the surface
feasible, Gorelov et al. in effect restricted the sampling to a
constant-sign subset of configuration space, by only allowing
updates that did not change the fermionic sign. See Gorelov
et al. (2009) for further details.

XIV. APPLICATIONS IV: NONEQUILIBRIUM IMPURITY

MODELS AND NANOSCALE TRANSPORT

A. Overview

CT-QMC methods have been used to study nonequilibrium
problems defined on the Keldysh two-time contour. These
studies are still in their early stages and we present here a few
representative preliminary results concerning the current-
voltage characteristics of interacting quantum dots, as well
as simulations inspired by the newly developing capabilities
of performing pump-probe experiments on correlated elec-
tron compounds and ‘‘quantum quench’’ experiments on cold
atom systems.

B. Results: Current-voltage characteristics

1. Real-time CT-HYB

The first nonequilibrium applications of the CT-QMC
technique were to the current-voltage characteristics of a
quantum dot under a bias voltage. Mühlbacher and Rabani
(2008) showed that the hybridization expansion method could
be directly applied on the Keldysh contour and that long
enough times could be reached to permit measurements of
steady-state behavior. They studied a noninteracting dot
coupled to phonons [essentially the Holstein-Hubbard model,

FIG. 45 (color online). Comparison of CT-INT expansion of Eq.

(221) with exact diagonalization for an isolated Co atom with U ¼
1 eV, J ¼ 0:4 eV, at inverse temperature � ¼ 2 eV�1, for five

electrons (main panel) and eight electrons (inset). Solid lines and

crosses: full Hamiltonian; dashed lines and plus symbols: model

specified by diagonal terms only. From Gorelov et al., 2009.

FIG. 46 (color online). Left panel: Total DOS of the 3d orbital of the Co atom embedded in the Cu matrix. Model parameters: U ¼ 4 eV,

J ¼ 0:7 eV, and � ¼ 10 eV�1 for the 5-orbital impurity with seven electrons. Right panel: Total DOS of the 3d orbital of the Co atom

embedded in the bulk of Cu, into the 1st layer and Co adatom on the Cu(111) surface. Model parameters: U ¼ 4 eV, J ¼ 0:7 eV, and
� ¼ 10 eV�1 for the 5-orbital impurity with seven electrons. From Gorelov et al., 2009.

Emanuel Gull et al.: Continuous-time Monte Carlo methods for . . . 397

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011



Eq. (133), with spin neglected and U ¼ 0]; representative
results giving the dependence of the current-voltage charac-

teristics on the oscillator frequency and coupling strength are

shown in Fig. 47.
These calculations start from an initial state in which the

dot is decoupled from the leads and the calculation must build

in appropriate dot-lead entanglement. This requires a coher-

ence time which depends on the physics. In the calculations

by Mühlbacher and Rabani (2008), convergence was facili-

tated by decoherence arising both from the phonons and from
the relatively high T which was studied. Results for the

interacting Anderson model (without phonons) have been

given by Schmidt et al., 2008, Schiró and Fabrizio, 2009,

and Werner, Oka, and Millis (2009). Because the expansion

must in this case be performed for both spin flavors, and the
decohering effect of phonons is not included, reaching a

steady state becomes challenging. Attempts to optimize the
algorithm by considering initial states with dot-lead entangle-
ment (Schiró, 2010) have not led to dramatic improvements.

2. Real-time CT-AUX

In the weak-coupling methods, for example, the CT-AUX
algorithm explained in Sec. VIII.A, one may use interaction-
quench methods in which the real-time simulation starts from
a U ¼ 0 state with dot-lead entanglement. Temperature en-
ters only as a parameter in the lead correlators, making it
possible to treat arbitrary temperatures, including T ¼ 0.
While the presence of interactions of course modifies this
entanglement, it seems that up to interaction strengths of
U 	 10� relatively few perturbation orders are required to
reach steady state. The situation is particularly favorable for
particle-hole symmetric models with symmetrically applied
bias, where odd orders of perturbation theory can be sup-
pressed. As an illustration we present interaction-quench
results for the time dependence of the current and the
current-voltage characteristics of half-filled quantum dots
with symmetrically applied voltage bias (�L ¼ ��R ¼
V=2).

At time t ¼ 0, the system is noninteracting but subject to
an applied bias V, so a current I0ðVÞ appropriate to the
noninteracting model is flowing through the dot. At t ¼ 0þ
the interaction is turned on and the system relaxes into the
steady-state configuration appropriate to the interacting
model. The left panel of Fig. 48 plots the time evolution of
the current for fixed U=� ¼ 6 and several voltage biases. For
voltages V=� * 2, even though the transient behavior is
clearly voltage dependent, the current settles into the new
steady state after a time t� 	 2. However, as the voltage is
decreased below V=� 	 2 the transient time increases. At
V ¼ � the long-time limit is attained only for t� * 3 and as
V is further decreased, the interaction-quench method cannot
reach the steady state. As discussed by Werner et al. (2010),
in the small-V regime, voltage-quench simulations are a
possible alternative to the interaction quench. In the
voltage-quench calculations, the time evolution starts from
the interacting equilibrium state, which is a good starting
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FIG. 47 (color online). Points: Total current I computed using

nonequilibrium CT-HYB methods as a function of the bias voltage

for a half-filled, spinless, phonon-coupled quantum dot [Eq. (133)

with U ¼ 0] with voltage bias applied symmetrically, "d ¼ 0,
�L;R ¼ �V=2 at temperature T ¼ �=5 at electron-phonon coupling

strengths � and oscillator frequencies !0 indicated. Lines: results of

an approximate analytical calculation (Flensberg, 2003). From

Mühlbacher and Rabani, 2008.
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point for small V. However, because the imaginary branch of
the L-shaped contour must be explicitly treated, this approach

is restricted to nonzero temperatures and is only advanta-
geous for very small voltage.

The right panel of Fig. 48 presents T ¼ 0 results for the

voltage dependence of the steady-state current as well as
analytic results obtained from fourth-order perturbation the-
ory. The interacting current initially rises with the same slope

as the noninteracting current and reaches the noninteracting
value also in the large-voltage limit. At intermediate values of

V the effect of interactions is to suppress the current
(Coulomb blockade). The results show that at intermediate

voltages the method can access interaction regimes beyond
the scope of analytical perturbation theory. In agreement with

conclusions reached byWerner, Oka, and Millis (2009) on the
basis of (less accurate) hybridization expansion results and
also with recent nonequilibrium functional renormalization

group calculations (Jakobs et al., 2010), we see that this
model does not display a region of negative differential

resistance.

3. Nonequilibrium DMFT

The real-time CT-QMCmethods can also serve as impurity
solvers in nonequilibrium DMFT simulations of bulk sys-

tems. The impurity Hamiltonian of Sec. VIII.A is the impu-
rity problem relevant for the solution of the one-band

Hubbard model. In the DMFT context, however, Hbath

[Eq. (151)] is a single bath, whose parameters are fixed by
a self-consistency equation which in the nonequilibrium

context is time dependent (Schmidt and Monien, 2002;
Freericks et al., 2006).

CT-QMC methods have been used by Eckstein et al.

(2009, 2010) to study the relaxation dynamics of the half-
filled Hubbard model after a sudden switching on of the

electron repulsion U. The initial state was the noninteracting
equilibrium state at temperature T ¼ 0, and the DMFT self-
consistency assumed a semicircular density of states of band-

width W ¼ 4. The calculation produces among other observ-
ables the time evolution of the momentum distribution

function nð"k; tÞ which is shown in Fig. 49 for quenches to
U ¼ 3W=4 and 5W=4. Qualitative differences in the relaxa-

tion dynamics appear as the value of the interaction strength
is changed.

Eckstein et al. (2009, 2010) demonstrated that for a

quench to U ¼ 0:8W, the momentum distribution function

and double occupancy relax very fast (within a time

t ¼ 6:4=W) to the thermal equilibrium result compatible

with energy conservation. The relevant time scale is in

this case easily accessible with real-time CT-AUX. Away

from this critical interaction strength, i.e., for quenches to

U � 0:8W, the system is initially trapped in a nonthermal

quasistationary state, and equilibration occurs on much lon-

ger time scales. In this case the accessible times are not long

enough to observe the expected thermalization (see right

panel of Fig. 49). Only the initial relaxation into the quasi-

stationary state and (for U < 0:8W) the initial part of the slow

crossover toward the thermal equilibrium state are computa-

tionally accessible with present techniques.

XV. PROSPECTS AND OPEN ISSUES

Over the past few years, continuous-time quantum

Monte Carlo methods for fermionic impurity problems have

been developed to a high degree. Because the methods are

based on a diagrammatic expansion, they can handle many

physically relevant interactions, which were not easily treat-

able by other methods. Also by construction they are free

from the time-discretization errors associated with methods

based on the Suzuki-Trotter decomposition (Suzuki, 1976). A

continuous-time formulation provides in a sense a many-body

adaptive grid method for the time evolution. These advan-

tages of the continuous-time formulation enable a decrease,

typically by several orders of magnitude, in the computa-

tional effort required to solve a problem of a given complex-

ity, making previously intractable problems tractable and

creating new opportunities for physics by allowing rapid

and routine investigation of problems which had previously

required access to supercomputer facilities.
The methods have become important to the field of corre-

lated electron physics [via the connection to single (Georges

et al., 1996) and cluster (Maier et al., 2005a) dynamical

mean-field theory] and are having an increasing impact on

nanoscience. However, the first generation of results has only

begun to explore what is possible. We expect that over the

next few years the methods will be increasingly widely used

in dynamical mean-field computations of correlated electron
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From Eckstein et al., 2010.

Emanuel Gull et al.: Continuous-time Monte Carlo methods for . . . 399

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011



materials and condensed atomic gases, and in studies of the

equilibrium and nonequilibrium phenomena arising in the

impurity models relevant to nanoscience. Nonequilibrium

applications, in particular, represent an entirely new field

with many exciting possibilities. Methodological improve-

ments, including combinations of hybridization and coupling

constant expansions and the further study of projected

Hilbert space methods such as the CT-J, are likely to be

fruitful. We hope that an increasing number of scientists

will take advantage of the opportunities, by applying the

methods to yet wider classes of problems and by developing

them further.
We conclude our discussion by summarizing what we

perceive to be the strengths and weaknesses of the different

CT-QMC methods and suggesting some issues that may

warrant further attention. The fundamental issues for any

algorithm are the scaling with temperature, interaction

strength, and system size. In addition, for fermions, one

must consider the sign problem. Table I summarizes what

we know about these scalings.
The hybridization expansion algorithm CT-HYB diagonal-

izes the local Hamiltonian and expands in the impurity-bath

hybridization. The principal advantage of this approach is

that instantaneous (Hamiltonian) interactions of essentially

arbitrary strength and functional form can be handled (re-

tarded interactions can be conveniently treated only in spe-

cial, but physically relevant cases such as the screened

density-density interaction). The hybridization expansion ap-

pears to suffer from a severe sign problem if the hybridization

function does not commute with the one-body part of the

local Hamiltonian, and this limits its use in the most general

contexts. It appears to be most useful for the single-site

dynamical mean-field theory of materials with partly filled

d and f shells, where its ability to treat the full complexity of

general multiplet interactions is unmatched and the point

symmetry ensures that the local Hamiltonian and hybridiza-

tion functions commute.
The fundamental computational bottlenecks of the hybrid-

ization method are the need to manipulate matrices whose

size is set by the dimension of the full fermionic Hilbert space

of the impurity Hamiltonian and the need to compute deter-

minants of hybridization matrices of a size linearly growing

with �. The computational burden grows exponentially with

the size of the fermionic problem and as the cube of the

inverse temperature, and the system-size constraint is there-

fore more severe. For a model of N spin-degenerate orbitals

the Hilbert space size is 4N . At present, five orbital models are

accessible with large scale computing resources. For larger

systems a straightforward approach is not feasible yet without

truncation. The accuracy of truncation schemes is not yet

established. Of course, in special cases block diagonalization

is possible so the full Hilbert space need not be treated. In the

most favorable case, the local Green’s function, hybridization

matrix, and interaction may all be diagonalized in the same

single-particle occupation number basis (this occurs in the

N-orbital impurity model with density-density interactions, if

each orbital hybridizes with a different bath), and the segment

representation of the hybridization expansion may be used. In

this case there is no sign problem and the cost is linear in the

number of orbitals and cubic in the inverse temperature. Thus,

if a segment representation exists, it should be used.

Unfortunately, in most problems of physical interest either

hybridizations or interactions entangle the different single-

particle basis states, and a general matrix formulation is

required. In this case the exponential scaling associated

with the Hilbert space size is the crucial constraint, and an

important open problem concerns the degree to which the

Hilbert space can be block diagonalized or truncated. Haule

(2007) pioneered the use of symmetry-based block diagonal-

ization and of truncation. An alternative approach based on a

sparse matrix vector instead of a dense matrix-matrix multi-

plication is the Krylov technique discussed in Sec. V.D.

Further research along these and related lines appears to be

worthwhile.
The interaction expansions CT-INTand CT-AUX are based

on an expansion about the free-fermion limit. The computa-

tional burden therefore increases with the interaction

strength, as well as with inverse temperature and the system

size, making it difficult to access the very strong coupling

regime. However, the scaling with system size is power law

rather than exponential, so that these methods are the only

ones feasible when many orbitals or many sites are important

to the physics. At present, a lack of good auxiliary-field

decompositions means that the CT-AUX method can only

be used for models with density-density interactions. Its main

application has been to cluster dynamical mean-field studies

of the Hubbard model. A natural subject for further inves-

tigations is the application of the method to wider classes

of models, including more general (but still density-density)

interactions. The CT-INT method is equivalent to the

CT-AUX method for Hubbard-like interactions (although

the present CT-AUX implementations appear to be more

TABLE I. Summary of scaling and sign metrics in the equilibrium case for the most widely studied continuous-time quantum Monte Carlo
methods. CT-INT, CT-AUX, and CT-HYB refer to the interaction expansion (Sec. III), auxiliary-field (Sec. IV), and hybridization (Sec. V)
expansion algorithms, respectively. Segment refers to the case of the hybridization interaction where the hybridization function, local
Hamiltonian, and interaction are all diagonal in the same basis (Sec. V.B), while matrix refers to the general implementation in Sec. V.C. We
distinguish Green’s functions which can be diagonalized by one single canonical transformation from general Green’s functions where the
hybridization function, local Hamiltonian, and self-energy do not all commute, and we distinguish interactions such as the Hubbard U which
are diagonal in an appropriate single-particle occupation number basis from those such as spin exchange and pair hopping which cannot be
diagonalized. Sign prob. indicates the possibility of the presence of a fermionic sign problem. (N/A: not applicable.)

Scaling algorithm CT-INT CT-AUX CT-HYB (segment) CT-HYB (matrix)

Diagonal hybridization Nð�UÞ3 Nð�UÞ3 N�3 aeN�2 þ bN�3, a � b
Nondiagonal hyb. ðN�UÞ3, sign prob. ðN�UÞ3, sign prob. ðN�Þ3, sign prob. aeN�2 þ bðN�Þ3, a � b, sign prob.
Diagonal interaction ðN�UÞ3, sign prob. ðN�UÞ3, sign prob. ðN�Þ3, sign prob. aeN�2 þ bðN�Þ3, a � b, sign prob.
General Uijkl ðN2�UÞ3, sign prob. N/A N/A aeN�2 þ bðN�Þ3, a � b, sign prob.
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efficient) and is applicable to models with general (non-

density-density) interactions. However, sign problems occur

and grow in severity as the complexity of the interaction

increases.
Our experience in the nonequilibrium context is that, in a

particle-hole symmetric model, the CT-INT and CT-AUX

methods are to be preferred over the hybridization methods

because odd perturbation orders can be suppressed (Werner

et al., 2010), resulting in a less severe sign problem and

longer accessible times.
There are two limitations associated with the CT-INT and

CT-AUX methods. One issue for more realistic models with

more complicated interactions is the need to make a multiple

expansion in all components of the interaction. This is not a

serious issue as long as no sign problem is encountered. The

more fundamental limitation is the sign problem, which can

arise in cluster dynamical mean-field calculations from the

presence of physical (real-space) fermionic loops or more

generally from noncommutativity of operators appearing in

the impurity model, due, for example, to exchange interac-

tions or to hybridization functions which cannot be diagonal-

ized by a single (time-independent) basis change. Sign

problems are in general dependent on the choice of basis,

and further exploration of different representations of the

interaction and the Green’s function, especially in the case

of nondiagonal interaction, may be worthwhile.
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ization expansion code for density-density interactions, corre-

sponding to the description in Sec. V.B, as well as an

interaction expansion implementation are also available as

part of the ALPS project (Bauer et al., 2010) and have been

published in Gull, Werner et al. (2011).
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Blümer, N., 2008, ‘‘Multigrid Hirsch-fye Quantum Monte Carlo

Method for Dynamical Mean-Field Theory,’’ arXiv:0801.1222.

Brako, R., and D.M. Newns, 1981, J. Phys. C 14, 3065.

Brouet, V., et al., 2010, Phys. Rev. Lett. 105, 087001.

Bulla, R., T. A. Costi, and T. Pruschke, 2008, Rev. Mod. Phys. 80,

395.

Burovski, E., E. Kozik, N. Prokof’ev, B. Svistunov, and M. Troyer,

2008, Phys. Rev. Lett. 101, 090402.

Burovski, E., N. Prokof’ev, B. Svistunov, and M. Troyer, 2006a,

Phys. Rev. Lett. 96, 160402.

Burovski, E., N. Prokof’ev, B. Svistunov, and M. Troyer, 2006b,

New J. Phys. 8, 153.

Caffarel, M., and W. Krauth, 1994, Phys. Rev. Lett. 72,

1545.

Capone, M., L. de’ Medici, and A. Georges, 2007, Phys. Rev. B 76,

245116.

Capone, M., G. Sangiovanni, C. Castellani, C. Di Castro, and M.

Grilli, 2004, Phys. Rev. Lett. 92, 106401.

Chakraborty, S., D. Galanakis, and P. Phillips, 2008, Phys. Rev. B

78, 212504.

Chan, C.-K., P. Werner, and A. J. Millis, 2009, Phys. Rev. B 80,

235114.

Civelli, M., M. Capone, S. S. Kancharla, O. Parcollet, and G.

Kotliar, 2005, Phys. Rev. Lett. 95, 106402.

Coleman, P., 1984, Phys. Rev. B 29, 3035.

Comanac, A., 2007, Ph.D. thesis (Columbia University).

Comanac, A., L. de’ Medici, M. Capone, and A. J. Millis, 2008,

Nature Phys. 4, 287.

Coqblin, B., and J. R. Schrieffer, 1969, Phys. Rev. 185, 847.

Emanuel Gull et al.: Continuous-time Monte Carlo methods for . . . 401

Rev. Mod. Phys., Vol. 83, No. 2, April–June 2011



Dao, T.-L., M. Ferrero, A. Georges, M. Capone, and O. Parcollet,

2008, Phys. Rev. Lett. 101, 236405.

Dayal, P., S. Trebst, S. Wessel, D. Würtz, M. Troyer, S. Sabhapandit,
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