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The treatment of high-dimensional problems such as the
Schrodinger equation can be approached by concepts of tensor
product approximation. We present general techniques that can
be used for the treatment of high-dimensional optimization
tasks and time-dependent equations, and connect them to con-
cepts already used in many-body quantum physics. Based on
achievements from the past decade, entanglement-based meth-
ods—developed from different perspectives for different pur-
poses in distinct communities already matured to provide a
variety of tools—can be combined to attack highly challenging
problems in quantum chemistry. The aim of the present paper is
to give a pedagogical introduction to the theoretical back-

1 Introduction

For the approximation of the wave function of the electronic
structure of an atomic or molecular system, any method cho-
sen will have to compromise between the demanded accuracy
on the one hand and the high computational complexity of
the task on the other. While density functional theory (DFT)!"
and coupled cluster (CC) or quantum Monte Carlo methods?#
are in this sense standard methods for the quantitative study
of large weakly correlated systems, there has been no
method-of-choice solution for finding a sufficiently accurate,
data-sparse representation of the exact many-body wave func-
tion if many electrons are strongly correlated, as, for instance,
in open-shell systems as transition metal complexes.*~'”

Due to the many-electron interactions present, strongly cor-
related problems cannot be sufficiently described by small per-
turbations of a single Slater determinant. For the treatment of
other many-particle systems, e.g., spin systems, alternative rep-
resentations have been proposed, resulting in the develop-
ment of so-called matrix product states (MPS)."®2"1 The MPS
method represents the wavefunction of a system of d compo-
nents or “sites” (corresponding, e.g., to molecular orbitals) by
forming products of d matrices, each belonging to one com-
ponent of the system. The computational complexity of the
task is now governed by the size of these matrices, related to
the eigenvalue spectrum of the corresponding subsystem den-
sity matrices® characterizing in a formal way the so-called
entanglement among the different components.>=*° MPS con-
sists in a linear arrangement of the components, while more
recently the approach has been generalized to so-called Tensor
Network States (TNS),'*'=*¥ allowing a more flexible connection
of the components of the respective system. Identical, but
independent approaches were devised in numerical mathe-
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ground of this novel field and demonstrate the underlying bene-
fits through numerical applications on a text book example.
Among the various optimization tasks, we will discuss only those
which are connected to a controlled manipulation of the entan-
glement which is in fact the key ingredient of the methods con-
sidered in the paper. The selected topics will be covered
according to a series of lectures given on the topic “New wave-
function methods and entanglement optimizations in quantum
chemistry” at the Workshop on Theoretical Chemistry, February
18-21, 2014, Mariapfarr, Austria. © 2015 Wiley Periodicals, Inc.
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matics under the term of tensor product approximation, where
low-rank factorization of matrices is generalized to higher-
order  tensors**™* In  quantum  chemistry, the
MPS[7,9,1 1,14-1 7,24,25,37,38,48—97]and TNS[7,98—1 00] representation
can be wused to approximate the full-CI wave func-
tion. 3842431011091 By this new concept of data-sparse repre-
sentation, an accurate representation of the electronic
structure will then be possible in polynomial time if the exact
wave function can be approximated to a sufficient extent by
moderately entangled TNS representations. The underlying
molecular orbital (MO) basis can be optimized by well known
techniques from multiconfigurational methods™ as, e.g., multi-
configuration self-consistent field (MCSCF) method, which con-
stitutes a tensor approximation method as well at the level of
first quantization.
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Entanglement-based methods-developed from different per-
spectives for different purposes in distinct communities, already
matured to provide a variety of tools—can be combined to
attack highly challenging problems in quantum chemis-
try."19"14 A very promising direction is, especially, to develop
and implement an efficient quantum chemistry algorithm based
on tree tensor network states (QC-TTNS), in particular enabling
the treatment of problems in quantum chemistry that are
intractable by standard techniques as DFT or CC.[4*98-100)

The aim of the present paper is to give a pedagogical introduc-
tion to the theoretical background of this novel field and demon-
strate the underlying benefits through numerical applications on
a text book example. We give a technical introduction to low-
rank tensor factorization and do not intend to present a detailed
review of the field. Only some selected topics will be covered
according to lectures given on the topic “New wave function
methods and entanglement optimizations in quantum chemistry”
at the Workshop on Theoretical Chemistry, February 18-21, 2014,
Mariapfarr, Austria."" In accordance with this, the organization
of the present paper is as follows. In sections 2 and 3, a very
detailed description of the theory follows so that those interested
readers who just entered in the field could follow recent develop-
ments. A brief summary in order to highlight the most important
concepts used in numerics is presented in section 4 together
with numerical applications by outlining ideas and existing algo-
rithmic structures that have been used to arrive at an efficient
implementation. At this stage among the various optimization
tasks only those will be analyzed which are connected directly to
the manipulation of entanglement, which is in fact the key ingre-
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dient of the methods presented in the paper. To unify notations,
in what follows, we mainly use terms and notations as common
in physics and chemistry.

1.1 Tensor product methods in quantum chemistry

Multiparticle Schrodinger-type equations constitute an impor-
tant example of problems posed on high-dimensional tensor
spaces. Numerical approximation of solutions of these prob-
lems suffers from the curse of dimensionality, i.e., the computa-
tional complexity scales exponentially with the dimension of
the space. Circumventing this problem is a challenging topic
in modern numerical analysis with a variety of applications,
covering aside from the electronic and nuclear Schrodinger
equation e.g., the Fokker-Planck equation and the chemical
master equation.”''® Considerable progress in the treatment of
such problems has been made by concepts of tensor product
approximation.[#>461171

In the year 1992, S. R. White introduced a very powerful numerical
method, the density-matrix renormalization group (DMRG).''&"2
It allows us to determine the physical properties of low-dimensional
correlated systems such as quantum spin chains or chains of inter-
acting itinerant electrons to unprecedented accuracy.?%'2'2%

Further success of the DMRG method in quantum physics
motivated its application to quantum chemical problems (QC-
DMRG).[244849821261 |y the treatment of problems where large
active spaces are mandatory to obtain reliable and accurate
results, it has proven capable of going well beyond the limits
of present day quantum chemistry methods and even reach
the fU”‘Cl Iimit.[38'42'43'101_108'127]
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In the past decade, the method has gone through major algo-
rithmic developments by various groups.2074101.102107.1091 £qp
example, the two-body reduced density matrices calculated with
the DMRG method®**%®! can be used in the standard orbital
optimization procedure®! Resulting methods are the DMR-
Complete Active Space Self-Consistent Field (DMR-CASSCF) or
DMR-Self-Consistent Field (DMR-SCF).6587%1 Another direction is
the post-DMRG treatment of dynamic correlation. DMRG as it can
be considered as a CAS-configuration interaction (CAS-CI) tech-
nique can recover static correlation, and, depending on the size
of the active space, one can afford also some portion of the
dynamic correlation. Quite recently, various advanced methods
accounting for dynamic correlation on top of the DMRG frame-
work have been developed.[7%7378818687128] Tha first implemen-
tation of the relativistic quantum chemical two- and four-
component density matrix renormalization group algorithm (2c-
and 4c-DMRG) has also been presented.!

The DMRG method can be used to calculate ground as well
as excited states. This can be achieved either by targeting sev-
eral of them in a state average fashion[?#>1:58:63,6887.9093.100]
alternatively based on the MPS tangent vectors.
the DMRG method is very flexible, it can be used even in such
situations when the wave function character changes dramati-
cally.1°883901000 Aqditionally, the ansatz is size consistent by
construction and symmetries as particle number, spin projec-
tion,™® spin reflection symmetries,'**! Abelian point group
symmetries®>">* and even non-Abelian symmetries can be
factored out explicitly.!'#6>8020.134-1471 (jite recently, MPS and
further tensor product approximations have been applied in
post Hartree-Fock (post-HF) methods to the decomposition of
the two electron integrals, the AO-MO (Atomic Orbital-Molecular
Orbital) transformation, and the Mopller-Plesset perturbation
theory (MP2) energy expression.”'*®

In the MPS-like methods, the computational complexity of
the task is governed by the size of the matrices used to approxi-
mate the wavefunction, which can, however, be controlled
based on various truncation criteria to achieve a priory set error
margin.?*'*? In a system with identical sites, this feature is
directly connected to the scaling of entanglement when subsys-
tems include larger and larger portion of the total system, also
called as area law.*°-2%3% The sjtuation is more complicated in
quantum chemical applications since the ranks of the matrices
also depend strongly on the ordering of the matri-
ces, 1113242551 115 different orderings lead to better or worse
results if the ranks are kept fixed.[>49525661.728285901 Apother
main aspect that effects the performance of the method is the
optimization of the basis®”687085981501 g injtialization of the
network.l''2>492990126] Eyan  though the significant efforts
dedicated to the various optimization tasks, it remains an open
question to determine the minimum of computational effort to
obtain results with a given accuracy threshold.

Shortly after DMRG was introduced, it was found that DMRG
may also be phrased in terms of MPS,"® first formulated for
special spin systems as the Affleck-Kennedy-Lieb-Tasaki
model."* More recently, the Higher-Order Singular Value
Decomposition (HOSVD)!'93%1321 have made MPS the basis of
variational frameworks and revealed a profound connection to

[15,129-132] Since
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quantum information theory.?"?*2% |n this context, it became
apparent that MPS is only one of a more general set of for-
mats: while MPS corresponds to an arrangement of orbitals in
a linear topology, quantum states may more generally be
arranged as more complex topologies, leading to TNS.[37:98-1001
For applications to smaller systems, prototypical tensor-
network state approaches to quantum chemistry have already
been developed, including the so-called Complete Graph Tensor
Network State approach,®” and the Tree Tensor Network State
(TTNS) approach.”®7%% The QC-TTNS combines a number of
favorable features that suggest it might represent a novel, flex-
ible approach in quantum chemistry: the more general con-
cept of data-sparsity inherent in the TNS representation allows
for the efficient representation of a much bigger class of wave
functions than accessible by state-of-the-art methods. The
desired accuracy may be adjusted, so that the ansatz in princi-
ple permeates the whole full-Cl space.

These developments foster the hope that with their help some
of the major questions in quantum chemistry and condensed
matter physics may be solved. The concept of MPS and tree
structured TNS has been rediscovered independently in numeri-
cal mathematics for tensor product approximation.!'”/1>3!

1.2 Entanglement and quantum information entropy in
quantum chemistry

In quantum systems, correlations having no counterpart in classi-
cal physics arise. Pure states showing these strange kinds of corre-
lations are called entangled ones,*°=%'3%1¢ and the existence
of these states has so deep and important consequences!'>’~ 1>
that Schrodinger has identified entanglement to be the character-
istic trait of quantum mechanics.['®*'®" The QC-DMRG and QC-
TTNS algorithms approximate a composite system with strong
interactions between many pairs of orbitals, and it turned out that
the results of quantum information theory!'®>'%® can be used to
understand the criteria of their convergence.['%-2"232°1

Recently, quantum information theory has also appeared in
quantum chemistry giving a fresh impetus to the development of
methods in electronic structure theory.[71325°561838489,91,95164-171]
The amount of contribution of an orbital to the total correlation
can be characterized, for example, by the single-orbital entropy,”!
and the the sum of all single-orbital entropies gives the amount
of total correlation encoded in the wave function.®>"*% This quan-
tity can be used to monitor changes in entanglement as system
parameters are adjusted, for example, changing bond length or
other geometrical properties.”>71% A useful quantity to numeri-
cally characterize the correlations (classical and quantum
together) between pairs of orbitals is the mutual informa-
tion""®17?1 and it together with the orbital entropy provides
chemical information about the system, especially about bond
formation and nature of static and dynamic correlation!"'383°7]

The two-orbital mutual information also yields a weighted
graph of the overall two-orbital correlation of both classical and
quantum origin reflecting the entanglement topology of the
molecules. Therefore, this quantity can also be used to carry out
optimization tasks based on the entanglement between the
different components-itself determining the complexity of the
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computation—since it depends strongly on the chosen network
topology and is in principle unknown for a given system. To pro-
mote the efficiency of tensor product methods, various
entanglement-based approaches are used to determine, for exam-
ple, the appropriate ordering, network topology, optimal basis,
and efficient network initialization. These important and nontrivial
tasks will be considered in section 4.

1.3 Tensor decomposition methods in mathematics

Approximation of quantities in high-dimensional spaces is a
hard problem with a variety of applications, and the develop-
ment of generic methods that circumvent the enormous com-
plexity of this task have recently, independent of the
developments in the study of quantum systems, gained signifi-
cant interest in numerical mathematics.**! A recent analysis
shows that, beyond the matrix case (corresponding to tensors
of order 2), almost all tensor problems, even that of finding
the best rank-1 approximation of a given tensor, are in general
NP hard."”! Although this shows that tensor product approxi-
mation in principle is an extremely difficult task, a variety of
generic concepts for the approximation of solutions of certain
problem classes have recently been proposed,®*”! some of
which®>116174=1781 hear a surprising similarity to methods
used to treat problems in quantum physics.!'”%'8%

The classical Tucker format attains sparsity via a subspace
approximation. Multiconfigurational methods like MCSCF or
CASSCF are in fact a Tucker approximation in the framework of
antisymmetry. Its unfavorable scaling has recently been circum-
vented by a multilevel or hierarchical subspace approximation
framework named Hierarchical Tucker format*>""”! interestingly
corresponding to the TTNS. A similar format called Tensor Trains
(TT), developed independently,"®'~'% is a formal version of the
MPS with open boundary conditions. Investigation of the theoret-
ical properties of TNS and MPS in a generic context have shown
that they inherit desirable properties of matrix factorization. For
example, closedness of the set of tensors of fixed block size™!
implies the existence of minimizers in these sets for convex opti-
mization problems. Also, these sets possess a manifold structure
that helps to remove redundancy in the parametrization by the
introduction of so-called gauge conditions.!'® They can be used
to set up variational frameworks for the treatment of optimization
problems™? and of time-dependent problems,!7®177:1801851 phagy.
ing again a close connection to approaches in the quantum
physics community."”? In this general context, the robustness
and quasi-best approximation of the HOSVD, studied in the math-
ematics community,*>#%'8 and of the (one site) DMRG''®” as
simple and very efficient numerical methods for the treatment of
optimization problems are now well-understood.*>*” These fun-
damental properties establish MPS and TTNS as advantageous
concepts in tensor product approximation. It is important to note
that all these properties are no longer valid in general if the ten-
sor networks contains closed loops, as in case of the projected
entangled pair states”®" and the multiscale entanglement renorm-
alization ansatz (MERA)."® It is still widely unexplored under
which conditions the favorable properties of tree structured TNS
can be extended to general TNS. In mathematics the phrases,
hierarchical tensor representation or Hierarchical Tucker format as

Wiley Online Library

well as TTs instead of MPS are used since there the focus is not
only on quantum mechanical systems, but rather on universal
tools to handle high-dimensional approximations. Many of the
recent developments in mathematics parallel others in quantum
computations on a more formal, generic level, often faced with
similar experiences and similar problems.

2 Quantum Chemistry
2.1 The electronic Schrodinger equation

A quantum mechanical system of N nonrelativistic electrons is
completely described by a state-function ¥ depending on 3N
spatial variables r, € R®,a=1,...,N, together with N discrete
spin variables s, € {*1},a=1,...,N,
N ~ N
YR e {1} > (RPe{£]}) —C 0

(F,815. - 500,5n) = P(r, 81550, 5n).

The function ¥ belongs to the Hilbert space Lz((R3X{i%})N)
having the standard inner product

(#.0) = 3 | s im0 sis. s . di

—+1
si=%1

()

and the norm ||¥|| = /(¥,¥). The Pauli antisymmetry princi-
ple states that the wave function of fermions, in particular elec-
trons, must be antisymmetric with respect to the permutation
of variables, i.e., for a # b

W(...;¥,5q; - J==Y(..;r,Sp;.. ;¥aSq;...). (3)

Such wave-functions are the elements of the antisymmetric
tensor subspace A?’:1L2(R3X{i%}). The Pauli exclusion princi-
ple immediately follows: ¥ must vanish for the points of
([R{3><{i%})’v which have the coordinates r, =r, and s, =s,
for some a # b fermions.['" 18

In quantum mechanics, we are usually interested in wave-
functions having definite energies. This is expressed by the
stationary Schrodinger equation,

HY = £V, )

-3 ¥by S5 - -

i.e., the wave function is an eigenfunction of a differential
operator, namely the Hamilton operator H, and the eigenvalue
E € R is the energy of the corresponding state P. One of the
most important quantities is the ground state energy E,, which
is the lowest eigenvalue. The well-known Born-Oppenheimer-
approximation considers a nonrelativistic quantum mechanical
system of N electrons in an exterior field generated by the K
nuclei. In this case, H is as follows

H = HiintHpot,  Hpot = Hext +Hine, (5a)
Hy fZN:—lA H, f—iiizc Hi ,1i ! (5b)
kin — 2 as ext —— ‘Rc_ralA’ int 2 2 ‘rb_ra‘.

b#a

Since the Hamilton operator is a linear second-order differ-
ential operator, the analysis for the electronic Schrodinger
equation has been already established to a certain extent. We
would like to briefly summarize some basic results and refer to
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the literature.""'®” The Sobolev spaces H™ := H™((R*x {= 1})"),
m € Ny are defined as the spaces of functions for which all deriv-
atives up to order m are in H°:= L,((R3x{= %})N). Conse-
quently, the operator H maps the Sobolev space H' continuously
into its dual space H™', i.e, H: H' — H™' boundedly.l"1819%
The potential operator Hyo: maps the Sobolev spaces H' continu-
ously into H° i.e, Hpo: H' — H° = L, boundedly."®'%°" The
electronic Schrodinger operator admits a rather complicated
spectrum. We are interested mainly in the ground state energy
Eo. If Zle Z. > N, in particular for electrical neutral systems, it is
known['®"Y that E, is an eigenvalue of finite multiplicity of the
operator H : H — H° below the essential spectrum ceg(H) of H,
i.e., —00 < Ey < infoess(H). Summing up, the energy space for
the electronic Schrodinger equation is

wen((x{=3}) ) o Au(wx{=3}). @

This situation will be considered in the sequel.

For the sake of simplicity, we will also always assume that E,
is a simple eigenvalue, i.e., of multiplicity one. In the case, we
deal with here, i.e., the stationary electronic Schrodinger equa-
tion in nonrelativistic and Born-Oppenheimer setting, we can
assume without the loss of generality that the wave function is
real valued. (This does not hold for linear response theory or
time-dependent problems, as well as for the relativistic regime,
where complex phases play an important role.) According to
the well known mini-max principle,"'®® the ground state energy
and the corresponding wave function satisfies the Rayleigh-Ritz
variational principle,['®1%% i

i.e., the lowest eigenvalue is the min-
imum of the Rayleigh quotient <ZI:};{’\'$>, or equivalently,

Eo = min{(¥,H¥) : (¥,¥) = 1,¥ € Vy}, (7a)
Yo = argmin{(¥,HY) : (¥, V) =1,¥ € Vn}. (7b)

Since the Hamilton operator maps H : Vy — (Vy)* boundedly,
we will put the eigenvalue problem into the following weak for-
mulation,!"®” to find the normalized W, € Vy, satisfying

<(D, (H_Eo)q"o> =0, <\Po, lI"o) =1, VO € Vy. (8)

We will consider the above framework"'*" throughout the
present paper.

2.2 Full Cl approach and the Ritz-Galerkin approximation

A convenient way to approximate the wave function is to use
an antisymmetric tensor product of basis functions depending
only on single particle variables (r4,s,), which can be realized
by determinants. To this end, let us consider a finite subset of
an orthonormal set of basis functions ¢;: (r,s)—q;(r,s) in
H'(R*X{=1}), that is,

BY:={g;:i=1,...,d} CB:={¢g;:ic N} C H]<R3X{+1}),

=2
1
V¥ .= Span B4 C V :=Span B =H' <R3x{ii}>,

where
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(@)= Jw i(r,s) py(r, s)dr = 5. ©

—+1
=23

(For simplicity of notation, we will use the same brackets (-, )
for designating inner products in Hilbert spaces, independent
of the underlying Hilbert space.) In quantum chemistry, these
functions are called spin orbitals, because they depend on the
spin variable s = *+1 and the spatial variable r e R3. In the
sequel, we will first confine ourselves to spin orbital formula-
tions. How we go from spin orbitals to spatial orbitals will be
explained later.

We build Slater determinants of an N-electron system, by

selecting N different indices, for example i, fora=1,... N, out
of the set {1,...,d}. By this we have chosen N orthonormal spin
orbitals ¢; ,a = 1,...,N, to define the Slater determinant"*’

(10)
= \/17N_!(;VP(G) <(p,-m ®...® (p,-U(N)> (r1, 815« 5N, SN),

where the summation goes for all ¢ permutations of N ele-
ments, and P(o) is the parity of the permutation. To fix the
sign of the determinant, we suppose e.g. that iy < ig4+q for
a=1,...,N=1; ie, the indices are ordered increasingly.
Therefore, the Slater determinants are uniquely defined by
referring to the orbital functions ¢;, respectively, indices
iq € {1,...,d}, which are contained in the determinant.

It is easy to check that the Slater determinants constructed
in this way by the orthonormalized spin-orbitals ¢; € V¥ are
also orthonormalized. We define the Full CI (FCl) space for an
N-electron system™® as the finite dimensional space V¥
spanned by the Slater-determinants

i 21 <lg <lgrh <d}

i 1< <ia+1} C Vn,

V4 .= Span BY C Vy := Span By.

The dimension of VY is

. d d!

To obtain an approximate solution of the electronic
Schrodinger equation, one may apply the Ritz-Galerkin method
using the finite dimensional subspace Vﬂ C Vy. That is, consider
the solution of the finite dimensional eigenvalue problem

HY = E¥Y, W eV, (12)

where TI¢: Vy — V4 s
equivalently,

(@, (H-E)¥) = 0,

Ly-orthogonal  projection, or,

YeVd foralldeVy. — (13)

So the approximate ground state energy is

Eog := min{(¥,HP) : (¥,¥) =1,¥ € V9}, (14a)

and the full CI ground state wavefunction W4 € V4 is the
solution of the Galerkin scheme
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Woa:= argmin{(¥,H¥): (¥,¥) =1, ¥ cVi}.  (14b)

From the above definitions, it becomes obvious that the
approximate ground state energy Epq4 obtained by the Ritz—
Galerkin method provides an upper bound for the exact energy
value Ey < Egq, given in (7a). The convergence theory of the
Galerkin scheme for the numerical solution of eigenvalue prob-
lems is well established."'°” Roughly speaking, the Galerkin
method provides an approximate eigenfunction Wo4 which
approximates the exact eigenfunction quasioptimally. Moreover,
the eigenvalue converges quadratically compared to the con-
vergence of the eigenfunction. Since dim VY ~ O(d") > 0(2"),
the full Cl approach scales exponentially with respect to N.
Therefore, for molecules this approach is practically not feasible,
except for a very small number of electrons.

2.3 Fock spaces

We embed the full Cl space Vﬂ of N-electrons into a larger
space FY called (discrete) Fock space, where we do not care
about the number of electrons,

M) c V,c\i/,}
(15)

d
fd = ME?O Vd = {\Ij = ‘F(O)@T(U@ cee @‘Ij(d) ¥
Its dimension is

d (d
dim f"—Z( >—2d. (16)
v=o \M
The Fock space is again a Hilbert space with the inner product
inherited from Vﬁﬂ

(D Oy, B Pan) =D (@), ¥ im)- (7)
M=0
The full Fock space can be obtained by taking the limit for
d — oo. Since we consider only finite dimensional approxima-
tion, we are not intended here to understand in what sense
this limit might be defined or not.
We have the Hamiltonian (5a) acting on the full-Cl space of
N electrons as TI§H : V§ — V. Since now we allow different
numbers of electrons, we denote this explicitly as Hy, then the
Hamiltonian acting on the whole Fock space reads

d
HY = N N Hy « 79— FO. (18)

It is convenient to define the creation operator a; cFd 7
which is given on Slater determinants as a,T(I)[,1,,..7,-N] = Qi il
This connects the subspaces with different numbers of particles
in the Fock space, a; : V4 — V4. .. The result of this operator
acting on a Slater determinant in Bf is a Slater determinant
again, and, up to a * sign, it is contained in BY:

=®pij i = (_1)ki‘l)[i (19a)

Tyeesdyeein] 2

where the indices in [i1, ..., i,...iy] are ordered increasingly, and
ki = |{ip|ip < i}|. From the definition, it immediately follows that
_____ i = 0 if i € [i1,...,iy], which is the manifestation of the
exclusion principle. One can then obtain the adjoint a; := (z:l;)T
of the creation operator, which is called annihilation operator

Wiley Online Library

ki
ai®;, i) = (D) Qi

19b
if i, =i for some b=1,...,N,otherwise 0. (19b)

It is straightforward to check that these operators obey the
fermionic anticommutation relations:

{ahaj} =0,

(with the anticommutator {A, B} = AB+BA), which is the manifes-
tation of the Pauli antisymmetry principle (3). One can check that
the operator n; := a;a; leaves invariant all the Slater determinants
for which i € [iy, ..., iy], while it annihilates all the Slater determi-
nants for which i & [i1,...,iy]. One can conclude then that the
operator P = 3¢ | a; a; acts on V¥, as M times the identity, that is

{a;,a;} =0, {ai,a;} =0jj, (20)

d
[ Zaja,:m@ My (21)

on the whole Fock space F¢9, and it is called particle number
operator, since

P(0D...B¥u®...0) =M0D...B¥ D ... BO0.

2.4 Occupation numbers and second quantization

Instead of the above notations, it is usual to introduce the
very convenient binary labeling, or occupation number labeling,
for the Slater determinants ®j ;1. Let (uy,...,14) be a
binary string, i.e., 1 € {0,1}, depending on the presence or
absence of ¢; in the Slater determinant @y ;.. For all
i=1,....d, if i€li,...,iy] then ;=1 (then we say that
spin-orbital ¢; is occupied in the Slater determinant), else y;
= 0 (unoccupied). So y; € {0,1} has the meaning of an occu-
pation number, and we use the notation

D, W€ {0,1},i=1,....d. (22)

Toesbld) =

Furthermore, in an N particle Slater determinant, ;=1
appears exactly N times. With this, the Fock space becomes

.....

The effect of the creation and annihilation operators (19) can
also be formulated using the occupation numbers in a more

expressive way than before:

+

ki . .
GO i) = (1) P t1,py)s I g = 0, 0therwise 0,

(24a)
ai®(u1,...,;t;‘...,/4d) = ( 1)qu)(;t1.,...‘u,v—1.,...,ud)7 if K= 1,otherwise 0,
(24b)
i—1 t
where k; = ZH K. On the other hand, a@;a;®,.. 4.

= 1Dy, ... ... 1i,)» @nd with the definition (21) we have

d
PO,...) = <E “i> Do) (25)
i=

This binary labeling gives us the opportunity of using
another, more convenient, representation of the Fock space,
which is called second quantization. To this end, we consider
the Hilbert space for the representation of the events of the
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occupation of the orbitals. This space has a two-dimensional
tensor factor A; 2 C? for each orbital, containing two orthog-
onal states representing the unoccupied and occupied states
of the orbital. So, let us define the tensor product space

A9 =

T®a

d
QA= Q c?, (26)
and the canonical basis {|¢,) =2 e, |¢;) = e;} of the vector
space A; = C?, where (€0), = 6,0, (€1), = Ju1. (For the ele-
ments of only these spaces, we use the so called ket-notation
|...), which is very common in physics for denoting ele-
ments of Hilbert spaces) So we write any |U) € C? as |U)
= ZL:O U()|$,). The dimension of this space is

dim A@ =24, 27)

We also have the canonical inner product in C?:

1

Uy =>_ Ul Vv(w). (28)
n=0
for which the canonical basis is orthogonal, (¢,|#,) = d,.,, for
w,v=0,1. Usmg the canonical basis {|¢,{4',-}>} of A; the set
{lpi) & - ® |¢{d}) w €40, 1} i=1,...,d} gives the canon-
ical basis in A@ and any |U) € A@ can be represented by

S U, pg)lofh @@ gl (29)

If there is no ambiguity about the underlying basis, we con-
sider the canonical tensor pdroduct basis above, and we can
identify |U) € A with U e ®C?, where U are simply d-variate
functions (see section 3.1) =

) =

— U(M1a"~7”d) S C, (30)

(H1s -5 )

depending on the discrete variables i; = 0,1, for i=1,...,d,
called also indices in the sequel. Due to the orthogonality of
the canonical basis, the canonical inner product of C? induces

M) = 3 Tl Vo) B

-----

and the norm [|U]| = \/(U, U) in A

Now, let us introduce the isomorphism 1 : F¢ — A9, defined
by its action on the basis functions, i.e., the Slater determinants
,) of occupation numbers (i, ..., f1y) simply as

(@) = @@ |9k, e{o1}, i=1,....d
(32)

(This is an elementary tensor product, in physics called tensor

product state.) It is easy to check that this is indeed an isomor-

phism, and compatible with the inner products of the two

spaces, so we conclude that the discrete Fock space F¢ is iso-

morphic to A = '®1(DZ, and

-

=3 U,

u

gt @@l (33a)

leads to

U(:ul P nud) = Uy, (33b)
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On the other hand, we have used the convention above that
for a function W € F9, its image by 1 is written as the ket |¥).
The Full-Cl space for N electrons VZ is a subspace of the Fock

space  F9, and its image in A9 is  denoted as

Afq) = z(Vﬂ,) c A9, This is the N-electron subspace of A
d
having dimension dim Ag¢q = <N>

Through this isomorphism, we can obtain the creation and
annihilation operators (24) acting on A@ as follows!'®”

a:—i0goi'=5s®..050a ®10...a1: AD - AD,
(34a)
aii=10a01 '=s®..0s0ax1®...01: A =A@

(34b)

(where a’ and a appear in the i-th position) with the operators

()50
() ()

acting on A;. The operators a; and a;-r again obey the fermionic
anticommutation relation (20). Let us highlight that the 2 X 2-
matrix s is required to provide the correct phase factor, i.e.,
sign of the Slater determinant. The particle number operator
acting on A9 s

P:=10Poi™!

d 1
= Za, a;, (36)
=

which is, since s2 = I, the sum of matrices

@lzaavle...ol: AD - AD  37)

. <0 o)
n=aa:= (38)
0 1

in the i-th position, representing the occupation number of
the given orbital.

Let us remark that since the isomorphism : is defined
through a given Slater determinant basis, the above represen-
tation of a wave function is basis dependent, i.e., it depends
on the choice of the one-particle basis set B

1
n=aa=1v...

with the matrix

2.5 Example: HF determinant and change of one-particle
basis

The Hartree-Fock determinant in terms of canonical MO func-
tions is given by Wy = @ v =P 10,0y €4 Ibfb for
b=1,...,N, the first N spin-orbitals are occupied. In A9 this
is represented by the tensor for which U(y, ..., uy) =1 if and

only if (gq,...,p09) =(1,...,1,0,...,0), or
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o) = o1 @2 le™) @ ¢ ) @ - @ |6”).  (39)
If we move to another basis, respectively, basis set, say

i=1,...,d} —
d
:ZUiijjii=17-~~
j=1

with the unitary d X d matrix U = (U;;), the representation of
the old Slater determinants @, .= ZH ..... va V1ea @)
in terms of the new Slater determinants ®,,
of rank one. It is a short exercise to show a representation of
the form ¥ =) is transformed into

Bd:{q)i:

éd = {(?’f 40

,d},

I e lg)

|l~P> — eZLNH Z,Nﬂ t,-_/a:aj “{J>
=T T (Pt ) )

1
= (Id+tN+1‘1aNHa1> . . (Id+td,NadaN>|‘I")

up to a normalization constant. This transformation serves as
the transformation of the basis sets. Let us remark that in CC
theory the above expression is known as the CC single excited
states, and the above transformation is used for the definition
of the Briickner orbital.>! Also each factor is at most of rank
two, so in the worst case the rank could increased by a factor
of two with each matrix multiplication. The single Slater deter-
minant expressed by another basis set is a linear combination
of many Slater determinants with respect to the new basis.
Indeed it can happen that in the new bases it is represented
by the maximally entangled state tensor |'P).

2.6 Ritz-Galerkin approximation in second quantization

Now we are able to formulate the full-Cl Schrodinger equation
(12) in the second-quantized form. By the isomorphism 1, the
Hamiltonian (18) acting on F is defined on A@ as follows

H=10H0 1" : A¥  A@, (41)

Using the ansatz W =13, uy P, ., €Vy for the
eigenvector, with the help of I we obtain the discrete eigen-
value problem from (13) in the N-electron subspace of A

<(D(u1 seeeslld) ) (H_E)T> =

~ (H-en1w))

If we allow |¥) € A(d>, not only in its N-electron subspace, we
do not get only the eigenvalues E for a discretized N electron
system, but also the eigenvalues for other numbers of elec-
trons between 1 and d. To fix this kind of problem, we take
into account the particle number operator (36), then ¥

=0 Yy e{0,1}, i=1,....4d

,,,,,,,,,,

P|¥) = N|¥P), (42)
i.e., |'¥) is an eigenvector of P with the eigenvalue N.

From the well-known Slater-Condon rules,”” one concludes
the precise representation of the Hamiltonian in the discrete
space A9, which reads as

Wiley Online Library

Vijk/a;a,T aia. (43)
k=1

H= ZTUa aj+

Here the coefficients

n=X | aw9

1
s -2

—1A—2K:i (r,s)dr (44a)
27 LR )M

are the well-known single electron integrals, and

Vi = Z J[qu)i(rvs)q)j(r/vs) r=

/41
s5.5'=+3

rl @k(r, )y (¥, s")drdr’
(44b)

are the two electron integrals, both are coming from the parts of
the original Hamiltonian (5b). With this, the discrete (Full CI)
Schrodinger equation for the approximation of the ground
state can be cast into the binary variational form of finding |\¥')
€ A9 such that

Eog = min{(¥H|¥) : (¥¥) = 1,P|¥) = N|¥), |¥) € A®)},

(45a)

[Woq) = argmin{(P[H|¥) : (¥|¥) = 1,P|¥) = N|'¥), |¥) € A}

(45b)

Let us remark that this representation depends on the basis
orbital functions B°. For a change of basis, as is given in (40),
the creation and annihilation operators transform as

d d
=D U, &= U (46)
j=1 j=1

With respect to the new basis set B?, we can build another
Slater determinant basis {fb(w,...,vd) cv;€{0,1},i=1,...,d} of
the discrete Fock space F9. With respect to this new Slater
determinant basis, the operators a; has the canonical form
(34b)

a=s59 - -9s®axle -l (47)

The one and two electron integrals transform easily, e.g.,

=3 (V) Ty (48)

kI

2.7 Spatial orbitals

For the sake of simplicity of representation, throughout this
section we have dealt with spin orbital basis <p, for
i=1,...,d, and the above setting A9 A ~ ®Cz In
the QC-DMRG, it has been experienced that |t is favorable
to use spin functions explicitly, and deal only with spatial
orbitals. More precisely, we take a set {x; € H'(R®):i=1,
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...,d} of orthonormalized functions, depending on the
space-variable r € R® only, and define the basis of 2d

elements

P2i(r, ) = Ki(1) 74 (),

) 1 . 1 (49)
ro(s)=1 if s=+—, 7. (s)=0 if s=——,
2 2
Pai1(r,8) = Ki(r) - (s),
. 1 ] 1 (49b)
7_(s)=0 |fs:+§, 7_(s) =1 |fs:—§,

which are orthonormalized in H'(R*x{=1}). Now, repeat-
ing the previous construction leads to the 2d spaces Wji—;
=~ C? and W, = C% Let us cast the tensor product of two
adjacent spaces into one A;:= Wa_3 ® Wy = C* and with
this,

d d
A9 = @ A = ® CH (50)
=1 =1

having the dimension dim A@ = 49, The N-electron subspace

2d

Afc is then of dimension dim Afq = . In the case

when the N| and N; numbers of electrons of spins —1/2 and
+1/2 are conserved, only a subspace of this is needed, which
is called then the Full-Cl space that is of dimension

IR

Using the matrices (35), we define

1 1
G:=a®l ifs:-i-? G:=s®a ifs:—§7 (51a)
Z:=S®S, =11, (51b)
CGs ' =Z® - RZAGRI®--- &1, (51¢)
t T T
n; ;== C.C, n; =¢C; =10 -3¢ l® -1

(51d)

With these, the Hamilton operator reads as

d d
+ t ot
H= Z E Tijci,sicj‘sj+ Z Z ‘/ljk’ci,s;cj,s/ck>5k Cs - (52)

ij=1s 5=+1 i kI=15;.5,56,5==3

Let us remark that in the nonrelativistic quantum chemis-
try, the one- and two electron integrals do not depend on
the spin variables s;. This is the reason for using the spatial
orbital formulation. (However, this does not hold when rel-
ativistic effects, e.g. spin-orbit coupling are taken into
account, as is used in a recent development in DMRG.®?)

3 Tensor product approximation
3.1 Tensor product parametrization
We generalize (33a) by considering vector spaces with arbitrary

dimension dim A; = g;:
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> Ul aa)el) @ @il (53)

0 50yl

') =

Thus, the tensor
I¥) € A@ (54)

is equivalent to the multi-indexed array

U e Ch-xad, (55)
U(och...,ocd),oc,-6{1,...7q,~}, i=1,...,d (56)
The norm and inner product of these two tensor spaces are
defined analogously to section 2.4.

Computation with tensors suffer from the curse of dimen-
sionality,*®" since the storage of the complete array grows
exponentially with the order d.

We seek to reduce computational costs by parametrizing
the tensors in some data-sparse representation. For this pur-
pose, we adhere to the separation of variables, a classical
approach which traces back to Bernoulli and Fourier among
others. In principle, we want to represent or approximate ten-
sors as multivariate functions by a sum of products of univari-
ate functions. This concept is well established for tensors of
order d =2 where it leads to fundamental results known as
the singular value decomposition (SVD) or Schmidt decomposi-
tion, proper orthogonal decomposition, the Karhunen-Loeve
transform and so on. In the discrete case discussed here, i.e. in
matrix theory, this is known as low-rank approximation. How-
ever, the generalization of the concept of ranks to higher-
order tensors is not as straightforward as one may expect.*!
There are many possible and a priori equally justifiable tensor
decompositions that all yield different definitions of a tensor
rank.

The canonical tensor representation separates the variables

R
Ul yaa) = D uj () - uf (). (57)
i=1

The canonical tensor rank of U is the smallest R such that this
representation is exact. This is then called the canonical
decomposition of the tensor.*!

However, while this is a beautiful and rather simplistic ten-
sor representation, it has several severe drawbacks. First of all,
finding the canonical rank and thus also its decomposition is
NP-hard."®? Additionally, the set of tensors with rank smaller
or equal to R is not closed, i.e. it is possible to find a sequence
of rank-R-tensors that converges to a tensor with rank greater
than R, see the border rank problem.>'%3! While the former
property obviously poses problems in computation, the latter
can be very undesirable as well when it comes to optimization
algorithms. Altogether, the canonical format has not only led
to deep and difficult mathematical problems,"®*"*4 put also
computational experience has often been disappointing, by
observing slow convergence, low accuracy, and the like. It is
not clear how to circumvent these problems while still retain-
ing its outstanding complexity scaling. In recent years, the
canonical format has therefore been put into question, albeit
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not completely disqualified, and we are looking for alternatives
with favorable properties.

We parametrize a tensor in a very general form to define a
tensor representation via

r K
U(OC'I RN} (Xd) = Z H UI'(O(I','I Yy O(i,y,'; mi,] P 7mi,Z;)7 (58)
m i
where m denotes the multi-index
K
m = .U1{m,;1 seeesMig}e (59)
iz

Since the ordering of the indices is irrelevant in this context,
we maintain the slight abuse of notation and interpret multi-
indices as sets of natural numbers.

This tensor representation is parametrized by K component
tensors Uy, ..., Uk. The o; are called physical indices and the m;
are called virtual. A component U; is called virtual, if it does
not have any physical indices, i.e. y;=0. Otherwise it is called
physical. Summation over a common virtual index m; is called
the contraction over m;.

We can demand a number of further properties that allow
for simpler treatment of the tensor. First of all, it is conven-
tional to only deal with multilinear representations:

Criterion. 3.1.  For each j e {1,...,d} there exists exactly
one € {1,...,K} such that o € {aj1,..., iy}

This means that no two components can depend on the
same physical index. The present multilinear parametrization
provides simple representation of the derivatives, an indispen-
sable tool for local optimization,'®>'*®! and alternating direc-
tional search methods."'*”!

It is our central aim to reduce complexity of the tensor and
we therefore need to choose the representation carefully.
Firstly, the number of components should not be exceedingly
high, as this makes the representation more complicated. But
more importantly, we try to minimize the dimensions r of the
multi-index m over all possible representations (58). If these
dimensions r; are minimal for the given parametrization, the
tuple r is called the rank, or better multilinear rank of the rep-
resentation and the representation is called a decomposition.
However, as mentioned for the canonical format above, this
notion of rank leads to extreme difficulties even for the sim-
plest forms.

3.2 Tensor networks

For a proper definition of multilinear ranks, we consider sub-
classes of tensor representations and introduce a further
restriction that each m; € m appears exactly twice:

Criterion. 3.2. For each virtual index m; € m, there exist
exactly two component tensors U;,, U, with m; as an index.
Any parametrization satisfying criterion 3.1 and 3.2 can be
expressed as a simple undirected weighted graph with half-
edges, and we obtain what is called a tensor network or TNS in

Wiley Online Library

Figure 1. A general tensor network representation of a tensor of order 5.

quantum physics. The component tensors give the vertices of
the graph, the contractions are represented by the edges
between the vertices and the physical indices yield half edges.
Therefore, we get a graph TNS(U) := (V,E, H),
V={U:i=1,...,K},E=mH={oy,...,049}. (60)

Because of criterion 3.1, each half-edge has exactly one inci-
dent vertex, and because of 3.2, each edge has exactly two
incident vertices."®*! Thus, this is well-defined. The weight of
the half-edge o; is given by its dimension g; and the weight
of the edge m; is given by its dimension r;. In accordance with
the tensor decompositions, we call the vector r the rank of
the tensor network if it is minimal. g, ---q4 is naturally the
dimension of the tensor network, as shown in Figure 1.

Since a contraction over an index with dimension 1 is trivial,
we can choose to either omit this index or even to introduce
extra indices. In general, we require the tensor network graph
to be connected and if it is not we invent an arbitrary index
of dimension 1 to make it so. Apart from that, any index of
dimension 1 that is not necessary for connectedness will usu-
ally be omitted.

Although heavily used in physics, this general concept still
suffers from some instabilities. Recently, it has been shown
that tensor networks which contain closed loops are not nec-
essarily Zariski closed,”"®" i.e., they do not form algebraic vari-
eties without further restrictions. This is closely related to the
border rank problem for the canonical format. While we will
not go into these details here, we highlight that all these diffi-
culties can be avoided, if we restrict ourselves to tensors fulfill-
ing the following criterion!#*:

Criterion. 3.3. The tensor network TNS(U) is cycle-free.

Since we have the trivial connectedness mentioned above,
any tensor network that fulfills criterion 3.3 is a tree. It is thus
called a Tree Tensor Network or, in accordance with nomencla-
ture from Quantum Physics, TTNS. See Figure 2 for an arbitrary
example.

While general tensor network representations, like the canoni-
cal format, might still be very useful and shall not be disquali-
fied, we presently only consider the special case of noncircular
graphs that prevents these fundamental difficulties.
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Figure 2. An arbitrary example of a tensor tree.

3.3 Subspace optimization and the Tucker format

Tensor trees can be introduced from a different perspective in
order to illustrate that they share favorable properties with the
matrix case. In our discrete setting, the tensor space and the
tensor product space are equivalent

CIXX4d C9 A; (61)

T®a
1%
T®a

I 1

via the trivial formula (53). \(j)if}) are the standard Euclidean
basis vectors of A; for each i.

In this context, we define the subspace optimization as the
best approximation of U7

d
argmin{||U—=U|| : U, € ® &;,dim E; <r;}, (62)
i=1

where we optimize over the tensor product of all univariate
subspaces E; C A; of dimension at most r;. If we can recover
the tensor U exactly, i.e. [[U=U.|| =0, we call U, the subspace
representation of U. In accordance with the above, a subspace
representation is called a decomposition if the dimensions r;
are the ranks, i.e. they are the smallest numbers such that the
tensor can still be recovered exactly.

This immediately motivates the Tucker decomposition format
of a tensor. For each i=1,...,d, we aim at finding
an optimal basis set {|£,{,§i}>:mi: 1,...,r} of a subspace
=; C C% where r; < g;. (53) can thus be restated as

n ry
) =33 mma)le) @ D). (63)
myp=1 myg=1

C e C"" s a reduced core tensor, that is hopefully much
smaller than the original coefficient tensor, due to the optimal
choice of basis.

For exact recovery, obtaining the basis vectors in the dis-
crete setting is relatively straightforward. It can be achieved by
applying a SVD in every mode—thus called Higher-Order SVD
(HOSVD)—of the tensor: For the i-th mode, we compute the
SVD of the i-mode matricization

[Um,w#-m,&d c C(ar-diad)ai (64)
and obtain the basis vectors |§1{’}>,...,|é§i’}), which span the

optimal subspace of A;[4>116197)

International Journal of Quantum Chemistry 2015, 115, 1342-1391

WWW.Q-CHEM.ORG

International Journal of

UANTUM
HEMISTRY

In many applications, we want to approximate the tensor
with lower rank r < r. In the matrix case d = 2, this can be done
by truncating the above SVD and omitting the basis vectors that
belong to the smallest r—r singular values. The discovery that
this already yields the optimal result is mostly accredited to
Eckard and Young in mathematics, while most physics articles
recognize the fact that it had been proven by Schmidt long
before for the more complicated case of integral operators.!'9®!

Unfortunately, this result cannot be generalized to tensors
with d> 2. It has been shown that even finding the best rank
one, i.e.r=(1,1,...,1), can be NP-hard if d > 2. Nevertheless,
truncating the HOSVD in every mode only yields a quasi-
optimal approximation with respect to the l,-norm.'7317]
However, in many cases, this is satisfactory.

The Tucker format is a subspace decomposition as the ten-
sor is expressed in the basis of a subspace of the tensor space.
At the same time, it yields a tensor tree, i.e. its representation
fulfills criterion 3.1, 3.2 and 3.3. C € C"*" is the only virtual
component and
eliny (65)

>m;

Ai(oi, m;) = <‘/’if}

yields the d physical components, see Figure 3.

The HOSVD gives us a constructive algorithm that computes
the Tucker decomposition, i.e., a representation of the form
(63) with minimal rank r, in polynomial time. Additionally, the
set of tensors with Tucker rank at most r is known to be
Zariski-closed.["®" Therefore, it is closed and we overcome the
border rank problem. In terms of storage complexity, however,
this format is far from being optimal. It now scales exponen-
tially in r, ie, for r:=max{r} the scaling is in O(dgr+r?).
Especially for small g;, where we do not have r; < g;, we can-
not hope for much reduction of complexity. In particular, for
g; = 2 we do not gain any nontrivial progress.

3.4 Matricization and tensor multiplication

To a certain extent, these representation allow to apply matrix
analysis techniques to tensors. We therefore generalize the

aforementioned matricization. Let t C {1,...,d} be a collec-
tion of physical dimensions and t©:= {1,...,d} \ t its comple-
ment. Then
Ay
\\AQ \ A5 | s
(4
As Ay

/ Y

Figure 3. A Tucker tensor of order 5.
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[U)* € €% @ C9 (66)

is the matricization with q: = {q; € {q1,...,qq} : i € t} as row
dimensions and g« ={q € {q1,...,94} \ g} as column
dimensions. A special case is the i-th matricization
[U]%M ----- Od c Chai ® CYi+19d (67)
O yoey Ol
utilized further down that is casting the first i-variables into
the row index, and the remaining d - i in the column index.

This Einstein-like notation allows us to introduce a tensor
multiplication. Let U € C9*-*%4 and V € C%1%-*%4%  Then

if for to matricizations t; € {1,...,dv},t; € {1,...,d>} it holds
Git¢ = o, =: Qry.r, WE g€t
[ }Z:u'z [ ]%r] t Z U(O(‘Lh 5 OCrWArZ) V(O(rl 29 O(Zr;) . (68)

%ty .ty

This is exactly the matrix multiplication of the matricizations
and it is the contraction over the indices o . In the case
where no dual space is involved, i.e.,, no contraction is per-
formed, we obtain the tensor product

=UxV. (69)

Note that in the complex case described here, the matriciza-
tion should only be seen as the reordering and grouping of indi-
ces, instead of introducing a concept of duality as done in some
literature.">*! This is due to the fact that it is impossible to take
the complex conjugate only in a few indices of U, which would
be required for this concept.’>® Thus, the reader should note
that switching the ordering of the indices gives only the trans-
pose and not the hermitian of the original matricization:

e = ()" = () 70)

Finally, we want to simplify the notation for the unambigu-
ous case where we multiply over all common indices. This will
be denoted with a circle, since it can be seen as a composition
of two linear operators:

2,8 . .
UoV := [U]g?‘rr [ hn_fz,q”?éqNVI€t1,j€t§. (71)

3.5 Matrix product states or the TT format

Another example of a tensor network is the TT decomposition
of a tensor. The tensor U is given element-wise as

rd—1

Z Z A1 oc1,m1 Az(ml “27m2)

mg—1=1

U(och.‘.. Ad(md_1,o<d).

(72)

We get d component tensors of order 2 or 3. Their graph has
the structure of a chain or train, hence the name. Figure 4
gives an example of a TT tensor.

The TT format maintains the positive characteristics of the
Tucker format and overcomes most of the disadvantages of

Wiley Online Library

Al Ty IA_| o IA_| ms3 l_l

m4
2 3 {44 As
(8 5] (85) 3 (e ¥} (043

Figure 4. A tensor of order 5 in TT representation.

the canonical format. However, the complexity now scales only
quadratically in the ranks, or with O(qdr?), for r = max{r;}.
While the TT decomposition is not the only format that has
this advantage, it is one of the most widely used ones and it
will also be the standard format in this paper.

This format has been introduced to the mathematical realm
by Oseledets et al.'® While it was developed independently,
it can be seen as a special case of the Hierarchical Tucker (HT)
decomposition. However, we will restrict ourselves to the TT
format and deal with the HT format only briefly further down.
As stated above, nearly everything of the following can be
generalized to a general tensor tree format without effort, but
notation becomes more complex.

In physics, the TT decomposition has been known as MPS
since the late 1990s and many results can be taken directly
from there. The name MPS is justified if we fix the physical
indices. This yields a chain of matrix products:

U(O(] yoeey th) = A1 ((Z])Az(az) ce Ad71 (Otd71)Ad(O(d) (73)

with [Ai(“i)]m,;mm; = A,~(m,-71 N7 m;).

Let it be noted that an important modification of the TT for-
mat follows if we introduce a contraction of rank greater than
1 between the first and last component, also called periodic
boundary conditions,

U(“h“w“d)

n ry
:Z ~~-ZA](md7a1am1)A2(m1aa27m2)"
my= mg=1

“Ad(Mg-1, 04, Mq).
(74)

These uniform MPS (uMPS) are especially significant in physics.
Verstraete et al. deal with uMPS that are also translation invari-
ant, i.e. all components are equal A; = ... = A¢."°"' The graph
of this decomposition is circular and therefore does not suffice
criterion 3.3. As mentioned above, this poses a number of
problems!'®® that are—in a nutshell—similar to those of the
canonical format. For this reason, we will only deal with regu-
lar, noncircular MPS from now on.

The TT format can be considered as a multilayered subspace
representation. This is achieved in a hierarchical way.“**! In A,
we consider the subspace E; given by the basis set
{|§{1}> :my =1,...,n}, where

(3% ZA o, m)|pl). (75)

o =1

We proceed with a subspace of the partial tensor product
space Hgz C Ay ®@ Ay of dimension rg 5 < g1g2. Indeed
E{1,2} is defined through a new basis set {|£;{,J{*fz})) N N i
where the new basis vectors are given in the form
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V{1 2}
Cm“ 2}

Z Z Upr 2y (n,00,mpa ) 198)) @ [62). (76)

o=10=1

We observe that Ei; 53 C Ey ® Ap with

n

) = 30 3" Ml mpa) G 0 62 07
mi=10=1
and thus

n

EA (001, my)Az(my, 02,1 2}).  (78)

m=

Ug 2y (o1, 02, mya o)

For this reason, when dealing with TT tensors, we simplify the
notation and often set {1,2} ~ 2, and in general {1,2,...,i} ~i.

The tensor is recursively defined by the component
tensors A;

ey = > As (ma, a3, m3)| 2 @ |pl3)

ma,o3

= D Ax(mi a2, ma)As(ma,a3,ms)|EN)) @ [612) @ 6

my.my,02,03

Do Al m)Ay(mn, o, ma)As(my, a3, ms)| ¢

my.my,o 0,03

Nelp?h e e,
(79)

and so forth, by taking E¢; vy C Epr. i @ Ajsar.
We may also proceed differently, eg. Ei,34.) C
Especially, it can be advantageous to start

taking A; ® Eyjq,.qy etc,

5{1‘2} X E{3>4} &.. ..
from the right hand side, i.e.,
obtaining basis vectors

) € iy (80)

Let us fix some i € {1,...,d} and call it the root. This gives
a hierarchical picture (see Fig. 5).

We consider the spaces L := Z¢ i1} and R, Efit1,..d}
Their dimensions are given by
dim E;:ri_1,dim R,‘:I’,‘ (81)

and hence, the full tensor |¥) is contained in the ri_qqir-
dimensional subspace!*’2°"

|P) € L@ A @ R; o Clmxax (82)
)= > Amiy,,m)[ER ) @ |l @ ) (83)

Mj—1,M;, %

A canonical but not necessary choice is that the basis vec-
tors |7, 1ETy and (¢, L1 are orthogo-
nal and normallzed.

We will see in the following that this hierarchical or multilay-
ered subspace approximation constitutes the mechanism behind
the renormalization group formalism in the one-site DMRG.

An obvious observation!®¥ following from the above will
be that the minimal dimension r; is the rank of the i-th matrici-
zation (67):

International Journal of Quantum Chemistry 2015, 115, 1342-1391
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Figure 5. Hierarchical picture of a Tensor Train with A, as the root.

Theorem. 3.4. (Seperation Theoram). For any tensor
U e CT*%% there exists a minimal TT (MPS) representation,
thus called TT decomposition TT(U), such that for any
i=1,...,d—1 the dimensions r; of the contractions m; = 1,...,r;
are minimal and given by

r= rank([U} st "";‘“) . (84)

We can change the hierarchy, e.g, by choosing the next
component A;j1; as the root. In most applications, it will then
become necessary to shift the orthogonalization such that
{|§f,’,}> :m;=1,...,r} and {\C#:?) iMisr=1,...,ri4} are
orthonormal. This can be done by applying the SVD to the
matricization of the i-th component
= [A]" sy, (85)

mj—q,0

[A,}mm

Hmj—q 0
and shifting E,-,Y,T € C"™ " to the next component

A ™ = T A ™2 (86)

m;
For |¥), we obtain

W)= D Almiy, @, m) ¢ g e gl @ i

Mi—1,M;, 0

= E Ai(mi—q, o, mp)Aicr (My, %, Migq)

oty T VT

ey @ (ol @ gy @ |02
= E Ai(mizy, o, M)A (Miy oy, M)

0t q i Vi

i @lolh @ i) @ )
= Z Air (i, a0, miga) |é;{r,;,-}> ® |¢if:1}> ® |ér{y’1:12}>-
Mi,Mi1,0i4

(87)

Alternatively one may use QR factorization for the orthogon-
alization, but it often advantageous to keep the small diagonal
matrix X; € C"*" containing the singular values in between
two adjacent component tensors. In fact, this provides a stand-
ard representation or HSVD representation of U, see Figure 6

U=Aj0X10A0%0---0%y_10Aq. (88)

This representation has been developed independently by

different authors.'>>"°3'8 |n physics, it is accredited to Vidal
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Figure 6. ATT tensor of order 4 in standard representation.

and is hence also known as the Vidal representation. Vlery ben-
eficial is the criterion that

AAL =l AgAy =1, | (89)

andforall 1 <i<d

1

[A,' (¢} E,];’r;’rjz' ([A, o Z,];’,:C’:') = I,f’;1 5 (90)
t
(Imroaln ) EoAly =t O

This means, we can shift the root, and thus the orthogonality,
by simply shifting the density matrices Z;, see Figure 7.

This representation can be computed by applying a
sequence of SVDs and storing the singular values. The proce-
dure is called Hierarchical SVD (HSVD). It recovers the tensor
exactly. However, as mentioned for the Tucker format and the
HOSVD, the HSVD can be used for approximation by thresh-

olding the singular values. For density matrices
¥ =diag(ay,...,q,), we define two thresholding operators
H (X) = diag(a;),7 <, (92)
1<i<r
H.(X) = diag(g;),e > 0 (93)
gi>€

and for TT tensors

H,:(U) = A1 o H;1 (21) OAZ o Hfz (Zz) ©:---0 H;‘F1 (qu) OAd, (94)

H.(U) = Aj0H (Z1) oAz 0Hy(Z3) 0+ 0 Hey ((Zg—1) 0 Ag. (95)

Again, this will not yield the best approximation of the ten-
sor, as it does in the matrix case. As with Tucker tensors, we
maintain a so called quasi optimality:

Theorem. 3.5. (Quasi Optimality).”%32%38 The truncation
of the HSVD can be estimated by

[[U=H:(U)|| < Vd—1_inf [[U=V]], (96)
VeM

where M<; is the space of all tensors with TT rank not
exceeding F.

As most other results, the separation theorem and the quasi
optimality can be readily generalized to all tree tensor networks.
It is also possible to formulate a standard representation for
other trees. In contrast to the parametrization (58), the subspace
representation provides further essential information about mini-
mal representability and approximability. It justifies the use of
the notion of entanglement for the tensor U or an appropriate
low rank approximation of it. Entanglement here means the
quantum correlation between the subsystem consisting of the

Wiley Online Library

first i orbitals and the subsystem consisting of the remaining
orbitals, and it can be characterized by, e.g., the quantum Hartley
entropy logr;, see in section 4.2.1. Without further conditions,
these quantities are not well defined for tensor representations
that do not have a tree structure. However, Verstraete developed
an injectivity condition that aims at overcoming that problem for
uniform MPS with periodic boundary conditions./"®"’

3.6 Dimension trees and the hierarchical tensor decomposition

We briefly discuss the Hierarchical Tucker (HT) representation
that has been introduced by Hackbusch and Kuhn™'”! in 2009
and has since received a lot of attention. This is also due to
the fact that it is a reasonable generalization of the TT format.

The HT representation is defined by a dimension tree, usually
a binary tree, where the leafs Uy, ..., Uiy = Aq,...,Ag con-
stitute the physical components and the inner vertices U, are
virtual. Hackbusch gives the following comprehensive notation
in [45]: The \vertices of the tree tensor network
TINS(U) = (V,E,H) are labeled

i. tr ={1,...,d} for the root,
i. tel:={{1},...,{d}} for the leafs, and
ii. teV\L for inner vertices, which have sons t,...,t,
that are an ordered partition of ¢, i.e.

p .
Uti=tand p<vVuet,vet,i<j
1

For an inner vertex t C V\ L, with sons t;,...,t, (usually
p=2), there is a subspace E; defined by its basis set
{|§,{Tft}) cme=1,...,1} 201 given by

ry Iy
By = U mp,me)[ER) @@ ).
mi=1 mp=1

(97)

The root t, = {1,...,d}, with sons t;,...,tp, is to reconstruct

the tensor
re, Ity
U= Up(m,...omp) e oo (efb)). (98)
my=1 mp=1

Therefore, the tensor U is defined completely by the compo-
nent tensors U, using the above representations recursively,
most  O(d)

see Figure 8. There are at vertices and

Figure 7. A shift of orthogonality in the standard representation.
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Figure 8. A tensor of order 3 in HT format.

consequently the complexity is O(qdr+drP*'). For p =2, we
obtain O(qdr+dr3)*>47,

As with the Tucker and the TT format, obtaining the HT for-
mat can be done by applying the SVD successively, in a hier-
archical fashion. Again, we maintain a well-defined rank
through a separation theorem, a quasi optimality of a trun-
cated HSVD and so on.

In fact, the TT decomposition can be seen as a special
case of the Hierarchical Tucker decomposition, where we
use an unbalanced tree and omit the optimal subspaces in
the leafs. However, in some cases, the binary tree structure
can be advantageous.’°? Additionally, the leafs A;,...,Aq4
form exactly the optimal subspaces already observed in the
Tucker decomposition. We refer to the literature cited
above.

Arguably, this could make the HT format superior to the TT
format. However, the notation becomes very messy and all
notable theoretical results are valid for any tree tensor net-
work. Hence, we refrain from dealing with the Hierarchical for-
mat and proceed with the TT format, keeping the similarities
in mind.

3.7 Fixed rank manifolds and varieties
For many applications, we consider the set of tensors of fixed
TT rank

M, :={U e C"" M prp =}

This set is no longer a linear space nor is it convex. In order to
parametrize this space, we introduce the component set
C={U=(A,...,Aq) : A € CI"""9"} and the map

7:C— M, C CN*Xa, (99)

(A1, ..., Ad)—1(Ar, ..., Ag) == U. (100)

i, i 79ng with full mul-
For each i, C"'*%*" is the space of all elements with full mul
tilinear rank:

e = faye e pank([AL")

mj-1
(101)
=ri_1, rank([A,‘]mL1 m-) = r,-}

Let it be noted that this space is a smooth manifold™°%.
The map 7 is clearly surjective onto M,, but it is not injec-
tive: For any nonsingular matrix X € GL(r;) C C"™*" we have
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Ajo---0Aj=Ajo---0AoXoX ToA0---0As (102

Any parametrization of the form (58) shares this kind of

nonuniqueness. But for tree tensor networks, this problem can
be overcome: Let G be the Lie group

G={g=(X1,...,Xq-1) : X; € GL(r))} = ‘:g GL(r).  (103)

We define the group action of g € G on the components  as

g-U:= (A oX;,X; 0Ay0Xy, ..., X7 ! 0 Ag). (104)
This action is smooth and it acts freely and properly on C,!'7%,
The orbits are the equivalence classes, given by
U] =G-U={g-U:geG}. (105)
Thus, we obtain the quotient space
c/g={[u] =g-Uu:Uec} (106)
with the quotient map
n:C—>C/g,gl—>M. (107)
This yields a bijection
t:C/G— My, (108)

where 1 = 7 o 7. As a result, we get that M, is a smooth quo-
tient manifold.>*

This manifold can be globally embedded into the tensor
space M, C C"**% and we «call it the TT mani-
fold.[13%178184.205,206] Th s it is possible to define the tangent
space TyM,, which is a linear subset of C¥**%_ |t is isomor-
phic to the horizontal space

t
) Al =0vi=1,...,d-1}
(109)

HC = {(W,..., Wa) € C: (Wil

i—1Xi
via
d
(Dr(U))(Wi,... ,.Wa) = Ajo---oWjo---0As  (110)
i=1

We remark that different definitions of the horizontal space
are possible and that the choice of the gauge conditions
above is not unique. It also depends on the choice of the
root. In the above case, the root is set to be the last compo-
nent A, The only requirement for a horizontal space is that it
forms the tangent space of C via the direct sum
TuC =VyC & HyC, (111)
where V,C is the vertical space tangential to the orbits.
The manifold M, is an open set. However, in finite dimen-
sions, its closure is given by
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M, = M. (112)
This is based on the observation that the matrix rank is an
upper semicontinuous function.>2°! The singular points are
exactly those where the actual rank is not maximal.

As mentioned above, the set M, is Zariski-closed and thus
forms an algebraic variety, i.e., it is the set of common zeros of
polynomials. This is easy to see: Indeed, we know from the
separation theorem, that M, is the intersection of all tensors
where the corresponding matricizations [U]}"!".** have at
most rank r. The sets of matrices with rank at most r; are
known to be algebraic varieties,*®” each some zero-set of
polynomials."®* Then, trivially, the intersection is the zero-set
of the union of all such polynomials. Again, this property gen-
eralizes to all tensor trees.

3.8 Dirac-Frenkel variational principle or dynamical low rank
approximation

Solving problems in the large tensor space is often too expen-
sive due to the curse of dimensionality. We therefore restrict
ourselves to tensors of fixed rank, i.e., to the space M. In
general, the appropriate ranks are unknown. Thus, we start
with an initial guess and increase the ranks when necessary.
There are some greedy techniques available that serve this
purpose.[2°1

For the approximation with fixed rank, we consider the
smooth manifold M,, as this facilitates the theoretical frame-
work. Let

(113)

be a minimization problem on the tensor space, for example the
minimization of the energy functional (45a) in quantum chemistry.

For the restriction of J to M, we obtain the necessary
condition

U= argminJ(V) = (VJ(V),0oU) = 0VoU € TyM,,
VeM,

(114)

i.e., if U minimizes J on M,, then the gradient of J must be

orthogonal to the tangent space at U. Equivalently, if we

denote the orthogonal projection onto TyM, with Pr,, we get

P, VJ(U) = 0. (115)

This variational approach can be generalized to the dynami-
cal problem

d
FU=f). (116)
U(0) = Up € M,. (117)

This is a differential equation on M, if and only if
f(U) € TyM,, YU € M. (118)

Thus (116) can be solved approximately by projecting f(U)
on the tangent space TyM,,

Wiley Online Library

Figure 9. An illustration of the gradient flow on manifold M,.

F(U) := Pr,f(U) (119)

and solving the projected differential equation

9y - ).

pT (120)

In accordance with the above, we obtain

iU—F(U) =0 <1 U—F(U),3U) = 05U € TyM,.

dt dt (121)

In the context
this is
principle.

Replacing f(U) with —VJ(U) in (116) gives the gradient flow
of J. Then (121) becomes

of time-dependent quantum chemistry,

well-known as the Dirac-Frenkel variational
[116,177,208-211]

(%U+VJ(U), SU) = 0VoU € TyM, (122)

and a solution can be computed with the aforementioned
methods'[47,177,180,206,212,213] see Figure 0.

3.9 The alternating least squares algorithm

Consider the functional

j:C—R (123)
(A1, .. Ag) — j(Ar, . Ag) = J(t(Ar, .. Ag)). (124)
For i€ {1,...,d}, we fix Ay,...,A-; and Aj,...,As and
solve the subproblem
Af = argmin j(Ar,...,Vi,..., Aq). (125)
V;eCli-1%9i %

This is done in a successive manner and with alternating
directions, which—for the best least squares fit
J(U) = ||U—B||—justifies the name alternating least squares
(ALS) algorithm. The well-known GauB-Seidel iteration is based
on this strategy.

The TT format allows for a special formulation of this algo-
rithm, sometimes dubbed the Alternating Linear Scheme to
maintain the abbreviation. In this case, we can give a closed
form for each subproblem and they can be solved using
standard tools from linear algebra and numerical optimization.

In every step, one has to solve a small problem in order to
achieve the minimum. Note that we allow V; € C*9*i je,
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the ranks can decrease in each step. This automatically
restricts J to the variety M, since the components can have
full rank or less, but obviously not more than that.

The small subproblems will be of the same kind as the origi-
nal problem, i.e., linear equations will be turned into small lin-
ear equations and eigenvalue problems give rise to relatively
small (generalized) eigenvalue problems. In physics this sup-
ports the renormalization picture, where an original large sys-
tems is reduced to a small system with the same ground state
energy and possibly further physical quantities.

As we have observed before, this simple approach should
be realized with some care. Since the representation is redun-
dant, we can generally not minimize over the full parameter
space C"'*%*" byt rather some nonlinear quotient space and
it becomes necessary to introduce gauge conditions like
above. However, this can be avoided if we choose to minimize
only the root of the tensor as there is no redundancy in this
part. After the minimization, it would then be crucial to
restructure the hierarchy of the tensor and consider the next
component as the root. This can be done by shifting the
orthogonality as explained in (87). The extension to general
hierarchical trees is straightforward.

Conforming with the earlier notation (82), each subproblem
becomes a problem over a small subset that constitutes a
subspace

LioAaR CAD =

I

A (126)

T®a

We define the orthogonal projector onto this space

PiiAY = Lio A @R (127)
If we choose orthogonal bases for |é$i_1})7 ceey \éij‘:”) and
Ty LT, we obtain
P ~ EE; , (128)
where
E,: Cr1XaXn _, oX-Xag (129)
Vi— EVi=Ai0---0Aj_10VjoAj10---0A; (130)

is the insertion operator also used elsewhere."*” This can eas-
ily be seen, as for V € C9**% it holds

PIW) = D Vilmiy,o,m)|Eh " @ [¢1)) @ (7YY (131)

m
= > EViln,.alelh e elell) (132
it
and
EV=V (133)

Note that E; is a bijection onto its image, and since it is also
orthogonal, its hermitian is well-defined as its inverse. See
Figure 10a for an illustration of the reduced basis.
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Figure 10. Reduced basis representation for a) the ALS algorithm, and b)
the two-site DMRG.

To formulate the procedure explicitly, we consider a linear
system, i.e., a functional
1
JU) = §<XU’ U)—(B,U), (134)
where X € Lin(CT*-*% C%*-*9) js a linear operator. This
operator can be stored and viewed in a canonical-like format,
i.e. as a sum of rank-one tensor products

X=> X -oX (135)
k

or even in a TT-Matrix or Matrix Product Operator (MPO) for-
mat.'"® This is irrelevant for the purpose of notation, but it
can be of computational interest.

Since we have equivalence A@ = C3*X% we also denote
X e Lin(A), A¥) without changing the notation. For the
right side, we denote B ~ |Y) € A9 A single subproblem can
then be expressed as

Al = argmin j(Ar,...,Vi,...,Ad)
V,eCli-1%ai%
1
= argmin (—(XE,-V,»,E;V;)—(B,E;V;})
V;eCli=179i % 2
1
= argmin (7<E;XE,-V,~,V,»)—(E;B,V,~>> (136)
V,eCli-179i%i

At stationary points V; of the functional jo E;, there holds
the first order condition
V(joE)(V;) = E;XEV,—E, B = 0. (137)
As such, one microiteration of the ALS algorithm can be
defined as
UJr = A1

o~~-oA,~+o~-~oAd (138)

-1
AF = (E,*XEi> E'B. (139)
See Figure 11a for an illustration.
In the subspace notation, we get

[¥)" =  argmin

G@W@%n@)zmmmww
|O)eLioA®R;

(140)

For this to work, X does not necessarily have to be inverti-
ble on the whole tensor space but only on the small subspa-
ces L; ® Aj ® R;. This is guaranteed if X is invertible as a
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EiXE:Ay = EiB

Figure 11. A microiteration of a) the ALS algorithm, and b) the two-site DMRG.

whole. Additionally, one can see that the spectrum of X on
Li® A ®@R; is a subset of the whole spectrum of X and in
particular it holds cond;(X) < cond(X).'*"!

This notation suggests that the ALS is closely related to the
DMRG algorithm. In fact, it is often called the one-site DMRG
as it can be seen as a simple modification of the that algo-
rithm. In comparison, the ALS has the advantage that it opti-
mizes the tensor on very small subspaces. On the other hand,
the ranks r=(r,...,rg—1) remain fixed and have to be
guessed at the beginning. In order to introduce higher ranks,
one has to do this in a greedy fashion, e.g. by adding a rank-
one approximation of the residual.*'¥

The classical two-site DMRG is a clever modification. Here,
we minimize over the bigger subspace £; ® A; ® Aj41 @ Ri+1,
with the basis representation as in Figure 10b,

= >

Mi—1,Mit1,%,041

XM @ o) @ | @ (2,

%j+1

Ugiisry(Miz1, o, 0, Mit)
(141)

i.e., we optimize two components at the same time, see Figure
11b. The advantage is that a subsequent SVD after the optimi-
zation step in order to separate the two components yields a
new—and possibly higher—rank. To control the size of these
new ranks, a further truncation is often required. Several strat-
egies for dynamical rank selection can be implemented by con-
sidering the error in different norms.[2>14°

General convergence theory of both the ALS and the DMRG
is subject to research.'”® They converge only to stationary
points or at most local minima, as global convergence cannot
be guaranteed."*” Some convergence results have been pub-
lished for a modified scheme, that proceeds in a GauB-
Southwell-like fashion and optimizes only the component with
the largest residual.?°2">! There are also many open ques-
tions in dealing with physical applications like the SCF iteration
for HF models. The prescribed approach is completely varia-
tional, which has important consequences for computing gra-
dients, e.g., forces. An efficient implementation plays a crucial
role. The interested reader should consult fundamental contri-
butions in the DMRG literature 2>4%119.120]
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(b)

E}XEy3Uppay =

AN

E;,:;B

As a summary of the section about tensor formats, we pres-
ent Table 1 that compares the different decompositions, their
complexity and their advantages and disadvantages in numeri-
cal computations.

4 Numerical Techniques

In order to utilize efficiently the theoretical framework dis-
cussed in the previous sections, one has to carry out various
optimization tasks. Therefore, we start this section with a brief
overview and highlight important concepts using simple
examples. Then various iterative methods based on block
forming procedure will be reviewed briefly and the concept of
entanglement will be studied with respect to entanglement
localization, geometrical network optimization, choosing opti-
mal bases, and network initialization. In this section, our focus
is on the numerical method, thus entropic measures of elec-
tronic properties of molecules will be discussed only very
briefly.

For pedagogical reasons, tutorial examples will be presented
for a text book example, the LiF molecule. Due to the ionic-
neutral curve crossing between the two lowest 'S states of
LiF, this system provides a good testing ground to demon-
strate the efficiency of the quantum chemistry version of the
density matrix renormalization group method (QC-DMRG) and
tree tensor network state (QC-TTNS) algorithm. Our analysis is
especially useful for systems in which the wave function char-
acter of molecules changes as a function of geometry. In the
LiF example, it differs greatly on two sides of an avoided cross-
ing in a diatomic molecule. Atomic orbital (AO) basis was
adapted from the literature?'® in order to match with previ-
ous DMRG computations.”" The AO basis set®?'® is suitable to
describe the ionic and covalent LiF states as well. It consists of
9s and 4p functions contracted to 4s and 2p functions on the
Li atom and 9s, 6p and 1d functions contracted to 4s, 3p and
1d on the F atom. For more details of the AO basis set, we
refer to the original publication.”'® The two lowest 'S states
of LiF around the equilibrium bond length can be qualitatively
described by the 16%26?3¢%40%17* and 16%26°3¢%46'56 11"
configurations.?'”? For this reason, the MO basis was obtained
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Table 1. Comparison between the different tensor formats introduced in section 3.

Canonical Tucker T HT
Complexity O(qdr) O(r?+qdr) 0O(qdr?) O(gdr+dr?)
Rank No Defined Defined Defined

max{’?’ucker} S max{rHT} S I'canonical
(weak) Closedness No Yes Yes Yes
ALS (1site DMRG) Yes - but slow Yes Yes Yes
DMRG No No Yes No
H(O)SVD No Yes Yes Yes
Embedded Manifold No Yes Yes Yes
Dyn. low Rank approx. No Yes Yes Yes
Algebraic variety No Yes Yes Yes
Recovery ” Yes Yes Yes
Quasi best approx. No Yes Yes Yes
Best approx. No Exist Exist Exist
But NP-hard But NP-hard But NP-hard

by CASSCF optimizations, with two active electrons on two
active orbitals (46 and 50) (CAS(2,2)). MOs were optimized
simultaneously for both 'S* states. T; and Vjy matrix ele-
ments of eqs. (44a) and (44b) are expressed in this MO basis.
CASSCF optimizations were carried out with the GAMESS-US
quantum chemistry package.?'”’ Orbitals 1o, 20, and 30 were
kept frozen in all presented configurational interaction (Cl),
MPS(DMRG) and TTNS computations. Six of the valence elec-
trons were excited to all orbitals in the Cl calculation, which
we use as reference to benchmark the QC-DMRG and QC-
TTNS results. Therefore, the active space in most of our Cl,
MPS(DMRG), and TTNS computations consists of 6 electrons
and 25 orbitals: CAS(6,25). In certain cases, a smaller active
space, CAS(6,12), will also be used. Using the same MO basis
obtained as a result of CASSCF optimizations in the previous
CAS(2,2) active space, the CAS(6,12) active space is constructed
by excluding the three lowest lying occupied and 13 highest
virtual orbitals from the total 28 orbitals. Cl results were
obtained by utilizing standard full-Cl programs. C,, point
group symmetry constraints were assigned during this study.

4.1 Basic terms and brief overview

4.1.1 The problem in the language of tensor factorization. Let
us start this section with a very brief summary in order to highlight

the most important concepts. In the rest of the paper, a spin-
orbital will be called a local tensor space A =~ C9, with dim A = q,
and will be denoted by -. Using the fermionic occupation number
basis (q = 2), |u, s) for all spins s € {|, 1}, with u € {0, 1} occupa-
tion numbers, the operators (see (35)) are defined as

. (o o) (1 o) <1 o)
a = , 1= , s = , (142)
10 0 1 0 —1

where a' creates an electron, | is the identity matrix and s
stands for the phase factor due to the antisymmetry of the fer-
mionic wavefunction. As was constructed in section 2.7, it is
also possible to use a C* representation in which case * will rep-
resent a MO (g = 4). In this representation a state can be empty,
singly occupied with spin-up or down particle, or doubly occu-
pied, represented by the basis states {|¢,)} for o € {1,2,3,4}
as {[¢1) =[=),1¢2) =1 1),1¢3) = [ 1).1ds) = [T1)}. (In this
sloppy but extremely convenient notation, on the one hand,
|p,) = |o) is written for simplicity, usual in quantum informa-
tion theory, on the other hand, the 1,2,3,4 index-values (useful
for computers) are identified with the —,|,7,7] labels of
the states (carrying physical meaning). Therefore, we can write
the same basis state in four different ways, eg.,
|¢2) = [¢)) =2) =1 1).) The relevant orbital operators (51a)-
(51b) in this basis are

Table 2. Basis states for a two-orbital system.

0412} o % Nimz)T Nx(wz)l Ny Ny Nyt Ny |
1 - - 0 0 0 0 0 0
2 - 1 0 1 0 0 0 1
3 - T 1 0 0 0 1 0
4 - Tl 1 1 0 0 1 1
5 ! - 0 1 0 1 0 0
6 | 1 0 2 0 1 0 1
16 1 11 2 2 1 1 1 1
Index values of basis states are or,0 € {1,2,3,4}, and we use the shorthand notation
i), 1682 € {)|d) |q§(2 = \ 1 |¢3) =| T? ) = | Tl(} as usual. For the two-site basis oy, = (—1)g+oz € {1,2,3,4...16}, and
\qbi'jf) € {|¢ 1), |qu3 y=|=1),]t" My == 11),. \(bﬁ;l}) =|117l)}. Particle numbers for different spins are also
shown. These are proper quantum numbers if the corresponding operators commute with the Hamiltonian.
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Table 3. An example for the unitary matrix O, used to transform the
+ 0000 + 1.0 0 0 Hamilton to an S eigenbasis.
¢ =a ®l= , g =sQa = s
10 0 O 00 0 O ;
o 1 1 1l " S S
01 00 00 -1 0
(43 |7 1 0 0 0 ! !
a i) 0 1/V2 1/V/2 0 0 1
10 0O 1 0 0 0 LP§1-2} 0 1/V2 -1/v2 0 0
0100 0 -1 0 0 i 0 0 0 L L L
I=Ixl= , Z=S®Ss=
00 1 o0 o 0 -1 0 This transformation arises when the Hamiltonian commutes with the
operators of the z-component and the magnitude of the total spin. Then
0001 0 0 0 1 the eigenvalues of these operators, S and S respectively, are proper
(143b) quantum numbers, and are listed in the last two columns of the table.

We can put together two C* tensor spaces, i.e., forming a two-
orbital system (~), where Al"?' = A; @ A, with dim Al =
dim A;dim A, = g> = 16. The basis of the = system is given as
\qbi:fz;f) = [pi!h) @ |p7) where a5, = (01 —1)g+a. The rele-

vant operators for the * system are formed as

t +
C,, =z®c.
(144)

+ t 1 u L 1
G =l G =2Z®¢, G, =¢al

A wavefunction (33a), (53) can be expressed in a general form
as

|\P{1‘2}> = Z U{1‘2}(O‘17“2)‘¢i3}> ® |¢i§}>7

01,002

(145)

where the matrix U{"?} (a1, %) describes the quantum mechani-
cal probability distribution of the basis of the combined system.
Such wavefunctions can arise from the diagonalization of the
Hamiltonian H, which is a g* by g* matrix (43), using the above
representation of the creation and annihilation operators. The
full diagonalization of H gives the exact solution (full-Cl), and
the m'" eigenstate of a two-orbital Hamiltonian is

(02 =" Ul (o, 00,m) ¢ @ [912)), (146)
01,00
where o1,00 =1,....,gand m=1,...,¢%

4.1.2 Change of basis, truncation and iterative diagonalization.
The representation of the problem is, however, not unique.
Using a unitary operator acting on Al 0, which leaves the
eigenvalue spectrum of the Hamiltonian unchanged, we can
carry out a change of basis

U

H — OHO . (147)
One possibility to achieve this is to apply the unitary opera-
tor to all operators used to construct the Hamiltonian (43),
ie,
¢, ,—0c; 0',¢; —0c, 0, 1010 =1, ¢, ;—0¢ ¢, 0,
etc. If the rows of the matrix O is constructed from the | ¥}
eigenstates (146), then we arrive at the eigenbasis representa-
tion of H, i.e, H becomes diagonal and its elements are equiva-
lent to the eigenvalues of the original problem.

The eigenvalue spectrum of H determines the physical prop-
erties of the system exactly. It is, however, possible to use an

Wiley Online Library

approximate representation of H, i.e., using a smaller basis as
we select only M < g? eigenstates to form the O matrix, which
becomes then rectangular. That is, we change over to a sub-
space 212} of the original tensor space A2 (see section 3).
This truncation leads to loss of information as 00" # [, but the
kept eigenstates can still provide a good description of the
low-energy physics of the problem.

If we are interested in the low-lying eigenstates of H, it is
not necessary to carry out a full diagonalization, but system-
atic application of the Hamiltonian to a randomly chosen state
provides the lowest lying eigenstate. An extension of such
power methods, like the Lanczos®'® or Davidson 2" methods,
provides faster convergence rates, and excited states can also
be calculated®'2%12%],

For the sake of sim-
plicity let us consider an example of two S = 1/2-spins. That is, the
basis of the * system is formed from the |¢;) =| |),|¢p,) = | T)
vectors with g = 2, and the eigenvectors (146) can be formed as

4.1.3 Unitary transformation for two MOs.

[P =D 0(m. 200 —1)+a2)|9l)) @ [42),

01,002

(148)

where aq,a; € {1,2} = {],1}. An example for the O matrix is
shown in Table 3. The dimension of the O matrix is MXg?
where M can take values between 1 and g° (truncation). The
Mg? elements of the matrix can also be represented by g
(two) M X g matrices, denoted with B;(x3), i.e., for each basis
of the second spin we assign a matrix. This means that we
take columns 1 and 3 to form By(|) and columns 2 and 4 for
B,(1), so, for the example given in Table 3 we have (without
truncation)

1 0 0 0
o Va2 A2
(BZ(l))m,oq - 0 71/\/5 ’ (BZ(T))m,oq - 1/\/2 0
0 0 0 1

(149)

We also denote this by (Ba(22)),,, = Ba2(m,m,01). It is easy
to recognize that such B matrices form the basis of the matrix
product state representation discussed in section 3. In the lit-
erature, usually A, = B; is used, that is, Ay(oy,02,m) =
By(m, oz, 04), and the wavefunction is written as
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B0 = 3 Ao m)|pl) @162 (150)

0,002

4.1.4 Symmetries. In many systems, the time evolution gov-
erned by the Hamilton operator does not change the value of
a measurable quantity, i.e., the Hamilton operator commutes
with the operator associated to that measurable quantity.
These operators are called symmetry operators and can be
used to cast the Hilbert space to smaller independent subspa-
ces. Consequently, instead of solving a large matrix eigenvalue
problem, the eigenvalue spectrum can be determined by solv-
ing several smaller problems. Thus, the distinct quantum num-
bers helps to partition the Hilbert space into multiple
independent subspaces corresponding to a given combination
of quantum number values.

A given symmetry operator has the same eigenvectors as
the Hamiltonian, thus the eigenstates of the Hamiltonian can
be labelled by the eigenvalues of the symmetry operator
(quantum number Q), and the Hilbert space can be decom-
posed into subspaces (sectors) spanned by the eigenvectors of
each quantum number value.”?” Introducing a quantum num-
ber based representation, the sparse operators can be decom-
posed to a set of smaller but dense matrices, furthermore the
Hamiltonian operator becomes blockdiagonal.

For two orbitals, quantum numbers are formed from orbital
quantum numbers as Qy, .y = f(Qy,Qy), where function f
depends on the given symmetry. For U(1) symmetries the
f(Q,,Q,) = Q;+Q,, while for non-Abelian symmetries, such
as for the conservation of total spin, more complex algebra is
involved, based on the Wigner-Eckart theorem!#'22'=2241 For
more details, see 4.4.8.

4.1.5 Unitary transformation for d number of MOs and tensor
product approximation. The formalism discussed above can
be extended to describe a system with d MOs denoted as
The H|Ibert space is formed as AlT2dh — ® A; with

dimA‘“’2 “““ =TI, dimA; = g%. A wavefunction is written as
(P2t = % 7 U2 D a0, g9l @ 102D © . @ [50),
0.0
(151)

where U129} is 3 tensor of order d, illustrated in Fig. 12 for
the case d = 8. Since the dimension of U scales exponentially
with d, we need approximative methods. The major aim is to
find a good approximation of U in terms of products of lower
order tensors with smaller rank than the original problem.

One possibility is to systematically apply the procedure out-
lined in section 4.1.2 and in section 3 to describe one, two,
three, ...d-orbital wavefunction. Starting with two orbitals, *,
the new (truncated) basis of the composed system is written
as

| U |

a 45} a3 |f"-l g g

Figure 12. Example d = 8.
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Figure 13. a) Graphical representation of the two-orbital composed system
using the procedure outlined in section 4.1.2, b) and after using identity
(152¢). ¢) Graphical representation of the component tensor and d) the
d = 8-orbital wavefunction as a network built from matrices.

|§v{12

ZAz oc17oc2,m2)|(b{1}> @ \4’{2})

01,002

(152a)

which is shown schematically in Figure 13a. This can be rewrit-
ten as

E0Y = 57 Aa(mi, o0, ma) €0 © (912, (152b)
e
using the identity
|00 ZA Jon,mi)|oi) with Ay (1,00, m1) = 85 m,,
(152¢)

as is depicted in Figure 13b. We have the above form for A;(1,
o1,mq) since here the transformation and truncation comes
from the subspace approximation in A" common in a wide
part of renormalization group methods in physics, shown in
sections 4.1.2 and 4.1.3. On the other hand, when the transfor-
mations and truncation come from successive subspace opti-
mization starting with the space A;, e.g., based on SVD, then
we have nontrivial basis change even inside A;, see section
3.5. For three orbitals <,

0230 = 3 As(ma, a3, m3)[E) @ |912)).

my,o3

(152d)

This procedure can be extended iteratively using series of
component tensors

57 = 3 (Al - Bw) (91 @102 ... I81)).

2T

(152e)

where the component tensor A;(m;—1,a, m;) = (A,(oc,))mH‘m, is

defined as
= 5 (b)) ol s

mj—q,0p

see in Figure 13c. As a result of this procedure, the d-orbital
wavefunction is expressed as

[¥) = D Ai(en)Ax(n) - Aaoa) [9))) @ [67) © ... ® [¢i)),

009,02 50+450d

(1529)

WWW.CHEMISTRYVIEWS.ORG = ChemistryViews™
.' - ..


https://q-chem.org/
https://chemistryviews.com/
https://chemistryviews.com/
https://chemistryviews.com/

Internatianal Journal of

UANTUM

WWW.Q-CHEM.ORG

TUTORIAL REVIEWS

HEMISTRY

i.e,, for each MO we can assign a matrix A;(«), coming from the
basis change in Al g Ay, and we form a network built from
matrices as shown in Figure.13d. For more detailed derivations
we refer to the original papers and review articles!'821-31:39.64152]
and section 3.

Successively repeating the construction of section 4.1.4, the
quantum numbers for the q? states of the d-orbital systems
can be determined. As before, the full Hilbert space is decom-
posed into sectors based on these quantum numbers. If we
consider only the case where the number of electrons with
down and up spins is conserved, the quantum number is the
vector Q = (N|,N;) with N=N|+N;, then the dimension of

the related sector AFC|CA(d) in the Hilbert space is

(0

4.1.6 Tensor topology. If we render the tensor spaces corre-
sponding to the orbitals in a “one- or two-dimensional space”
(higher dimensional extension is also possible), we form a
chain- or lattice-topology of the tensor product representation.
In some cases, this topology is also reflected by the physical
lattice topology of the problem, i.e., one-dimensional-like poly-
mers can be studied very well using the one-dimensional ten-
sor-topology. As will be discussed below, one of the major aim
is to find the best tensor topology for a given molecule.

4.2 Entanglement and correlations

In the previous subsections, we have considered basis change
based on the Hamiltonian of the system. Another approach of
basis change is based on an actual pure state of the system,
and connected to the entanglement of that state.[>>'°¢

In quantum systems, correlations having no counterpart in
classical physics arise. Pure states showing these strange kinds
of correlations are called entangled,”">>"*® and the existence
of these states has so deep and important consequen-
ces!™’71%9 that Schrodinger has identified entanglement to be
the characteristic trait of quantum mechanics.l'®*'®"! The QC-
DMRG and QC-TTNS algorithms approximate a composite sys-
tem with long-range interactions, and it turned out that the
results of quantum information theory!'®?'%3 can be used to
understand the criteria of its convergence.

4.2.1 SVD and entanglement. The basic concept on which
entanglement theory is built up is the entanglement with
respect to a bipartition of the system. In this manybody situa-
tion, the system composed of d orbitals can be treated as the
sum of two  subsystems (also called blocks),
(A),(B) C {1,2,...,d}. (They are disjoint, and their union gives
the whole system.) The Hilbert spaces associated to them are
AP and A®), so Al12-dh = AW @ AB) After choosing bases
in the subsystems, {|¢§f(\;) e A} and {|¢§?B))> e A®}, the
wavefunction (151) characterizing the pure state of the system
can be written as

U(oa)s M(B))|¢§gﬁ)}> ® \@?QQ- (153)

Wiley Online Library

Based on the UDV-decomposition of the matrix U(aa), %g)),
one can find a product unitary transformation 04 ® Og, which
brings it to the Schmidt form &3

I'sch

¥) = Vomldy)) @ 1E0). (154)
m=1

Here, the vectors \éfﬁ&)) and |££§()B>) form orthonormal bases,
also called Schmidt bases, in the Hilbert spaces of the two
blocks, (éﬁ,’,\%fﬁ,)) = (éﬁ?\é?) = Om v, Moreover, the squares
of the Schmidt coefficients \/wn, satisfy 0 < wn <1 with the
constraint )" wp, =1. The summation goes up to the
Schmidt rank, rscn < min(dim AW,A(B)). The /w, numbers
are also called the singular values of U(on),%g)), and the
above form SVD. If the Schmidt rank rsc, > 1, then W) is
entangled (inseparable) and we say that the two blocks are
entangled.">®

If we consider the two-electron subspace of a two-orbital
system, then the state

1

[ent) = 5 (104") @194 -10") @ 101))
1 (155a)
=s(heln-Inel)
is an entangled state, while
Peep) = 61y @ [08) = [ 1) @] 1) (155b)

is separable. Both vectors are almost in Schmidt form, (unitary
transformation O, acting as |¢32)—|p1?!) and |p{2)—— |l
brings the first one to a Schmidt form) and the squared
Schmidt coefficients can immediately be read: w; = w; = 1/2
in the first case and w; = 1, w, = 0 in the second.

For a system characterized by a pure state |'¥), the state of
the subsystem (A) is encoded in the reduced density matrix of
the subsystem,

p™ = Trg| ) (P|. (156)
The subsystem of interest is usually labelled by (A) and the
other subsystem (B), which can also be considered as the
“environment” of (A). The operation Trg means carrying out
the trace over subsystem (B), that is, Trg(X ®Y) = XTr(Y),
leading to the form

(A) —

=3 ZU(‘“(A)7°‘(B))U<“/(A)7O‘(B)> |¢i?:>><¢i?;|» (157)

LR
having the matrix elements in the square bracket
— /(A A
P (30, 7)) = (@) 109

> Ul 40) U (% 9 )
%)

(158)
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(Similar expressions can be written for subsystem (B).) If we
write (156) using the Schmidt form (154), we get immediately
a diagonal form

PN =" Ry (W] (159)
m

in the Schmidt basis.

On the other hand, in this pure case, the information on the
entanglement between the (A) and (B) blocks of the system is
encoded in the density matrices of the blocks. It turns out
that the eigenvalue spectrum of p® is enough for the com-
plete characterization of the entanglement between blocks (A)
and (B), and, as we have seen in (159), it follows from the
Schmidt decomposition that the eigenvalues of p(*) are exactly
the squared Schmidt coefficients w,, in (154). (The same holds
for p(®)) Several quantitative measures of entanglement can
be extracted from this eigenvalue spectrum.??>??®! These are
usually the different kinds of entropies of the reduced density
matrix, characterizing its mixedness. The most commonly used
measure is the von Neumann entropy?%’-*?®

SW = S(p(A)) = —Trp<A)Inp<A)7 (160)
others include the more general one-parameter family of
Rényi entropies®>*?¢??°1 for parameter lower than 1, the
Hartley entropy Inrsc, (which can be considered as the Rényi
entropy in the limit when its parameter tends to 0), the
Schmidt rank rsq, itself, the one-parameter family of Tsallis
entropies,>*®' the concurrence-squared, or linear entropy (the
latter two are, up to normalization, the Tsallis entropy for
parameter 2). On the other hand, the von Neumann entropy
is the Rényi or Tsallis entropy in the limit when their parame-
ters tend to 1.

The definitive property, based on which the entropies are
proper measures of entanglement, is the monotonity under
LOCC: entanglement is quantum correlation, so any measure of
entanglement must not increase under applying Local Opera-
tions (that is, inside subsystems) and using Classical Communi-
cation between subsystems.[1°622>226231.2321 Hare we have to
give an important remark. This locality concept is understood
with respect to the notion of subsystems. The subsystems
have very different meanings in the first- and second-
quantized description of quantum systems. In the first quan-
tized case, the subsystems are the electrons (they can occupy
different orbitals), their entanglement (particle-entanglement)
can not increase if we apply LOCC for them, for example, if we
change the local basis ¢; in V¥ from which the Slater determi-
nants are built up (see section 2.2), especially, changing from
atomic orbitals to MOs or reverse. In the second-quantized
case, the subsystems are the orbitals or sites (they can be
occupied by electrons), their entanglement (orbital-entangle-
ment or site-entanglement) can not increase if we apply LOCC
for them (see section 2.4), for example, if we change the local
basis |¢fti}> in A; for a local subspace approximation. However,
since the isomorphism 1 in eq. (32) is nonlocal, i.e., it does not
respect the tensor product structure either in F< or in A9, a
basis change in V? although does not change the particle-
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Figure 14. a) Contiguous block of orbitals to determine block entropy. b)
Block entropy profile {2} obtained with the DMRG method for a one-
dimensional critical model with soft modes at k = *£2n/3. (Reproduced
from Ref. [235], with permission from American Physical Society.)

entanglement but does change the orbital-entanglement. (cf.
eq. (46).) This will be utilized in section 4.4.6 for reducing the
overall orbital-entanglement by changing locally the particle
basis.

Once the eigenvalues 2 of p are known, the von Neu-
mann entropy (160) can be calculated, leading to

S0 = =3 oMo, (161
m

In the examples (155) above, one can conclude that the entan-
glement measured by the von Neumann entropy for |Went) is
S (Went) = In2, while for [Wsep) is SA) (Psep) = 0. It turns out
also that |Went) is maximally entangled in the two-electron sub-
space of a two-orbital system. (The base of the logarithm in the
above expressions are often set to 2, in which case the von Neu-
mann entropy is measured in the units called qubit, the quantum
analogy of the bit in classical information theory.)

In eq. (160), subsystem (A) can be formed, in general, from an
arbitrary subset of the total set of orbitals. If it is only one orbital,
(A) = {i}, then its entropy is called orbital entropy, S;. The num-
ber of orbitals included in (A) can be tailored to obtain specific
information on the distribution of entanglement, which can then
be used to characterize the physical nature of the system.

4.2.2 Block entropy. The usual practice is to take one, two, or
more neighboring orbitals into a subsystem (called also block),
as is shown in Figure 14a for a one-dimensional topology used
in DMRG. The scaling behavior of the von Neumann entropy
512} of a contiguous block of the first | orbitals with the
number of orbitals has also been used to study the quantum
phases of one-dimensional systems. For systems with local
interactions, this “block entropy” diverges logarithmically with
block size | for critical systems, but saturates for gapped sys-
tems,'2%3] and in certain cases its profiles provide further
information about the energy spectrum.**?**! For example, the
oscillation with a period of three as is shown in Figure 14 iden-
tifies soft modes with a wavevector, k = =2x/3. In contrast to
this, the block entropy has more complex behavior when non-
local interactions are present!'’* and its profile depends
strongly on the ordering of the orbitals along the one-
dimensional chain as will be discussed below. As an example,
block entropy profiles obtained with the DMRG method for the
LiF molecule at bond length d|;-r = 3.05 a.u. are shown in Fig-
ure 15. At this point, it is worth to note that not only the pro-
files are different but the maximum of the block entropy is
much smaller in the latter case. This property will be used to
optimize tensor methods as will be discussed below.
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Figure 15. Block entropy profile obtained by the DMRG method for the LiF molecule at bond length d,;-r = 3.05 a.u. for a nonoptimized tensor topology

a) and for an optimized tensor topology b).

4.2.3 One-orbital and two-orbital entropy and mutual informa-
tion. Orbitals lying closer to and further away from the Fermi
surface possess larger and smaller orbital entropy, respec-
tively.”® The orbital entropy is related to the mixedness of a
local state and it is expressed by the eigenvalues of the one-
orbital reduced density matrix (as shown in (161)) for a given
orbital (A) = {i}, as shown in Figure 16a. Namely,

Si=— E Wyilne,j,
o

where i = 1,....d is the orbital index, while w,; fora=1,...,
g stands for the eigenvalues of the reduced density matrix of
orbital i. The amount of contribution to the total correlation
energy of an orbital can be detected by the single-orbital
entropy. Since the total system is in a pure state, i.e.,, we calcu-
late the ground state or an excited state, the sum of all single-
orbital entropy,

(162)

(163)

hot = Y Siy
i

gives the amount of total correlation encoded in the wavefunc-
tion.>>"° Since the full system is in a pure state, this is equal
to the total entanglement encoded in the state/wavefunction.
This quantity can be used to monitor changes in entangle-
ment as system parameters are adjusted, for example, chang-
ing bond length or other geometrical properties.’®>°7:10%
A useful quantity to numerically characterize all kinds of cor-
relations between pairs of orbitals is the mutual information
lj = Si+5;—Sj, (164)
calculated between two generally placed orbitals, i and j as
shown in Figure 16b. Here §; is the von Neumann entropy, eq.
(160), for a subsystem (A) chosen to be the single orbital i,
and S is the entropy for (A) chosen to consist of orbitals i and
j- The mutual information [; describes the correlation between
the two selected subsystems, orbitals i and j, embedded in a
larger system. I yields a weighted graph of the overall correla-
tion of both classical and quantum origin among the orbitals.

Wiley Online Library

The mutual information defined in this way has been intro-
duced previously to study correlation between neighboring
orbitals in spin and fermionic chains with local interactions!'”®
and in quantum chemical problems in order to optimize the
network structure!" as well as to study molecular bonding
properties in various transition metal complexes.!''"'38% There-
fore, these quantities provide chemical information about the
system, especially about bond formation and nature of static
and dynamic correlation.""'*#+%77711 A5 an example, S; and I
are shown in Figures 17 and 18, respectively, for the equilib-
rium bond length dy;-f = 3.05 a.u. and at large separation d|;-¢
=13.7 a.u. It is clear form Figure 18 that some orbitals are
strongly entangled with several other orbitals while some orbi-
tals are entangled with only a few others and some are almost
disentangled from the system.

4.2.4 One-orbital and two-orbital reduced density matrix and
generalized correlation functions. It has been shown®>'7%
that one can also analyze the sources of entanglement
encoded in /; by studying the behavior of the matrix elements
of the two-orbital reduced density matrix p; The d-orbital
wave function can be written in terms of the single-orbital
g-dimensional basis as

)= > U,

0.0 ,00

)i @@ gl (165)

where the o; labels single-orbital basis states and the set
of coefficients U(o,...,0q) is viewed as a tensor of order d.
The one- and two-orbital reduced density matrices
pi=Tr j.a )P and p;=Tr ;. 4l'P)(¥| can be

0 o000 00 s oeeee e

i F

Figure 16. Partitioning of the system into single-orbital (A) = {i} and
double-orbital (A) = {i,j} subsystems, in order to determine single-orbital
entropy S; a) and two-orbital entropy S; b).
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sentations of the molecular orbitals in the C,, point group.

calculated by taking the appropriate partial traces of |W)(¥
leading to the matrix elements

l

pi(e, ) = (91 o}l 0}))

(166a)

7

U(oc1,...,oc,-,...,ocd)U(m,...,oci,...,ocd),

oy (0. ) = (@10 9P Loyl 6y

. .
.,aj,...,cxd)U(oq,...,oc,-,...,ocj,...,ocd>.

(166b)

The dimension of U grows exponentially with system size d,
thus, such full tensor representations of the wave function,
needed for the computation of the reduced density matrices
above, are only possible for small system sizes. Using the
methods described in the previous and following sections, the
dth-order tensor U can, in many cases, be efficiently factorized
into a product of matrices, as e.g., in (152g)

U(oc1,...,ocd) :A] (OC1)A2(062)...Ad(O(d), (167)

(a)

0.09
25 0.08

20 ¥ o 0.07
023 24 0.06

0.05
L3 O7 0.04

11 0.03
2 O ©
19 1
0 b4
21 0.01
15

0.02

0

leading to an MPS representation of the wave function, where
the A;(«;) are M X M matrices in general.’” For systems with
open boundary conditions, A; (o) and Ag(og) are row and col-
umn vectors, respectively. In the MPS representation, the cal-
culation of p; and p; by means of egs. (166a) and (166b)
corresponds to the contraction of the network over all states
except those at orbital i in the first case and at orbital i and j
in the second, as depicted in Figure 19 for a chain with d =8
orbitals.

From a different point of view, the matrix elements of p;
and g; in egs. (166a) and (166b) can be written as expectation
values of projection-like operators acting on the corresponding
orbitals Let the transition operators be defined as

T =9, )M,|, for m=1,....¢, (168)
which describe a possible transition between the initial states
|¢,) and the final states |¢,) understood for a given orbital,
with the numbering rules

o—1=((m—1) mod q),

o —=1=|(m-1)/q], (169a)

m—1= (a—1)g+o 1. (169b)

12
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O
< 3 12 jaka 24 1
Q 019 5a
1 }
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Figure 18. (Color online) Mutual information represented as a two-dimensional weighted graph for the LiF molecule at bond length a) d|;-+ = 3.05 a.u. and
at b) dii-r = 13.7 a.u. Colors indicate different strengths of /; and the symbols label the irreducible representations of the molecular orbitals in the G,

point group.
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Figure 19. Contraction of the MPS network to calculate the one- a) and
two-orbital b) reduced density matrices ¢; and ;; for a chain with d = 8.

(Here |x] denotes the floor function, the integral part of x.)
These operators can be extended to operate on the complete
Hilbert space consisting of d local Hilbert spaces labeled by
i=1,...,das

T =18..018TMgl®...a1,

1

(170)

with the operator T™ in the i-th position.

One can now easily check that the matrix elements of the
one- and two-orbital reduced density matrices, given in
(166a)-(166b), can be expressed as the expectation values of
the transition operators for one and for two sites, respectively,
as follows

’

pi(%i, o) = <T,§mi)>? (171a)

(T My, (171b)

pu(“”“hal? /) i j

using the numbering rules (169) for each orbitals. That is, the
matrix representation of the one-orbital reduced density
operator ¢; can be constructed from expectation values of
operators describing transitions between the single-orbital basis
\d)if}), while the two-orbital reduced density operator g; can
be constructed from expectation values of operators describ-
ing transitions ~ between two-orbital ~ basis  states
\¢if}¢>g}) =ph @ \(i)g}). This is a generalization of the proce-
dure introduced in the DMRG context for spin-1/2 fermion
models.©#3! |n the following, we refer to the expectation val-
ues of pairs of state-transition operators in eq. (171b) as gener-
alized correlation functions in order to distinguish them from
conventional correlation functions, i.e., those based on physi-
cally motivated self-adjoint operators such as local spin or
density operators. For (171a), note that when the individual
local basis states are completely distinguished by Abelian
quantum numbers, the one-orbital density matrix is diagonal
and has the form p;(a, o) = 3y (T 1) ), providing the
spectrum immediately.

A given generalized correlation function measures the
expectation value of the resonance amplitude between the ini-
tial and final states within a particular environment. In general,

(Tfm")T;mf)> contains both connected and disconnected contri-

Wiley Online Library

butions between subsystems i and j. Therefore, it can, in gen-
eral, scale to a finite value as the distance /= |i—jl
increased, even if the physical correlation function goes to
zero for large I. In order to circumvent this behavior, one gen-
erally study the connected part of the generalized correlation
functions, (Tfm’)’]'}m")k = {’Tfmf)T}m")>—(Tfm’))<7}m’)>, where
the disconnected part, given by the product of the expecta-
tion values of the local transition operators, is subtracted out.
Note that the mutual information (164) is formulated in such a
way that the disconnected parts of the generalized correlation
functions do not contribute. These can be used to identify the
relevant physical processes that lead to the generation of the
entanglement.>17%

As an example, let us take the spin-1/2 fermionic model.
Here the single-electron basis states can be empty, occupied
with a single spin-down or spin-up electron, or doubly
occupied, with the corresponding basis states denoted as |-),
[1), [T), and |T]), as before. Since the local basis is g = four-
dimensional, g> = 16 possible transition operators TM arise,
as is displayed in Table 4. They can be written explicitly in
terms of local fermion creation c,., annihilation Cis and num-

ber n;; operators (51¢c)-(51d) as

IS’

TV = (1-my) (1-n)), 7% = (1-ny)c,

T(?’) =CQ (I]—nl), T(4> = —qC|,

7% = (-n))e, T =(I-nj)n,,

TV = —¢c|, 7® = ¢ny,

9) ! (10) ! (172)

7% =c (I-n)), T = ¢c,

T(”) = nT(U—nl), T(1Z> = —mCy,

t ot t
T = ¢c), 7' =cin|,
T“S) = —nTcl, T<16) = nTnl.

The nonvanishing matrix elements of the two-orbital density
matrix p; are given in Table 5. Note that the two-orbital den-
sity matrix is block-diagonal in the particle number N, and in
the z component of the spin S%. The block-diagonal structure
is evident, and the values of m; and m; appropriate for each
matrix element are displayed.

lllustrating these, some generalized correlation functions are
plotted for the LiF molecule in Figure 20. As was mentioned in
the beginning of this section,®>'”% the generalized correlation
functions (matrix elements for ¢ \,,) are connected to the values
of the mutual information I;, which is plotted in Figure 34
later.

Table 4. Single-orbital operators describing transitions between single-
orbital basis states for a S = 1/2 spin system.

=) )i I 10

=) 7" 7 7 7

1), v 7 77 T®
1 1 I 1 1

1), 7 7" 7" 7,

10, 7 7" 7" 7"
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Table 5. The two-orbital reduced density matrix p; for SU(2) fermions expressed in terms of single-orbital operators, T('"’) with m; =1,...,16.

n=0, n=1, n=2,
5,=0 5= n=1, s,=1 5,=-1 n=2, s,=0 n=2, s=1 n=3, s,=- n=3, s,=1 n=4, s,=0
Pij -- -l 1= -1 - 1 -1l 17 I 1= I Il 11 171 1T Tl
-- (1,1
-1 1,6)  (25)
- (5,2) 6,1
-1 (1,11) (3,9
T- 9,3) (1,11)
1l (6,6)
=11 (1,16) (2,15) (3,14) (4,13)
1 (512) (6,11) (7,10) (8,9)
Tl 9,8) (10,7)  (11,6) (12,5)
Tl - (13,4 (143) (152) (16,1)
T (11,11)
111 (6,16) (8,14)
T (14,8) (16,6
171 (11,16)  (12,15)
TIT (15,12) (16,11)
Tl (16,16)

number and z spin component quantum numbers of the two orbitals.

For better readability only the operator number indices m are shown, that is, (m;, m) corresponds to (T}m’)T;m’)} Here N, and S” denote the particle-
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Figure 21. Schematic plot of the Block Renormalization Group (BRG) method as block transformation procedure where h and J label on-orbital and nearest

neighbor interaction, respectively a), and as a tree-network b).

4.3 Methods based on block transformation procedures

4.3.1 Block renormalization group method (BRG). One of the
first attempts to approximate the full configuration Hilbert

d
space A = ® Aj (dim A;j = g) of a d-orbital system goes back

to the late 1960s when Kadanoff invented the Block Spin
Renormalization Group method and applied it to the two-
dimensional Ising model.?*®! This was later extended to quan-
tum systems in one dimension called block renormalization
group (BRG) method.”*”%*® The main idea of the method is to
group ds number of orbitals into blocks. The total Hamiltonian is
then written as a sum of terms corresponding to the interac-
tions within the blocks (intrablock Hamiltonian) and terms corre-
sponding to the interactions between the blocks (interblock
Hamiltonian). The unitary matrix O introduced in section 4.1.3 is
formed from the g lowest eigenstates of the intrablock Hamilto-
nian and operators are transformed to a new basis using eq.
(147). Using the transformed operators, the interblock Hamilto-
nian can also be expressed. Truncating the Hilbert space of the
blocks and keeping only g states per block ensures that one can
rescale the interaction strengths (flow equations) and thus the
original form of the Hamiltonian is retained. In the next itera-
tion step, the ds-blocks are collected. The schematic plot of
the procedure is shown in Figure 21a. The procedure is
repeated until subsequent iterations do not change the inter-
action strengths, i.e., until the so-called fixed point of the RG
transformation is reached when measurable quantities corre-
sponding to the d — oo limit can be calculated. While this
method gave reasonably good results for some one-
dimensional models with local interactions, using such
systematic change of basis and truncation led to loss of
information in each iteration step and the accumulation of
the error hindered the application of the method for more
complex problems. In case of systems with finite number of
orbitals this block transformation procedure can also be car-
ried out until all orbitals are included in a single block and
the approximated ground state energy can be calculated.
This corresponds to the root for the Hierarchial Tucker format
discussed in section 3.6. Due to the dramatic truncation of

Wiley Online Library

the states and nonlocal interactions this procedure cannot be
applied efficiently in quantum chemistry. However, the BRG
method also serves the basis of hierarchal tensor representa-
tion and TTNS ansatz discussed in section 4.3.4. Recently,
extension of the method known as the MERA®? gave a new
impetus to its application for strongly correlated systems.

4.3.2 Numerical renormalization group method (NRG). Another
variant of the RG method, known as the numerical renormali-
zation group (NRG) method shown in Figure 22 is due to
Wilson.”*?' In the NRG-related Hamiltonian, an impurity inter-
acts with a local fermion. The dynamics of this fermion is
described by a semi-infinite one dimensional network, also
know as the Wilson chain. The impurity sits on the left side
and electrons can move along the chain with an exponentially
decreasing hopping amplitude 7772 Therefore, each orbital
represents a different energy scale. Starting with the very left
orbital, new blocks including / orbitals are formed by adding
orbitals systematically to the block, ie, =& =20 @ A/,
where in the first step 2" = A;. In each iteration step, the
block Hamiltonian is solved and the unitary transformation
matrix O is formed from eigenstates corresponding to the low-
est M eigenvalues. The block Hamiltonian is rescaled based on
the decay rate of the hopping and the intrablock Hamiltonian
is determined on the new basis. Another major difference
compared to the BRG method is that in NRG g < M < q¢
states are kept, thus the original form of the Hamilton is lost.
Due to the appearance of new operators during the iteration
scheme flow equations described above cannot be studied.
The change in the energy spectrum, however, can be analyzed
and once subsequent iterations leave the spectrum unchanged
the fix point is reached. This approach works well due to the
separation of energy scales. A problem, however, arises for lat-
tice models when 1 — 1 and error starts to accumulate signifi-
cantly for increasing block size. This hindered the application
of NRG to large lattice models. Quite recently, an extension of
the method using a similar blocking structure as in DMRG has
led to the development of the so called density matrix numeri-
cal renormalization group (DM-NRG) which allows us to study
more complex problems.[41240-2431
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els, respectively. For the consecutive iteration steps, the distances between the levels illustrates how the energy resolution of NRG gets exponentially

refined d).

4.3.3 DMRG method. In order to circumvent problems dis-
cussed for BRG and NRG, in the two-site variant of the DMRG
method"" A@ is approximated by a tensor product space of
four tensor spaces, i.e., EE,d,\)ARG =20 @ A @ Ar @ EY. This
is called superblock and the basis states of the blocks are opti-
mized by successive application of the SVD as discussed in sec-
tions Matrix product states or the TT format and SVD and
entanglement. Here we use the convenient notations that the
whole system, consisting of d orbitals 1,2,...d, is partitioned
into blocks (subsystems), for which we use the labels
(L), (1), (R) and (). () simply means the block composed of the
first | orbitals, that is, (I)={1,2,...,/}. An extended block
composed of the first /+1 orbitals is denoted as
(L) ={1,2,...,1.I+1}. The other part of the system is
(R) = {I+2,1+3,...,d}, while (r) = {I+3,...,d}. The d-orbital
wavefunction is, therefore, written as

|'Womre) = Z

M) %+1%+2M(r)

X|é£rl)>(|)> @ ot @ ¢t @ \Cfﬁr?)

O+1 O+2 (r)

Ubwirs (M, %41, %42, M)
(173)

where the tensor Upwgrg is determined by an iterative diagonal-
ization of the corresponding so called superblock Hamiltonian.
The dimensions of the spaces of the local left block including
| orbitals and the right block with r =d—I—2 orbitals are
denoted with M, = dim A" and M, = dim AD, respectively.
Since dim Ay =dim Aj2 =g, the resulting dimensionality
of the DMRG wave function is dim Z\%5.. = ¢*MM, < ¢°.

In the original version of the DMRG, introduced to treat finite

one-dimensional lattice models,!''?! the Hilbert space of a lattice

International Journal of Quantum Chemistry 2015, 115, 1342-1391

with d sites is built iteratively starting with four sites as shown in
Figure 23. In each iteration step, the Hilbert space E of an
enlarged block (1) is formed from the tensor product of the Hil-
bert spaces of the block =0 and the adjacent site Aj4q — simi-
larly Z® from A, and EP - and transformed to a new
truncated basis by using a unitary operation based on SVD as
discussed in section 4.2.1. Therefore, in each iteration step the
size of the effective system is increased by two until the desired
length d is achieved. This procedure is called infinite-lattice pro-
cedure. In the following steps, the d-site system is partitioned

IEI . . @ d=4 Infinite

El _ i Lattice

@ . . =8 Method

@eeoeco00e -

00000000608 U Finite

_ Lattice

|. 90000 .l. .IEI =2 Method
@. .l. Y X X ‘l d=10 (sweeping)

Figure 23. Decomposition of the d-orbital Hilbert space into four subsys-
tems called superblock. The d-orbital Hilbert space is built iteratively from
a left block including / active orbitals and the right block from r active
orbitals. The size of the two blocks is increased in each iteration step until
I+2+r=d. In the following steps the d-orbital system is partitioned
asymmetrically, i.e. the size of left block is increased systematically while
the size of the right block is decreased until / = d—3 and r=1. The same
procedure is repeated in the opposite direction until /=1 and r =d—3.
This procedure is called sweeping (macroiteration step).
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asymmetrically, i.e. the size of left block is increased systemati-
cally while the size of the right block is decreased until / = d—3
and r = 1. In each iteration step, the approximated Hilbert space
of the left block (called system block) is improved as it interacts
with the right block (called environment). The same procedure is
repeated in the opposite direction until /=1 and r = d—3 when
the left block becomes the environment block and the right
block the system block. This procedure is called sweeping (mac-
roiteration) and it is a part of the so called finite-lattice method.
For more detailed derivations, we refer to the original papers
and review articles 20119120

In analogy, in the infinite-lattice procedure one can say that
the d-orbital Hilbert space is built iteratively by forming /-
orbital and r-orbital blocks from the one-orbital Hilbert spaces
starting with an “active space” including only four orbitals. In
each iteration step the number of active orbitals is increased
by two until all the d orbitals become active, i.e., part of either
the left or right block. This procedure serves as the initializa-
tion of the MPS network with d component tensors. When the
network is formed, the elements of the A; matrices are random
numbers. The infinite lattice method can be viewed as a
procedure to start with four “active” component tenors by
setting the remaining d - 4 component tensors to trivial.
This means that the m;—; and m; indices of the corresponding
Ai(mj—1,a;,m;) takes only the value 1, and A;j(1,%;,1) = 1,
that is, Ai(1,1,1) =1 and the others are 0. In each iteration
step, the number of “active” component tensors is increased
by two until no component tensors are set to trivial.

In quantum chemistry, it is more efficient to start with an
initial network which already corresponds to the finite system
with d orbitals as has been introduced through the Dynami-
cally Extended Active Space (DEAS) procedure.” In the DEAS
procedure, one starts with a superblock structure with /=1
and r = d—3, as is shown in Figure 25, and carries out the for-
ward and backward sweeping procedure, i.e., the finite lattice
method as described above. A crucial problem, however, is
that during the first sweep when the left block is optimized
the right block Hilbert space has to be approximated with M,
< q" basis states. An efficient method to carry out such opti-
mization will be discussed in section 4.4.7 based on the Cl
procedure.

Let us highlight the main aspect of DMRG procedure once
again: If one could represent the Hilbert spaces of the four
subsystems used in the two-site DMRG exactly using one-
orbital basis states, then in the first step of the DEAS proce-
dure this would mean M;=q and M, =q?3 and ADMRG =
A R A1 @ Ajo @ AV By traversing through the system
back-and-forth the left and right block Hilbert spaces are
transformed and truncated, and after a fuII sweep the approxi-
mated subspace is given as E,()d,\%RG =Z20 @ Ajsq @ Apyy @ ED,
Therefore, the d-orbital wavefunction written in terms of one-
orbital basis is converted to an approximated multiorbital basis
in _(Dd,\;RG =E0® Aj1 ® A2 ® Y, where dim EE;&,RG < dim
A9 depending on the level of truncation.

A main difference compared to the BRG and NRG methods
is how the transformation matrix O is constructed. In a given
iteration step (see Figure 24), the (I)» composite system is

Wiley Online Library

XXX IO
M,; M.,
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Figure 24. Schematic plot of a DMRG iteration step in order to increase block
sizes and form a bipartite representation for the singular value decomposi-
tion. (I) and (r) denote the left and right block of length / and r, and of dimen-
sion M, and M,, respectively, « stands for the intermediate orbitals ({/+1} and
{I+2}) with dimension q. The blocks (L) = (I)+, (R) = +(r) have dimension M,
and Mg, respectively.

combined to one subsystem (I) with 20 =20 g A4 and «(r)
to another one () with E® = A, ® E". This leads to =V
®ER =59 . C A and the bipartite representation of the
wavefunction is formed as

Z Upmra (M )|¢ ) ® |¢£§()R)>~

|Wowmras) = (174)

According to section 4.2.1, using SVD it can be written as a
smgle sum of tensor products. The new basis states \gm ) and
\gm ) given in eq. (154) are obtained by dlagonallzmg the
reduced subsystem density matrices p and p®), see eq.
(156). The transformation matrix O |ntroduced in section 4.1.3
is formed from eigenstates \gm ) (or \f ) corresponding to
the Mke'm < Mg (or MkePt < M q) largest elgenvalues . Due
to the truncation of basis states, the so-called truncation error
is defined as the sum of the truncated number of eigenvalues
of the reduced subsystem density matrix deviates from unity,
i.e.,

Miept

OeR = 1—2 W
m=1

(175)

Operators of the enlarged blocks are transformed to this new
basis as (X; Y,H)(’H :O(Xfl) ®Y,{f;1})0 where X; and Y,
are M;XM; and g X g matrices, respectively. The number of
block states, M, and M, required to achieve sufficient conver-
gence can be regarded as a function of the level of entan-
glement among the MOs. Hence the maximum number of
block states Mmax = max(M;,M,) determines the accuracy of
a DMRG calculation®?*! as will be investigated in the next
section.

If the transformation matrix O in each iteration step is rein-
dexed according to the procedure explained in section 4.1.3
and the corresponding B matrices are stored within a full
sweep then the DMRG wavefunction for a given superblock
partitioning can be written in MPS form!'&1%34 55

|Wowmrs) = Z

My 01 %42Mr)

Ubmrs (M), %141, %42, M)

X (Bi(21) - Ba(02)) oy (Br3(243) - Bam1 (1)) g 7O
X|¢{1}> ®|¢§I+1}>®|¢§/+2}> ®|¢id}>
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Figure 25. A modified initialization of the tensor network with d orbitals
used in the Dynamically Extended Active Space (DEAS) procedure. In the
DEAS procedure, one starts with a superblock structure with /=1 and r
= d—3 and use an approximated Hilbert space with dimension M, < ¢'.

Therefore, DMRG can be viewed as an efficient method to
generate the optimized set of A; (B;) matrices used to con-
struct the MPS representation of the d-orbital wavefunction.
Since in this representation, the d-orbital wavefunction is writ-
ten as a linear combination of the tensor product of the one-
orbital basis (Cl coefficients), it allows one to connect the
DMRG wavefunction to conventional quantum chemical tech-
niques. For example, the Cl coefficients of the most relevant
terms can be determined.””!

Concluding this section, different one-dimensional represen-
tation of tensor network state algorithms, i.e, matrix product
state methods have been developped in the various commun-
ities. In this one-dimensional optimization scheme, the net-
work is built from matrices. The TT and MPS approaches are
“wavefunction” oriented description of the problem while
DMRG is more like an “operator” representation of the prob-
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lem. In the TT and MPS, the physical indices are for local g
dimensional tensor spaces thus operators are g X g matrices
but the A(x) matrices must be stored. The norm is calculated
by simply connecting the physical indices vertically. In contrast
to this, in the DMRG description when the network is sepa-
rated to a left and a right part, the operators of the left and
right part are represented on a multiorbital tensor space of
dimension M; and M,, respectively, where both are much larger
than g. Therefore the corresponding matrices of dimensions M,
XM; and M, XM, must be stored during the iterative minimiza-
tion procedure. In the quantum chemistry framework, long-
range Coulomb interactions are given by the fourth-order ten-
sor Vjiy of equation (44b)) thus the number of renormalized
operators scales as O(d*). Using, however, an efficient factori-
zation of the interaction terms distributed among the various
subsystems,?*¥! this scaling can be reduced to O(d?), see in
section 4.3.5. Therefore, the required memory to store opera-
tors in a given QC-DMRG iteration step assuming M; =M, =M
is O(M?d?). The computational cost of a given QC-DMRG step
scales as O(M3d?) and for a full sweep O(M3d®). A main
advantage of the DMRG method is, however, that in each iter-
ation step the core tensor is optimized so orthogonalization of
the left and right block states are guaranteed™.,

4.3.4 Higher dimensional network: TTNS. A natural extension
of the MPS approach is to form an ansatz state by contracting
a network of higher order tensors,?'~3842-441171 55 discussed
in section 3. A special class of such ansatz states are the
TTNS®8-1002451 \yhich are formed by contracting tensors
according to a tree network, as shown in Figure 26. The struc-
ture of the tree network can be arbitrary and the coordination
number can vary from site to site. Each tensor in the network

represents a physical orbital and is of order z+1, were z;
describing the coordination number of site i:
Ao, mia, ... mjz). (177)

The z; virtual indices m;1,...,m;, are of dimension M and are
contracted as the TTNS is formed. The physical index o; is of
dimension g and describes the physical state of the orbital,
e.g., the number of up- and down-electrons on that orbital.

(b)

mi,1 ’

'mi‘z[

o mL:.E

Figure 26. Schematic plot of a higher dimensional network, for example, the tree tensor network state (TTNS). Each node is represented by a tensor A; of
order z;+1, with z; is an orbital dependent coordination number. The network supposed to reflect the entanglement structure of the molecule as much as
possible. The vertical lines are the physical indices o;, i € {1,d}, while the others that connect the orbitals are virtual ones.
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(V[H|T) =

Figure 27. Concept of the variational optimization of tensor network states: a) tensor network state |\V') separated into two parts: the tensor A; that is sup-
posed to be optimized and an egvjrorlnent tensor & that is formed by contracting all tensors except A;. b) norm (¥|¥) of the tensor network state
defined in a); the norm equals to A;N;A; with A; corresponding to the gM%-dimensional vector obtained by joining all indices of tensor A;, and N; repre-
sents the effective environmgm, chawn with dashed lines. c) expectation value (W|H|'W) of H with respect to the tensor network state defined in a); the
expectation value equals to A;H;A; with H; representing the effective Hamiltonian, drawn with dashed lines.

The TTNS is especially suitable to treat models in which orbi-
tals have varying degrees of entanglement (see Figures 17 and
18): since entanglement is transferred via the virtual bonds that
connect the sites, sites with a larger coordination number are
better suited to represent higher entanglement. In this way, the
coordination number can be adapted according to the entan-
glement of the orbitals, and the orbitals can be arranged on
the tree such that highly entangled orbitals are close together
(see later in section 4.4.5).

An additional motivation for using a tree structure is to take
advantage of the property of the tree tensor network ansatz
that the long-range correlations differ from the mean-field
value polynomially with distance rather than exponentially as
for MPS.”® This is due to the fact that the number of virtual
bonds required to connect two arbitrary orbitals scales loga-
rithmically with the number of orbitals d for z>2, as can be
seen by considering a Cayley-tree of depth A: the number of
sites in the tree is

z(z=1)"-2

— (178)

A
d= H—zz (z—1Y7" =
=

and thus, the maximal distance between two orbitals, 2A,
scales logarithmically with d for z>2. On the other hand, for
z=2 the number of virtual bonds required to connect two
arbitrary orbitals scales linearly in d.

In the algorithmic approach to optimize the TTNS, one can
use tools known in literature®®2*-2471 and optimize the net-
work site-by-site as in the DMRG. The fact that the tree tensor
network does not contain any loops allows an exact mathe-
matical treatment™®''”! (see in section 3.2). For z=2, the
DMRG algorithm is recovered. The TTNS algorithm is similar to
a DMRG calculation with z blocks instead of two, where a
block consists of all of the sites within one of the branches
emerging from site i (see Figure 28a).

Wiley Online Library

As in DMRG, the TTNS algorithm consists in the variational
optimization of the tensors A; in such a way that the energy is
minimized (with the constraint that the norm of the state
remains constant). This is equivalent to minimizing the functional

F=(YHY)-E(¥Y|V¥)-1), (179)
with [W¥) = | (Aq,...,Aq)). This functional is nonconvex with
respect to all parameters {A4,...,Aq}. However, by fixing all
tensors Ay except A;, due to the tensor network structure of
the ansatz, it is quadratic in the parameters A; associated with
one lattice site i.

As depicted in Figure 27a, the tensor network state can be
separated in two parts: the tensor A; that is supposed to be
optimized and an environment tensor &; that is formed by
contracting all tensors except A;. A; is connected to the envi-
ronment tensor &; by z; virtual bonds, with z; being the coordi-
nation number of site i. Using this separation, it is evident that
(YY) = KiNiK, and (P|H|VP) = Ki H/A, as shown in Figures
27b and 27c. K)i is thereby the reshaped gXMX - .. XM-tensor
A; into a gM*-dimensional vector. The inhomogenity N; and
the effective Hamiltonian H; with respect to site i are matrices
of size gM# XgM? that are obtained by contracting all tensors
except A; in the tensor expressions for (¥|¥) and (¥|H|'Y),
respectively (see Figures 27b and 27¢).

The optimal parameters A; can be found by minimizing the
quadratic function

— S -t
F(A,—):A,.HiA,-—E ANA—1), (180)

which is equivalent to solving the generalized eigenvalue
problem

H/A; = ENA.. (181)
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Figure 28. a) norm (¥|¥) of the TTNS defined in Figure 26; the tensor network picture of the norm corresponds to a two-layer structure, with the ket |¥)
being on top and the bra (¥| on bottom. For better readability, the contracted physical indices are drawn with dashed lines. b) gauge transformation in a
tensor network state: the state remains invariant if matrices G and G~ are inserted at one bond and merged with the adjacent tensors. c) Orthonormaliza-
tion condition imposed on all tensors (blue) except A; (green). d) Norm of the TTNS with all tensors except A; fulfilling the orthonormalization condition.

For a network without loops, it is always possible to set N;
equal to the identity, which accounts for numerical stability
because the generalized eigenvalue problem reduces to an
ordinary one. The reason for this possibility is the gauge
degree of freedom that exists in tensor networks: without
changing the state, matrices G and G™' can always be inserted
at a bond and merged with the adjacent tensors, as depicted
in Figure 28b. Because of this gauge degree of freedom, each
tensor A; for j # i can be enforced to fulfill the orthonormali-
zation condition

Z Af (af’ m}im mou‘)'qf(af’ min’ mlout) = 5moutm;ut . (182)
=

mi,

Here, the “out”-index mgy is the index pointing towards site i,
the remaining indices are denoted “in"-indices mi,. In pictorial
form, this condition is illustrated in Figure 28c. The mathemati-
cal operation that endows tensors with the orthonormalization
condition is the QR-decomposition which is numerically sta-
ble® Due to the orthonormalization condition, the tensor
network for the norm of the TTNS, as shown in Figure 283,
can be “cropped” from the leaves towards site i, until only the
tensors A; and A; at site i remain. The norm of the TTNS then
simplifies to (VP|¥) = K, A, which makes N; =1 (see Figure
28d).

The challenge that remains is to calculate the effective Ham-
iltonian H; of the eigenvalue problem. As mentioned before, it
is obtained by contracting all tensors except A; and A; in the
tensor network of (W|H|'). In case of a TTNS, the contraction
is efficient if the Hamiltonian H is present in the form of a tree

International Journal of Quantum Chemistry 2015, 115, 1342-1391

tensor network, as well. The tree network of the Hamiltonian
shall have the same structure as the tree network of the state.
In analogy to the definition of the TTNS, a tensor

h; (047 o, Mg, ..., mi.z,) (183)

is associated to each site i with physical indices o; and o; and
virtual indices mi1,...,m;,. The coefficients H(o,. .., o, o,
...,0q) are then obtained by contracting the virtual indices of
the tensors h; according to the tree network. For z=2, this
corresponds to the representation of the Hamiltonian as a
Matrix Product Operator (MPO), as depicted in Figure 29b1. For
z>2, this concept is generalized to a Tree Tensor Network
Operator (TTNO), which is illustrated in Figure 29b2. In fact, for
local Hamiltonians it is always possible to find a representation
as an MPO or TTNO with constant dimension of the virtual
bonds.?*® For nonlocal Hamiltonians of the form (43), as aris-
ing in quantum chemistry, it is always possible to find an
MPO- or TTNO-form with bond-dimension O(d?).

Once the Hamiltonian H is represented as TTNO with the
same network structure as the TTNS |¥), the tensor network
form of the expectation value corresponds to a three-layer
object, as depicted in Figure 29a, with the ket |¥) consisting
of component tensors A; being on top, the bra (¥| consisting
of component tensors A; on bottom, and the Hamiltonian H,
represented as TTNO of component tensors h; in the middle.
By starting from the leaves and proceeding inwards towards
site i, this network can be contracted efficiently (i.e. polyno-
mially in d and M), yielding the expectation value (‘¥|H|¥)
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(a) (T|HT) =

Figure 29. a) Expectation value (W|H|¥) with respect to the TTNS defined in Figure 26; the tensor network picture of the expectation value corresponds
to a three-layer structure, with the ket |¥) consisting of component tensors A; being on top, the bra (‘\¥| consisting of component tensors A; on bottom,
and the Hamiltonian H, represented as TTNO of component tensors h; in the middle. For better readability, the contracted physical indices are drawn with

dashed lines. b) Decomposition of the Hamiltonian as MPO (b1) and TTNO (b2).

and, if A; and A; are omitted, the effective Hamiltonian H;. In
order to reduce computational costs related to the diagonal-
ization of the effective Hamiltonian a half-renormalization
scheme has also been introduced.”!

For more detailed derivations we refer to the original

papers [98-100]

4.3.5 Efficient factorization of the interaction terms. When the
d-orbital system is partitioned into several subsystems, the
Hamiltonian is built from terms acting within the subsystems
and from terms among the subsystems. During the course of
the iterative diagonalization of the effective Hamiltonian acting
on the M;Mg dimensional subspace, the matrix vector multipli-
cation H|'P) is performed several times.?'®2'¥ For a bipartite
split using the matricization of U discussed in section 3.4, |'¥)
is converted to a matrix with size M, XMg and the matrix vec-
tor multiplication is formed as two matrix-matrix multiplication
of operator pairs as XfL)U(YfR))T where X,-(L) and Y;R) are opera-
tors acting on the left and right subsystem, respectively.

In order to treat long-range interactions efficiently, the inter-
action terms must be factorized, thus the matrix and tensor
algebra during the diagonalization procedure is simplified. This
is called partial summation.**" For example, considering a
two-orbital interaction in general, like the two-operator term
in (43), for a bipartite split of the system

Huo = 3 XY+ 3 7xPvi¥4+ 3™ ix®viY+ 3 rix @y,
ije(L) ie (L) i€(R) ije(R)
je®) jeu

(184)

Wiley Online Library

one of the coupling between the two subsystems (the second
term above) can be simplified as

(185)

HO®R) — Z Z Tijx,(L)

Y}(R) _ Z A}Lx')YfR).
je) \Je(L) JjeR)
Here A}L)(‘) =57, X" is called one-orbital auxiliary operator.
Therefore, the number of operator multiplications reduces
from d* to d. Symbolically, this can be written in a compact
form: we assign a label to each subsystem and form the total
system by adding together the subsystems. This sum is raised
to the power given by the number of operators corresponding
to the given interaction. For example, for the four operator
term, coming from the Coulomb interaction, Hoy = Z,jk, Vi Xi
Y;Z W, in (43) and for the bipartite split (subsystems () and
(), this can be factorized as ((L)+(R))* = (L)*+4(L)*(R)+
6(L)*(R)>+4(L)(R)*+(R)*. Constant factors comes from the
permutation of indices and exponents show the number of
operators acting within the corresponding subsystem. There-
fore, when the first three operators act on the () subsystem
and the last operator on the (r) subsystem then

" HOOO YR
w =54 w®,

HOLMLER) — Z Z Vi,'k/XfL)Y}L)ZiL)
) I€(R)

1€(R) \ij.ke(L

(186)

thus the number of operator multiplications reduces from d*
to d by forming a three-orbital auxiliary operator AfL)(L)(L)('>.
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Similarly, when the first two operators act on the (I) subsystem
and the last two operators on the (r) subsystem then

HOLLR) Z (Z Vr/klx ) Z 'Akl
kle(R) kle(R

ije(L

(187)

thus the number of operator multiplications reduces from d*
to d® by forming two-orbital auxiliary operators A,%)(L)(')(’).
Extensions for more subsystems used in QC-DMRG and QC-
TTINS are straightforward. For example, for subsystems
(), (I+1),(I+2),(r), the two-operator term is composed
from the following terms as ((I)+(I+1)+(I+2)+(r))* = (1)*+2
MU+ +20)(I+2)+2(0) (1) + I+ 1) +2(1+ 1) (1+2) +2(1+ 1) (r) +
(1+2)2+2(1+2)(r)+(r)* and the four-operator term factorizes
as  ((N+I+1D)+1+2)+ () = () +4(0)3(+1)+4(1)> (1+2)+4
() +6()2(I+1)2+12()*(I+1)(I+2)+ ... It is worth to note
that symmetries of Vj;, can be used to reduce the number of
independent terms.

Renormalization of multiorbital operators, i.e, when more
than one operator act in the same subsystem, requires special
care since they cannot be calculated accurately as a product
of the renormalized operators. For example, if i, j belong to
the same DMRG block due to the truncation of the Hilbert-
space, oo’ # 1.

Lyl
o(x. Y/

t (|_ T (L) 1
v)o" ~ ox\o'ov"o (188)
Therefore, multiorbital operators must be renormalized inde-
pendently and stored. As an example, the renormalization of a
four-orbital operator acting on the (L ) (I)- composite system

is 040LLLE (zj,k,e1L ViX YD ZPwH o', where
the auxiliary operator At i

is decomposed into further
auxiliary operators as follows

ALOML)L)

= A0000 & 1, 1+A/+1 )®W+T+A/+1/+1 © Zp Wit

@ Y11 Zpa Wi 10 @ Vigy i i1 X Y1 Zie s Wi p.
(189)

D(-)(
A0

In summary, the numerical effort of the QC-DMRG and QC-
TTNS algorithms has two major contributions. On the one
hand, the number of block states is crucial: The numerical
effort for calculating one term of the effective Hamiltonian by
tensor contraction scales as M?*! for trees of arbitrary coordi-
nation number z. On the other hand, this calculation has to be
performed for each term in the Hamiltonian, and using the
summation tricks as described above the scaling is d?M?™.
Since O(d) iteration steps are required for convergence, the
overall time of the algorithms scale as d>M?*1.

4.4 Optimization of convergence properties

In order to use QC-DMRG and QC-TTNS as black box methods,
it is mandatory to utilize various concepts inherited from
quantum information theory.l''2>5>61:95981001 | this section,
we briefly discuss some entanglement-based optimization pro-
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cedures which are used to minimize the overall entanglement,
expressed as a cost function,''"!

— § AN
loverall - IUdij'
ij

(190)

Here dj is the distance function between orbital i and j, in the
graph-theoretical sense, I is the two-orbital mutual information
given in (164) and 5 is some exponent. Therefore, the correla-
tions between the pairs of orbitals are weighted by the dis-
tance dj. The distance d;; depends on the tensor topology, and
it is defined as the length of the shortest path connecting i
and j in the tensor network. In the special case of MPS, the
distance is simply dj = |i—j].

The physical motivation behind the quantity /., is that in a
given iteration step the Schmidt rank is related to the number
and strength of the entanglement bonds between the left and
right blocks, thus if two highly correlated orbitals are located
far from each other then they give a large contribution until
they fall into the same block. Since the overall cost is related to
the sum of the Schmidt ranks, the major aim is to reduce the
ranks for each iteration steps. The optimization methods sur-
veyed in this section serve for the manipulation of this cost
function /., in three different ways: by changing dj; by reor-
dering the component tensors for a given tensor topology (sec-
tion 4.4.4); by changing dj; by altering the tensor topology itself
(section 4.4.5); or by changing /; by transforming the orbital
basis (section 4.4.6). Besides this, there are other factors which
effects the convergence rate and computational time: using
dynamical block state selection (DBSS) methods (section 4.4.3);
using entanglement based network initialization (section 4.4.7);
or reducing the Hilbert space by taking symmetries into consid-
eration (section 4.4.8).

4.4.1 Error sources and data sparse representation of the wave-
function. As has been discussed before, the success and
numerical efficiency of the QC-DMRG and QC-TTNS algorithm
rely on a subsequent application of the SVD 2439899 (section
4.2.1) while the performance depends on the level of
entanglement encoded in the wave function.”*** In each
DMRG (or TTNS) step, the basis states of the system block are
then transformed to a new truncated basis set by a unitary
transformation based on the preceding SVD.?% This transfor-
mation depends therefore on how accurately the environment
is represented®®2*’! as well as on the level of truncation.”* As
a consequence, the accuracy of the DMRG method is
governed by the truncation error, derg, as well as by the envi-
ronmental error, Jesweep->*” The latter is minimized in each
DMRG sweep (macroiteration) by a successive application of
the SVD going through the system back and forth. Since dim
(Epmre) < dim (Arc)) DMRG provides a data-sparse represen-
tation of the wavefunction, thus the sparsity can be defined as
dim (Epmrc)/dim (Agc) for a given error margin.

As an example, relevant quantities as a function of DMRG
iteration steps are shown in Figure 30 for LiF at dy-f = 3.05
a.u. for two different tensor arrangements (ordering). Since
DMRG is a variational method, it converges to the full-Cl
energy from above as is apparent in the top panels of Figure
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Figure 30. Ground state energy (E) in a.u., relative error (AEe = (Epmra —Erc1)/Erci), number of block states (M, M,), truncation error derg, dimension of the
superblock Hilbert space (Epmrc), are shown as a function of DMRG iteration steps for LiF at dij- = 3.05 a.u. with CAS(6,12) with fixed M; = M, = 16 for a
nonoptimized tensor hierarchy (ordering) a) and for an optimized tensor tensor hierarchy (ordering) b).

30. Close to the turning points when either left or right block
contains a single orbital M, or M, drops to 4 = g. Although the
truncation error fluctuates between 107'® and 107% for both
tensor arrangements (ordering) and the size of the superblock
Hilbert space is at most 400, a much lower energy has been
reached with the optimized ordering. This clearly shows that
in order to minimize desweep and avoid DMRG to converge to a
local minima besides sweeping the tensor arrangement must
also be optimized as will be discussed below.
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Using an optimized ordering the convergence of the ground
state energy for LiF at d;-r = 3.05 a.u. as a function of DMRG
sweepings for various fixed number of block states is shown
in Figure 31a. Taking the limit of zero energy change between
two sweeps E(M, desweep = 0) for a given M and assuming
M; = M, = M various extrapolation schemes as a function of M
have been introduced?*#*>27423% in order to provide a good
estimate for the truncation-free solution. A more rigorous
extrapolation scheme is based on the truncation error,*”! e,
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Figure 31. Convergence of the ground state energy for LiF at d|;-s = 3.05 a.u. as a function of DMRG sweeping for various fixed number of block states a),
E(M, desweep = 0) as a function of 1/Mb), ground state energy as a function of DMRG sweeping for various fixed derg using DBSS procedure c), and AEe (0
&R, Obsweep = 0) as a function of derg on a log-log scale d). The solid lines are our fits.
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Figure 32. a) Similar to Figure 30b but for LiF at di;-f = 3.05 a.u. with CAS(6,25) and targeting the ground state and excited states within a single DMRG calcula-
tion with M; = M, = 64 block states, for optimized tensor hierarchy (ordering). b) Similar to a) but using the DBSS procedure with M, = 64 and y = 1077,

once the environmental error is eliminated, the relative error,
AEo = (EDMRG—EFQ)/EFQ, is determined by O&TR as

INAE,o = alnderr+b. (191)

When the number of block states are kept fixed, the trunca-
tion error fluctuates within a full sweep (see Figure 30) thus
the largest truncation error within a full sweep determines the
overall accuracy. In Figure 31d, the relative error of the ground
state energy is shown as a function of the largest truncation
error within the last full sweep on a log-log scale. The linear
behavior allows one to obtain the truncation-free energy by
taking all the datapoints obtained up to a given derg and let-
ting Egc as a free parameter denoted as E.

4.4.2 Targeting several states together. As it is possible to cal-
culate several lowest lying eigenstates of the superblock Ham-
iltonian using the Davidson®'? or Lanczos®'® algorithm, more
eigenstates can be targeted within a single QC-DMRG or QC-
TTNS CalCU|ati0n.[15'24'51'58'63'68'87'90'93'1001

In this case, the total system is no longer treated as a pure
state but as a mixed state with mixing weights p, > 0 (with y
=1,...,n and Z,}, p, = 1), the reduced subsystem density
matrix can be formed from the reduced density matrices p, of the
lowest n eigenstates [¥;) as p = >, p,p,. The optimal choice of
the p, distribution, however, is not established yet. As an example,
energies of the ground state and first excited state obtained for
the LiF at d|j-r = 3.05 a.u. is shown in Figure 32a. It is worth men-
tioning that target states can also be formed based on the action
of a given operator, i.e., besides the ground and excited states

International Journal of Quantum Chemistry 2015, 115, 1342-1391

one can include states by applying a given operator to the
ground state. For more details, we refer to the literature.'**

For multitarget states with equal weights p, =p =1/n, we
minimize the sum ZLK\P*/ H|Y,) constrained to the ortho-
gonality condition (Wy|'¥,) = dg,. Clearly the minimum of this
functional is the sum of the n lowest eigenvalues Eo+ --- +
E,—; of the Hamiltonian H, and a minimizer is provided by the
first n eigenfunctions. In an MPS framework, the tensor U(a,
...,uq,7) corresponding to the y" eigenstate with order d + 1
as is shown in Figure 33a can be expressed as a network
shown in Figure 33b. Therefore, the network contains d+ 1
component tensors and in each optimization step y is shifted
through the network. Although, this procedure is commonly
used in the DMRG community, it is worth mentioning that y
index has a different physical meaning than the « indices.
Quite recently alternative methods to calculate excited states
have also been introduced.['#°7"3%

g

g |113 |rr|

Figure 33. a) Graphical representation of the full tensor U(a1, ..., o4,7) when
excited states are also calculated. o stands for the physical indices while 7
labels the excited states. b) Tensor network representation of the full tensor.

WWW.CHEMISTRYVIEWS.ORG +, ChemistryViews®
W0 o* o


https://q-chem.org/
https://chemistryviews.com/
https://chemistryviews.com/
https://chemistryviews.com/

International Journal of

UANTUM

WWW.Q-CHEM.ORG

TUTORIAL REVIEWS

HEMISTRY

4.4.3 Optimization of the Schmidt ranks using DBSS approach
and entropy sum rule. The two-orbital variant of the DMRG
method has originally been employed with a fixed number of
block states as shown above while the degree of entangle-
ment between the DMRG blocks for a given superblock config-
uration is related to the Schmidt rank rsy, as discussed in
sections 3 and 4.3.3. Therefore, the fluctuation of the trunca-
tion error makes the utilization of eq. (191) less stable. It is
more efficient to control the truncation error derg at each
renormalization step and change the number of block states
dynamically.?¥

Alternatively, one can control the truncation in terms of the
quantum information loss y, expressed by the von Neumann
and Rényi entropies.* In a given DMRG, renormalization step
denoting by S the entropy of the left block of length / and
by S+1 the entropy of the /+1™ orbital, the sum of the entro-
pies of these subsystems is reduced by forming a larger block,
(L) = (1)+, is given as

U454 =50 =10 >0, (192)

where the mutual information /) quantifies the correlation
between the subsystem and the orbital (similarly to the mutual
information in eq. (164), doing the same for two orbitals). This
means that if /) > 0 then we need more information for the
description of the state of the (l) block and the * separately than
for the description of them as a whole (L) = (I)+, that is, they
are correlated. A similar relation holds for the right block,
(R) =+(r), as well. If an effective system of length d+2 is
formed by adding two noninteracting orbitals to the right and
left ends of the chain, all blocks containing 1 to d orbitals of the
original system can be formed by the forward and backward
sweeps. The total information gain during a half sweep can be
calculated as 7' 1. In general, I!) is also a function of subse-
quent sweeps. However, once the DMRG method has con-
verged, subsequent DMRG sweeps do not change S and S,. If,
additionally, all M; = g’ and M, = g basis states of the blocks
are kept at each iteration step, i.e., no truncation is applied, a
sum rule holds, which relates the total information gain within a
full half sweep and the sum of orbital entropies given as

d—1 d
S
1=1 =1

where we have used S( = §; and §@ = 0.

This equality, however, does not hold in practical DMRG cal-
culations since during the renormalization process S is
reduced to S%fmc due to the truncation of the basis states.

Once the DMRG method has converged, the following equality
should hold to a good accuracy

(193)

d—1 d—1

d
L
S 35S (s0-s)

=1 1=1 =1

(194)

An analogous relationship holds for the backward sweep as
well. In order to control the quantum information loss, M, (or
Mp) is increased systematically at each renormalization step
until the following condition holds

Wiley Online Library

sO—sb <, (195)
where y is an a priori defined error margin. For s, i.e., before
the truncation, M, = M,q while for S%fmc according to eq. (195)
MJUne < Myq is used. This approach guarantees that the num-
ber of block states are adjusted according to the entangle-
ment between the DMRG blocks and the a priori defined
accuracy can be reached. In addition, an entropy sum rule
based on eq. (194) can be used as an alternative test of
convergence.!

In order to reduce the possibility of convergence to a local
minima, the minimum number of block states, Min must also
be introduced. Setting Mmin ~ g> or g* is sufficient in most
cases. The maximum number of block states selected dynami-
cally during the course of iterations denoted by M, deter-
mines whether a calculation for a given accuracy can be
performed on the available computational resources. It is
worth to emphasize that this approach does not work for the
one-orbital variant of the DMRG algorithm since the Schmidt
number of a one-orbital superblock configuration M, = Mq
cannot be larger than M, This prevents M, to increase above
M, according to eq. (154).

As an example, relevant quantities as a function of DMRG
iteration steps are shown in Figure 32b for LiF at dy-f = 3.05
a.u. for the optimized tensor arrangements (ordering) using
the DBSS procedure with M, =64 and y = 1077. In Figure
31¢, the convergence of the ground state energy as a function
of DMRG sweeping for various fixed derg using the DBSS pro-
cedure is shown. Using eq. (191) and data points obtained for
derg > 107 after the 10 sweep the extrapolated energy is
E = —107.11519(2), for derg > 107° it is £ = —107.115216925(2),
while Eexace = —107.1152169273.

4.4.4 Optimization of the network hierarchy (ordering) and
entanglement localization. As was briefly mentioned before,
in order to use QC-DMRG as a black box method, first the
arrangement of orbitals along a one-dimensional topology has
to be optimized (ordering) in order to reduce the set of
Schmidt ranks when the system is systematically partitioned
into a left and right parts during the DMRG sweeping proce-
dure.[9’11’13’24’25’49’51’52’56’61’72’82’85’901 ThIS a”OWS us to Carry out
calculations with much smaller number of block states using
the DBSS approach!""?*%%! (section 4.4.3). For the one-
dimensional tensor topology, i.e., for DMRG and MPS, the dis-
tance function is dj = |i—j| in eq. (190) and using =2 has
the advantage that this optimization task can be carried out
using concepts of spectral graph theory.>>" It follows that the
so called Fiedler vector x = (x1,...Xq) is the solution that mini-
mizes F(x) = x' Lx = Do I,j(x,A—xj)2 subject to the constraints
>xi=0 and > ;x?=1, where the graph Laplacian is
Lyj=D; - Iy with the diagonal Dj =d;3 ;ly. The second
eigenvector of the Laplacian is the Fiedler vector®****3! which
defines a (one-dimensional) embedding of the graph on a line
that tries to respect the highest entries of /; and the edge
length of the graph. Ordering the entries of the Fiedler vector
by nonincreasing or nondecreasing way provides us a possible
ordering. Usually, the best ordering obtained with small
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Figure 34. Optimization of tensor hierarchy (ordering) and topology by minimizing the overall entanglement /oyeran for the LiF at the equilibrium bond
length r =3.05 a.u. a) and b) Are for the one dimensional MPS like topology for the original ordering and for the optimized ordering, respectively. ¢) Shows
the optimized topology on the tree (small dots indicate not used grid points of the tree). The total quantum information ko given in (163) does not

change but the overall entanglement loyeran drops significantly.

number of block states also provide almost the best ordering
for calculation performed with large number of block states,
thus this task can be carried out with a limited number of
block states. As an example, nonoptimal and optimized tensor
orderings for LiF at the equilibrium bond length r=3.05 a.u.
are shown in Figures 34a and 34b for the one-dimensional net-
work topology, respectively. For both tensor topologies
lot = 1.32, given in eq. (163), does not change but the overall
entanglement loyeran, given in eq. (190), drops significantly from
126.47 to 19.63. As a consequence, the maximum height and
the spread of the block entropy is reduced significantly as
shown in Figures 15a and 15b. Since Schmidt ranks are related
to the block entropy, the same accuracy can be reached using
much less block states and sweeps in the optimized (ordered)
case. This leads to a huge save in CPU time and

memory.“ 1,24,25,95]

4.4.5 Optimization of the network topology. Another possibil-
ity to minimize the overall entanglement loerai given by eq.
(190) is to carry out network topology optimization. Based on
the two-dimensional entanglement graph shown in Figure
18a, it is clear that orbitals are entangled with each other with
different strengths. Therefore, when a tensor network is
formed, the obvious choice is to allow the coordination num-
ber z; to vary from orbital to orbital.*®

For the tree topology, see in section 4.3.4, dj in eq. (190)
can be computed as the distance from the center to i, plus
the distance from the center to j, minus twice the distance
from the center to their lowest common ancestor. The lowest
common ancestor can be obtained within a linear preprocess-
ing time O(d) and a constant query time using the Berkman'’s
algorithm >4

In practice, the optimal structure of the tree tensor network
can be determined in a self-consistent way. First the one-
orbital entropy and two-orbital mutual information is calcu-
lated with z;=2 and fixed small number of block states using
the ordering of orbitals for which the T; and Vj, integral files
were generated in order to determine entropy profiles qualita-
tively. Next orbitals with largest entropy values are placed close
to the center of the network by keeping together those orbi-
tals which are connected by large [; bonds as is shown in Fig-
ure 34c. Using such an optimized tensor topology, the overall

International Journal of Quantum Chemistry 2015, 115, 1342-1391

entanglement optimized for the z;= 2 case can drop even fur-
ther. In the present example for the LiF, it reduces from /MPF>

=19.63 to [ITN® = 5.53. As a result, the same numerical accu-
racy obtained with an MPS topology could have been reached
with smaller number of block states and using less iteration
steps when the optimized tree topology was used.!'*”

The overall efficiency of the QC-TTNS method is determined
by two major parameters. On the one hand tensor ranks M
decrease by going from QC-DMRG to QC-TTNS, but on the
order hand the orders z of the tensors increases. Although, the
computational cost of one iteration step is proportional to
M?*1, the number of tensors with z=1 lying on the bounda-
ries of the network increases exponentially when larger and
larger systems are considered. Therefore, there is an expected
crossover in CPU time between the full sweep of the QC-MPS
and QGC-TTNS. It is worth mentioning, that a two-orbital
variant of the TTNS ansatz has also been considered in which
the z - 1 environment blocks are mapped into one environ-
ment block through the so-called half-renormalization (HR)
algorithm.®® At present, optimization tasks are less estab-
lished and straightforward, thus further developments are
mandatory in order to fully utilize the potentials relying
behind the TTNS algorithm.

4.4.6 Optimization of the basis using entanglement protocols.
In the past 15 years, various orbital bases have been employed
to study quantum chemical systems.[''~"34851.61.687075798485590]
Although the impact of a given basis on the efficiency of the
QC-DMRG or QC-TTNS can be monitored by the convergence of
the energy, a rigorous analysis in terms of the resulting entan-
glement patterns is mandatory in order to choose the most
appropriate basis.”® This is due to the fact, that the mutual
information is orbital basis dependent. Therefore, besides orbital
ordering and optimization of tensor topology the overall entan-
glement Iloveran can be manipulated by changing the orbital
basis as well. The performance of QC-DMRG and QC-TTNS can
be optimized by using proper choice of the orbital basis, i.e.,
the same state can be obtained with much smaller number of
block states.'?*'*% As an example, entanglement patterns
reported® for a ring of Be atoms using canonical HF and local-
ized (Foster-Boys>>”) orbitals are shown in Figure 35. The over-
all entanglement has been found to be much smaller in the
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Figure 35. Colorscaled plot of two-orbital mutual information (for optimized orbital ordering using the Fiedler vector) for the ground state for Beg for a
stretched structure, dge-ge = 3.30A, using the DMRG method with canonical a) and local b) orbitals. Iyt = 7.81, loveral = 332.38 with the canonical basis and
hot = 5.83, loverall = 58.1 with the local basis. (Reproduced from Ref. [95], with permission from American Physical Society.)

latter case and as a consequence the same accuracy has been
reached with much smaller number of block states.

Therefore, a main goal is to find a basis in which entangle-
ment is localized as much as possible at the orbitals of the
network, what would guarantee that a given precision could
be attained with a smaller number of block states, and thus
with less computational effort. One possibility is to find the
optimal basis can be obtained by a canonical transformation
of the fermionic modes using an d X d unitary matrix U, see
section 2.5. In general, there are two ways to implement the
basis transformation: one is based on the state and the other
is based on the Hamiltonian, i.e.,

E(U) = (¥|UHU'[¥) = (¥(U)|HI¥ (V) = (¥[H(U)|P).

Since E(U) is a nonconvex function of the parameters U, it is a
highly nontrivial problem to find the absolute minimum. Gra-
dient search has been applied®® to the function E(U)
expressed as

EW) =Y T la;a)+> V(U)yla a;aca)

ikl

with T(U) = UTU" and V(U) = (U U)V(U® U)', see equation
(48). In this case, the correlation functions (a;aj) and (a;a}akaﬁ
could be calculated with respect to the original state since they
are independent of the parameters in U. The function E(U) in this
form and its gradient could be calculated explicitly and effi-
ciently for different parameter sets U, which made the gradient
search feasible. This assures that the energy decreases signifi-
cantly in the course of the algorithm since the orbital optimiza-
tion is performed repeatedly during the course of the network
optimization.

4.4.7 Optimization of the network initialization based on entan-
glement. Besides ordering, network topology, and basis states
optimization, the optimal performance of SVD based methods
is strongly effected by the initial conditions, or in other words

Wiley Online Library

by the initial matrix and tensor configurations. If a poorly
approximated starting configuration is used, the convergence
can be very slow and the DMRG can even be trapped in local
minima.?*?>°° |n the past decade, various solutions have
been introduced in order to optimize network initializa-
tion.l'12>493990126] |n - the following, we focus on an
entanglement-based procedure.

Having a tensor network with a given topology and hierar-
chy (ordering), the elements of the component tensors are
random numbers in the first iteration step. In QC-DMRG and
QC-TTNS methods various, ZE truncated Hilbert spaces can be
formed from different subsets of the corresponding basis
states in order to approximate A Hilbert space. In other words,
for a given partitioning of the system into blocks, various envi-
ronment blocks can be generated for a given system block.

In case of the two-orbital QC-DMRG, the optimization starts
with a superblock configuration /=1 and r = d—3 as shown
in Figure 25. When the SVD is performed, the eigenvalue spec-
trum of the reduced density matrix of the (L) block depends
on how the truncated basis was formed for the right block.
Since the exact representation of the right block would require
M, = q97'72 states, which is too large for large d, only a subset
of orbitals is included to form the active space. As an example,
three different environment blocks formed from three different
subsets of M, =16 basis states (or M, =17 due to spin reflec-
tion symmetry) obtained for the superblock configuration /=1
and r=9 (see Figure 36) of the LiF molecule for dy-r = 3.05
a.u. with CAS(6,12) are shown in Table 6. Using an ordering
according to the energy, the first, second, and third orbitals
are the HF orbitals. The selected M, = 16 environment states
together with the M;g?> = 64 states of the (I)*» composite sys-
tem fulfill the conservation of total number of particles with
up and down spins, ie., Ni')+N,+1>l+N,+2‘l+Nir) =3 and
N+ N 4Ny +N =3,

By forming the bi-partite spliting of the system with L =2 and
R =10, the eigenvalue spectrum of p® (and p®) correspond-
ing to the three subsets and the one corresponding to the
exact solution obtained by M, = 8000 block states are shown
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Figure 36. A superblock configuration with /=1 and r=9.

in Figure 37. It is obvious that the block entropy of the system
block, S, depends on the basis states used to construct the
(R) environment block, as it increased from 107> to 0.22.
Therefore, S should be maximized by finding the best repre-
sentation of the environment block for a given superblock
configuration and target state, i.e, to get as close as possible
to the exact solution, in the present case to SV = 0.28.

This can be achieved by including highly entangled orbitals
from the very beginning in the calculations. Therefore, in order
to achieve fast and stable convergence, the active space has
to be expanded iteratively using orbitals with largest one-
orbital entropy values. The sequence by which orbitals are
taken into account is determined by the so called CAS-vector,
which is simply a rendered sequence of orbital indices with
decreasing one-orbital entropy value. The initial CAS vector
can be determined based on the chemical character of the
molecule or in a self-consistent fashion based on the single-
orbital entropies. These features are incorporated in the DEAS
procedure,?® see in section 4.3.3, starting with superblock
configuration as shown in Figure 36.
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This approach has also been extended by including proto-
cols based on the CI procedure."""#*®! |n standard ClI techni-
ques, the trial wave function is written as a linear combination
of determinants with expansion coefficients determined by
requiring that the energy should be minimized.””*”! The num-
ber of determinants included in the Cl wave function expan-
sion is increased systematically in order to achieve a better
accuracy. The exact wave function can be expressed as

lPC| = aHF(DHF+Ea$q)S+Z GD(I)D+ZGT(DT+ e (196)
N D T

where determinants indicated by the subscripts S, D, T, Q are
singly, doubly, triply, quadruply, etc. excited relative to the HF
configuration.

If the HF orbitals are known, one can keep only those right
block states which together with the Ig? states of the (1)
composite system describe an excitation corresponding to a
given Cl-level. In the first iteration step, this can be determined
explicitly and the various Cl excitations corresponding to basis
states shown in Figure 36 are given in the right column. In
subsequent iteration steps, HF and non-HF orbitals can get
mixed in renormalized multiorbital basis states and they thus
cannot be labeled by the Cl excitation level. Nevertheless, the
maximum Cl level that block states could correspond to
depends on the number of HF orbitals falling into the given
block. Since the segment of the HF-orbitals belonging to the
right(environment) block is known, the restricted subspace of
the environment block can be formed for a given Cl-level in
the CI-DEAS procedure. Therefore, the right block contains

Table 6. Three different subsets of states are formed from M, = 16 states (or M, = 17 due to spin reflection symmetry) expressed explicitly in an one-
orbital basis which together with the M;q?> = 64(l) @ e subsystem states fulfill the conservation of total number of particles with up and down spins.
[a,] configuration 1 [CI] [ar] configuration 2 [CT] ar] e P [cT|
- — — — — — = - —Jo] [1]-=-=-=-=~— e R N e —— 0
2= = — e — — Ll1f|2|-=— == R I B 3 P,
- | AR - 1] [3|]--—-—-- Ut 100 I %) D G
4 i i e o o - N2 [4]--~-~~ i - N 1Y) (SR | 2
5l-—-—---- e B B x =l 5] Bl e=m g m== =E
) S ——— + —|1]| |[6]----—- - P b s sous s # pssm oo 9
B oo i 2w s e e A I B B G B o EEE el e |8
B [ o, s e T 2] |8l= == == TT =2 |s|l---1 t---—]|2
9 - — - - - — _ L2 |9|----- T =12 gl - 24— |2
10f- == == = — T d|2] |10=~= =~ UURREN -4 I EU] IV G
R No—f2) |- - - - - - ity Gt B 71 N
12— — — — — — - 1] [12|- = === = — =~} 1
2L --1 - ---- 2
13— — — = = i 1J| = = = = == - —T1 i T L R I S 2
Yl s v o i S I B R ey R o ko I 71 i AL R |
15|— — — — — — T =42 |B--=-- P==M2| gl mmm § == =B
16— — — — — — b2 16 - = =~ |t o KA I FT] R
17— - — - — - T T 2] [df--- - - r — - T2 AEEAAEEBEEE
[ [EEEEEEAAA[] |[ [EEEEE A AE A] |I | [ |
Labels E and A stands for empty and active orbitals respectively. In the very right columns the corresponding Cl levels are indicated. The CAS vectors
describing the three configurations are (1, 2, 3, 4,5, 6,7, 8,9, 10, 11, 12), (2,1, 9, 10, 3,12, 11, 6, 5, 4, 8, 7), and (7, 8, 4, 5, 6, 11, 12, 3, 10, 9, 1, 2),
respectively.
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Figure 37. Eigenvalue spectrum of p™ (and p®) corresponding to the
three subsets of environment states shown in Table 6.

states for a given Cl-level while the total wave function can

contain higher excitations as well due to the correlation

between the two blocks. This procedure allows one to control
the minimum Cl level to be used and a double optimization is
carried out in each iteration step. On the one hand, the envi-
ronment block states are constructed at each iteration step
based on the left block basis states, thus they are optimized
for the renormalized system (left) block. On the other hand,
during the SVD step the left block states are optimized accord-
ing to a well represented environment block, thus the reduced
density matrix is well defined and block states can be selected
efficiently based on the entropy considerations (DBSS, see in
section 4.4.3). This procedure guarantees that several highly
entangled orbitals are correlated from the very beginning and
both static and dynamic correlations are taken into account,
which helps to avoid convergence to local minima. Since a sig-
nificant part of the correlation energy can be obtained in this
way, usually at the end of the initialization procedure, i.e., after
one-half sweep, chemical accuracy is reached. The starting

value of M, (Mgar) is set prior to the calculation, but during
the iteration procedure M, is adjusted as M, = max(M;, Mstart)

in order to construct at least as many environment states as
the left block has (to avoid zero Schmidt values).

The CI-DEAS procedure also has an important technical
aspect. Based on the selected M, basis states orbitals of the
right block can be identified as doubly filled (D), empty (E) or
active (A). If only the empty states appear in a given column
of the configurational space as shown in Table 6, the orbital is
considered as empty, while if only the doubly filled state
appears it is considered as doubly filled. Otherwise, the orbital
is active. This is indicated explicitly in the last rows of Table 6.
It has been shown that empty orbitals can be neglected, while
a partial summation over the doubly filled orbitals gives some
corrections to the terms obtained by the partial summation
over the active orbitals. Therefore, the effective size of the
environment block can be reduced to the number of active
orbitals.*>?*®! Usually the number of active orbitals in the

Wiley Online Library

environment block range from 5 to 10 which allows one to
use larger M.« without a significant increase in computational

time.

As an example, the eigenvalue spectrum of the reduced
subsystem density matrix for a block of /=12 contiguous orbi-
tals as a function of DMRG sweeping for the LiF CAS(6,25) at
dii-F = 3.05 a.u. is shown in Figure 38 using a nonoptimized
initialization procedure (a) and the CI-DEAS procedure (b).

Inclusion of the CI-DEAS procedure into the QC-TTNS
method is straightforward. The only difference is that in a
given iteration step of the warmup sweep instead of two, z;—
1 environment blocks has to be formed.

4.4.8 Optimization of the sparsity using symmetries. As has
been introduced in section 4.1.4, symmetry operators (with
eigenvalues Q, called quantum numbers) can be used to
decompose the Hilbert space into subspaces (sectors).?2”
Therefore, the efficiency of the QC-DMRG and QC-TTNS meth-
ods can be increased significantly by applying quantum num-
bers. These include Abelian symmetries as particle number,
spin projection™®, spin reflection!*®, and Abelian point group
symmetries®>""*  and  even  non-Abelian  symme-
tries.146>80.90.1347147] |y the |atter case, the situation, however,
becomes more complicated.

If symmetry generators commute with each other, the
eigenstates of the Hamiltonian form degenerate multiplets,
|¢.0 o) that are classified by their label o, the quantum
numbers Q_, and the internal quantum number Q7. The
dimension of a subspace (sector) o depends uniquely on its
quantum numbers Q , i.e. dim () =dim (Q ). In the follow-
ing, we use the shorthand notation introduced in section 4.1
and write W“&Qi)’ as [, Q ,Q%).

In general, the symmetry operators of the Hamiltonian are
the representations U/ of the symmetry group G on the Hilbert
space, acting as

10° g : = 10° 9 ~
- © sweep ® - & sweep
K (@) - = -sweep 3 ! (b) - = -sweep 3
-8-sweepb5 ® - 8 -sweep 5
sweep 7 sweep 7
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g ‘
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Figure 38. Eigenvalue spectrum of the reduced subsystem density matrix
for a block of /=12 contiguous orbitals as a function of DMRG sweeping

for the LiF at dy-f = 3.05 a.u. using a nonoptimized initialization procedure
a) and the CI-DEAS procedure b).
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U(g)HU " (g) = H, (197)
where U(g) is the unitary representation for the symmetry
g € G. Specially, if the symmetries are local in the sense that
they decompose into unitary operators which commute with
each other and act independently at different orbitals, then
not only the whole Hamiltonian but also every local and inter-
action Hamiltonian are invariant under the group G. Further-
more, G and correspondingly ¢/ can be decomposed into a
direct product of I' subgroups G,(y=1,...,I'), each acting
independently on every orbital,

G=G1XG:X ... XGr,

r I

Uug) = Huv (9,) = EHUN(%)'

y=1

(198)

(199)

Once a specific decomposition of the symmetry is obtained, I’
number of quantum numbers classify the irreducible subspaces
(multiplets) of the subsystem Hamiltonians Q = {Q',@?,...,Q"}
and states within the multiplet are then labeled by the internal
quantum numbers Q* = {Q'#,Q**,...,Q"*}. The dimension of
a subspace o depends uniquely on its quantum numbers Q , i.e.,
dim(2) = dim(Q,) = [}_ dim (Q}).

Operators can also be arranged into irreducible tensor oper-
ators, and an irreducible tensor operator multiplet A is corre-
spondingly described by quantum numbers a, while members
of the multiplet are labeled by a* with a and a* being
I'-component vectors. The Wigner-Eckart theorem™'=22% tells
us that, apart from trivial group theoretical factors (Clebsch-
Gordan coefficients), the matrix elements of the members of a
given operator multiplet and states within two multiplets, |o,
Q,, @) and two multiplets, |o, Q,, Q%) are simply related by

(0.0,Q; |Aaq, o/,Q,0Q%) = (x | A «)(Q,Q la,a,; Q,Q%)
(200)

where (« || A|| o) denotes the reduced (invariant) matrix ele-
ment of A, and the generalized Clebsch-Gordan coefficients
are simply defined as

r

(Q,Q;laa%:Q, @;) = [[(Q.Q

y=1

a'a”Q,;Ql%).  (201)

In the presence of symmetries, one has to use the Clebsch-
Gordan coefficients to build (I) block states from the block (I)
and orbital ¢ states that transform as irreducible multiplets
under the symmetry transformations, U/(g),

|m(L)’9m(L>’gf"(L>> EszQ:Z <Q"’<L>Qf”< Q,.2,.:Q <I>an(l>>

)= =01 =m

=m() =1

|O([+‘|7Q QZ

o1 =41

Z
) @Imw,Q, Q7 ),
(202)
Therefore, subsystem Hamiltonians have a block-diagonal
structure and subsystem reduced density matrices are also sca-
lar under symmetry operators. This decomposition property is

crucial for using symmetries in the QC-DMRG and QC-TTNS
calculations in order to boost their performance.
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To give a simple example, let us take into account the spin
and charge symmetries, i.e., G = Gspin XGcharge. If We use only
Gspin = U(1) and Geharge = U(1) symmetries, then one has two
hopping operators, c;T and c;l as defined in section 4.1. In
contrast to this, if we use Gpin = SU(2) spin symmetry, (while
Geharge = U(1) remains the same as before) U = Uspinllcharge:
with  Uspin = [[;Uspini» then only one hopping operator
remains since matrix elements of c;T and c;l are related with
each other by symmetry and they form a single operator mul-
tiplet ¢; = {c;l,c;ﬁ} of spin 1/2. The matrix elements of such
multiplet are determined using the Wigner-Eckart theorem

0 0 0
wlellvw=1]1 o of, (203)
0 —v2 0

where the original C* space is reduced to C* since only three
basis states remain p,v € {|—),| 1),| T1)}. When the system is
half-filled, utilization of Gcharge = SU(2) symmetry besides the
Gspin = SU(2) spin symmetry is straightforward. In this case,
the hopping operator becomes a 2 X 2 matrix

(%)
_\/f 0 ’
where the original C* space further reduces to C? since only
two basis states remain, |$,),[¢,) € {| 1),|11)}. A detailed
derivation of reduced operators and construction of the block
states prepared as a pedagogical introduction to the field can
be found in the literature,"*! and the related free C++ sour-
cecode can be downloaded from http://www.phy.ome.hu/
~dmnrg/.2>® Other free source codes with SU(2) spin symme-
tries are also available."?”*% Utilization of symmetries allows
one to target states with given symmetries and to keep M
number of multiplets what corresponds to significantly more
U(1) states what is crucial in order to achieve good numerical
accuracy.

(204)

4.4.9 Stability of the wavefunction. Traditional post-HF quan-
tum chemical methods like Cl or couple clusters (CC) system-
atically improve a reference wavefunction (often only the HF
determinant, as in (196)) by inclusion of single, double, and
higher excitations in the wave operator. In case of Cl the wave
operator takes a linear form, while CC uses a more sophisti-
cated exponential ansatz.

In contrast to these, QC-DMRG and QC-TTNS take into
account all the various excitations picking up the most impor-
tant ones by minimizing the energy. As an example, the |U(a,
...ag)|* weights casted according to an excitation level with
respect to the HF reference wavefunction are shown in Figure
39. It demonstrates that higher excitation levels can be impor-
tant to provide a qualitatively correct description of the wave-
function. (The elements of the full tensor U(o,...0q4) can be
extracted, according to eq. (176). But note that recovering all
components of U(ay,...0g) cannot be done efficiently as its
size scales exponentially. However as a good approximation of
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Figure 39. The |U(x, . .. ozd)\z weight of the d-orbital basis states corresponding to the various Cl-excitations are shown by different colors in a descending

order in a log-log a) and in a log-lin scale b) for the LiF for di-¢ = 3.05 with CAS(6,12). HF state, SCI, DCl, etc are indicated by red, blue, green, etc. colors

respectively.

the full CI wavefunction, the Monte Carlo algorithm was used
to recover the most important tensor components.””))

As a consequence, if the accuracy threshold of the calculation
is lowered, the structure of the wave function is retained in
essence. Since the DBSS procedure takes care of the change in
the entanglement as the system parameters are adjusted, for
example, when the bond length in LiF is changed, the various
calculated quantities are continuous functions for a given derg.
For the ionic-neutral curve crossing in LiF,®" this has been dem-
onstrated for the two lowest '=" states and the dipole moment
function as illustrated in Figures 40a and 40b for derg = 107°
and Mp,in = 64. In addition, when parameters were cut drasti-
cally and very small value of M, and large derg were used the
dipole moment deviated more significantly from the full-Cl
results but they remained continuous even close to the avoided
crossing. Therefore, the most important components of the
wave function are included by the SVD procedure which pro-
vides a stable representation of the wavefunction. Similar results
have been reported for the QC-TTNS method.!"%”

4.4.10 Possible black-box QC-DMRG and QC-TTNS. A possible
black-box QC-DMRG and QC-TTNS can be composed of two

(a)

-106.8
)

W

— . 2 o
o —oo000o0T .
<

X

~106.95

Energy in a.u.

x X'zt
o @'z

phases: the preprocessing phase in which the ordering, network
topology, and CAS-vector are optimized using fixed small num-
ber of block states and the production phase in which an accu-
rate calculation is performed using the DBSS procedure in order
to reach an a priory set error margin. In the preprocessing phase,
one can use the ordering for which the integral files were gener-
ated and a random CAS vector using limited number of block
states. After a full sweep, the one-orbital entropy can be calcu-
lated from which the CAS vector can be determined. In a similar
way, the two-orbital mutual information and the optimal order-
ing can be calculated using the Fiedler vector. Next a DMRG cal-
culation can be carried out with the optimized ordering and
CAS-vector and the whole cycle is repeated until we obtain
lower total energy. In the next step this procedure is repeated,
but with larger number of block states. The preprocessing phase
takes only a small fraction of the total computational time.

4.5 Miscellaneous

4.5.1 Simulation of real materials, geometrical optimization and
excited states. As an example, we demonstrate on poly-
diacetylene (PDA) chains that MPS-based methods can be used

(b)
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Figure 40. (a) Energy of the two lowest 'X* states as a function of the bond length obtained with derg = 107® and My, = 16 using the DBSS procedure.
(b) The corresponding dipole moment functions. (Reproduced from Ref. [51], with permission from Taylor and Francis.)
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Figure 41. a) Single crystals of diacetylene monomers prepared experimentally where the monomer unit has the structure R-C=C-C=C-R. In the nBCMU
family R = (CH,),-OCONH-CH,-COO-(CH,)5CH3. b) Polymerization induced by temperature or ultraviolet light leading to polydiacetylenes (C4R,),. ) Lewis
structure of a poly-diacetylene unit cell with single, double and triple bond lengths r; = 1.20A, ry = 1.36A, and r; = 1.43A, respectively.

very efficiently to simulate strongly anisotropic materials in
terms of effective Hamiltonians.

PDA chains dispersed with low concentration in their mono-
mer single-crystal matrix are prototypical quasi one-
dimensional materials.*°>2%3! The structural disorder in the
chains and their surrounding matrix is tiny, thus these materials
form the perfect testing-ground for theoretical model studies
describing interacting electrons on perfectly ordered chains. In
addition, the electronic excitation energies of the diacetylene
monomers are much higher than those of the polymer, and the
electronic excitations of the chain in the energy range of visible
light can be measured with a very high accuracy.”*” Polymer-
ization induced by temperature or ultraviolet light is shown in
Figure 41.

The optoelectronic properties of the PDAs are determined by
two main correlation effects: the mutual interaction of the elec-
trons and their interaction with the lattice potential.[2%32%°] |n
contrast to inorganic semiconductors, the exciton binding
energy in PDAs amounts to about 20% of the single-particle
gap, thus Coulomb interaction is substantial and effective and
the electron-electron interaction must be treated very accu-
rately. Due to such high computational demand earlier attempts

based on density-functional theory calculations of the bare
band structure in local-density approximation failed to repro-
duce the experimentally measured excitation spectrum.[2662¢”]

In contrast to this, using the DMRG method and by correlat-
ing some 100 electrons on 100 orbitals together with a geo-
metrical optimization based on the Hellmann-Feynman
theorem, i.e., by minimizing the force-field induced by the
electron distribution,®®® very accurate energy spectrum can
be obtained.”*” This is shown in Figure 42 and the experi-
mentally measured and DMRG calculated results are also sum-
marized in the corresponding table. In addition, the calculated
geometrical structure agrees perfectly with the experimental
data, i.e, the single, double and triple bonds are estimated as
re=1.22,rg =137 and r; = 1.43.

4.5.2 Four-component DMRG. Quite recently, the first imple-
mentation of the relativistic quantum chemical two- and four-
component density matrix renormalization group algorithm
(2c- and 4c-DMRG) has also been presented.®® This method
includes a variational description of scalar-relativistic effects
and spin-orbit coupling. By correlating 14 electrons on 94 spi-
nors and employing the Dirac-Coulomb Hamiltonian with

E’gnp
Ay _A_A_T* | Energy/eV | 3BCMU | DMRG |
S
| [t Bx, 5 L7 (5]
5 A A Ex, 1.7 1.85* [2.0]
e glll:(;e;q energy By = gpt 1.896 2.00 [205]
X ; ; inding g
1 * & EX3 2.0
o | v “E B 2.482 2.45 [2.47]
optcal| gari | | et AS, = Egp — Es | 0.586 0.45 [0.42]
(singlet secliori) (triplet|sector) W T ET — Ast 1.0 + 0.05 1.00 [106]
=1 1, Ere =Ag +AY, | 236 £ 0.05| 225
st t
minimal spin flip opt 1.360 1.25 [128]
excitation energy AE:X = Egap = ET 1.5 + 0.05 | 1.45 [1.40]
. . ..
S=0

Figure 42. (left) Energy levels of in-gap states in the spin-singlet and spin-triplet sectors. Single-tip arrows: optical absorption spectroscopy; double-tip
arrows: two-photon absorption spectroscopy. Double arrows: binding energies (gaps). G: singlet ground state (1'A); S: singlet exciton (17B,); X1, X5, X3: sin-
glet dark states (m‘Ag); T: triplet ground state (13B,); T*: optical excitation of the triplet ground state (13Ag); Y: dark triplet state (m3B,). (right) Excitation
energies in 3BCMU at low temperatures. All energies are measured in eV relative to the energy of the ground state, Egc = 0. Bold number: directly meas-
ured; italic number: estimate. For DMRG results the numbers in square brackets give the excitation energy for the rigid-lattice transition from G

(Egap: Es, Ex,,, Er) and from T (A;p‘
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Figure 43. a) Convergence of the ground state energy (shifted by 20275
Ey) as a function of iteration steps of the 4c-DMRG(14,94)
(Mmax = 4500, Minin, = 1024, MPEAS = 2048, 7 = 107°) approach at r®®

min
= 1.872 A. Reference energies calculated by various Cl and CC wave func-
tion models are also given as horizontal lines. The inset shows that the 4c-
DMRG energy drops below the 4c-CI-SDTQ energy. b) Extrapolation of
DMRG energies E(M)-20275 E, for fixed M values towards the limit
E(M — 0)-20275 Ey,. Figure is taken from arxiv:1312.0970.

triple-{ quality basis, the potential energy surface (PES) and
spectroscopic constants have been obtained for the thallium
hydride molecule. Utilizing the various entanglement-based
optimization techniques discussed in section 4.4, the CCSD ref-
erence energy has been reproduced even after the first DMRG
sweep as is shown in Figure 43. Although the 4c-CCSDTQ ref-
erence energy could not be reached with a maximum of
M = 4500 block states, the resulting 4c-DMRG potential energy
curve did not only effectively reproduced the shape of the 4c-
CCSDTQ potential energy curve but also yielded accurate spec-

troscopic constants as extracted from a fourth-order polyno-
mial fit. Since QC-DMRG picks up all excitations required to
describe the wave function to a given accuracy the general
structure of the wave function is preserved and could have
been determined even with smaller M values. By making the
best of entanglement optimization, the new 2c- and 4c-DMRG
method is expected to become an efficient approach for
heavy-element molecules that exhibit rather strong multiconfi-
gurational character in their ground- and excited states. Devel-
opment of a 2¢- and 4c-TTNS method is straightforward.

4.5.3 Possible technical developments: hybrid CPU/GPU paralleli-
The original DMRG algorithm, introduced by S. R.
White, was formulated as a single threaded algorithm.'"®! In
the past, various works have been carried out to accelerate
the DMRG algorithm on shared®”®*’"! and distributed mem-
ory®®>3272273) architectures. One of the first parallelizations
was converting the projection operation to matrix-matrix mul-
tiplications and accelerating them via OpenMP interface.?’® A
similar approach has been presented for distributed memory
environment (up-to 1024 cores) optimizing the communication
between the cores'’?, while the acceleration of the computa-
tion of correlation function has also been investigated.””>! A
novel direction for parallelization via a modification of the
original serial DMRG algorithm have also been introduced.”?”*
Graphical processing unit (GPU) has been successfully
employed in neighboring research areas to accelerate matrix
operations. GPU is used to accelerate tensor contractions in Pla-
quette renormalization states*”>" which can be regarded as an
alternative technique to TNS or the DMRG algorithm. The second-
order Spectral Projection algorithm has been accelerated, which is
an alternative technique to calculate the density matrix via a
recursive series of generalized matrix-matrix multiplications.?”®’
Quite recently, it has been investigated how the DMRG
method can utilize the enormous computing capabilities of

zation.

1200 T
| 3
| o
1000 - o 100% 5
g. X I~ 900/0 ; m GPU
é 0d 1 80% = Workload
2 600 : 70% & —®—K20+Xeon
8 1 © ES
£
= -60% =
g 400 - GPU
E 50% g, Contribution
3 = i 40% £ ——CPU
o S8 . 4
o | = 1 2 300, § Contribution
4096 4096 4096 4096 4096 ¥ o
1024 4096 4096 4096 4096

Number of retained block states

Figure 44. Performance results of the hybrid CPU-GPU acceleration of the projection operation for the Hubbard model on Intel Xeon E5-2640 2.5GH
CPU + NVidia K20 GPU: 1071 GFlops and X3.5 speedup is reached. (Theoretical maximum is 1.17 TFlops) Blue bars associated to the secondary vertical
axis indicate the ratio of the current GPU workload. (Reproduced from Ref. [277], with permission from Elsevier.)
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novel kilo-processor architectures: GPU and field-programmable
gate array*’” In case of GPU, a smart hybrid CPU-GPU acceler-
ation has been presented, which tolerates problems exceeding
the GPU memory size, consequently, supporting wide range of
problems and GPU configurations. Contrary to earlier, accelera-
tion attempts not only the projection operation was acceler-
ated, but further parts of the diagonalization were also
computed on the GPU. Reported results on the one-
dimensional Hubbard model for a midrange (Intel Core-i7 2600
3.4 GHz CPU + NVidia GTX 570 GPU) and on a high-end config-
uration (Intel Xeon E5-2640 2.5 GHz CPU + NVidia K20 GPU)
showed that if the workload is properly distributed (see Figure
44) the midrange configuration with GPU can be approximately
2.3-2.4 times faster than without GPU, while the high-end con-
figuration can be accelerated by 3.4-3.5 times using the GPU.

The GPU architecture has been found to be a promising
accelerator, as the most time-dominant step of the algorithm,
the projection operation, can be formulated as independent
dense matrix multiplications, which are ideal workload for
GPUs. Moreover, in case of high-end GPUs, the acceleration of
the projection is so remarkable, that it is worth to consider
the acceleration of the rest of the algorithm to obtain a
decent overall speed-up. Therefore, extensions to treat ab ini-
tio quantum chemical applications and a straightforward gen-
eralization of the algorithm to accelerate tensor network state
algorithms™# are promising research directions.

5 Summary and Outlook

In the past decade, we have witnessed a breakthrough in elec-
tronic structure calculations due to the DMRG method which
has become a viable alternative to conventional multiconfigu-
ration wave function approaches. Inclusion of the concepts of
entanglement from quantum information theory has paved
the road for identifying highly correlated MOs leading to an
efficient construction of active spaces and for characterizing
the various types of correlation effects relevant for chemical
bonding. Quite recently, a reformulation of DMRG in terms of
MPS has shown that it is only one special case in a much
more general set of methods, the TNS, which is expected to
even outperform DMRG/MPS in the near future.

A special class of such ansatz states are the TTNS. The math-
ematically rigorous analysis of these tensor trees has been
completed only partially and many open questions remain,
concerning for example numerical procedures, but also more
theoretical concepts of differential and algebraic geometry.

In the quantum chemistry version of the method (QC-TTNS),
the wave function with variable tensor order is formulated as
products of tensors in a multiparticle basis spanning a trun-
cated Hilbert space of the original CAS-Cl problem. The tree-
structure is advantageous since the distance between two
arbitrary orbitals in the tree scales only logarithmically with
the number of orbitals, whereas the scaling is linear in the
MPS array. Therefore, the TTNS ansatz is better suited for mul-
tireference problems with numerous highly correlated orbitals.

The underlying benefits of QC-TTNS are, however, far from
fully exploited and the optimization of the method is far more
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complicated. Due to the more advanced topology, several
optimization tasks and problems arise which do not have
counterparts in the MPS formulation. Therefore, there is a tedi-
ous work still ahead of us.
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