
∫ 

∫

∫

∫

MATHEMATICAL�IDEAS�AND�NOTIONS�OF�QUANTUM�FIELD�THEORY�

1. Generalities�on�quantum�field�theory�

1.1. Classical�mechanics.� In classical mechanics, we study the motion of a particle. This motion is 
described by a (vector) function of one variable, q = q(t), representing the position of the particle as a 
function of time. This function must satisfy the Newton equation of motion, 

q̈ = −U ′(q), 

where U the potential energy, and the mass of the particle is 1. Another way to express this law of 
motion is to say that q(t) must be a solution of a certain variational problem. Namely, one introduces 
the�Lagrangian�

2q̇ − U (q)L(q) =  
2 

(the difference of kinetic and potential energy), and the�action�functional�
b 

S(q) =  L(q)dt 
a 

(for some fixed a < b). Then the law of motion can be expressed as the�least�action�principle: q(t) 
must be a critical point of S on the space of all functions with given q(a) and  q(b). In other words, 
the Newton equation is the Euler-Lagrange equation for the solution of the variational problem defined 
by S. 

Remark�1.�The name “least action principle” comes from the fact that in some cases (for example 
when U ′′ ≤ 0) the action is not only extremized but also minimized at the solution q(t). In general, 
however, it is not the case, and the trajectory of the particle may not be a minimum, but only a saddle 
point of the action. Therefore, the law of motion is better formulated as the “extremal (or stationary) 
action principle”; this is the way we will think of it in the future. 

Remark�2.�Physicists often consider solutions of Newton’s equation on the whole line rather than 
on a fixed interval [a, b]. In this case, the naive definition of an extremal does not make sense, since the 
action integral S(q) =  R L(q)dt is improper and in general diverges. Instead, one makes the following 
“correct” definition: a function q(t) on  R is an extremal of S if the expression 

d ∂L ∂L |s=0�

∫
L(q + sε)dt := ( ε̇ + ε̈ + · · · ),

ds R ∂q ∂q̇R 

where ε(t) is any compactly supported perturbation, is identically zero. With this definition, the 
extremals are exactly the solutions of Newton’s equation. 

1.2. Classical�field�theory.� In classical field theory, the situation is similar. In this case, we should 
think not of a single particle, but of a “continuum of particles” (e.g. a string, a membrane, a jet of 
fluid); so the motion is described by a classical field – a (vector) function φ(x, t) depending on both space 
and time coordinates (x ∈ Rd , t ∈ R). Consequently, the equation of motion is a partial differential 
equation. For example, for a string or a membrane the equation of motion is the wave equation !φ = 0,  
where ! is the D’Alambertian ∂2�− v2∆ (here ∆ is the Laplacian with respect to the space coordinates, t 
and v the velocity of wave propagation). 

As in mechanics, in classical field theory there is a Lagrangian L(φ) (a differential polynomial in φ), 
whose integral S(φ) =  D L(φ)dxdt over a region D in space and time is called the action. The law of 
motion can be expressed as the condition that the action must be extremized over any closed region 
D and fixed boundary conditions; so the equations of motion (also called the field equations) are the 
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Euler-Lagrange equations for this variational problem. For example, in the case of string or membrane, 
the Lagrangian is 

1 L(u) =  
2
(φ2�− v 2(∇φ)2).t 

Remark.�Like in mechanics, solutions of the field equations on the whole space (rather than a closed 
region D) are extremals of the action in the sense that 

d |s=0�

∫
L(u + sε)dxdt = 0,

ds Rd+1�

where ε is a compactly supported perturbation. 

1.3. Brownian�motion.�One of the main differences between classical and quantum mechanics is, 
roughly speaking, that quantum particles do not have to obey the classical equations of motion, but 
can randomly deviate from their classical trajectories. Therefore, given the position and velocity of the 
particle at a given time, we cannot determine its position at a later time, but can only determine the 
density of probability that at this later time the particle will be found at a given point. In this sense 
quantum particles are similar to random (Brownian) particles. Brownian particles are a bit easier to 
understand conceptually, so let us begin with them. 

The motion of a Brownian particle in Rd in a potential field U : Rd → R is described by a stochastic 
process q = q(t), q = (q1, . . . , qd) ∈ Rd. That  is,  for  each  real  t we have a random variable q(t) (position  
of the particle at a time t), such that the dependence of t is regular in some sense. The random 
dynamics of the particle is “defined” as follows: 1� if y : [a, b] → Rd is a continuously differentiable 
function, then the density of probability that q(t) =  y(t) for  t ∈ [a, b] is proportional to e−S(y)/κ, where  

b( 1S(y) :=  a 2y′2�− U(y))dt is the action for the corresponding classical mechanical system, and κ is the 
diffusion coefficient. Thus, for given q(a) and  q(b), the likeliest q(t) is the one that minimizes S (in 
particular, solves the classical equations of motion q̈ = −U ′(q)), while the likelihood of the other paths 
decays exponentially with the deviation of the action of these paths from the minimal possible. 

Remark.� This discussion assumes that the extremum of S at q is actually a minimum, which we 
know is not always the case. 

All the information we can hope to get about such a process is contained in the correlation functions 
< qi1(t1) . . . qin�(tn) >, which by definition are the expectation values of the products of random variables 
qi1(t1) . . . qin�(tn) (more specifically, by Kolmogorov’s theorem the stochastic process q(t) is completely 
determined by these functions). So such functions should be regarded as the output, or answer, of the 
theory of the Brownian particle. 

So the main question is how to compute the correlation functions. The definition above obviously 
gives the following answer: given t1, . . . , tn ∈ [a, b], we have 

(1) < qj1(t1) . . . qjn�(tn) >= qj1(t1) . . . qjn�(tn)e −S(q)/κDq, 

where integration is carried out over the space of paths [a, b] → Rn, and  Dq is a Lebesgue measure on 
the space of paths such that e−S(q)/κDq = 1. Such an integral is called a path integral, since it is an 
integral over the space of paths. 

It is clear, however, that such definition and answer are a priori not satisfactory from the mathe-
matical viewpoint, since the infinite dimensional integration that we used requires justification. In this 
particular case, such justification is possible within the framework of Lebesgue measure theory, and 
the corresponding integration theory is called the theory of Wiener integrals. (To be more precise, one 
cannot define the measure Dq, but one can define the measure e−S(q)/κDq for sufficiently nice potentials 
U(q)). 

1We�put�the�word�“defined”� in�quotation�marks�because�this�definition�is�obviously�heuristic�and�not�rigorous;�see�
below�for�more�explanations�
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1.4. Quantum�mechanics.�Now let us turn to a quantum particle. Quantum mechanics is notoriously 
difficult to visualize, and the randomness of the behavior of a quantum particle is less intuitive and 
more subtle than that of a Brownian particle; nevertheless, it was pointed out by Feynman that the 
behavior of a quantum particle in a potential field U(q) is correctly described by the same model, with 
the real positive parameter κ replaced by the imaginary number i!, where  ! > 0 is the Planck constant. 
In other words, the dynamics of a quantum particle can be expressed (we will discuss later how) via 
the correlation�functions�

iS(q)/!Dq, (2) < qj1(t1) . . . qjn�(tn) >= qj1(t1) . . . qjn�(tn)e 

where Dq is normalized so that eiS(q)/!Dq = 1.  

1.5. Quantum�field�theory.�The situation is the same in field theory. Namely, a useful theory of 
quantum fields (used in the study of interactions of elementary particles) is obtained when one considers 
correlation functions 

iS(φ)/!Dφ, (3) < φj1 (x1, t1) . . .φjn�(xn, tn) >= φj1(x1, t1) . . . φjn�(xn, tn)e 

where Dφ is normalized so that eiS(φ)/!Dφ = 1.  
Of course, from the mathematical point of view, this setting is a priori even less satisfactory than the 

one for the Brownian particle, since it involves integration with respect to the complex valued measure 
eiS(q)/!Dq, which nobody knows how to define. Nevertheless, physicists imagine that certain integrals 
of this type exist and come to correct and interesting conclusions (both physical and mathematical). 
Therefore, making sense of such integrals is an interesting problem for mathematicians, and will be one 
of our main occupation during the course.2�

to�be�more�precise,�we�will�make�sense�of�path�integrals�as�power�series�in�κ or�!.�2
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2. The�steepest�descent�and�stationary�phase�formulas�

Now, let us forget for a moment that the integrals (1,2,3) are infinite dimensional and hence problem-
atic to define, and ask ourselves the following question: why should we expect that when the parameter 
κ or ! goes to zero, we recover the usual classical mechanics or field theory? The answer is that this 
expectation is based on the steepest�descent� (respectively, stationary�phase) principle from classical 
analysis: if f(x) is a function in Rd then the integrals g(x)e−f (x)/κdx, g(x)eif (x)/!dx “localize” to 
minima, respectively critical points, of the function f . As this classical fact is of central importance to 
the whole course, let us now discuss it in some detail. 

2.1. The�steepest�descent�formula.�Let f, g : [a, b] → R be smooth functions. 

Theorem�2.1.� (The�steepest�descent�formula)�Assume�that�f attains�a�global�minimum�at�a�unique�
point�c ∈ (a, b),�such�that�f ′′(c) > 0.�Then�one�has�

b 
(4) g(x)e −f (x)/!dx = !1/2�e −f (c)/!I(!), 

a 
√ 

2π √g(c)where�I(!) extends �to a smooth function �on �[0, ∞) such�that�I(0) = 
f ′′ (c)�

.�

Proof.�Let I(!) be defined by the equation (4). 
> ϵ  >  0, and let I1(!) be defined by the same equation, but with 2Let ϵ 1be a real number, such that 

1integration over [c − ! 12−ϵ, c  + ! 
O(!N ), ! → 0 for any N). So it suffices to prove the theorem for I1(!). √ 

2−ϵ I(!) − I1(! !]. It is clear that ) is “rapidly decaying in ” (i.e. it is 

Further, let us make in the integral defining I1(!) the change of variables y = (x − c)/ !. Then  we  
get 

−ϵ √ √ 
!)e(f (c)−f (c+y !))/!dy. (5) I1(!) =  g(c + y 

−!−ϵ 

√ 
Now, note that the integrand is a smooth function with respect to ! for ! ≥√0. Let 

! !Nat 0 modulo 
I2(!) be the  

same integral as in (5) but with integrand replaced by its Taylor expansion in . 
Then |I1(!) − I2(!)| ≤  C!N −ϵ . 

Finally, let I3(!) be defined by the same integral as I2(!) but with limits from −∞ to ∞. Then  
I2(!) − I3(!) is rapidly decaying in !. 

I3(! !1/2� !N −ϵ 

!. 
Thus, it suffices to show that ) admits a Taylor expansion in modulo , and that the √ 

value at zero is as stated. But we know that I3(!) is a polynomial in Also, the integrals giving 
coefficients of non-integer powers of ! are integrals over R of odd functions, so they are zero. So the 
first statement (existence of the Taylor expansion) is proved. The value I3(0) is given by the integral 

∞ 
f ′′ (c)y 2�

g(c) e − 2� dy, 
−∞ 

so it is computed from the well known Poisson integral: 
∞ 2� √ 

e − y 
2� dy = 2π. 

−∞ 

The theorem is proved. ! 

2.2. Stationary�phase�formula.�This theorem has the following imaginary analog, called the sta-
tionary phase formula. 

Theorem�2.2.�Assume�that�f has�a�unique�critical�point�c ∈ (a, b), with �f ′′(c) ̸= 0, and �g vanishes�
with�all�derivatives�at�a, b. Then �

b 
if (c)/!I(!),g(x)e if (x)/!dx = !1/2�e 

a 
√ 

2πe±πi/4�√g(c)where�I(!) extends �to a smooth function �on �[0, ∞) such�that�I(0) = , where �± is�the�
| f ′′ (c)|

sign�of�f ′′(c).�
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Remark.� It is important to assume that g vanishes with all derivatives at the ends of the the 
integration interval. Otherwise we will get some additional boundary contributions. 

Proof.� (sketch). The proof is analogous to the real case, but slightly more subtle. The differences are as 
follows. First of all, the Poisson integral is replaced with the (conditionally convergent) Fresnel integral 

∞ 
iy2� √ 

e 2� dy = 2πeπi/4�. 
−∞ 

Further, one should partition g in a sum of two smooth functions, one localized around c on an interval 
of size 2!1/2−ϵ, and the other vanishing near c. Next, one needs to show that only the first summand 

if (x)/!matters, by using Riemann’s lemma: if f has no critical points in the support of g then a
b 
g(x)e

is rapidly decaying (prove this!). Finally, for g localized around c, ones makes the change of variable 
like in the real case. The statement about existence of Taylor expansion is proved as in the real case, 
and the value at 0 is calculated using Fresnel integral. ! 

2.3. Non-analyticity�of�I(!) and�Borel�summation.�It is very important to note that the Taylor 
series for I(!) is usually not convergent and is only an asymptotic expansion, so that the function I is 
smooth but not analytic at zero. To illustrate this, consider the integral 

∞ 2+x 4� √ − x 
e 2! dx = 2π!1/2I(!), 

−∞ 

where ∫
1 

I(!) =  √ 
∞ 

e − y 2+
2�
!y 4�

dy. 
2π −∞ 

The latter integral expands asymptotically as 
∞ 

I(!) =  an!n , 
n=0�

where 
4n (−1)n 

2n+�2 Γ(2n + 
2
)/n!. 11(−1)n ∞

−y 2/2�

2
y
nn! 

dy = √an = √ e 
2π −∞ 2π 

It is clear that this sequence has superexponential growth, so the radius of convergence of the series is 
zero. 

Remark.�In fact, the non-analyticity of I(!) is related to the fact that the integral defining I(!) is  
divergent for ! < 0. 

Let us now discuss the question: to what extent does the asymptotic expansion of the function I(!) 
(which we can find using Feynman diagrams as explained below) actually determines this function? 
Suppose that Ĩ(!) =  

∑
n≥0�an!n is a series with zero radius of convergence. In general, we cannot 

uniquely determine a function I on [0, ε) whose expansion is given by such a series. However, assume that 
ai are such that the series g(!) =  

∑
n≥0�an!n/n! is convergent in some neighborhood of 0, analytically 

continues to [0, ∞), and has at most exponential growth as ! → ∞. In this case there is a “canonical” 
way to construct a smooth function I on [0, ε) with (asymptotic) Taylor expansion Ĩ, called Borel�
summation�of Ĩ. Namely, the function I is defined by the formula 

∞ 
I(!) =  g(!u)e −udu 

0�

The fact that I has the Taylor expansion Ĩ follows from the fact that for t >  0 one has 
∞ 

n x e −xdx = n!. 
0�

For example,  consider the  series  Ĩ = 
∑

n≥0(−1)nn!!n. Then  g(!) =  
∑

n≥0(−1)n!n = 1� . Hence, the 1+! 
−u∞ eBorel summation yields I(!) =  0� 1+!u du. 

Physicists expect that in many situations perturbation expansions in quantum field theory are Borel 
summable, and the actual answers are obtained from these expansions by Borel summation. The Borel 
summability of perturbation series has actually been established in a few nontrivial examples of QFT. 

Lin Lin


Lin Lin
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2.4. Application�of�steepest�descent.�Let us give an application of Theorem 2.1. Consider the 
integral 

∞ 
ts −te dt, s > 0. 

0�

It is well known that this integral is equal to the Gamma function Γ(s + 1). By doing a change of 
variable t = sx, we get  

∞ 
sΓ(s + 1)  

= 
∞ 

x e −sxdx = e −s(x−log x)dx. 
ss+1�

0 0�

Thus, we can apply Theorem 2.1 for ! = 1/s, f (x) =  x − log x, g(x) = 1 (of course, the interval [a, b] 
is now infinite, and the function f blows up on the boundary, but one can easily see that the theorem 
is still applicable). The function f (x) =  x − log x has a unique critical point on [0, ∞), which is c = 1,  
and we have f ′′(c) = 1. Then we get 

√ 
s −sΓ(s + 1)  =  s e 2πs(1 + a1/s + a2/s2�+ · · · ). 

This is the celebrated Stirling’s formula. 

2.5. Multidimensional�versions�of�steepest�descent�and�stationary�phase.�Theorems 2.1,2.2 
have multidimensional analogs. To formulate them, let V be a real vector space of dimension d with a 
fixed volume element dx, and  let  f, g be smooth functions in a closed box B�⊂ V . 

Theorem�2.3.�Assume�that�f has�global�minimum�on�B�at a�unique�interior�point�c,�such�that�f ′′(c) > 
0. Then �

(6) g(x)e −f (x)/!dx = !d/2�e −f (c)/!I(!), 
B�

g(c)where�I(!) extends �to a smooth function �on �[0, ∞) such�that�I(0) = (2π)d/2�√ .�
det�f ′′ (c)�

Theorem�2.4.�Assume�that�f has�a�unique�critical�point�c in�B,�such�that�det f ′′(c) ̸= 0,�and�that�g 
vanishes�with�all�derivatives�on�the�boundary of the�box.�Then�

if (x)/!dx = !d/2� if (c)/!I(!),(7) g(x)e e 
B�

eπiσ/4�√ g(c)where�I(!) extends�to�a�smooth�function�on�[0, ∞) such�that�I(0) = (2π)d/2 , where �σ 
| det�f ′′ (c)|

f ′′(c).is�the�signature�of�the�symmetric�bilinear�form�

Remark.� In presence of a volume element on V , the determinant of a symmetric bilinear form is 
well defined. 

The proofs of these theorems are parallel to the proofs of their one dimensional versions. Namely, 
the 1-dimensional Poisson and Fresnel integrals are replaced with their multidimensional versions – the 
Gaussian integrals 

e −B(x,x)/2dx = (2π)d/2(det B)−1/2�, 
V 

for a symmetric bilinear form B >  0, and 
πiσ(B)/4 −1/2�e iB(x,x)/2dx = (2π)d/2�e | det B| , 

V 

for nondegenerate-B. These integral formulas are easily deduced from the one-dimensional ones by 
diagonalizing the bilinear form-B. 
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3. Feynman�calculus�

3.1. Wick’s theorem. Let V be a real vector space of dimension d with volume element dx. Let  S(x) 
be a smooth function on a box B ⊂ V which attains a minimum at x = c ∈ Interior(B), and g be any 
smooth function on B. In the last section we have shown that the function 

−d/2 S(c)/! g(x)e −S(x)/!dxI(!) =  ! e 
B�

admits an asymptotic power series expansion in !: 
(8) I(!) =  A0 + A1! + · · · + Am!m + · · ·  
Our main question now will be: how to compute the coefficients Ai? 

It turns out that although the problem of computing I(!) is transcendental, the problem of computing 
the coefficients Ai is in fact purely algebraic, and involves only differentiation of the functions S and g 
at the point c. Indeed, recalling the proof of equation 8 (which we gave in the 1-dimensional case), we 
see that the calculation of Ai reduces to calculation of integrals of the form 

−B(x,x)/2dx,P (x)e 
V 

where P is a polynomial and B is a positive definite bilinear form (in fact, B(v, u) =  (∂v ∂uS)(c)). But 
such integrals can be exactly evaluated. Namely, it is sufficient to consider the case when P is a product 
of linear functions, in which case the answer is given by the following elementary formula, known to 
physicists as Wick’s theorem. 

For a positive integer k, consider the set {1, . . . , 2k}. By  a  pairing σ on this set we will mean its 
partition into k disjoint two-element subsets (pairs). A pairing can be visualized by drawing 2k points 
and connecting two points with an edge if they belong to the same pair (see Fig. 1). This will give k 
edges, which are not connected to each other. 

1 3 1 3 

2 4 2 4 

1 3 

2 4 

Figure�1.�Pairings of the set {1, 2, 3, 4} 

Let us  denote the  set of pairings  on  {1, . . . , 2k} by Πk . It is clear that |Πk | = (2n)! . For any σ ∈ Πk ,2n·n! 
we can think of σ as a permutation of {1, . . . , 2k}, such that σ2 = 1  and  σ has no fixed points. Namely, 
σ maps any element i to the second element σ(i) of the pair containing i. 

∗ ∗Theorem 3.1. Let B−1 denote the inverse form on V , and  let  ℓ1, . . . , ℓm ∈ V . Then,  if  m is even, 
we have 

(2π)d/2 ∑ ∏ 
−B(x,x)/2dxℓ1(x) . . . ℓm(x)e = √ B−1(ℓi, ℓσ(i)) 

V det B 
σ∈Πm/2 i∈{1,...,m}/σ 

If m is odd, the integral is zero. 
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Proof. If m is odd, the statement is obvious, because the integrand is an odd function. So consider the 
even case. Since both sides of the equation are symmetric polylinear forms in ℓ1, . . . , ℓm, it suffices to 
prove the result when ℓ1 = · · ·  = ℓm = ℓ. Further, it is clear that the formula to be proved is stable 
under linear changes of variable (check it!), so we can choose a coordinate system in such a way that 

2 2B(x, x) =  x + · · · + xd, and  ℓ(x) =  x1. Therefore, it is sufficient to assume that d = 1,  and  ℓ(x) =  x.1 
In this case, the theorem says that 

∫ ∞ 
2k −x 2x e /2dx = (2π)1/2 (2k)! 

2kk! 
, 

−∞ 

which is easily obtained from the definition of the Gamma function by change of variable y = x2/2. ! 

Examples. 
∫ 

V 
ℓ1(x)ℓ2(x)e −B(x,x)/2dx = 

(2π)d/2 
√ 

det B 
B−1(ℓ1, ℓ2). 

∫ 
ℓ1(x)ℓ2(x)ℓ3(x)ℓ4(x)e −B(x,x)/2dx = 

V 

(2π)d/2 
√ (B−1(ℓ1, ℓ2)B−1(ℓ3, ℓ4) +  B−1(ℓ1, ℓ3)B−1(ℓ2, ℓ4) +  B−1(ℓ1, ℓ4)B−1(ℓ2, ℓ3)). 

det B 
Wick’s theorem shows that the problem of computing Ai is of combinatorial nature. In fact, the 

central role in this computation is played by certain finite graphs, which are called Feynman diagrams. 
They are the main subject of the remainder of this section. 

3.2. Feynman’s diagrams and Feynman’s theorem. We come back to the problem of computing 
the coefficients Ai. Since each particular Ai depends only on a finite number of derivatives of g at 
c, it suffices to assume that g is a polynomial, or, more specifically, a product of linear functions: 

∗ g = ℓ1 . . . ℓN , ℓi ∈ V . Thus, it suffices to be able to compute the series expansion of the integral 

< ℓ1 . . . ℓN >:= !−d/2 e S(c)/! ℓ1(x) . . . ℓN (x)e −S(x)/!dx 
B�

Without loss of generality we may assume that c = 0,  and  S(c) = 0. Then the (asymptotic) Taylor 
expansion of S at c is S(x) =  B(x,x) + Br�(x,x,...,x) , where  Br = dr f(0). Therefore, regarding 2 r≥3 r! √ 
the left hand side as a power series in !, and making a change of variable x → x/ ! (like in the last 
section), we get 

2 r!< ℓ1 . . . ℓN >= !N/2 ℓ1(x) . . . ℓN (x)e − B(x,x) −
P

r≥3 !r/2−1 Br�(x,...,x) 
dx. 

V 

(This is an identity of  expansions  in  !, as we ignored the rapidly decaying error which comes from 
replacing the box by the whole space). 

The theorem below, due to Feynman, gives the value of this integral in terms of Feynman diagrams. 
This theorem is easy to prove but is central in quantum field theory, and will be one of the main 
theorems of this course. Before formulating this theorem, let us introduce some notation. 

Let G≥3(N) be the set of isomorphism classes of graphs with N 1-valent “external” vertices, labeled 
by 1, . . . , N , and a finite number of unlabeled “internal” vertices, of any valency ≥ 3. Note that here 
and below graphs are allowed to have multiple edges between two vertices, and loops from a vertex to 
itself (see Fig. 2). 

For each graph Γ ∈ G≥3(N), we define the Feynman amplitude of Γ as follows. 
1. Put the covector ℓj at the j-th external vertex. 
2. Put the tensor −Bm at each m-valent internal vertex. 
3. Take the contraction of the tensors along edges of Γ, using the bilinear form B−1 . This will 

produce a number, called the amplitude of Γ and denoted FΓ(ℓ1, . . . , ℓN ). 
Remark. If Γ is not connected, then FΓ is defined to be the product of numbers obtained from the 

connected components. Also, the amplitude of the empty diagram is defined to be 1. 
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Theorem 3.2. (Feynman) One has 

(2π)d/2 ∑ !b(Γ) 
< ℓ1 . . . ℓN >= √ FΓ(ℓ1, . . . , ℓN ),

det B |Aut(Γ)|
Γ∈G≥3 (N ) 

where b(Γ) is is the number of edges minus the number of internal vertices of Γ. 

(here by an automorphism of Γ we mean a permutation of vertices AND edges which preserves 
the graph structure, see Fig. 3; thus there can exist nontrivial automorphisms which act trivially on 
vertices). 

Remark 1. Note that this sum is infinite, but !-adically convergent. 
Remark 2. We note that Theorem 3.2 is a generalization of Wick’s theorem: the latter is obtained 

if S(x) =  B(x, x)/2. Indeed, in this case graphs which give nonzero amplitudes do not have internal 
vertices, and thus reduce to graphs corresponding to pairings σ. 

Let us now make some comments about the terminology. In quantum field theory, the function 
< ℓ1 . . . ℓN > is called the N-point correlation function, and graphs Γ are called Feynman diagrams. 
The form B−1 which is put on the edges is called the propagator. The cubic and higher terms Bm/m! in  
the expansion of the function S are called interaction terms, since such terms (in the action functional) 
describe interaction between particles. The situation in which S is quadratic (i.e., there is no interaction) 
is called a free theory; i.e. for the free theory the correlation functions are determined by Wick’s formula. 

Remark 3. Sometimes it is convenient to consider normalized correlation functions < ℓ1 . . . ℓN >norm 
= < ℓ1 . . . ℓN > /  <  ∅ > (where < ∅ > denotes the integral without insertions). Feynman’s theorem 

Γ0 

N = 0  

Γ1 Γ2 Γ3 

1 1 2 
N = 0  N = 1  N = 2  

1 2 

Γ4 

N = 2  

Figure�2.�Elements of G≥3(N) 

1 ❄ 
❂ 

Figure�3.�An automorphism of a graph 
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implies that they are given by the formula 
∑ !b(Γ) 

< ℓ1 . . . ℓN >norm = FΓ(ℓ1, . . . , ℓN ),|Aut(Γ)|∗Γ∈G≥3 (N ) 

∗where G≥3(N) is the set of all graphs in G≥3(N) which have no components without external vertices. 

3.3. Another version of Feynman’s theorem. Before proving Theorem 3.2, we would like to slightly 
modify and generalize it. Namely, in quantum field theory it is often useful to consider an interacting 
theory as a deformation of a free theory. This means that S(x) =  B(x, x)/2 +  S̃(x), where S̃(x) is  the  
perturbation S̃(x) =  m≥0 gmBm(x, x, . . . , x)/m!, where gm are (formal) parameters. Consider the 
partition function 

Z = !−d/2 e −S(x)/!dx 
V 

as a series in gi and ! (this series involves only positive powers of gi but arbitrary powers of !; however, 
the coefficient of a given monomial i gi

ni� is a finite sum, and hence contains only finitely many powers 
of !). 

Let n = (n0, n1, . . .) be a sequence of nonnegative integers, almost all zero. Let G(n) denote  the  set  
of isomorphism classes of graphs with n0 0-valent vertices, n1 1-valent vertices, n2 2-valent vertices, etc. 
(thus, now we are considering graphs without external vertices). 

Theorem 3.3. One has 
(2π)d/2 ∑ ∏ ∑ !b(Γ) 

niZ = √ g
det B i |Aut(Γ)| FΓ, 

n� i Γ∈G(n) 

where FΓ is the amplitude defined as before, and b(Γ) is the number of edges minus the number of 
vertices of Γ. 

We will prove Theorem 3.3 in the next subsection. Meanwhile, let us show that Theorem 3.2 is 
in fact a special case of Theorem 3.3. Indeed, because of symmetry of the correlation functions with 
respect to ℓ1, . . . , ℓN , it is sufficient to consider the case ℓ1 = · · ·  = ℓN = ℓ. In this case, denote the 
correlation function < ℓN > (expectation value of ℓN ). Clearly, to compute < ℓN > for all N , it  is  

Ntsufficient to compute the generating function < etℓ >:= 
∑ 

< ℓN > N ! . But this expectation value is 
exactly the one given by Theorem 3.3 for gi = 1,  i ≥ 3, g0 = g2 = 0,  g1 = −!t, B1 = ℓ, B0 = 0,  B2 = 0.  
Thus, Theorem 3.3 implies Theorem 3.2 (note that the factor N ! in the denominator is accounted for 
by the fact that in Theorem 3.3 we consider unlabeled, rather than labeled, 1-valent vertices – convince 
yourself of this!). 

3.4. Proof of Feynman’s  theorem.  Now we will prove Theorem 3.3. Let us make a change of variable √ 
y = x/ !. Expanding the exponential in a Taylor series, we obtain 

Z = Zn, 
n�

where ∏ ni�

Zn�= e −B(y,y)/2 i 
(i!)

g 
ni�ni!

(−!i/2−1Bi(y, y, . . . , y))nidy 
V i 

Writing Bi as a sum of products of linear functions, and using Wick’s theorem, we find that the value 
of the integral for each n can be expressed combinatorially as follows. 

1. Attach to each factor −Bi a “flower” — a vertex with i outgoing edges (see Fig. 4). 
2. Consider the set T of ends of these outgoing edges (see Fig. 5), and for any pairing σ of this set, 

consider the corresponding contraction of tensors −Bi using the form B−1 . This will produce a number 
F (σ). 

3. The integral Zn�is given by 
ni� ∑ 

(9) 
(2π)d/2 ∏ gi !ni( i�

Zn�= √ 2 −1) 

det B (i!)nini! 
Fσ 

i σ 
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0-valent flower 

1-valent flower 

3-valent flower 

Figure�4�

Now, recall that pairings on a set can be visualized by drawing its elements as points and connecting 
them with edges. If we do this with the set T , all ends of outgoing edges will become connected with 
each other in some way, i.e. we will obtain a certain (unoriented) graph Γ = Γσ (see Fig. 6). Moreover, 
it is easy to see that the number F (σ) is nothing but the amplitude FΓ. 

It is clear that any graph Γ with ni i-valent vertices for each i can be obtained in this way.  However,  
the same graph can be obtained many times, so if we want to collect the terms in the sum over σ, and  
turn it into a sum over Γ, we must find the number of σ which yield a given Γ. 

For this purpose, we will consider the group G of permutations of T , which preserves “flowers” 
(i.e. endpoints of any two edges outgoing from the same flower end up again in the same flower). This 
group involves 

1) permutations of “flowers” with a given valency; 
2) permutation of the i edges inside each i-valent “flower”. 
More precisely, the group G is the semidirect product ( Sni�) " ( Sni�). Note that |G| = ∏ i i i 

i(i!)
ni�ni!, which is the product of the numbers in the denominator of the formula (9). 

Figure�5.�The set T for n⃗ = (0, 0, 0, 2, 1, 0, 0, . . .) (the set of white circles) 
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σ: r: 

Figure�6.�A pairing  σ of T and the corresponding graph Γ. 

The group G acts on the set of all pairings σ of T . Moreover, it acts transitively on the set PΓ of 
pairings of T which yield a given graph Γ. Moreover, it is easy to see that the stabilizer of a given 
pairing is Aut(Γ). Thus, the number of pairings giving Γ is 

i(i!)
nini! 

|Aut(Γ)| . 

Hence, 
∑ ∑ 

i(i!)
nini! 

Fσ = FΓ. |Aut(Γ)|
σ Γ 

Finally, note that the exponent of ! in equation (9) is i(i/2 − 1), which is the number of edges of Γ 
minus the number of vertices, i.e. b(Γ). Substituting this into (9), we get the result. 

Example. Let d = 1,  V = R, gi = g, Bi = −zi for all i (where z is a formal variable), ! = 1.  Then  
we find the asymptotic expansion 

1 
∫ ∞ 2 zx− x�

2 +ge = 
∑ 

g n 
∑ z2k 

√ 
2π −∞ 

e |Aut(Γ)| , 
n≥0 Γ∈G(n,k) 

where G(n, k) is the set of isomorphism classes of graphs with n vertices and k edges. Expanding the 
left hand side, we get 

2 2 ∑ ∑ z2k z n /2e
= |Aut(Γ)| n! 

, 
k Γ∈G(n,k) 

and hence 
∑ 1 2kn

= |Aut(Γ)| 2kk!n! 
, 

Γ∈G(n,k) 

Exercise. Check this by direct combinatorics. 

3.5. Sum over connected diagrams. Now we will show that the logarithm of the partition function 
Z is also given by summation over diagrams, but with only connected diagrams taken into account. 
This significantly simplifies the analysis of Z in the first few orders of perturbation theory, since the 
number of connected diagrams with a given number of vertices and edges is significantly smaller than 
the number of all diagrams. 
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(2π)d/2 
Theorem 3.4. Let Z0 = det(B) . Then one has 

∑ ∏ ∑ !b(Γ) 
niln(Z/Z0) =  g FΓ,i |Aut(Γ)|

n� i Γ∈Gc(n) 

where Gc(n) is the set of connected graphs in G(n). 

Remark. We agree that the empty graph is not connected. 

Proof. For any graphs Γ1, Γ2, let  Γ1Γ2 stand for the disjoint union of Γ1 and Γ2, and for any graph Γ let 
Γn denote the disjoint union of n copies of Γ. Then every graph can be uniquely written as Γk1 . . .  Γkl�,1 l 
where Γj are connected non-isomorphic graphs. Moreover, it is clear that FΓ1 Γ2 = FΓ1 FΓ2 , b(Γ1Γ2) =  
b(Γ1) +  b(Γ2), and |Aut(Γk1 . . .  Γkl)| = j (|(Aut(Γj )|kj�kj !). Thus, exponentiating the equation of 1 l 
Theorem 3.4, and using the above facts together with the Taylor series for the function ex, we arrive 
at Theorem 3.3. As the Theorem 3.3 has been proved, so is Theorem 3.4 ! 

3.6. Loop expansion. It is very important to note that since summation in Theorem 3.4 is over 
connected Feynman diagrams, the number b(Γ) is the number of loops in Γ minus 1. In particular, the 
lowest coefficient in ! is that of !−1, and it is the sum over all trees; the next coefficient is of !0, and  
it is the sum over all diagrams with one loop (cycle); the next coefficient to ! is the sum over two-loop 
diagrams, and so on. Therefore, physicists refer to the expansion of Theorem 3.4 as loop expansion. 

Let us study the two most singular terms in this expansion (with respect to !), i.e. the terms given 
by the sum over trees and 1-loop graphs. 

Let x0 be the critical point of the function S. It exists and is unique, since gi are assumed to be 
formal parameters. Let G(j)(n) denote the set of classes of graphs in Gc(n) with  j loops. Let 

ni(ln(Z/Z0))j = 
∑ ∏ 

g 
∑ FΓ 

i |Aut(Γ)| . 
n� i Γ∈G(j) (n) 

Theorem 3.5. 

(10) (ln(Z/Z0))0 = −S(x0), 

and 
1 det(B)

(11) (ln(Z/Z0))1 = ln 
det S′′(x0) 

.
2 

Proof. First note that the statement is purely combinatorial. This means, in particular, that it is 
sufficient to check that the statement yields the correct asymptotic expansion of the right hand sides of 
equations (10),(11). in the case when S is a polynomial with real coefficients of the form B(x, x)/2 +  ∑N !−d/2 

i=0 giBi(x,  x, . . .  , x)/i!. To do this, let Z = e−S(x)/!, where  B is a sufficiently small box B�
around 0. For sufficiently small gi, the function S has a unique global maximum point x0 in B, which  
is nondegenerate. Thus, by the steepest descent formula, we have 

Z/Z0 = e −S(x0 )/!I(!), 
det(B)where I(!) =  det S′′ (x0 ) (1 + a1! + a2!2 + · · · ) (asymptotically). Thus, 

1
ln(Z/Z0) =  −S(x0)!−1 + ln det(B)

+ O(!).
2 det S′′(x0) 

This implies the result. ! 

Physicists call the expression (ln(Z/Z0))0 the classical (or tree) approximation to the quantum me-
chanical quantity ! ln(Z/Z0), and the sum (ln(Z/Z0))0 + !(ln(Z/Z0))1 the one loop approximation. 
Similarly one defines higher loop approximations. Note that the classical approximation is obtained by 
finding the critical point and value of the classical action S(x), which in the mechanics and field theory 
situation corresponds to solving the classical equations of motion. 

Lin Lin
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3.7. Nonlinear equations and trees. As we have noted, Theorem 3.5 does not involve integrals 
and is purely combinatorial. Therefore, there should exist a purely combinatorial proof of this theorem. 
Such a proof indeed exists. Here we will give a combinatorial proof of the first statement of the Theorem 
(formula (10)). 

Consider the equation S′(x) = 0, defining the critical point x0. This equation can be written as 
x = β(x), where 

ˆβ(x) :=  − giB
−1Bi(x, x, . . . , x, ?)/(i − 1)!, 

i≥1 

∗B−1 : V → V is the operator corresponding to the form B−1 . 
In the sense of power series norm, β is a contracting mapping. Thus, x0 = limN →∞ βN (x), for any 

initial vector x ∈ V . In other words, we will obtain x0 if we keep substituting the series β(x) into itself.  
This leads to summation over trees (explain why!). More precisely, we get the following expression for 
x0: 

where ˆ

x0 = ( g ni) 
∑ FΓ 

i |Aut(Γ)| , 
n� Γ∈G(0) (n,1) 

where G(0)(n, 1) is the set of trees with one external vertex and ni internal vertices of degree i. Now,  
since S(x) =  B(x, x)/2 +  giBi(x, x, . . . , x)/i!, the expression −S(x0) equals the sum of expressions 

ni� FΓ( gi ) |Aut(Γ)| over all trees (without external vertices). Indeed, the term B(x0, x0)/2 corresponds to 
gluing two trees with external vertices (identifying the two external vertices, so that they disappear); 
so it corresponds to summing over trees with a marked edge, i.e. counting each tree as many times as it 
has edges. On the other hand, the term giBi(x0, . . . , x0)/i! corresponds to gluing i trees with external 
vertices together at the external vertices (making a tree with a marked vertex). So giBi(x0, . . . , x0)/i! 
corresponds to summing over trees with a marked vertex, i.e. counting each trees as many times as it 
has vertices. But the number of vertices of a tree exceeds the number of edges by 1. Thus, the difference 
−S(x0) of the above two contributions corresponds to summing over trees, counting each exactly once. 
This implies formula (10). 

3.8. Counting trees and Cayley’s theorem. In this section we will apply Theorem 3.5 to tree 
counting problems, in particular will prove a classical theorem due to Cayley that the number of 

n−2labeled trees with n vertices is n . 
We consider essentially the same example as we considered above: d = 1,  Bi = −1, gi = g. Thus,  we  

2 xhave S(x) =  2 − gex . By Theorem 3.5, we have 
∑ ∑ 1n g = −S(x0),|Aut(Γ)|
n≥0 Γ∈T (n) 

where T (n) is the set of isomorphism classes of trees with n vertices, and x0 is the root of the equation 
xS′(x) = 0, i.e. x = ge . 

In other words, let f(z) be the function inverse to xe−x near x = 0.  Then  we  have  x0 = f(g). Thus, 
let us find the Taylor expansion of f . This is given by the following classical result. 

Proposition 3.6. One has 
∑ nn−2 

nf(g) =  
(n − 1)! 

g . 
n≥1 

Proof. Let f(g) =  n≥1 angn. Then  

1 f(g) 1 x 
an = 

gn+1 dg = −x)n+1 d(xe −x) =
2πi 2πi (xe

∮ n−1 n−2 n−21 1 − x n n n
e dx = = 

xn2πi 
nx 

(n − 1)! 
− 

(n − 2)! (n − 1)! 
. 



∫ 

15 MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 

Now we find 
f (g)−S(x0) =  −f (g)2/2 +  ge . 

Thus 
f (g) = e f (g)−(d/dg)S(x0) =  −f (g)f ′(g) +  ge f (g)f ′(g) +  e = f (g) 

. 
g 

This means that 
g f (a) ∑ nn−2 

n−S(x0) =  da = 
n! 

g . 
0 a 

n≥1 

This shows that 
∑ 1 n−2n

= |Aut(Γ)| n! 
Γ∈T (n) 

n!But each isomorphism class of unlabeled trees with n vertices has |Aut(Γ)| nonisomorphic labelings. 
Thus the latter formula implies 

n−2Corollary 3.7. (A. Cayley) The number of labeled trees with n vertices is n . 

3.9. Counting trees with conditions. In a similar way we can count labeled trees with conditions 
on vertices. For example, let us compute the number of labeled trivalent trees with m vertices (i.e. trees 
that have only 1-valent and 3-valent vertices). Clearly, m = 2k, otherwise there is no such trees. The 

2 xrelevant action functional is S(x) =  2 − g(x + x3/6). Then the critical point x0 is obtained from the √ 
equation g(x2/2 +  1)  − x = 0, which yields x0 = 1− 1−2g2 

.  Thus,  the tree sum  (ln(Z/Z0))0 equalsg 

2)3/21 − (1 − 2g
(ln(Z/Z0))0 = −S(x0) =  

3g2 − 1. 

Expanding this in a Taylor series, we find 
∞ ∑ 1 · 3 ·  · · ·  · (2n − 1) 2n+2(ln(Z/Z0))0 = (n + 2)!  

g 
n=0 

Hence, we get 

Corollary 3.8. The number of trivalent labeled trees with m = 2k vertices is (2k − 3)!! (2k)! .(k+1)! 

3.10. Counting oriented trees. Feynman calculus can be used to count not only non-oriented, but 
also oriented graphs. For example, suppose we want to count labeled oriented trees, whose vertices are 
either sources or sinks (see Fig. 7). In this case, it is easy to see (check it!) that the relevant integration 
problem is in two dimensions, with the action S = xy − bex − aey . So the critical point is found from 
the equations 

−x xe −y = a, ye = b. 

✲1 

2 

3 

4 

5 

6 

✲

✲

$ 

% 

Figure�7.�A labeled oriented tree with 3 sources and 3 sinks. 
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Like before, look for a solution (x, y) =  (x0, y0) in the  form  

x = a + cpq a
pbq , y  = b + dpq a

pbq . 
p≥1,q≥1 p≥1,q≥1 

A calculation with residues similar to the one we did for unoriented trees yields 
eqx+py1 x 1 

da ∧ db =cpq = 
(2πi)2 ap+1bq+1 (2πi)2 xpyq+1 (1 − xy)dx ∧ dy = 

qp−1pq−1 

(p − 1)!q! . 

qp−1 pq−1 
Similarly, dpq = p!(q−1)! . Now, similarly to the unoriented case, we find that −a∂aS(x, y) =  x, 
−b∂bS(x, y) =  y, so  

a x ∑ pq−1qp−1 
−S(x, y) =  b + du = a + b + apbq 

0 u 
p,q≥1 

p!q! 

qp−1 (p+q)!This implies that the number of labeled trees with p sources and q sinks ispq−1
p!q! . In  particular,  

qp−1if we specify which vertices are sources and which are sinks, the number of trees is pq−1 . 

3.11. 1-particle irreducible diagrams and the effective action. Let Z = ZS be the partition 
function corresponding to the action S. In the previous subsections we have seen that the “classical” 
(or “tree”) part (ln(ZS /Z0))0 of the quantity ln(ZS /Z0) is quite elementary to compute – it is just 
minus the critical value of the action S(x). Thus, if we could find a new “effective” action Seff (a 
“deformation” of S) such that 

(ln(ZSeff /Z0))0 = ln(ZS /Z0) 
(i.e. the classical answer for the effective action is the quantum answer for the original one), then we 
can regard the quantum theory for the action S as solved. In other words, the problem of solving 
the quantum theory attached to S (i.e. finding the corresponding integrals) essentially reduces to the 
problem of computing the effective action Seff . 

We will now give a recipe of computing the effective action in terms of amplitudes of Feynman 
diagrams. 

Definition 3.9. An edge e of a connected graph Γ is said to be a bridge, if the graph Γ \ e is 
disconnected. A connected graph without bridges is called 1-particle irreducible (1PI). 

Remark. This is the physical terminology. The mathematical terminology is “2-connected”. 
To compute the effective action, we will need to consider graphs with external edges (but having at 

least one internal vertex). Such a graph Γ (with N external edges) will be called 1-particle irreducible if 
so is the corresponding “amputated” graph (i.e. the graph obtained from Γ by removal of the external 
edges). In particular, a graph with one internal vertex is always 1-particle irreducible (see Fig. 8), while 
a single edge graph without internal vertices is defined not to be 1-particle irreducible. 

Let us denote by G1−irr(n, N) the set of isomorphism classes of 1-particle irreducible graphs which 
N external edges and ni i-valent internal vertices for each i (where isomorphisms are not allowed to 
move external edges). 

Theorem 3.10. The effective action Seff is given by the formula 
B(x, x)

Seff (x) =  
2 

− 
∑ Bi 

i! 
, 

i≥0 

where 
∑ ∏ ∑ !b(Γ)+1 

BN (x,  x, . . .  , x) =  ( g ni) FΓ(x∗, x∗, . . . , x∗),i |Aut(Γ)|
n� i Γ∈G1−irr (n,N ) 

∗where x∗ ∈ V is defined by x∗(y) :=  B(x, y) 

Thus, Seff = S + !S1 + !2S2 + .. The expressions !j Sj are called the j-loop corrections to the effective 
action. 

This theorem allows physicists to worry only about 1-particle irreducible diagrams, and is the reason 
why you will rarely see other diagrams in a QFT textbook. As before, it is very useful in doing low 
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not a bridge 

✻ 

✢ 

a bridge  

1PI graph with 
two external edges 

non-1PI graph with 
four external edges 

Figure�8�

order computations, since the number of 1-particle irreducible diagrams with a given number of loops 
is much smaller than the number of connected diagrams with the same number of loops. 

Proof. The proof is based on the following lemma from graph theory. 

Lemma 3.11. Any connected graph Γ can be uniquely represented as a tree, whose vertices are 1-particle 
irreducible subgraphs (with external edges), and edges are the bridges of Γ. 

The lemma is obvious. Namely, let us remove all bridges from Γ. Then Γ will turn into a union of 
1-particle irreducible graphs, which should be taken to be the vertices of the said tree. 

The tree corresponding to the graph Γ is called the skeleton of Γ (see Fig. 9). 

Graph: Skeleton: 

Figure�9.�The skeleton of a graph. 

It is easy to see that the lemma implies the theorem. Indeed, it implies that the sum over all 
connected graphs occurring in the expression of ln(ZS /Z0) can be written as a sum over skeleton trees, 
so that the contribution from each tree is (proportional to) the contraction of tensors Bi put in its 
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vertices, and Bi is the (weighted) sum of amplitudes of all 1-particle irreducible graphs with i external 
edges. ! 

3.12. 1-particle irreducible graphs and the Legendre transform. Recall the notion of Legendre 
transform. 

∗Let f be a smooth function on a vector space Y , such that the map Y → Y given by x → df (x) is  
∗a diffeomorphism. Then one can define the Legendre transform of f as follows. For p ∈ Y , let  x0(p) 

be the critical point of the function (p, x) − f (x) (i.e. the unique solution of the equation df (x) =  p). 
∗Then the Legendre transform of f is the function on Y defined by 

L(f )(p) =  (p, x0) − f (x0). 
∗It is easy to see that the differential of L(f ) is also a diffeomorphism Y → Y (in fact, inverse to df (x)), 

and that L2(f ) =  f . 
Example. Let f (x) =  ax2/2. Then px − f = px − x2/2 has a critical point at p = x/a, and  the  

critical value is p2/2a. L(ax2/2) = p2/2a. Similarly, if f (x) =  B(x, x)/2 where  B is a nondegenerate 
symmetric form, then L(f )(p) =  B−1(p, p)/2. 

Now let us consider Theorem 3.10 in the situation of Theorem 3.2. Thus, S(x) =  B(x, x)/2+  O(x3 ), 
and we look at ∫ 

J·x−S(x) 
Z(J ) =  !−d/2 e ! dx 

V 
By Theorem 3.10, one has 

ln(Z(J )/Z0) =  −Seff (x0, J  ), 
where the effective action Seff (x, J ) given by summation over 1-particle irreducible graphs. 

Now, we must have Seff (x, J ) =  −J · x + Seff (x), since the only 1PI graph which contains 1-valent 
internal vertices (corresponding to J ) is the graph with one edge, connecting an internal vertex with 
an external one (so it yields the term −J · x, and other graphs contain no J -vertices). This shows that 
ln(Z(J )/Z0) is the critical value of J · x − Seff (x). Thus we have proved the following. 

Proposition 3.12. We have 
Seff (x) =  L(ln(Z(J )/Z0)), ln(Z(J )/Z0) =  L(Seff (x)). 

Physicists formulate this result as follows: the effective action is the Legendre transform of the 
logarithm of the generating function for quantum correlators (and vice versa). 
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4. Matrix�integrals�

Let hN be the space of Hermitian matrices of size N . The inner product on hN is given by (A, B) =  
Tr(AB). In this section we will consider integrals of the form 

ZN = !−N 2/2 e −S(A)/!dA, 
hN 

where the Lebesgue measure dA is normalized by the condition 
∫ 

e−Tr(A2)/2dA = 1,  and  S(A) =  
Tr(A2)/2 − m≥0 gmTr(Am)/m is the action functional. 3 We will be interested the behavior of the 
coefficients of the expansion of ZN in gi for large N . The study of this behavior will lead us to considering 
not simply Feynman graphs, but actually fat (or ribbon) graphs, which are in fact 2-dimensional surfaces. 
Thus, before we proceed further, we need to do some 2-dimensional combinatorial topology. 

4.1. Fat�graphs.�Recall from the proof of Feynman’s theorem that given a finite collection of flowers 
and a pairing σ on the set T of endpoints of their edges, we can obtain a graph Γσ by connecting (or 
gluing) the points which fall in the same pair. 

Now, given an i-flower, let us inscribe it in a closed disk D (so that the ends of the edges are on 
the boundary) and take its small tubular neighborhood in D. This produces a region with piecewise 
smooth boundary. We will equip this region with an orientation, and call it a fat i-valent flower. The  
boundary of a fat i-valent flower has the form P1Q1P2Q2 . . . PiQiP1, where  Pi, Qi are the angle points, 
the intervals Pj Qj are arcs on ∂D, and  Qj Pj+1 are (smooth) arcs lying inside D (see Fig. 10). 

3-valent flower fat 3-valent flower 
Q1 

P1 

Q3 

P2 

Q2 

P3 

Figure�10�

Now, given a collection of usual flowers and a pairing σ as above, we can consider the corresponding 
fat flowers, and glue them (respecting the orientation) along intervals Pj Qj according to σ. This will 
produce a compact oriented surface with boundary (the boundary is glued from intervals Pj Qj+1). 

We will denote this surface by Γ̃σ , and call it the fattening of Γ with respect to σ. A fattening of 
a graph will be called a fat (or ribbon) graph. Thus, a fat graph is not just an oriented surface with 
boundary, but such a surface together with a partition of this surface into fat flowers. 

Note that the same graph Γ can have many different fattenings, and in particular the genus g of the 
fattening is not determined by Γ (see Fig. 11). 

4.2. Matrix�integrals�in�large�N limit�and�planar�graphs.�Let us now return to the study of the 
integral ZN . By the proof of Feynman’s theorem, 

∑ ∏ g ni !ni (i/2−1) ∑ 
ln ZN = ( i 

ini ni!
) Fσ , 

n� σ 

where the summation is taken over all pairings of T = T (n) that produce a connected graph Γσ , and  
Fσ denotes the contraction of the tensors Tr(Ai) using  σ. 

For a surface Σ with boundary, let ν(Σ) denote the number of connected components of the boundary. 

= N ν(eΓσ ).Proposition�4.1.�Fσ 

3Note�that�we�divide�by�m�and�not�by�m!.�We�will�see�below�why�such�normalization�will�be�more�convenient.�
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Γ1 g = 0 Γ2 g = 0

Γ3 g = 1

Figure 11. Gluing a fat graph from fat flowers

Proof. Let ei be the standard basis of CN , and e∗i the dual basis. Then the tensor Tr(Am) can be
written as

Tr(Am) =
N∑

i1,...,im=1

(ei1 ⊗ e∗i2 ⊗ ei2 ⊗ e∗i3 ⊗ · · ·⊗ eim ⊗ e∗i1 , A
⊗m).

One can visualize each monomial in this sum as a labeling of the angle points P1, Q1, . . . , Pm, Qm on
the boundary of a fat m-valent flower by i1, i2, i2, i3, . . . , im, i1. Now, the contraction using σ of some
set of such monomials is nonzero iff the subscript is constant along each boundary component of Γ̃σ

(see Fig. 12). This implies the result. !

ei

e∗
j

ej

e∗
k

ek

e∗
l

e∗
m

en

e∗
n

e∗
n

e∗
n

e∗
n

Contraction nonzero iff
i = r, j = p, j = m, k = r,
k = p, i = m,
that is
i = r = k = p = j = m.

Figure 12. Contraction defined by a fat graph.

Let G̃c(n) is the set of isomorphism classes of connected fat graphs with ni i-valent vertices. For
Γ̃ ∈ G̃c(n), let b(Γ̃) be the number of edges minus the number of vertices of the underlying usual
graph Γ.

Corollary 4.2.

ln ZN =
∑

n

(
∏

gni
i )

∑

eΓ∈ eGc(n)

Nν(eΓ)!b(eΓ)

|Aut(Γ̃)|
.

Proof. Let Gfat(n) =
∏

Sni " (
∏

Z/iZ)ni . This group acts on T , so that Γ̃σ = Γ̃gσ, for any g ∈ Gfat

(since cyclic permutations of edges of a flower extend to its fattening). Moreover, the group acts
transitively on the set of σ giving a fixed fat graph Γ̃σ, and the stabilizer of any σ is Aut(Γ̃σ). This
implies the result. !

Now for any compact surface Σ with boundary, let g(Σ) be the genus of Σ. Then for a connected fat
graph Γ̃, b(Γ̃) = 2g(Γ̃) − 2 + ν(Γ̃) (minus the Euler characteristic). Thus, defining ẐN(!) = ZN (!/N),
we find



∑ ∏ 

˜

˜

∫ 

21 MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 

Theorem�4.3.�
eΓ)eΓ) b(!

ln ẐN = ( g ni ) 
∑ N 2−2g(

i . 
|Aut(Γ̃)|n� Γ∈Gc(n) 

This implies the following important result, due to t’Hooft. 

Theorem�4.4.�(1) There exists a limit W∞ := limN →∞ 
ln ˆ
N
Z
2�
N . This limit is given by the formula 

ee

∑ ∏ ∑ !b(

W∞ = ( g ni )i 

eΓ) 
, 

|Aut(Γ̃)|n� Γ∈Gc (n)[0] 

where Gc(n)[0] denotes the set of planar�connected fat graphs, i.e. those which have genus zero. 
(2) Moreover, there exists an expansion ln ẐN /N 2 = 

∑ 
g≥0 agN −2g, where  

ee

∑ ∏ ∑ !b(

ag = ( g ni )i 

eΓ) 
, 

|Aut(Γ̃)|n� Γ∈Gc (n)[g]e

and Gc(n)[g] denotes the set of connected fat graphs which have genus g. 

e

Remark�1.� Genus zero fat graphs are said to be planar because the underlying usual graphs can 
be put on the 2-sphere (and hence on the plane) without self-intersections. 

Remark�2.�t’Hooft’s theorem may be interpreted in terms of the usual Feynman diagram expansion. 
Namely, it implies that for large N , the leading contribution to ln(ZN (!/N )) comes from the terms in 
the Feynman diagram expansion corresponding to planar graphs (i.e. those that admit an embedding 
into the 2-sphere). 

4.3. Integration�over�real�symmetric�matrices.�One may also consider the matrix integral over 
the space sN of real symmetric matrices of size N . Namely, one puts 

ZN = !−N (N +1)/4 e −S(A)/!dA, 
sN 

where S and dA are as above. Let us generalize Theorem 4.4 to this case. 
As before, consideration of the large N limit leads to consideration of fat flowers and gluing of them. 

However, the exact nature of gluing is now somewhat different. Namely, in the Hermitian case we had 
∗ ∗(ei ⊗ ej , ek ⊗ el ) =  δilδjk , which forced us to glue fat flowers preserving orientation. On the other hand, 

∗in the real symmetric case e = ei, and the inner product of the functionals ei ⊗ ej on the space of i 
symmetric matrices is given by (ei ⊗ ej , ek ⊗ el) =  δik δjl + δil δjk . This means that besides the usual 
(orientation preserving) gluing of fat flowers, we now must allow gluing with a twist of the ribbon by 
180o . Fat graphs thus obtained will be called twisted fat graphs. That means, a twisted fat graph 
is a surface with boundary (possibly not orientable), together with a partition into fat flowers, and 
orientations on each of them (which may or may not match at the cuts, see Fig. 13). 

Figure�13.�Twisted-fat graph 

Now one can show analogously to the Hermitian case that the 1/N expansion of ln ẐN (where 
ZN = ZN (2!/N )) is given by the same formula as before, but with summation over the set ˜ˆ Gtw (n) of  c 
twisted fat graphs: 
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Theorem�4.5.�
eΓ)eΓ) b(!

ln ˆ
∑ ∏ ∑ N2−2g(

ZN = ( g ni )i . 
|Aut(Γ̃)|n� Gtw�(n)c 

eΓ∈ 

Here the genus g of a (possibly non-orientable) surface is defined by g = 1 − χ/2, where χ is the 
Euler characteristic. Thus the genus of RP 2 is 1/2, the genus of the Klein bottle is 1, and so on. 

In particular, we have the analog of t’Hooft’s theorem. 

N
Z
2�
N . This limit is given by the formula Theorem�4.6.�(1) There exists a limit W∞ := limN →∞ 

ln ˆ

e

∑ ∏ ∑ !b(

W∞ = ( g ni )i 

eΓ) 
, 

|Aut(Γ̃)|n� Gtw�(n)[0]c 
eΓ∈ 

Gtwwhere ˜ (n)[0] denotes the set of planar�connected twisted fat graphs, i.e. those which have genus c 
zero. 

(2) Moreover, there exists an expansion ln ẐN /N2 = 
∑ 

g≥0 agN−2g, where  

e

∑ ∏ ∑ !b(

ag = ( g ni )i 

eΓ) 
, 

|Aut(Γ̃)|n eGtw�(n)[g]c 
eΓ∈ 

Gtwand ˜ (n)[g] denotes the set of connected twisted fat graphs which have genus g.c 

Exercise.�Consider the matrix integral over the spaceqN of quaternionic Hermitian matrices. Show 
that in this case the results are the same as in the real case, except that each twisted fat graph counts 
with a sign, equal to (−1)m, where  m is the number of twistings (i.e. mismatches of orientation at 
cuts). In other words, ln ẐN for quaternionic matrices is equal ln Ẑ2N for real matrices with N replaced 
by −N . 

Hint: use that the unitary group U(N, H) is a real form of Sp(2N), and qN is a real form of the 
representation of Λ2V , where  V is the standard (vector) representation of Sp(2N). Compare to the 
case of real symmetric matrices, where the relevant representation is S2V for O(N), and the case of 

∗complex Hermitian matrices, where it is V ⊗ V for GL(N). 

4.4. Application�to�a�counting�problem.�Matrix integrals are so rich that even the simplest possible 
example reduces to a nontrivial counting problem. Namely, consider the matrix integral ZN over 
complex Hermitian matrices in the case S(A) =  Tr(A2)/2 − sTr(A2m)/2m, where  s2 = 0 (i.e. we work 
over the ring C[s]/(s2)). In this case we can set ! = 1. Then from Theorem 4.4 we get 

Tr(A2m)e −Tr(A2)/2dA = Pm(N), 
hN 

where Pm(N) is a polynomial, given by the formula Pm(N) =  g≥0 εg(m)Nm+1−2g , and  εg(m) is  the  
number of ways to glue a surface of genus g from a 2m-gon with labeled sides by gluing sides preserving 
the orientation. Indeed, in this case we have only one fat flower of valency 2m, which has to be glued 
with itself; so a direct application of our Feynman rules leads to counting ways to glue a surface of a 
given genus from a polygon. 

The value of this integral is given by the following non-trivial theorem. 

Theorem�4.7.�(Harer-Zagier, 1986) 
m ( ) 

Pm(x) =  
(2m)! ∑ m x(x − 1) . . .  (x − p)

2p 
2mm! p (p + 1)!  . 

p=0 

The theorem is proved in the next subsections. 
Looking at the leading coefficient of Pm, we  get.  

Corollary� 4.8.� The number of ways to glue a sphere of a 2m-gon is the Catalan number Cm = 
2m . m+1 m 

1 
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Corollary 4.8 actually has another (elementary combinatorial) proof, which is as follows. For each 
pairing σ on the set of sides of the 2m-gon, let us connect the midpoints of the sides that are paired by 
straight lines (Fig. 14). It is geometrically evident that if these lines don’t intersect then the gluing will 
give a sphere. We claim that the converse is true as well. Indeed, we can assume that the statement is 
known for the 2m − 2-gon. Let σ be a gluing of the 2m-gon that gives a sphere. If there is a connection 
between two adjacent sides, we may glue them and go from a 2m-gon to a 2m − 2-gon (Fig. 15). Thus, 
it is sufficient to consider the case when adjacent sides are never connected. Then there exist adjacent 
sides a and b whose lines (connecting them to some c, d) intersect with each other. Let us now replace 
σ by another pairing σ′, whose only difference from σ is that a is connected to b and c to d (Fig. 16). 
One sees by inspection (check it!) that this does not decrease the number of boundary components of 
the resulting surface. Therefore, since σ gives a sphere, so does σ′. But  σ′ has adjacent sides connected, 
the case considered before, hence the claim. 

Figure�14.�Pairing of sides of a 6-gon. 
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3 

2 

✯ 
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3 
5 
6✲
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Figure�15�

✲

Figure�16�

Now it remains to count the number of ways to connect midpoints of sides with lines without 
intersections. Suppose we draw one such line, such that the number of sides on the left of it is 2k and 
on the right is 2l (so that k + l = m − 1). Then we face the problem of connecting the two sets of 2k 
and 2l sides without intersections. This shows that the number of gluings Dm satisfies the recursion 

Dm = Dk Dl 
k+l=m−1 

In other words, the generating function Dmxm = 1  +  x + · · ·  satisfies the equation f −1 =  xf 2. This  √ 
implies that f = 1− 

2
1
x 
−4x , which yields that Dm = Cm. We are done. 

Corollary 4.8 can be used to derive the the following fundamental result from the theory of random 
matrices, discovered by Wigner in 1955. 
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Theorem�4.9.� (Wigner’s semicircle law) Let f be a continuous function on R of at most polynomial 
growth at infinity. Then 

1
lim Trf (A/ 

√ 
N )e −Tr(A2)/2 1 ∫ 2 

f (x) 4 − x2dx. 
N →∞ N hN 2π −2 

This theorem is called the semicircle law because it says that the graph of the density of eigenvalues of 
a large random Hermitian matrix distributed according to ‘the “Gaussian unitary ensemble” (i.e. with 
density e−Tr(A2)/2dA) is  a  semicircle.  

Proof. By Weierstrass uniform approximation theorem, we may assume that f is a polynomial. (Exer-
cise: Justify this step). 

Thus, it suffices to check the result if f (x) =  x2m . In this case, by Corollary 4.8, the left hand side ∫ 2 √ 
1is Cm. On the other hand, an elementary computation yields 2π −2 x

2m 4 − x2 = Cm, which implies 
the theorem. ! 

4.5. Hermite�polynomials.�The proof 4 of Theorem 4.7 given below uses Hermite polynomials. So 
let us recall their properties. 

Hermite’s polynomials are defined by the formula 

x 2� dn 
−x 2�Hn(x) =  (−1)n e e . 

dxn 

So the leading term of Hn(x) is  (2x)n . 
We collect the standard properties of Hn(x) in the following theorem. 

Theorem�4.10.�(i) The generating function of Hn(x) is f (x, t) =  
∑ 

Hn(x) tn
n 

! = e2xt−t2�. n≥0 

(ii) Hn(x) satisfy the differential equation f ′′ − 2xf ′ + 2nf = 0. In  other  words,  Hn(x)e−x 2/2 are 
eigenfunctions of the operator L = − 1 ∂2 + 1 x2 (Hamiltonian of the quantum harmonic oscillator) with 2 2 
eigenvalues n + 1 .2 

(iii) Hn(x) are orthogonal: 
1 

∫ ∞
−x 2�√ e Hm(x)Hn(x)dx = 2n n!δmn

π −∞ 

(iv) One has 

√ 1 
∫ ∞ 

e −x 2�x 2mH2k (x)dx = (2m)! 
22(k−m) 

π −∞ (m − k)! 
(if k >  m, the answer is zero). 

(v) One has 
r

Hr 
2(x) ∑ r! 

= H2k (x).
2rr! 2k k!2(r − k)!

k=0 

Proof. (sketch) 
(i) Follows immediately from the fact that the operator 

∑ n dn 
maps a function g(x) to  (−1)n t

n! dxn 

g(x − t). 
(ii) Follows from (i) and the fact that the function f (x, t) satisfies the PDE fxx − 2xfx + 2tft = 0.  
(iii) Follows from (i) by direct integration (one should compute 

∫ 
R f (x, t)f (x, u)e−x 2�dx using a shift 

of coordinate). 
2m(iv) By (i), one should calculate 

∫ 
R x e2xt−t2�e−x 2�dx. This  integral  equals  

∑ 2m (2m − 2p)! 
t2p2m x e −(x−t)2�dx = (y + t)2m e −y 2�dy == 

√ 
π 2p 2m−p(m − p)! 

. 
R R p 

The result is now obtained by extracting individual coefficients. 

4I�adopted�this�proof�from�D.�Jackson’s�notes�
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(v) By (iii), it suffices to show that 
2r+k1 

Hr 
2(x)H2k (x)e −x 2� r!2(2k)!√ dx = 

π R k!2(r − k)! 
To prove this identity, let us integrate the product of three generating functions. By (i), we have 

√ 1 
f (x, t)f (x, u)f (x, v)e −x 2�dx = e2(tu+tv+uv). 

π R 

Extracting the coefficient of tr urv2k , we get the result. ! 

4.6. Proof�of�Theorem�4.7. We need to compute the integral 

Tr(A2m)e −Tr(A2)/2dA. 
hN 

To do this, we note that the integrand is invariant with respect to conjugation by unitary matrices. 
Therefore, the integral can be reduced to an integral over the eigenvalues λ1, . . . , λN of A. 

More precisely, consider the spectrum map σ : hN → RN /SN . It is well known (due to H. Weyl) 
i /2ithat the direct image σ∗dA is given by the formula σ∗dA = Ce− 

P�
λ2� ∏ 

i<j (λi − λj )2dλ, where  C >  0 
is a normalization constant that will not be relevant to us. Thus, we have 

P∫ ∑ 
λ2m)e− λ2� ∏ 

i /2 

Pm(N ) =  RN ( ∫ i i 
P�

i /2 
i<j (λi − λj )2dλ 

− λ2� ∏ 
RN e i<j (λi − λj )2dλ 

To calculate the integral Jm in the numerator, we will use Hermite’s polynomials. Observe that since 
Hn(x) are polynomials of degree n with highest coefficient 2n, we  have  i<j (λi − λj ) =  
2−N (N −1)/2 det(Hk (λi )), where k runs through the set 0, 1, . . .  , n  − 1. Thus, we find 

∑ P� ∏ 
Jm := ( λ2m)e − λ2�

i /2 (λi − λj )2dλ = i 
RN 

i i<j 

2m+N 2/2N λ2m − 
P�

λ2�∏ 
1 e i (λi − λj )2dλ = 

RN 
i<j (12) ∫ P�

2m−N (N −2)/2N λ2m − λ2�

1 e i det(Hk (λj ))2dλ = 
RN 

P� ∑ ∏ 
2m−N (N −2)/2N λ2m − λ2�

1 e i ( (−1)σ (−1)τ Hσi(λi)Hτ i(λi))dλ. 
RN 

σ,τ ∈SN i 

(Here (−1)σ denotes the sign of σ). 
Since Hermite polynomials are orthogonal, the only terms which are nonzero are the terms with 

σ(i) =  τ (i) for  i = 2, . . .  , N  . That is, the nonzero terms have σ = τ . Thus,  we  have  
P� ∑ ∏ 

λ2m − λ2�
Jm = 2m−N (N −2)/2N 1 e i ( Hσi(λi)2dλ = 

RN 
σ∈SN i 

(13) N −1 ∫ ∞ 
−x2m−N (N −2)/2N !γ0 . . .  γN −1 

∑ 1 
x 2mHj (x)2 e 

2�
dx,

γj −∞j=0 
∫ ∞where γi = −∞ Hi(x)2e−x 2�dx are the squared norms of the Hermite polynomials. Applying this for 

m = 0 and dividing Jm by J0, we find 
N −1 ∫ ∞ 

−xJm/J0 = 2m 
∑ 1 

x 2mHj (x)2 e 
2�
dx 

γj −∞j=0 
√

Using Theorem 4.10 (iii) and (v), we find: γi = 2ii! π, and hence 

1 
∫ N −1 j

Jm/J0 = √ 
∑ ∑ 2mx2mH2k (x) 

e −x 2�dx 
π R j=0 k=0 

2k k!2(j − k)! 
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Now, using (iv), we get 
∑ ∑ 2k j!(2m)! N −1 j

=Jm/J0 = 
2m (m − k)!k!2(j − k)!

j=0 k=0 

(2m)! N −1 j

2k 
( 

m j 
2mm! k k

. 
j=0 k=0 

The sum over k can be represented as a constant term of a polynomial: 
j ( )( ) 

2k m j = C.T .((1 + z)m(1 + 2z −1)k ). 
k k 

k=0 

Therefore, summation over j (using the formula for the sum of the geometric progression) yields 

(2m)! 
C.T .((1 + z)m (1 + 2z−1)N − 1

) =  (2m)! m

2p m 
) (  

N 
Jm/J0 = 

2mm! 2z−1 2mm! p p + 1  
p=0 

We are done. 
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5. The�Euler�characteristic�of�the�moduli�space�of�curves�

Matrix integrals (in particular, computation of the polynomial Pm(x)) can be used to calculate the 
orbifold Euler characteristic of the moduli space of curves. This was done by Harer and Zagier in 1986. 
Here we will give a review of this result (with some omissions). 

5.1. Euler�characteristics� of�groups.�We start with recalling some basic notions from algebraic 
topology. 

Let Γ be a discrete group, and Y be a contractible finite dimensional CW complex, on which Γ acts 
cellularly. This means that Γ acts by homeomorphisms of Y that map each cell homeomorphically 
to another cell. We will assume that the stabilizer of each cell is a finite group (i.e. Y is a proper 
Γ-complex). 

Suppose first that the action of Γ is free (i.e. the stabilizers of cells are trivial). This is equivalent 
to saying that Γ is torsion free (i.e has no nontrivial finite subgroups), since a finite group cannot act 
without fixed points on a contractible finite dimensional cell complex (as it has infinite cohomological 
dimension). 

In this case we can define a cell complex Y/Γ (a classifying space for Γ), and we have Hi(Y/Γ, A) =  
Hi(Γ, A) for any coefficient group A. In particular, if Y/Γ is finite then Γ has finite cohomological 
dimension, and the Euler characteristic χ(Γ) := (−1)i dim Hi(Γ, Q) is  equal  to  

∑ 
(−1)ini(Y/Γ), 

where ni(Y/Γ) denotes the number of cells in Y/Γ of  dimension  i. 
This setting, however, is very restrictive, since it allows only groups of finite cohomological dimension, 

and in particular excludes all non-trivial finite groups. So let us consider a more general setting: assume 
that some finite index subgroup Γ′ ⊂ Γ, rather than Γ itself, satisfies the above conditions. In this 
case, on may define the Euler characteristic of Γ in the sense of Wall, which is the rational number 
[Γ : Γ′]−1χ(Γ′). 

It is easy to check that the Euler characteristic in the sense of Wall can be computed using the 
following Quillen’s formula 

χ(Γ) = 
∑ (−1)dim σ 

|Stabσ
σ∈cells(Y)/Γ 

| 

In particular, this number is independent of Γ′ (which is also easy to check directly). 
Example�1.�If G is a finite group then χ(G) =  |G −1 (one takes the trivial group as the subgroup |

of finite index). 
Example�2.� G = SL2(Z). This group contains a subgroup F of index 12, which is free in two 

generators (check it!). The group F has Euler characteristic −1, since its classifying space Y/F  is figure 
“eight” (i.e., Y is the universal cover of figure “eight”). Thus, the Euler characteristic of SL2(Z) is  
−1/12. 

The Euler characteristic in the sense of Wall has a geometric interpretation in terms of orbifolds. 
Namely, suppose that Γ is as above (i.e. χ(Γ) is a well defined rational number), and M is a contractible 
manifold, on which Γ act freely and properly discontinuously. In this case, stabilizers of points are finite, 
and thus M/Γ is an orbifold. This means, in particular, that to every point x ∈ M/Γ is attached a 
finite group Aut(x), of size ≤ [Γ : Γ′]. Let Xm be the subset of M/Γ, consisting of points x such that 
Aut(x) has order m. It often happens that Xm has the homotopy type of a finite cell complex. In this 
case, the orbifold Euler characteristic of M/Γ is defined to be χorb(M/Γ) = χ(Xm)/m. m 

Now, we claim that χorb(M/Γ) = χ(Γ). Indeed, looking at the projection M/Γ′ → M/Γ, it is easy 
1to see that χorb(M/Γ) = [Γ:Γ′ ] χ(M/Γ′). But M/Γ′ is a classifying space for Γ′, so  χ(M/Γ′) =  χ(Γ′), 

which implies the claim. 
Example.� Consider the group Γ = SL2(Z) acting on the upper half plane H . Then  H/Γ is  the  

moduli space of elliptic curves. So as a topological space it is C, where all points have automorphism 
group Z/2, except the point i having automorphism group Z/4, and ρ which has automorphism group 
Z/6. Thus, the orbifold Euler characteristic of H/Γ is  (−1) 1 + 1 + 1 = − 1 .  This is not  surprising  2 4 6 12 
since we proved that χorb(H/Γ) = χ(Γ), which was computed to be −1/12. 

5.2. The�mapping�class�group.�Now let g ≥ 1 be an integer, and Σ be a closed oriented surface of 
genus g. Let  p ∈ Σ, and let Γ1 be the group of isotopy classes of diffeomorphisms of Σ which preserves g 
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p. We will recall without proof some standard facts about this group, following the paper of Harer and 
Zagier, Inv. Math., v.85, p. 457-485. 

The group Γ1 
g is not torsion free, but it has a torsion free subgroup of finite index. Namely, consider 

the homomorphism Γ1 → Sp(2g, Z/nZ) given by the action of Γ1 on H1(Σ, Z/nZ). Then for large g g 
enough n (in fact, n ≥ 3), the kernel Kn of this map is torsion free. 

It turns out that there exists a contractible finite dimensional cell complex Y , to be constructed 
below, on which Γ1 acts cellularly with finitely many cell orbits. Thus, the Euler characteristic of Γ1 

g g 
in the sense of Wall is well defined. 

Theorem�5.1.�(Harer-Zagier) χ(Γ1 
g ) =  −B2g /2g, where  Bn are the Bernoulli numbers, defined by the 

zgenerating function Bnzn/n! =  . n≥0 ez�−1 
1uller space Tg , which is, by definition the space of Remark�1.� The group Γ1 acts on the Teichm¨g 

pairs ((R, z), f), where (R, z) is a complex Riemann surface with a marked point z, and  f is an isotopy 
class of diffeomorphisms R → Σ that  map  z to p. One may show that T 1 is a contractible manifold g 
of dimension 6g − 4, and that the action of Γ1 on T 1 is properly discontinuous. In particular, we may g g 

1define an orbifold M1 = Tg /Γ1 . This orbifold parameterizes pairs (R, z) as above; therefore, it is called g g 
the moduli space of Riemann surfaces (=smooth complex projective algebraic curves) with one marked 
point. Thus, Theorem 5.1 gives the orbifold Euler characteristic of the moduli space of curves with one 
marked point. 

Remark�2.�If g >  1, one may define the analogs of the above objects without marked points, namely 
the mapping class group Γg , the Teichmüller space Tg , and the moduli space of curves Mg = Tg /Γg 
(one can do it for g = 1 as well, but in this case there is no difference with the case of one marked 
point, since the translation group allows one to identify any two points on Σ). It is easy to see that we 
have an exact sequence 1 → π1(Σ) → Γ1 → Γg → 1, which implies that χ(Γg ) =  χ(Γ1 

g )/χ(Σ). Thus, g 
χ(Γg ) =  χorb(Mg ) =  B2g /4g(g − 1) 

5.3. Construction�of�the�complex�Y .�We begin the proof of Theorem 5.1 with the construction of 
the complex Y , following the paper of Harer and Zagier. We will first construct a simplicial complex 
with a Γ action, and then use it to construct Y . 

Let (α1, . . . , αn) be a collection of closed simple unoriented curves on Σ, which begin and end at p, 
and do not intersect other than at p. Such a collection is called an arc system if two conditions are 
satisfied: 

(A) none of the curves is contractible to a point; 
(B) none of the curves is contractible to each other. 
Define a simplicial complex A, whose  n − 1-simplices are isotopy classes of arc systems consisting 

of n ≥ 1 arcs, and the boundary of a simplex corresponding to (α1, . . .αn) is the union of simplices 
corresponding to the arc system (α1, . . . ,  ̂αi, . . . , αn) (αi is omitted). 

It is clear that the group Γ1 acts simplicially on A. g 
Example.�Let g = 1, i.e. Σ = S1 × S1. Then  Γ1 = SL2(Z). Up to its action, there are only three g 

arc systems (Fig. 17). Namely, viewing S1 as the unit circle in the complex plane, and representing 
arcs parametrically, we may write these three systems as follows: 

iθ iθ iθB0 = {(e , 1)}; B1 = {(e , 1), (1, e  iθ )}; B2 = {(e , 1), (1, e  iθ ), (e iθ , e  iθ )}
¿From this it is easy to find the simplicial complex A. Namely,  let  T be the tree with root t0 connected 
to three vertices t1, t2, t3, with  each  ti connected to two vertices ti1, ti2, each  tij connected to tij1, tij2 , 
etc. (Fig. 18). Put at every vertex of T a triangle, with sides transversal to the three edges going out of 
this vertex, and glue triangles along the sides. This yields the complex A, Fig. 19 (check it!). The action 
of SL2(Z) (or  rather  PSL2(Z)) on this complex is easy to describe. Namely, recall that PSL2(Z) is  
generated by S, U such that S2 = U3 = 1. The action of S, U on T is defined as follows: S is reflection 
with flip with respect to a side of the triangle ∆0 centered at t0 (Fig. 20), and U is rotation by 2π/3 
around t0. 

This example shows that the action of Γ1 on A is not properly discontinuous, and some simplices g 
have infinite stabilizers (in the example, it is the 0-dimensional simplices). Thus, we would like to 
throw away the “bad” simplices. To do it, let us say that an arc system (α1, .., αn) fills  up  Σ  if  it cuts  
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B0 B1 B2 

Figure�17.�Three arc systems. 

Figure�18.�Tree T 

Σ into a union of regions diffeomorphic to the open disk. Let A∞ be the union of the simplices in A 
corresponding to arc systems that do not fill up Σ. This is a closed subset, since the property of not 
filling up Σ is obviously stable under taking an arc subsystem. Thus, A \ A∞ is an open subset of A. 
In the example above, it is the complex A with 0-dimensional simplices removed. 

Figure�19.�Complex A 

Figure�20.�Reflection with a flip. 
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The following theorem shows that A \ A∞ is in fact a combinatorial model for the Teichmüller space 
T 1, with the action of Γ1 .g g 

Theorem�5.2.�(Mumford) (a) The action of Γ1 on A \ A∞ is properly discontinuous. g 
(b) A \ A∞ is a topologically a manifold, which is Γ1 uller g -equivariantly homeomorphic to the Teichm¨

1space Tg ; in particular, it is contractible. 

Remark�1.� Theorem 5.2 exhibits the significance of conditions (A) and (B). Indeed, if either of 
the conditions were dropped, then one could consider arc systems (α1, . . . , αn) with arbitrarily large n, 
while with conditions (A),(B), as seen from Theorem 5.2, the largest value of n is 6g − 3. 

Remark�2.� If g = 1, Theorem 5.2 is clear from the explicit description of A (convince yourself of 
this!). 

Theorem 5.2 is rather deep, and we will not give its proof, which is beyond the scope of this course. 
Rather, we will use it to define the “Poincare dual” CW complex Y of A\A∞. Namely, to each filling arc 
system (α1, . . . , αn) we will assign a 6g − 3 − n-dimensional cell, and the boundary relation is opposite 
to the one before. The existence of this CW complex follows from the fact that A \ A∞ is a manifold. 
For instance, in the case g = 1  the  complex  Y is the tree T . 

Now, the complex Y is contractible (since so is A \ A∞), and admits a cellular action of Γ1 withg 
finitely many cell orbits and finite stabilizers. This means that the Euler characteristic of Γ1 is given g 
by Quillen’s formula. 

∑ 1
(−1)dim σχ(Γ1 

g ) =  |Stabσ
. 

σ∈cells(Y )/Γ1�
g�

| 

Example.� In the g = 1  case,  T has one orbit of 0-cells and one orbit of 1-cells. The stabilizer of 
1 1a 0-cell in SL2(Z) is  Z/6, and of 1-cell is Z/4. Hence, χ(SL2(Z)) = 1
4 = − 12 , which was already 6 −

computed before by other methods. 

5.4. Enumeration�of�cells�in�Y/Γ1 .�Now it remains to count cells in Y/Γ1, i.e. to enumerate arc g g 
systems which fill Σ (taking into account signs and stabilizers) To do this, we note that by definition 
of “filling”, any filling arc system S defines a cellular decomposition of Σ. Thus, let S∗ be the Poincare 

∗dual of this cellular decomposition. Since S has a unique zero cell, S has a unique 2-cell. Let n be 
∗ ∗the number of 1-cells in S (or S ). Then (Σ, S ) is obtained by gluing a 2n-gon (=the unique 2-cell) 

∗according to a pairing of its sides preserving orientation. (Note that S can be reconstructed as (S )∗). 
This allows us to link the problem of enumerating filling arc systems with the problem of counting 

such gluings, which was solved using matrix integrals. Namely, the problem of enumerating filling arc 
systems is essentially solved modulo one complication: because of conditions (A) and (B) on an arc 
system, the gluings we will get will be not arbitrary gluings, but gluings which also must satisfy some 
conditions. Namely, we have 

Lemma�5.3.�Let (α1, . . . , αn) be a system of curves, satisfying the axioms of a filling arc system, except 
maybe conditions (A) and (B). Then 

(i) (α1, . . . , αn) satisfies condition (A) iff no edge in the corresponding gluing is glued to a neighboring 
edge. 

(ii) (α1, . . . , αn) satisfies condition (B) iff no two consecutive edges are glued to another pair of 
consecutive edges in the opposite order. 

■ 
✲

loop homo-
topic to 0. 

Figure�21�
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▼ ✻ 

✲

loops homotopic 
to each other. 

Figure�22�

The lemma is geometrically evident, and its proof is obtained by drawing a picture (Fig. 21 for (i), 
Fig. 22 for (ii)). Motivated by the lemma, we will refer to the conditions on a gluing in (i) and (ii) also 
as conditions (A) and (B). 

Denote by εg (n), µg (n), λg (n) the numbers of gluings of a (labeled) 2n-gon into a surface of genus 
g, with no conditions, condition (A), and conditions (A),(B), respectively (so εg (n) is  the  quantity  we  
already studied). 

Proposition�5.4.�One has 

g ) =  (−1)n−1 λg (n) 
.χ(Γ1 

2n 
n 

Proof. Each filling arc system σ arises from 2n/|Stab(σ) gluings (since the labeling of the polygon |
does not matter for the resulting surface with an arc system). Thus, the result follows from Quillen’s 
formula. ! 

5.5. Computation�of� (−1)n−1 λg(n) .�Now it remains to compute the sum on the right hand side. n 2n 
To do this, we will need to link λg (n) with  εg (n), which has already been computed. This is accomplished 
by the following lemma. 

Lemma�5.5.�One has ∑ 2n 
εg (n) =  µg (n − i);

i 
i 

µg (n) =  n
λg (n − i). 

i 
i 

Proof. Proof of the first equation. Let σ be a gluing of a 2n-gon ∆ with labeled vertices. If there is 
a pair of consecutive edges that are glued, we can glue them to obtain a 2n − 2-gon. Proceeding like 
this as long as we can, we will arrive at a 2n − 2i-gon ∆σ , with a gluing σ′ of its sides which satisfies 
condition (A). Note that ∆σ and σ′ do not depend on the order in which neighboring edges were glued 
to each other, and ∆σ has a canonical labeling by 1, . . . , 2n − 2i, in the increasing order of the “old” 

2nlabels. Now, we claim that each (∆σ , σ′) is obtained in exactly ways; this implies the required 
i 

statement. 
Indeed, let us consider vertices of ∆ that ended up in the interior of ∆σ . They  have  mapped  to  i 

points in the interior (each gluing of a pair of edges produces a new point). Let us call these points 
w1, . . . , wi, and  let  νj be the smallest label of a vertex of ∆ that goes to wj . Then  ν1, . . . , νi is a subset 
of {1, . . . , 2n}. This subset completely determines the gluing σ if (∆σ , σ′) are given: namely, we should 
choose νj such that νj + 1  ≠ νk for any k, and glue the two edges adjacent to νj ; then relabel by 
1, . . . , 2n − 2 the remaining vertices (in increasing order of “old” labels), and continue the step again, 
and so on. From this it is also seen that any set of νj may arise. This proves the claim. 

Proof of the second equation. Let σ be a gluing of ∆ (with labeled edges) which satisfies condition 
(A) but not necessarily (B). If a1, a2 are consecutive edges that are glued to consecutive edges b2, b1 
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in the opposite order, then we may unite a1, a2 into a single edge a, and  b2, b1 into b, and  obtain  a  
2n − 2-gon with a gluing. Continuing so as long as we can, we will arrive at a 2n − 2i-gon ∆σ with 
a new gluing σ′, which satisfies conditions (A) and (B). In ∆σ , each  (j-th) pair of edges is obtained 
for mj + 1 pairs of edges in ∆. Thus, 

∑m−i mj = i. Furthermore, for any (∆σ , σ′) the collection of j=1 
numbers m1, . . . , mn−i defines (∆, σ) uniquely, up to deciding which of the m1 + 1 edges constituting 
the first edge of ∆σ should be labeled by 1. Thus, each (∆σ , σ′) arises in the number of ways given by 
the formula 

(m1 + 1). 
m1,...,mn−i:

P
mj=i 

It is easy to show (check!) that this number is equal to n . The second equation is proved. ! 
i 

The completion of the proof of Theorem 5.1 depends now on the following computational lemma. 

Lemma�5.6.�Let ε(n), µ(n), λ(n), n ≥ 0, be sequences satisfying the equations 
∑ 2n 

ε(n) =  µ(n − i);
i 

i 

µ(n) =  n
λ(n − i). 

i 
i 

2nAssume also that ε(n) =  f(n), where  f is a polynomial such that f(0) = 0. Then  λ(0) = 0, λ(n)
n 

has finitely many nonzero values, and (−1)n−1λ(n)/2n = f ′(0). 

Proof. Let us first consider any sequences ε(n), µ(n), and λ(n) linked by the equations of the lemma. 
Let E(z), M(z), and L(z) be their generating functions (i.e. E(z) =  ε(n)zn etc.). We claim that n≥0 

1 +  
√

1 − 4z 
E(z) =  L(

1 −
√

1 − 4z
).

2(1 − 4z) 2
√

1 − 4z 
To see this, it suffices to consider the case λi = δki for some k. In  this  case,  

E(z) =  
∑ 

i,n 

2n 
i 

n − i 
k z n = 

∑ 

p,q≥0 

2p + 2q 
p 

( ) 

q 
k zp+q 

But the function 
Fr (z) :=  

∑ 

p≥0 

2p + r 
p zp 

equals 

Fr (z) =  1 √
1 − 4z 

(
1 −

√
1 − 4z 

2z 

)r 

, 

as may be easily seen by induction from the recursion F −1(F r−2), r ≥ 2. Substituting this r = z r−1 −F
in the formula for E(z), one gets (after trivial simplifications) 

1 +  
√

1 − 4z 1 −
√

1 − 4z
)kE(z) =  ,

2(1 − 4z)
(

2
√

1 − 4z 
as desired. 

Now assume that ε(n) satisfies the polynomiality condition. This means that E(z) =  
P (z∂)|z=0 √ 1 , where  P is a polynomial with vanishing constant term. To prove our claim, it suffices 

1−4z 
to consider the case P (z) =  (1  +  a)z − 1, where a is a formal parameter (so P ′(0) = ln(1 + a)). In this 
case we get 

1 1 
E(z) =  √ 

1 − 4(1 + a)z 
− √

1 − 4z 
Hence, 

1 1 
L(u) =  ( √

1 +  u 1 − 4au(1 + u) 
− 1) 
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Therefore, 
∑ 1 

∫ 0 
(−1)k−1λk /2k = L(u)du/u = 1 ∑ 2p (−1)p−1 ap 

∫ 1 
xp−1(1 − x)p−1dx.

2 p 0k 
2 −1 p≥1 

But 
∫ 1 

xp−1(1 − x)p−1 dx is  a beta integral,  and  it  equals (p − 1)!2/(2p − 1)!. Thus, the above integral 0 ∑ 
equals p≥1(−1)p−1ap/p = ln(1  +  a), as desired. ! 

Now we finish the proof of the theorem. Recall that using matrix integrals we have proved the 
formula 

n+1−2g n 2p x(14) Pn(x) :=  εg (n)x = (2n)! 
( ) ( 

p + 1  

) 

2nn! p 
g p≥0 

Let us set q = n − p. Then expression (14) takes the form 
∑ n!

(15) Pn(x) =  2n 2−q n 
n q (n − q + 1)!  

x(x − 1) · · · (x − n + q). 
q≥0 

We claim now that the coefficient of x−2g (g ≥ 1) in the polynomial Pn(x)/xn+1 are of the form 
2n 

fg (n), where fg is a polynomial. Indeed, contributions to the coefficient of x−2g come from terms 
n 

with q ≤ 2g only, so it suffices to check that each of these contributions is as stated. This reduces to 
checking that the coefficients of the Laurent polynomial Q(x, n) =  (1−1/x) · · · (1−n/x) are  polynomials  
in n, which vanish at −1 (except, of course, the leading coefficient). To see this, let Q(x, a) =  Γ(x) 

Γ(x−a)xa�

(this equals to Q(x, n) if  a = n). This function has an asymptotic Taylor expansion in 1/x as x → +∞, 
and it is easy to show that the coefficients are polynomials in a. Moreover,  Q(x, −1) = 1, which implies 
the required statement. 

Furthermore, we claim that fg (0) = 0: again, this follows from the fact that the non-leading coeffi-
cients of the expansion of Q(x, a) vanish at  a = 0. But this is clear, since Q(x, 0) = 1. 

Thus, we are in a situation where Lemma 5.6 can be applied. So it remains to compute 
fg 
′ (0)x−2g . To do this, observe that the terms with q >  1 do not contribute to fg 

′ (0), as they g≥1 
2 are given by polynomials of n that are divisible by n . So we only need to consider q = 0  and  q = 1.  

For q = 1, the contribution is the value of (2x)−1(1 − 1/x) . . .  (1 − n/x) at  n = 0, i.e. it is 1/2x. For  
q = 0, the contribution is the derivative at 0 with respect to n of (1 − 1/x) · · · (1 − n/x)/(n + 1), i.e. it 

d Q(x,a) dis da |a=0 a+1 = −1 +  da |a=0Q(x, a). Thus, we have (asymptotically) 
∑ 

f ′ 
1 d 

a=0Q(x, a) =
1 Γ′(x)−2g 

g (0)x = + 
da 

| + 
Γ(x) 

− log x
2x 2x 

g≥1 

However, the classical asymptotic expansion for Γ′/Γ is:  

1 ∞Γ′(x) 
Γ(x) 

= log  x − 
∑ B2g x .

2x 
− 

2g 
−2g 

g=1 

This implies that fg 
′ (0) = −B2g /2g. Hence the Harer-Zagier theorem is proved. 
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6. Matrix�integrals�and�counting�planar�diagrams�

6.1. The�number�of�planar�gluings.�Let us return to the setting of §4.  Thus,  we have a potential  
U (x) =  x2/2 − j≥0 gj xj /j (with gj being formal parameters), and consider the matrix integral 

ZN (!) =  !−N/2 −TrU(A)dA.e 
hN�

Let ẐN (!) =  ZN (!/N ). We have seen that 

ln ẐNlim = W∞, 
N→∞ N 2 

where W∞ is given by summation over planar fat graphs: 
∑ ∏ ∑ !b(eΓ)

W∞ = g ni�
i |Aut(Γ̃)|n� i Γ∈ ee Gc(n)[0] 

In particular, the coefficient of g ni� is (up to a power of !) the number of (orientation preserving) i 
gluings of a fat graph of genus zero out of a collection of fat flowers containing ni i-valent flowers for 
each i, divided by inini!. 

On the other hand, one can compute W∞ explicitly as a function of gi by reducing the matrix integral 
to an integral over eigenvalues, and then using a fundamental fact from the theory of random matrices: 
the existence of an asymptotic distribution of eigenvalues as N → ∞. This approach allows one to 
obtain simple closed formulas for the numbers of planar gluings, which are quite nontrivial and for 
which direct combinatorial proofs were discovered only very recently. 

4To illustrate this method, we will restrict ourselves to the case of the potential U (x) =  x2/2 +  gx
(so g4 = −4g and other gi = 0),  and  set  ! = 1.  Then  W∞ = n≥1 cn(−g)n/n!, where cn is a number 
of connected planar gluings of a set of n 4-valent flowers. In other words, cn is the number of ways (up 
to isotopy) to connect n “crosses” in the 2-sphere so that all crosses are connected with each other, and 
the connecting lines do not intersect. 

Exercise.�Check by drawing pictures that c1 = 2,  c2 = 36. 

Theorem�6.1.�(Brezin, Itzykson, Parisi, Zuber, 1978). One has 
cn = (12)n(2n − 1)!/(n + 2)!  

6.2. Proof of�Theorem�6.1.�Let us present the proof of this theorem (with some omissions). We will 
assume that g is a positive real number, and compute the function W∞(g) explicitly. We follow the 
paper of Brezin, Itzykson, Parisi, and Zuber “Planar diagrams”, Comm. Math. Phys. 59, p. 35-51, 
1978. 

The relevant matrix integral has the form 

−NTr(A2/2+gA4)dA.ẐN = e 
hN�

Passing to eigenvalues, we get 

ẐN = JN (g) 
JN (0) 

, 

where ∫ P P� ∏ 
i�/2+g λ4�

JN (g) =  e −N( λ2�
i�) (λi − λj )2dλ. 

RN�
i<j 

Thus, W∞(g) =  E(g) − E(0), where E(g) = limN→∞ N −2 ln JN (g). 

Proposition�6.2.� (steepest descent principle) E(g) equals the maximal value of the logarithm of the 
integrand. 

The proposition says, essentially, that the integrand has a sufficiently sharp maximum, so that the 
leading behavior of the integral can be computed by the steepest descent formula. We note that we 
cannot apply the steepest descent formula without explanations, since the integral is over a space whose 
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dimension grows as the perturbation parameter 1/N goes to 0. In other words, it is necessary to do 
some estimates which we will omit. We will just mention that for g = 0, this result can be derived from 
the explicit evaluation of the integral using Hermite polynomials (see §4). For the general case, we refer 
the reader to the book of P. Deift “Orthogonal polynomials and random matrices: a Riemann-Hilbert 
approach”. P�

i�/2+g i�)The integrand K(λ1, . . . , λN ) =  e−N ( λ2� P�
λ4� ∏ 

i<j (λi − λj )2 has a unique maximum, because 
it is logarithmically concave (check it!). The maximum of the integrand is found by equating the partial 
derivatives to zero. This yields 

∑ 1 1 
λi + 2gλ3 

i ).(16) = N(
λi − λj 2 

j ̸=i 

Let λ1 < λ2 < · · · < λN be the unique (up to permutations) solution of this system of equations. 
1Proposition�6.3.�The normalized counting measures N δ(x − λi) converge weakly to a measure 

µ(x) =  f(x, g)dx, where  f(x, g) is a continuous function, supported on a finite interval [−2a, 2a], and  
differentiable on this interval. 

For the proof we again refer the reader to the book of P. Deift (p. 132 and later). √We note that for √ 
1 1 g = 0, by Wigner’s semicircular law, a = 1  and  f(x, 0) = 2π 4 − x2; so  f(x, g) =  2π 4 − x2 + O(g). 

Now our job will be to find the function f(x, g). Passing to the limit in equation 16 (which requires 
justification that we will omit), we get 

∫ 2a 1 1 3f(x, g)dx =
2 
y + 2gy , |y| ≤ 2a 

−2a y − x 

where the integral is understood in the sense of principal value. 
This is a linear integral equation on f(x, g), which can be solved in a standard way. Namely, one ∫ 2a 1considers the analytic function F (y) =  −2a y−x f(x, g)dx for y in the complex plane but outside of the 

interval [−2a, 2a]. For y ∈ [−2a, 2a], let F+(y), F−(y) denote the limits of F (y) from  above  and  below.  
Then by the Plemelj formula, the integral equation implies 

1 1 3 
2
(F+(y) +  F−(y)) = 

2 
y + 2gy . 

3On the other hand, F+(y) =  F−(y). Hence, ReF+(y) =  Re(F−(y)) = 1 
2 y + 2gy . 

Now set y = a(z + z−1). Then, as y runs through the exterior of [−2a, 2a], z runs through the 
exterior of the unit circle. So the function G(z) :=  F (y) is analytic on the outside of the unit circle, 
with decay at infinity, and ReG(z) =  1 a(z + z−1) +  2ga3(z + z−1)3 , |z| = 1. This implies that G(z) is  2 
twice the sum of all negative degree terms of this Laurent polynomial. In other words, we have 

3 −1G(z) =  4ga z −3 + (a + 12ga 3)z . 

This yields 
1 1 

F (y) =  
2 
y + 2gy 3 − ( + 4ga 2 + 2gy 2) y2 − 4a2 .

2 
Now f(y, g) is found as the jump of F : 

1 1 
f(y, g) =  ( + 4ga 2 + 2gy 2) 4a2 − y2 . 

π 2 
It remains to find a in terms of g. We  have  yF (y) → 1, y → ∞  (as f(x, g)dx = 1), hence 

3zG(z) → 1/a, z → ∞. This yields 1/a = a + 12ga , or  

12ga 4 + a 2 − 1 =  0. 

This allows one to determine a uniquely: 

(1 + 48g)1/2 − 1
)1/2 a = 

24g
. 
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Now let us calculate E(g). It follows from the above that 
∫ 2a ∫ 2a ∫ 2a 1 

E(g) =  ln |x − y|f (x, g)f (y, g)dxdy − ( x 2 + gx 4)f (x, g)dx.
2−2a −2a −2a 

On the other hand, let us integrate the integral equation defining f (x, g) with respect to y (from 0 to 
u). Then we get ∫ 2a 

2 (ln |x − u|− ln |x|)f (x, g)dx = 1 4 u 2 + gu .
2−2a 

Substituting this into the expression for E(g), we get 
∫ 2a 1 1 

E(g) =  (ln |u|−  u 2 − 
2 
gu 4)f (u, g)du

4 
Since f (u, g) is known, this integral can be computed. In fact, can be expressed via elementary functions, 
and after calculations we get 

1 

−2a 

2 − 1)(9 − a 2).E(g) − E(0) = ln a − 
24

(a 

Substituting here the expression for a, after a calculation one finally gets: 
∞

E(g) − E(0) = 
∑ 

(−12g)k (2k − 1)! 
. 

k!(k − 2)! 
k=1 

This implies the required formula for cn. 
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7. Quantum�mechanics�

So far we have considered quantum field theory with 0-dimensional spacetime (to make a joke, one 
may say that the dimension of the space is −1). In this section, we will move closer to actual physics: 
we will consider 1-dimensional spacetime, i.e. the dimension of the space is 0. This does not mean that 
we will study motion in a 0-dimensional space (which would be really a pity) but just means that we 
will consider only point-like quantum objects (particles) and not extended quantum objects (fields). In 
other words, we will be in the realm of quantum mechanics. 

7.1. The�path� integral� in�quantum�mechanics.�Let U(q) be a smooth function on the real line 
(the potential). We will assume that U(0) = 0, U ′(0) = 0, and U ′′(0) = m2, where  m >  0. 

Remark.� In quantum field theory the parameter m in the potential is called the mass�parameter. 
To be more precise, in classical mechanics it has the meaning of frequency ω of oscillations. However, in 
quantum theory thanks to Einstein frequency is identified with energy (E = !ω/2π), while in relativistic 
theory energy is identified with mass (again thanks to Einstein, E = mc2). 

We want to construct the theory of a quantum particle moving in the potential field U(q). According 
to what we discussed before, this means that we want to give sense to and to evaluate the normalized 
correlation functions ∫ 

iS(q)/!Dqq(t1) . . . q(tn)e
< q(t1) . . . q(tn) >:= ∫ 

eiS(q)/!Dq 
, 

where S(q) =  L(q)dt, and  L(q) =  ̇q2/2 − U(q). 
As we discussed, such integrals cannot be handled rigorously by means of measure theory if ! is a 

positive number; so we will only define these path integrals “in perturbation theory”, i.e. as formal 
series in !. 

Before giving this (fully rigorous) definition, we will explain the motivation behind it. We warn the 
reader that this explanation is heuristic and involves steps which are mathematically non-rigorous (or 
“formal” in the language of physicists). 

7.2. Wick�rotation.� In §1 we discussed path integrals with imaginary exponential (quantum mechan-
ics), as well as real exponential (Brownian motion). If ! is a number, then the integrals with imaginary 
exponential cannot be defined measure theoretically. Therefore, people study integrals with real expo-
nential (which can be rigorously defined), and then perform a special analytic continuation procedure 
called the Wick rotation. 

In our formal setting (! is a formal parameter), one can actually define the integrals in both the 
real and the imaginary case. Still, the real case is a bit easier, and thus the Wick rotation is still 
useful. Besides, the Wick rotation is very important conceptually. Therefore, while it is not technically 
necessary, we start with introducing the Wick rotation here. 

Namely, let us denote < q(t1) · · · q(tn) > by GM (t1, . . . , tn), and “formally” make a change of variable n 
τ = it in the formula for GM (t1, . . . , tn). Let q(t) =  q∗(τ). Then, taking into account that dτ = idt,n 
dq/dt = idq∗/dτ we get 

∫ 
2 ( dq∗ )2+U (q∗ )]/!Dqq∗(τ1) . . . q∗(τn)e− 

R
[ 1�

∗dτ 
GM (t1, . . . , tn) =  ∫ 

2�( dq∗n 
e− 

R
[ 1� dτ )

2+U (q∗ )]/!Dq
. 

∗ 

This shows that 
GM (t1, . . . , tn) =  GE 

n (it1, . . . , itn),n 
where ∫ 

q(t1) . . . q(tn)e−SE (q)/!Dq
GE 

n (t1, . . . , tn) :=  ∫ . 
e−SE (q)/!Dq 

where SE (q) =  LE (q)dt, and  LE (q) =  ̇q2/2 +  U(q) (i.e. LE is obtained from L by replacing U with 
−U). 

This manipulation certainly does not make rigorous sense, but it motivates the following definition. 

Definition�7.1.� The function GM (t1, . . . , tn) (ti ∈ R) is the analytic continuation of the function n 
GE 

n (s1, . . . , sn) from the  point (t1, . . . , tn) to the  point (it1, . . . , itn) along  the path  eiθ (t1, . . . , tn), 0 ≤ 
θ ≤ π/2. 
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Of course, this definition will only make sense if we define the function GE 
n (t1, . . . , tn) and  show  that  

it admits the required analytic continuation. This will be done below. 
Terminological�remark.� The function GM (t1, . . . , tn) is called the Minkowskian (time ordered) n 

correlation function, while GE 
n (t1, . . . , tn) is called the Euclidean correlation function (hence the nota-

tion). This terminology will be explained later, when we consider relativistic field theory. 
From now on, we will mostly deal with Euclidean correlation functions, and therefore will omit the 

superscript E when there is no danger of confusion. 

7.3. Definition�of�Euclidean�correlation�functions.�Now our job is to define the Euclidean corre-
lation functions Gn(t1, . . . , tn). Our strategy (which will also be used in field theory) will be as follows. 
Recall that if our integrals were finite dimensional then by Feynman’s theorem the expansion of the 
correlation functions in ! would be given by a sum of amplitudes of Feynman diagrams. So, in the 
infinite dimensional case, we will use the sum over Feynman diagrams as a definition�of correlation 
functions. 

More specifically, because of conditions on U we have an action functional without constant and 
linear terms in q, so that the correlation function Gn(t1, . . . , tn) should be given by the sum 

∑ !b(Γ) 
(17) Gn(t1, . . . , tn) =  FΓ(ℓ1, . . . , ℓn),|Aut(Γ)|∗Γ∈G≥3(n) 

Thus, we should make sense of (=define) the amplitudes FΓ in our situation. For this purpose, we need 
to define the following objects. 

1. The space V . 
∗2. The form B on V which defines B−1 on V . 

3. The tensors corresponding to non-quadratic terms in the action. 
4. The covectors ℓi. 
It is clear how to define these objects naturally. Namely, V should be a space of functions on R with 

some decay conditions. There are many choices for V , which do not affect the final result; for instance, 
a good choice (which we will make) is the space C∞(R) of compactly supported smooth functions on 0 

∗ R, Thus  ∫V is the space of generalized functions on R. Note  that  V is equipped with the inner product 
(f, g) =  R f(x)g(x)dx. 

The form B, by analogy with the finite dimensional case, should be twice the quadratic part of the 
2action. In other words, B(q, q) =  (q̇2 + m2q2)dt = (Aq, q), where A is the operator −d2/dt2 + m . 

This means that B−1(f, f) =  (A−1f, f) 
The operator A−1 is an integral operator, with kernel K(x, y) =  G(x − y), where G(x) is  the  

Green’s function of A, i.e. the fundamental (decaying at infinity) solution of the differential equation 
(AG)(x) =  δ(x). It is straightforward to find that 

−m|x|G(x) =  e /2m. 
∗ ∗(thus B−1 is actually defined not on the whole V but on a dense subspace of V ). 

Remark.� Here we see the usefulness of the Wick rotation. Namely, the spectrum of A in L2 is 
[m2 , +∞), so it is invertible and the inverse is bounded. However, if we did not make a Wick rotation, 
we would deal with the operator A′ = −d2/dt2 − m2, whose spectrum is [−m2 , +∞), i.e. contains 0, so 
that the operator is not invertible in the naive sense. 

To make sense of the cubic and higher terms in the action as tensors, consider the decomposition of 
U in the (asymptotic) Taylor series at x = 0:  U(x) =  m2x2/2 +  n≥3 anxn/n!. This shows that cubic 
and higher terms in the action have the form 

Br (q, q, . . . , q) =  q r (t)dt 

Thus Br (q1, . . . , qr ) is  an element  of  (SrV )∗ given by the generalized function δt1=···=tr (the delta 
function of the diagonal). 

Finally, the functionals ℓi are given by ℓi(q) =  q(ti), so ℓi = δ(t − ti). 
This leads to the following Feynman rules of defining the amplitude of a diagram Γ. 
1. To the i-th external vertex of Γ assign the number ti. 
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2. To each internal vertex j of Γ, assign a variable sj . 
3. For each internal edge connecting vertices j and j′, write  G(sj − sj′ ). 
4. For each external edge connecting i and j write G(ti − sj ). 
5. For each external edge connecting i and i′ write G(ti − ti′ ). 
6. Let GΓ(t, s) be the product of all these functions. 
7. Let FΓ(ℓ1, . . . ℓn) =  j (−av(j)) GΓ(t, s)ds, where  v(j) is the valency of j. 
We are finally able to give the following definition. 

Definition�7.2.�The function Gn(t1, . . . , tn) is defined by the formula 17. 

Remark.� Note that the integrals defining FΓ are convergent since the integrand always decays 
exponentially at infinity. It is, however, crucial that we consider only graphs without components 
having no external vertices; for example, if Γ has a single 4-valent vertex connected to itself by two 
loops (Fig. 23) then the amplitude integral involves R G(0)2ds, which is obviously divergent. 

Figure�23�

With this definition, the function Gn(t1, . . . , tn) is a Laurent series in !, whose coefficients are sym-
metric functions of t1, . . . , tn, given by linear combinations of explicit (and convergent) finite dimensional 
integrals. Furthermore, it is easy to see that these integrals are in fact computable in elementary func-
tions, i.e. are (in the region t1 ≥  · · ·  ≥  tn) linear combinations of products of functions of the form 
ti e

atir . This implies the existence of the analytic continuation required in the Wick rotation procedure. 
Remark.�An alternative setting for making this definition is to assume that ai are formal parameters. 

In this case, ! can be given a numerical value, e.g. ! = 1, and the function Gn will be a well defined 
power series in a3, a4, . . .. 

Example�1.�The free theory:  U(q) =  m2q2/2. In this case, there is no internal vertices, and hence 
we have 

Proposition�7.3.�(Wick’s�theorem)�One�has�Gn(t1, . . . , tn) =  0  if�n is�odd,�and�

G2k (t1, . . . , t2k ) =  !k G(ti − tσ(i)). 
σ∈Πk i∈{1,...,2k}/σ 

In particular, G2(t1, t2) =  !G(t1 − t2). In other words, G2(t1, t2) is (proportional to) the Green’s 
function. Motivated by this, physicists often refer to correlation functions of a quantum field theory as 
Green’s�functions. 

t1 t2 

Figure�24�

Example�2.� Consider the potential U(q) =  m2q2/2 +  gq4/24, and set ! = 1.  In  this  case,  let  us  
calculate the 2-point correlation function modulo g2 . In other words, we have to compute the coefficient 
of g in this function. Thus we have to consider Feynman diagrams with two external edges and one 
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internal vertex. Such a diagram Γ is unique: it consists of one edge with a loop attached in the middle 
(Fig. 24). This diagram has automorphism group Z/2. The amplitude of this diagram is 

−m(|s−t1|+|s−t2|FΓ = −g G(s, t1)G(s, t2)G(s, s)ds = g
e )ds 

R 8m3 R 

Because of symmetry in t1 and t2, we may assume that t1 ≥ t2. Splitting the integral in a sum of three 
integrals, over (−∞, t2], [t2, t1], and [t1,∞), respectively we get: 

G2(t1, t2) =  ̃G(t1 − t2), 

where 
g 1 

G(t) =˜ 1 
e −m|t|(1 − 

8m2 ( + |t|)) + O(g 2).
2m m 

This expression is called the 1-loop approximation to the 2-point function, because it comes from 0-loop 
and 1-loop Feynman diagrams. 

Remark.�Here we are considering quantum mechanics of a single 1-dimensional particle. However, 
everything generalizes without difficulty to the case of an n-dimensional particle or system of particles 
(i.e. to path integrals over the space of vector valued, rather than scalar, functions of one variable). 
Indeed, if q takes values in a Euclidean space V then the quadratic part of the Lagrangian is of the form 
1
2 (q̇

2 − M(q)), where M is a positive definite quadratic form on V . Reducing M to principal axes, we 
1may assume that the quadratic part of the Lagrangian looks like 2 2 

i(q̇i 
2 − mi qi ), which corresponds 2 

to a system of independent harmonic oscillators. Thus in quantum theory the propagator will be the 
−mi |t−s|diagonal matrix with diagonal entries e /2mi, and the correlation functions can be defined by 

the usual Feynman diagram procedure. 

7.4. Connected�Green’s�functions.�Let Gc 
n(t1, . . . , tn) be the connected Green’s functions, defined 

by the sum of the same amplitudes as Gn(t1, . . . , tn) but taken over connected Feynman diagrams only. 
It is clear that 

Gn(t1, . . . , tn) =  G|
c
Si |(tj ; j ∈ Si). 

{1,...,n}=S1'...'Sk 

2 (t1, t2) +  Gc 
1 (t2), etc. Thus, to know the correlation functions, it is 

sufficient to know the connected correlation functions. 
Example�1.�In a free theory (U = m2q2/2), all connected Green’s functions except G2 vanish. 

For example, G2(t1, t2) =  Gc 
1 (t1)Gc 

t2 

t1 t3 

t4 

Figure�25�

Example�2.� Let us compute the connected 4-point function in the theory associated to quartic 
2potential U as above, modulo g . This means, we should compute the contribution of connected 

Feynman diagrams with one internal vertex and 4 external edges. Such diagram Γ is unique –it is the 
cross (with one internal vertex), Fig. 25. This diagram no nontrivial automorphisms. Thus, 

Gc 
4 (t1, t2, t3, t4) =  −g G(t1 − s)G(t2 − s)G(t3 − s)G(t4 − s)ds + O(g 2). 

R 

It is elementary to compute this integral; we leave it as an exercise. 
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7.5. The�clustering�property.�Note that the Green’s function G(t) goes to zero at infinity. This 
implies the following clustering�property�of the correlation functions of the free theory: 

lim Gn(t1, . . . , tr , tr+1 + z, . . . , tn + z) =  Gr (t1, . . . , tr)Gn−r (tr+1 . . . tn). 
z→∞ 

Moreover, it is easy to show that the same is true in the interacting theory (i.e. with potential) in each 
degree with respect to ! (check it!). The clustering property can be more simply expressed by the 
equation 

Gclim n(t1, . . . , tr , tr+1 + z, . . . , tn + z) = 0. 
z→∞ 

This property has a physical interpretation: processes distant from each other are almost statistically 
independent. Thus it can be viewed as a necessary condition of a quantum field theory to be “physically 
meaningful”. 

Remark.�Nevertheless, there exist theories (e.g. so called topological quantum field theories) which 
do not satisfy the clustering property but are interesting both form a physical and mathematical point 
of view. 

7.6. The�partition�function.�Let J(t)dt be a compactly supported measure on the real line. Consider 
the “partition function with external current J”, which is the formal expression 

−SE (q)+(J,q)�

Z(J) =  e Dq. 

Then we have a formal equality 
∑ !−nZ(J)

= 
n! Rn 

Gn(t1, . . . , tn)J(t1) · · · J(tn)dt1 · · · dtn,
Z(0) 

n 

which, as before, we will use as definition of Z(J)/Z(0). So the knowledge of Z(J)/Z(0) is equivalent 
to the knowledge of all the Green’s functions (in other words, Z(J)/Z(0) is their generating function). 
Furthermore, as in the finite dimensional case, we have 

Proposition�7.4.�One�has�
∑ !−n 

GcW (J) :=  ln  Z(J)
= n(t1, . . . , tn)J(t1) · · ·J(tn)dt1 · · · dtn

Z(0) n! 
n 

(i.e.�W is�the�generating�function�of�connected�Green’s�functions)�

The proof of this proposition is the same as in the finite dimensional case. 
Remark.�The statement of the proposition is equivalent to the relation between usual and connected 

Green’s functions, given in the previous subsection. 
Remark.�The fact that we can only define amplitudes of graphs whose all components have at least 

one 1-valent vertex (see above) means that we actually cannot define either Z(0) or Z(J) but can only 
define their ratio Z(J)/Z(0). 

Like in the finite dimensional case, we have an expansion 

W (J) =  !−1W0(J) +  W1(J) +  !W2(J) +  · · ·  , 

where Wj are the j-loop contributions (in particular, W0 is given by a sum over trees). Furthermore, 
we have explicit formulas for W0 and W1, analogously to the finite dimensional case. 

Proposition�7.5.�One�has�
W0(J) =  −SE (qJ ) + (qJ , J), 

where�qJ is�the�extremal�of�the�functional�SJ 
E (q) :=  SE (q)−(q, J) which�decays�at�infinity.�Furthermore,�

1 
W1(J) =  − ln det LJ ,2 

where�LJ is�the�linear�operator�on�V such�that�d2SJ
E (0)(LJ f1, f2).E (qJ )(f1, f2) =  d2S0 
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The proof of this proposition, in particular, involves showing that qJ is well defined and that det LJ 
exists. It is analogous to the proof of the same result in the finite dimensional case which is given in 
§3.7 (to be precise, we gave a proof only in the 0-loop case; but in the 1-loop case, the proof is similar). 
Therefore we will not give this proof; rather, we will illustrate the statement by an example. 

E(q) =  (q̇2/2+U(q))dt− 
aq(0). The Euler-Lagrange equation has the form 

Example.�Let U be the quartic potential and J(t) =  aδ(t). In this case, SJ 

2 3q̈ = m q + gq /6 − aδ(t). 
Thus, the function qJ is continuously glued from two solutions q+, q− of the nonlinear differential 
equation q̈ = m2q + gq3/6 on  (−∞, 0] and [0, ∞), with jump of derivative at 0 equal to −a. 

The solutions q+, q− are required to decay at infinity, so they must be solutions of zero energy 
2(E = ˙q± /2 − U(q±) = 0). Thus, by the standard formula for solutions of Newton’s equation, they are 

defined by the equality 
∫ ∫ gq1 +  2�

dq dq
t − t± = √ = √ = 1

ln √ 12m2�− 1 
. 

2(E + U(q)) mq 1 +  gq2� 2m 1 +  gq2
2� + 112m2� 12m

After a calculation one gets √ 
12m2�

qJ (t) =  
C−1em|t| −

g 

Ce−m|t| , 

where C is the solution of the equation 
C + C−1 g a 

= 
(C − C−1)2 12m2 2m 

which is given by a power series in a with zero constant term. ¿From this it is elementary (but somewhat 
lengthy) to compute W0 = −SJ 

E(qJ). 
2Now, the operator LJ is given by the formula LJ = 1  +  gA−1qJ(t)2/2, where A = −d2/dt2 + m . 

eThus det LJ makes sense. Indeed, the operator A−1qJ (t)2 is given by the kernel 
−m|x−y| qJ (y)2�, which  2m 

decays exponentially at infinity; hence this operator is trace class and therefore, 1 + gA−1qJ(t)2/2 is  
determinant class. 

7.7. 1-particle� irreducible�Green’s� functions.�Let G1PI(t1, . . . , tn) denote 1-particle irreducible n 
Green’s functions, i.e. those defined by the sum of the same amplitudes as the usual Green’s functions, 
but taken only over 1-particle irreducible Feynman graphs. Define also the amputated 1-particle irre-
ducible Green’s function: G1PIa  = A⊗nG1PI  (it is defined by the same sum of amplitudes, except that n n 
instead of G(ti − sj) for external edges, we write δ(ti − sj)). 

Let Seff (q) be the generating function of G1PIa  i.e.,n 
∑ !−n 

G1PIa  Seff (q) =  
n! n (t1, . . . , tn)q(t1) · · · q(tn)dt1 · · · dtn, 

n 

Proposition�7.6.�The�function�W (J) = ln(Z(J)/Z(0)) is� the�Legendre�transform�of�Seff (q),� i.e.�it�
equals�−Seff (q̃J ) + (J, q̃J), where �q̃J is�the�extremal�of�−Seff (q) + (J, q) (decaying�at�infinity).�

The proof of this proposition is the same as in the finite dimensional case. The proposition shows that 
in order to know the Green’s functions, it “suffices” to know amputated 1-particle irreducible Green’s 
functions (the generating function of usual Green’s functions can be reconstructed from that for 1PI 
Green’s functions by taking the Legendre transform and exponentiation). Which is a good news, since 
there are a lot fewer 1PI diagrams than general connected diagrams. 

7.8. Momentum�space�integration.�We saw that the amplitude of a Feynman diagram is given by 
an integral over the space of dimension equal to the number of internal vertices. This is sometimes 
inconvenient, since even for tree diagrams such integrals can be rather complicated. However, it turns 
out that if one passes to Fourier transforms then Feynman integrals simplify and in particular the 
number of integrations for a connected diagram becomes equal to the number of loops (so for tree 
diagrams we have no integrations at all). 
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Namely, we will proceed as follows. Instead of the time variable t we will consider the dual energy 
variable E. A function q(t) with compact support will be replaced by its Fourier transform q̂(E). Then, 
by Plancherel formula, for real functions q1, q2, we  have  

(q1, q2) =  q̂1(E)q̂2(E)dE = q̂1(E)q̂2(−E)dE. 
R R 

This implies that the propagator is given by 
1 ˆB−1(f, f) =  

E2 + m2 f(E)f̂ (−E)dE 
R 

The vertex tensors standing at k-valent vertices were δs1=···=sk , so they will be replaced by δQ1+···+Qk =0, 
where Qi are dual variables to si. 

Terminological�remark.�Physicists refer to the time variables ti, sj as position variables, and to 
energy variables Ei, Qk as momentum variables, since in relativistic mechanics (which is the setting 
we will deal with when we study field theory) there is no distinction between time and position and 
between energy and momentum (due to the action of the Lorenz group). 

This shows that the Feynman rules “in momentum space” for a given connected Feynman diagram 
Γ with  n external vertices are as follows. 

1. Orient the diagram Γ, so that all external edges are oriented inwards. 
2. Assign variables Ei to external edges, and variables Qj to internal ones. These variables are 

subject to the linear equations of “the first Kirchhof law”: at every internal vertex, the sum of the 
variables corresponding to the incoming edges equals the sum of those corresponding to the outgoing 
edges. Let Y (E) be the space of solutions Q�of these equations (it depends on Γ, but we will not write 
the dependence explicitly). It is easy to show that this space is nonempty only if Ei = 0,  and  in  that  
case dim Y (E) equals the number of loops of Γ (show this!). 

1 13. For each external edge, write 
E2+m2�, and for each internal edge, write 

Q2+m2�. Let  φΓ(E,Q) be  
i k 

the product of all these functions. 
4. Define the momentum�space�amplitude�of Γ to be the distribution F̂Γ(E) on the hyperplane 
Ei = 0 defined by the formula 

F̂Γ(E1, . . . , En) =  (−av(j)) φΓ(E,Q)dQ. 
j Y (E) 

We will regard it as a distribution on the space of all n-tuples E1, . . . , En, extending it by zero. It is 
clear that this distribution is independent on the orientation of Γ. ∑ 

Remark.�Here we must specify the normalization of the Lebesgue measure on the space Ei = 0  
and the space Y (E). The first one is just dE1 · · · dEn−1. To define the second one, let YZ(0) be the set 
of integer elements in Y (0). Then the measure on Y (E) is defined in such a way that the volume of 
Y (E)/YZ(0) is 1. 

Now we have 

Proposition�7.7.�The�Fourier�transform�of�the�function�FΓ(δt1 , . . . , δtn ) is�F̂Γ(E1, . . . , En). Hence, �
the�Fourier�transform�of the�connected�Green’s�functions�is�

Gc(18) n̂(E1, . . . , En) =  
∑ !b(Γ) 

F̂Γ(E1, . . . , En). |Aut(Γ)|∗Γ∈G≥3(n) 

The proof of the proposition is straightforward. 
To illustrate the proposition, consider an example. 
Example�1.� The connected 4-point function for the quartic potential, modulo g2, in  momentum  

space, looks like: 
4∏ 1 ∑ 

Gc
n̂(E1, E2, E3, E4) =  −g

E2 + m2 δ( Ei) +  O(g 2). 
i=1 i 

Example�2.� Let us compute the 1PI 4-point function in the same problem, modulo g3. Thus,  
in addition to the above, we need to compute the g2 coefficient, which comes from 1-loop diagrams. 
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There are three such diagrams, differing by permutation of external edges. One of these diagrams is as 
follows: it has external vertices 1, 2, 3, 4 and internal ones 5, 6 such that 1, 2 are connected to 5, 3, 4 to  
6, and 5 and 6 are connected by two edges (Fig. 26). This diagram has the symmetry group Z/2, so its 
contribution is 

∫ 4
g2 dQ ∏ 1 ∑ 

δ( Ei).2
( 

(Q2 + m2)((E1 + E2 − Q)2 + m2)
) 

E2 + m2 R i=1 i 

The integral inside is easy to compute for example by residues. This yields 

Gc
n̂(E1, E2, E3, E4) =  

∏ 1 4 ∑1 −g 
4

E2 + m2 (1 − πg ∑ 
Ei) +  O(g 3). 

m (E1 + Ei)2 + 4m2 )δ( 
i=1 i i=2 

7.9. The�Wick� rotation� in�momentum�space.�To obtain the correlation functions of quantum 
mechanics, we should, after computing them in the Euclidean setting, Wick rotate them back to the 
Minkowski setting. Let us do it at the level of Feynman integrals in momentum space. (We could do 
it in position space as well, but it is instructive for the future to do it in momentum space, since in 
higher dimensional field theory which we will discuss later, the momentum space representation is more 
convenient). 

Consider the Euclidean propagator 

1
= G(t)e iEtdt,

E2 + m2 

where G is the Green’s function. When we do analytic continuation back to the Minkowski setting, we 
must replace in the correlation functions the time variable t with eiθ t, where  θ varies from 0 and π/2. 
In particular, the Green’s function G(t) must be replaced by G(eiθ t). So we must consider 

−iθ 
G(e iθ t)e iEtdt = e −iθ G(t)e ie

−iθ Etdt = 
e−2iθ 

e

E2 + m2 . 

As θ → π/2, this function tends (as a distribution) to the function limε→0+ 
i . For brevity the E2−m2+iε 

ilimit sign is usually dropped and this distribution is written as E2−m2+iε . 
We see that in order to compute the correlation functions in momentum space in the Minkowski 

setting, we should use the same Feynman rules as in the Euclidean setting except that the propagator 
put on the edges should be 

i 
. 

E2 − m2 + iε 
For instance, the contribution of the diagram in Fig. 26 is 

∫ 42 
− g

2
( dQ ∏ 1 ∑ 

δ( Ej ).(Q2 − m2 + iε)((E1 + E2 − Q)2 − m2 + iε)
) 

E2 − m2 + iεR j=1 j 
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7.10. Quantum�mechanics� on�the�circle.� It is reasonable (at least mathematically) to consider 
Euclidean quantum mechanical path integrals in the case when the time axis has been replaced with a 
circle of length L, i.e. t ∈ R/LZ. In this case, the theory is the same, except the Green’s function G(t) 
is replaced by the periodic solution GL(t) of the equation (−d2/dt2 + m2)f = δ(t) on the circle. This 
solution has the form 

∑ e−m(t−L/2) + e−m(L/2−t) 
GL(t) =  G(t − kL) =  

2m(emL/2 − e−mL/2) 
, 0 ≤ t ≤ L. 

k∈Z 

We note that in the case of a circle, there is no problem with graphs without external edges (as 
integral over the circle of a constant function is convergent), and hence one may define not only correla-
tion functions (i.e. Z(J )/Z(0)), but also Z(0) itself. Namely, let U (q) =  m2q2/2 +  n≥3 anqn/n!, 

2and let m2 = m0 + a2 (where ai are formal parameters). Then we can make sense of the ratio 
Zm0,a,L(0)/Zm0,0,L(0) (where Zm,a,L(0) denotes the partition function for the specified values of pa-
rameters; from now on the argument 0 will be dropped). Indeed, this ratio is defined by the formula 

!b(Γ)Zm0,a,L = 
∑ 

FΓ,
Zm0,0,L |Aut(Γ)|

Γ∈G≥2(0) 

which is a well defined expression. 
It is instructive to compute this expression in the case a2 = a, a3 = a4 = · · ·  = 0.  In  this  case,  

we have only 2-valent vertices, so the only connected Feynman diagrams are N -gons, which are 1-loop. 
Hence, 

ln Zm0,a,L 1 
= W1 = − ln det M,

Zm0,0,L 2 
2where M = 1  +  a(−d2/dt2 + m0)−1 . This determinant may be computed by looking at the eigenvalues. 

Namely, the eigenfunctions of −d2/dt2 + m2 in the space C∞(R/LZ) are  e2πint/L , with eigenvalues 0 
2 2� 24π n + m0. So,  L2� ∏ a

det M = (1 + 
4π2n2� 2 ). 

L2� + m0n∈Z 

Hence, using the Euler product formula for sinh(z), we get 
Zm0,a,L = sinh(m0L/2) 
Zm0,0,L sinh(mL/2) 

Remark.� More informally speaking, we see that the partition function Z for the theory with 
CU = m2q2/2 has the form sinh(mL/2) , where  C is a constant of our choice. Our choice from now on will 

be C = 1/2; we will see later why such a choice is convenient. 

7.11. The� massless� case.�Consider now the massless case, m = 0. In this case the propagator 
should be obtained by inverting the operator − d

2�

dt2�, i.e. it should be a the integral operator with kernel 
G(t − s), where G(t) is an even function satisfying the differential equation −G′′(t) =  δ(t). There is a 
1-parameter family of such solutions, G(t) =  − 1 |t| + C. Using them (for any choice of C), one may 2 
define the correlation functions of the theory by the Wick formula. 

Note that the function G does not decay at infinity. Therefore, this theory will not satisfy the 
clustering property (i.e. is not “physically meaningful”). 

We will also have difficulties in defining the corresponding interacting theory (i.e. one with a non-
quadratic potential), as the integrals defining the amplitudes of Feynman diagrams will diverge. Such 
divergences are called infrared�divergences, since they are caused by the failure of the integrand to decay 
at large times (or, in momentum space, its failure to be regular at low frequencies). 

7.12. Circle�valued�quantum�mechanics.�Consider now the theory with the same Lagrangian in 
which q(t) takes values in the circle of radius r, R/2πrZ (the “sigma-model”). We can do this at least 
classically, since the Lagrangian q̇2/2 makes sense in this case. 

Let us define the corresponding quantum theory. The main difference from the line-valued case is that 
since q(t) is circle valued, we should consider not the usual correlators < q(t1) · · · q(tn) >, but rather 
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correlation functions exponentials < eip1q(t1)/r · · · eipn q(tk )/r >, where  pi are integers. They should be 
defined by the path integral 

−S(q)/!Dq, (19) eip1q(t1)/r · · · eipn q(tn )/re 

1S(q) =  2 q̇2dt where e−S(q)/!Dq is agreed to be 1. Note that we should only consider the case 
pi = 0, otherwise the group of translations along the circle acts nontrivially on the integrand, and 

hence under any reasonable definition the integral should be zero. 
Now let us define the integral (19). Since the integral is invariant under shifts along the target circle, 

we may as well imagine that we are integrating over q : R → R with q(0) = 0. Now, let us use the finite 
dimensional analogy. Following this analogy, by completing the square we would get 

− ! 
2�B

−1(
P

pj q(tj ),
P

pj q(tj )) −! 
P

pl pj G(tl −tj )/2r 2� |tl −tj |/2r 2�
2re = e = e ! 

P
l<j pl pj 

where B(q, q) =  q̇2dt. Thus, it is natural to define the correlators by the formula 
|tl −tj |/2r 2�< eip1q(t1)/r · · · eipn q(tk )/r >= e ! 

P
l<j pl pj . 

We note that this theory, unlike the line-valued one, does satisfy the clustering property. Indeed, if 
pj = 0 (as we assumed), then (assuming t1 ≥ t2 ≥  · · ·  ≥  tn), we have 

n−1

plpj (tl − tj ) =  (tj − tj+1)(pj+1 + · · · + pn)(p1 + · · · + pj ) =  − (tj − tj+1)(p1 + · · · + pj )2 , 
l<j j=1 j 

so the clustering property follows from the fact that (p1 + · · · + pj )2 ≥ 0. 

7.13. Massless�quantum�mechanics�on�the�circle.�Consider now the theory with Lagrangian q̇2/2, 
where q is a function on the circle of length L. In this case, according to the Feynman yoga, we must 
invert the operator −d2/dt2 on the circle R/LZ, or equivalently solve the differential equation −G′′(t) =  
δ(t). Here we run into trouble: the operator −d2/dt2 is not invertible, since it has eigenfunction 1 with 
eigenvalue 0; correspondingly, the differential equation in question has no solutions, as G′′dt must be 
zero, so −G′′(t) cannot equal δ(t) (one may say that the quadratic form in the exponential is degenerate, 
and therefore the Gaussian integral turns out to be meaningless). This problem can be resolved by the 
following technique of “killing the zero mode”. Namely, let us invert the operator −d2/dt2 on the 
space {q ∈ C∞(R/LZ) :  qdt = 0} (this may be interpreted as integration over this codimension one 
subspace, on which the quadratic form is nondegenerate). This means that we must find the solution 
of the differential equation −G′′(t) =  δ(t) − 1 , such that Gdt = 0. Such solution is indeed unique, L 

and it equals G(t) =  (t−L/2)2�− L 
24 , t ∈ [0, L]. Thus, for example < q(0)2 >= L/12.2L 

Higher correlation functions are defined in the usual way. Moreover, one can define the theory with 
an arbitrary potential using the standard procedure with Feynman diagrams. 

Finally, let us consider the circle valued version of the same theory. Thus, our integration variable is 
a map  q : R/LZ → R/2πrZ. Let us first consider integration over degree zero maps. Then we should 
argue in the same way as in the case t ∈ R, and make the definition 

< eip1q(t1)/r · · · eipn q(tn )/r >0 = e −! 
P

l,j pl pj G(tl −tj )/2r 2�, 
where pj = 0. (Here subscript 0 stands for degree zero maps). Assuming that 1 ≥ t1, · · ·  , tn ≥ 0, we 
find after a short calculation 

ipn q(tn )/r >0 
! 
2�(

P
l<j pl pj |tl −tj |+(

P
pj tj )

2/L)< eip1q(t1)/r · · · e = e 2r . 
(the second summand disappears as L → ∞, and we recover the answer on the line). 

It is, however, more natural (as we will see later) to integrate over all (and not only degree zero) 
maps q. Namely,  let  N be an integer. Then all maps of degree N have the form q(t)+  2πrN t/L, where  
q is a map of degree zero. Thus, if we want to integrate over maps of degree N , we should compute the 
same integral as in degree zero, but with shift q → q + 2πrN t/L. But it is easy to see that this shift 
results simply in rescaling of the integrand by the factor e2πi 

P
pj tj N/L−2π2�r 2N 2/!L . Thus, the integral 

over all maps should be defined by the formula 
ipn q(tn )/r >=< eip1q(t1)/r · · · e
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! 
2�(

P
l<j pl pj |tl −tj |+(

P
pj tj )

2/L) 
∑ 

N e
2πi(

P
pj tj )N/L−2π2�r 2N 2/!L 

e 2r . ∑ 
N e

−2π2r2N 2/!L . 

Introduce the elliptic theta-function 

θ(u, T ) =  e 2πiuN −TN  2/2 

N ∈Z 

Then the last formula (for t1 ≥  · · ·  ≥  tn) can be rewritten in the form 
2�

! 
2�(

P
j (tj+1−tj )(p1+···+pj )

2+(
P

pj tj )
2/L) θ( 

P
pj tj 4π2�r ) 

.(20) < eip1q(t1)/r · · · eipn q(tn )/r >= e 2r
L , !L 

2�
θ(0, 4π

!
2

L
r ) 
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8. Operator�approach�to�quantum�mechanics�

In mechanics and field theory (both classical and quantum), there are two main languages – La-
grangian and Hamiltonian. In the classical setting, the Lagrangian language is the language of vari-
ational calculus (i.e. one studies extremals of the action functional), while the Hamiltonian language 
is that of symplectic geometry and Hamilton equations. Correspondingly, in the quantum setting, the 
Lagrangian language is the language of path integrals, while the Hamiltonian language is the language 
of operators and Schrödinger equation. We have now studied the first one (at least in perturbation 
expansion) and are passing to the second. 

8.1. Hamilton’s�equations� in�classical�mechanics.�We start with recalling the Lagrangian for-
malism of classical mechanics. For more details, we refer the reader to the excellent book of Arnold 
“Mathematical methods of classical mechanics”. 

Consider the motion of a classical particle (or system of particles). The position of a particle is 
described by a point q of the configuration space X , which we will assume to be a manifold. The 
Lagrangian of the system is a (smooth) function L : TX  → R on the total space of the tangent bundle 
of X . Then the action functional is S(q) =  L(q, q̇)dt. The trajectories of the particle are the extremals 
of S. The condition for q(t) to be an  extremal  of  S is equivalent to the Euler-Lagrange equation (=the 
equation of motion), which in local coordinates has the form 

d ∂L ∂L
) =

dt
( 
∂q̇ ∂q 

. 

For example, if X is a Riemannian manifold, and L(q, v) =  v2/2 −U(q), where U : X → R is a potential 
function, then the Euler-Lagrange equation is the Newton equation 

q̈ = −gradU(q), 

where q̈ = ∇q̇ q̇ is the covariant derivative with respect to the Levi-Civita connection. 
Consider now a system with Lagrangian L(q, v), whose differential with respect to v (for fixed q) is  

∗a diffeomorphism Tq X → Tq X . This is definitely true in the above special case of Riemannian X . 

Definition�8.1.�The Hamiltonian�(or�energy�function) of the system with Lagrangian L is the function 
H : T ∗X → R, which is the Legendre transform of L along fibers; that is, H(q, p) =  pv0 − L(q, v0), 

∗where v0 is the (unique) critical point of pv − L(q, v). The manifold T X is called the phase�space�(or�
space�of�states). The  variable  p is called the momentum variable. 

For example, if L = v2/2 − U(q), then H(q, p) =  p2/2 +  U(q). 
Remark.�Since Legendre transform is involutive, we also have that the Lagrangian is the fiberwise 

Legendre transform of the Hamiltonian. 
Let qi be local coordinates on X . This coordinate system defines a coordinate system (qi, pi) on  

∗T X . 

Proposition�8.2.�The�equations�of�motion�are�equivalent�to�the�Hamilton�equations�

∂H ∂H 
q̇i = , ṗi = − ,

∂pi ∂qi 

in�the�sense�that�they�are�obtained�from�Hamilton’s�equations�by�elimination�of�pi.�

It is useful to write Hamilton’s equations in terms of Poisson brackets. Recall that the manifold 
∗ ∗T X has a canonical symplectic structure ω. In  fact,  ω = dα, where  α is a canonical 1-form on T M 

∗constructed as follows: for any z ∈ T(q,p)(T X), α(z) =  (p, dπ(q, p)z), where π : T ∗X → X is the 
projection. In local coordinates, we have α = pidqi, and  ω = dpi ∧ dqi. 

∗Now let (M, ω) be a symplectic manifold (in our case M = T X). Since ω is nondegenerate, one can 
define the Poisson bivector ω−1, which is a section of the bundle ∧2TM . Now,  given  any  two  smooth  
functions f, g on M , one can define a third function – their Poisson�bracket�

{f, g} = (df ⊗ dg, ω−1) 
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This operation is skew-symmetric and satisfies Jacobi identity, i.e. it is a Lie bracket on C∞(M). For 
∗M = T X , in local coordinates we have 

∑ ∂f ∂g ∂f ∂g{f, g} = − . 
∂qi ∂pi ∂pi ∂qii 

This shows that Hamilton’s equations can be written in the following manner in terms of Poisson 
brackets: 

d
(21) f(q(t), p(t)) = {f, H}(q(t), p(t)). 

dt 
∗for any smooth function (“classical observable”) f ∈ C∞(T X). In other words, Hamilton’s equations 

say that the rate of change of the observed value of f equals the observed value of {f, H}. 
Note that for a given Lagrangian, the unique function H (up to adding a constant) for which equations 

(21) are equivalent to the equations of motion is the Hamiltonian. This provides another definition of 
the Hamiltonian, which does not use the notion of the Legendre transform. 

8.2. Hamiltonians�in�quantum�mechanics.�The yoga of quantization says that to quantize classical 
∗mechanics on a manifold X we need to replace the classical space of states T X by the quantum space 

of states – the Hilbert space H = L2(X)  on square integrable complex half-densities on X (or, more 
precisely, the corresponding projective space). Further, we need to replace classical observables, i.e. real 
functions f ∈ C∞(T ∗X), by quantum observables f̂ , which are (unbounded) self-adjoint operators on 
H (not commuting with each other, in general). Then the (expected) value of an observable A at a 
state ψ ∈ H of unit norm is by definition (ψ, Aψ). 

The operators f̂ should linearly depend on f . More importantly, they should depend on a positive 
real parameter ! called the Planck constant, and satisfy the following relation: 

ˆ {f, g} + O(!2), ! → 0.[f, ĝ] =  i!̂

Since the role of Poisson brackets of functions is played in quantum mechanics by commutators of 
operators, this relation expresses the condition that classical mechanics should be the limit of quantum 
mechanics as ! → 0. 

We must immediately disappoint the reader by confessing that there is no canonical choice of the 
quantization map f → f̂ . Nevertheless, there are some standard choices of f̂ for particular f , which  we  
will now discuss. 

Let us restrict ourselves to the situation X = R, so on the phase space we have coordinates q 
(position) and p (momentum). In this case there are the following standard conventions. 

1. f̂ = f(q) (multiplication operator by f(q)) when f is independent of p. 
pm → (−i! d . 2. ̂

dq )
m 

ˆ p] =  i!, while {q, p} = 1.)  (Note that these conventions satisfy our condition, since [q, ˆ
Example.�For the classical Hamiltonian H = p2/2 +  U(q) considered above, the quantization will 

2� d2
be Ĥ = − !2 dq2� + U(q). 

Remark.� The extension of these conventions to other functions is not unique. However, such an 
extension will not be used, so we will not specify it. 

Now let us see what the quantum analog of Hamilton’s equations should be. In accordance with the 
outlined quantization yoga, Poisson brackets should be replaced in quantum theory by commutators 
(with coefficient (i!)−1 = −i/!). Thus, the Hamilton’s equation should be replaced by the equation 

d [A, ˆ
(ψ(t), Aψ(t)) = (ψ(t), ψ(t)) = − H ] i 

(ψ(t), [A, Ĥ ]ψ(t)),
dt i! !

where (, ) is the Hermitian form on H (antilinear on the first factor) and Ĥ is some quantization of the 
classical Hamiltonian H . Since this equation must hold for any A, it is equivalent to the Schrödinger 
equation 

i ˆψ̇ = − Hψ. 

Thus, the quantum analog of the Hamilton equation is the Schrödinger equation. 
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Remark.�This “derivation” of the Schrödinger equation is definitely not a mathematical argument. 
It is merely a reasoning aimed to motivate a definition. 

The general solution of the Schrödinger equation has the form 
H/!ψ(0).ψ(t) =  e −it ˆ

Therefore, for any quantum observable A it is reasonable to define a new observable A(t) =  
H/!A(0)e−it ˆeit ˆ H/! (such that to observe A(t) is the same as to evolve for time t and then observe  A). 

The observable A(t) satisfies the equation 
ˆA′(t) =  −i[A(t), H ]/!, 

and we have 
(ψ(t), Aψ(t)) = (ψ(0), A(t)ψ(0)). 

The two sides of this equation represent two pictures of quantum mechanics: Heisenberg’s (observables 
change, states don’t), and Schrödinger’s (states change, observables don’t). The equation expresses the 
equivalence of the two pictures. 

8.3. Feynman-Kac�formula.� Let us consider a 1-dimensional particle with potential U(q) =  m2q2 + 
j≥3 gj qj /j!. Let us assume that U ≥ 0 and  U(q) → ∞  as |q| →  ∞. In this case, the operator 

2 2ˆ dH = −!
dq2� + U(q) is positive definite, and its spectrum is discrete. In particular, we have unique 2 

lowest eigenvector Ω, which is given by a positive function with norm 1. The correlation functions in 
the Hamiltonian setting are defined by the formula 

GHam(t1, ..., tn) :=  (Ω, q(t1)...q(tn)Ω).n 

Remark�1.� The vector Ω is called the ground, or vacuum state, since it has lowest energy, and 
physicists often shift the Hamiltonian by a constant, so that the energy of this state is zero (i.e. there 
is no matter). 

Remark�2.� Physicists usually write the inner product (v, Aw) as  < v|A|w >. In  particular,  Ω  is  
written as < 0| or |0 >. 

Theorem�8.3.�(Feynman-Kac�formula)�If�t1 ≥  · · ·  ≥  tn then�the�function�GHam admits�an�asymptotic�n 
expansion�in�! (near�! = 0),�which�coincides�with the�path�integral correlation�function�GM constructed�n 
above.�Equivalently,�the�Wick�rotated�function�GHam(−it1, . . . ,−itn) equals�GE .n n 

This theorem plays a central role in quantum mechanics, and we will prove it below. Before we do 
so, let us formulate an analog of this theorem for “quantum mechanics on the circle”. 

Let Gn,L(t1, . . . , tn) denote the correlation function on the circle of length L (for 0 ≤ tn ≤  · · ·  
≤ t1 ≤ L), and let ZL be the partition function on the circle of length L, defined from path integrals. 
Also, let 

ZHam H/!),= Tr(e −L ˆ
L 

and 
H/!)Gn,L(t1, . . . , tn) =  Tr(q(−itn) · · · q(−it1)e−L ˆ

−L Ĥ/!)Tr(e

ZHam ,�GHamTheorem�8.4.� (Feynman-Kac�formula�on�the�circle)�The� functions� L n,L admit�asymptotic�
expansions�in�!,�which�coincide�with�the�functions�ZL and�Gn,L computed�from�path�integrals.�

Note that Theorem 8.3 is obtained from Theorem 8.4 by sending L to infinity. Thus, it is sufficient 
to prove Theorem 8.4. 

Remark.� As we mentioned before, the function GE can be defined by means of Wiener integral, n 

n (t1, . . . , tn) actually holds for numerical values of !, and  and the equality GHam(−it1, . . . ,−itn) =  GE 
n 

not only in the sense of power series expansions. The same applies to the equalities ZHam = ZL,L 
GHam = Gn,L. However, these results is technically more complicated and are beyond the scope of these n,L 
notes. 
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Example.�Consider the case of the quadratic potential. By renormalizing variables, we can assume 
1that ! = m = 1,  so  U = q2/2. In this case we know that ZL = 2 sinh(L/2) . On the other hand, Ĥ is the 

Hamiltonian of the quantum harmonic oscillator: 
2 

ˆ 1 d2 
+ 

q
H = − 

2 
.

2 dq2 

The eigenvectors of this operator are well known: they are Hk (x)e−x 2/2, where  Hk are the Hermite 
polynomials (k ≥ 0), and the eigenvalues are k + 1/2 (see Theorem 4.10). Hence, 

1 
ZHam = e −L/2 + e −3L/2 + · · ·  = = ZL,L eL/2 − e−L/2 

as expected from the Feynman-Kac formula. (This shows the significance of the choice C = 1/2 in  the  
normalization of ZL). 

8.4. Proof�of�the�Feynman-Kac�formula�in�the�free�case.�Consider again the quadratic Hamil-
H = − 1 2

tonian ˆ 2d .  Note that it can  be  written in  the  form  2 dq2� + q 
2 

ˆ †H = a a + 1/2, 

1 ( d 1where a = √ + q), a† = √ (− d + q). The operators a, a† define a representation of the Heisenberg 
2 dq 2 dq 

algebra on H: 
[a, a †] =  1. 

Thus the eigenvectors of Ĥ are (a†)nΩ (where  Ω  =  e−q 2/2) is the lowest eigenvector), and the eigenvalues 
n + 1 (as we already saw before in Theorem 4.10). 2 

Remark.�The operators a and a† are called the annihilation and creation operators, since aΩ = 0,  
†while all eigenvectors of Ĥ can be “created” from Ω by action of powers of a . 

Now, we have 
1 

q(0) = q = √ (a + a †). 
2 

† †Since [a a, a] =  −a, [a a, a†] =  a†, we  have  

q(t) =  √ 1 
e ita †�a(a + a †)e −ita †�a = √ 1 (e −it a + e it a †)

2 2 

This shows that 
n −L(a †�a+ 2 ))

GHam 
n,L (−it1, . . . ,−itn) =  2−n/2 Tr( 

∏
j=1(e

tj a† + e−tj a
1�

)e 1�

. 
Tr(e−L(a†a+ 2 )) 

Now we can easily prove Theorem 8.4. Indeed, let us move the terms et1a† and e−t1a around the trace 
(using the cyclic property of the trace). This will yield, after a short calculation, 

n∑ 1 tj−t1et1−tj� eGHam (t1, . . . , tn) =  
2 
Gn−2,L(t2, . . . , tj−1, tj+1, . . . , tn)( 

eL − 1 
− −L − 1

) =n,L e
j=2 

n

Gn−2,L(t2, . . . , tj−1, tj+1, . . . , tn)GL(t1 − tj ). 
j=2 

This implies the theorem by induction. 
Note that in the quadratic case there is no formal expansions and the Feynman-Kac formula holds 

as an equality between usual functions. 
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8.5. Proof of the �Feynman-Kac �formula �(general �case). �Now we consider an arbitrary potential 
U = m2q2/2 +  V (q), where V (q) =  k≥3 gkqk /k!. For simplicity we will assume that ! = 1  and  
coefficients gj as formal parameters (this does not cause a loss of generality, as this situation can be 
achieved by rescaling). Let us first consider the case of partition function. We have ZHam = Tr(e−L Ĥ ) =L 

dTr(e−L( ˆ
H0 = − 1

2 
H0+V )), where ˆ

2 dq

2

2�+ 1 m2q2 is the free (=quadratic) part of the Hamiltonian. Since gj 
are formal parameters, we have a series expansion 
(22) 

ˆ−(sn−1−sn) ˆ−L( ˆ −L ˆ −(L−s1) ˆ H0V · · · e H0V e−snH0dse H0+V ) = e H0+ (−1)N e H0V e−(s1−s2) ˆ

N ≥1 L≥s1≥...≥sN�≥0 

This follows from the general fact that in the (completed) free algebra with generators A, B, one has 

A+B(23) e = e A + e(1−s1)ABe(s1−s2)AB · · · e(sN−1−sN )ABesN�Ads�
N ≥1 1≥s1≥···≥sN�≥0 

(check this identity!). 
Equation 22 shows that 

∞

ZHam = (−1)N gj1�· · · gjN H0),
j1! · · · jN ! 

Tr(q0(−is1)j1�· · · q0(−isN )jN�e −L ˆ
L 

N ≥0 j1,...,jN=3 

where q0(t) is the operator q(t) in the free theory, associated to the potential m2q2/2. 
Since the Feynman-Kac formula for the free theory has been proved, the trace on the right hand 

side can be evaluated as a sum over pairings. To see what exactly is obtained, let us collect the terms 
corresponding to all permutations of j1, .., jN together. This means that the summation variables will 
be the numbers i3, i4, . . .  of occurrences of 3, 4, . . .  among j1, . . . , jN . Further, to every factor q0(−is)j 

will be assigned a j-valent vertex, with a variable s attached to it, and it is easy to see that ZHam equalsL 
the sum over all ways of connecting the vertices (i.e. Feynman diagrams Γ) of integrals 

GL(sv − sw )ds, 
0≤s1,...,sN≤L edgesv−w 

multiplied by the coefficients 
Q

(−gk)ik�. Thus,  ZHam = ZL, as desired. |AutΓ| L 
Now let us consider correlation functions. Thus we have to compute 

H ˆH −(t1−t2) ˆ
q · · · qe −tnH ).Tr(e −(L−t1) ˆ

qe 

Expanding each exponential inside the trace as above, we will clearly get the same Feynman diagram 
sum, except that the Feynman diagrams will contain n external vertices marked by variables t1, . . . , tn. 
This implies that GHam = Gn,L, and we are done. n,L 

8.6. The�massless�case.�Consider now the massless case, m = 0, in the Hamiltonian setting. For maps 
2� d2�

q : R → R, we  have  H = L2(R), and ˆ This operator has continuous spectrum, and there is H = −!
2 dq2�. 

no lowest eigenvector Ω (more precisely, there is a lowest eigenvector Ω = 1, but it is not in L2), which 
means that we cannot define the correlation functions in the usual way, i.e. as < Ω, q(t1) . . . q(tn)Ω >. 
(This is the reflection, in the Hamiltonian setting, of the difficulties related to the growth of the Green’s 
function at infinity, which we encountered in the Lagrangian setting). 

Consider now the case q : R → S1 = R/2πrZ. In this case, we have the same Hamiltonian but acting 
2in the space H := L2(S1). The eigenvectors of this operator are eiN q/r , with eigenvalues !2N2/2r . 

In particular, the lowest eigenvector is Ω = 1. Thus the Hamiltonian correlation functions (in the 
Euclidean setting, for t1 ≥ . . .  ≥ tn) are  

ˆ H/! ipnq/r e −tn�
ˆ(Ω, e  t1H/! ip1q/r e(t2−t1) ˆ

e · · · e H/!Ω) = 
! 
2�

P
(tj−tj+1)(p1+···+pj)

2�
e 2r , 

which is equal to the correlation function in the Lagrangian setting. Thus the Feynman-Kac formula 
holds. 
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Now we pass to the case of quantum mechanics on the circle. First consider circle valued maps q. In  
2H/!) =  

∑ −N 2L!/2r , and  this case, we have Tr(e−L ˆ
N e

! 
2�

Pnˆ H/! · · · eipnq/r e(L−tn) ˆTr(e t1H/! eip1q/r e(t2−t1) ˆ H/!) =  j=0(tj−tj+1)(N −p1−···−pj)
2�
,2re 

N 

where tn+1 := L, t0 := 0. Simplifying this expression, we obtain 
! 
2�

P
j(tj−tj+1)(p1+···+pj)

2�∑ 
− 

2r2�(LN 2 j=1�pjtjN )! +2 
Pn�

e 2r e = 
N 

L!! 
2�

P
j(tj−tj+1)(p1+···+pj)

2�
θ( ! ∑ 

pj tj ,
r2 ).2re 

2πir2 

Comparing with (20), we see that the Feynman-Kac formula holds, and follows from the modular 
invariance of the theta-function: 

2/T θ(
2πu 4π2 

θ(u, T ) =  e −2π2�u , ). 
iT T 

(which follows from the Poisson summation formula). 
Note that the Feynman-Kac formula would be false if in the Lagrangian setting we had ignored the 

topologically nontrivial maps. Thus we may say that the Feynman-Kac formula “sees topology”. This 
ability of the Feynman-Kac formula to “see topology” (in much more complex situations) lies at the 
foundation of many interrelations between geometry and quantum field theory. 

Remark.�It should be noted that the contributions of topologically nontrivial maps from the source 
circle to the target circle are, strictly speaking, beyond our usual setting of perturbation theory, since 
they are exponentially small in !. To be specific, the contribution from maps of degree N mostly comes 
from those maps which are close to the minimal action map qN (t) = 2πtN r/L, so it is of the order 

2
e−2π2N 2�r /L! . The maps qN (t) are the simplest examples of “instantons” — nonconstant solutions of 
the classical equations of motion, which have finite action (and are nontrivial in the topological sense). 
Exponentially small contributions to the path integral coming from integration over neighborhoods of 
instantons are called “instanton corrections to the perturbation series”. 
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9. Fermionic integrals�

9.1. Bosons�and�fermions.�In physics there exist two kinds of particles — bosons and fermions. So 
far we have dealt with bosons only, but many important particles are fermions: e.g., electron, proton, 
etc. Thus it is important to adapt our techniques to the fermionic case. 

In quantum theory, the difference between bosons and fermions is as follows: if the space of states 
of a single particle is H then the space of states of the system of k such particles is Sk H for bosons 
and ΛkH for fermions. In classical theory, this means that the space of states of a bosonic particle is a 
usual real vector space (or more generally a manifold), while for a fermionic particle it is an odd�vector 
space. Mathematically “odd” means that the ring of smooth functions on this space (i.e. the ring of 
classical observables) is an exterior�algebra (unlike the case of a usual, even�space, for which the ring 
of polynomial functions is a symmetric�algebra). 

More generally, one may consider systems of classical particles or fields some of which are bosonic 
and some fermionic. In this case, the space of states will be a supervector space, i.e. the direct sum of 
an even and an odd space (or, more generally, a supermanifold — a notion we will define below). 

When such a theory is quantized using the path integral approach, one has to integrate functions 
over supermanifolds. Thus, we should learn to integrate over supermanifolds and then generalize to 
this case our Feynman diagram techniques. This is what we do in this section. 

9.2. Supervector�spaces.�Let k be a field of characteristic zero. A supervector space (or shortly, 
superspace) over k is just a Z/2-graded vector space: V = V0 ⊕ V1. If  V0 = kn and V1 = km then 

|mV is denoted by kn . The notions of a homomorphism, direct sum, tensor product, dual space for 
supervector spaces are defined in the same way as for Z/2-graded vector spaces. In other words, the 
tensor category of supervector spaces is the same as that of Z/2-graded vector spaces. 

However, the notions of a supervector space and a Z/2-graded vector space are not�the same. The 
difference is as follows. The category of vector (and hence Z/2-graded vector) spaces has an additional 
symmetry�structure, which is the standard isomorphism V ⊗W → W ⊗V (given by v⊗w → w⊗v). This 
isomorphism allows one to define symmetric powers SmV , exterior powers ΛmV , etc. For supervector 
spaces, there is also a symmetry V ⊗ W → W ⊗ V , but it is defined differently. Namely, v ⊗ w goes 
to (−1)mnw ⊗ v, v ∈ Vm, w  ∈ Vn (m, n ∈ {0, 1}). In other words, it is the same as usual except that if 
v, w are odd then v ⊗ w → −w ⊗ v. As a result, we can define the superspaces SmV and ΛmV for a 
superspace V , but they are not the same as the symmetric and exterior powers in the usual sense. For 
example, if V is purely odd (V = V1), then SmV is the exterior m-th power of V , and  ΛmV is the m-th 
symmetric power of V (purely even for even m and purely odd for odd m). 

For a superspace  V , let  ΠV be the same space with opposite parity, i.e. (ΠV )i = V1−i, i = 0, 1. With 
this notation, the equalities explained in the previous paragraph can be written as: SmV = Πm(ΛmΠV ), 
ΛmV = Πm(SmΠV ). 

Let V = V0 ⊕ V1 be a finite dimensional superspace. Define the algebra of polynomial functions on 
∗V , O(V ), to be the algebra SV (where symmetric powers are taken in the super sense). Thus, O(V ) =  

∗ ∗SV0 ⊗ ΛV1 , where  V0 and V1 are regarded as usual spaces. More explicitly, if x1, . . . , xn are linear 
coordinates on V0, and  ξ1, . . . , ξm are linear coordinates on V1, then  O(V ) =  k[x1, . . . , xn, ξ1, . . . , ξm], 
with defining relations 

xixj = xj xi, xiξr = ξr xi, ξr ξs = −ξsξr 

Note that this algebra is itself a (generally, infinite dimensional) supervector space, and is commutative 
in the supersense. Also, if V, W are two superspaces, then O(V ⊕ W ) =  O(V ) ⊗ O(W ), where the 
tensor product of algebras is understood in the supersense (i.e. (a ⊗ b)(c ⊗ d) =  (−1)p(b)p(c)(ac ⊗ bd), 
where p(x) is the parity of x). 

9.3. Supermanifolds.�Now assume that k = R. Then by analogy with the above for any supervector 
∗ space V we can define the algebra of smooth functions, C∞(V ) :=  C∞(V0) ⊗ ΛV1 . In fact, this is a 

special case of the following more general setting. 

Definition�9.1.�A supermanifold M is a usual manifold M0 with a sheaf C∞ of Z/2Z�graded algebras M 
(called the structure sheaf), which is locally isomorphic to C∞ ⊗ Λ(ξ1, . . . , ξm).M0�
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The manifold M0 is called the reduced manifold of M . The dimension of M is the pair of integers 
dim M0|m. 

For example, a supervector space V is a supermanifold of dimension dim V0| dim V1. Another (more 
general) example of a supermanifold is a superdomain U := U0 × V1, i.e. a domain U0 ⊂ V0 together 

∗with the sheaf C∞ ⊗ ΛV1 . Moreover, the definition of a supermanifold implies that any supermanifold U 
is “locally isomorphic” to a superdomain. 

Let M be a supermanifold. An open set U in M is the supermanifold (U0, C∞|U0), where U0 is an M 
open subset in M0. 

By the definition, supermanifolds form a category SMAN . Let us describe explicitly morphisms 
in this category, i.e. maps F : M → N between supermanifolds M and N . By the definition, it 
suffices to assume that M, N are superdomains, with global coordinates x1, . . . , xn, ξ1, . . . , ξm, and  
y1, . . . , yp, η1, . . . , ηq , respectively (here xi, yi are even variables, and ξi, ηi are odd variables). Then the 
map F is defined by the formulas: 

yi = f0,i(x1, . . . , xn) +  f j1j2(x1, . . . , xn)ξj1ξj2�+ · · ·  ,2,i 
jηi = a1,i(x1, . . . , xn)ξj + aj1j2j3(x1, . . . , xn)ξj1ξj2ξj3�+ · · ·  ,3,i 

j where f0,i, f
j1j2 , a1,i, a

j
3
1
,i
,j2,j3�, . . .  are usual smooth functions, and we assume summation over repeated 2,i 

indices. These formulas, determine F completely, since for any g ∈ C∞(N) one can find g◦F ∈ C∞(M) 
|by Taylor’s formula. For example, if M = N = R1 2 and F (x, ξ1, ξ2) =  (x+ ξ1 ξ2, ξ1, ξ2), and if g = g(x), 

then g ◦ F (x, ξ1, ξ2) =  g(x + ξ1ξ2) =  g(x) +  g′(x)ξ1 ξ2. 
Remark.� For this reason, one may consider only C∞ (and not Cr ) functions on supermanifolds. 

Indeed, if for example g(x) is  a  Cr function of one variable which is not differentiable r + 1 times, then 
the expression g(x + 

∑r+1 ξ2i−1ξ2i) will not be defined, because the coefficient of ξ1 · · · ξ2r+2 in this i=1 
expression should be g(r+1)(x), but this derivative does not exist. 

9.4. Supermanifolds�and�vector�bundles.�Let M0 be a manifold, and E be a vector bundle on 
M0. Then we can define the supermanifold M := Tot(ΠE), the total space of E with changed parity. 

∗Namely, the reduced manifold of M is M0, and the structure sheaf C∞ is the sheaf of sections of ΛE .M 
This defines a functor S : BUN → SMAN , from the category of manifolds with vector bundles to the 
category of supermanifolds. We also have a functor S∗ in the opposite direction: namely, S∗(M) is  the  
manifold M0 with the vector bundle (R/R2)∗, where  R is the nilpotent radical of C∞ 

M . 
The following proposition (whose proof we leave as an exercise) gives a classification of supermani-

folds. 

Proposition�9.2.�S∗S = Id, and �SS∗ = Id  on�isomorphism�classes�of�objects.�

The usefulness of this proposition is limited by the fact that, as one can see from the above description 
of maps between supermanifolds, SS∗ is not�the identity on morphisms (e.g. it maps the automorphism 

|2x → x + ξ1ξ2 of R1 to Id), and hence, S is not an equivalence of categories. In fact, the category of 
supermanifolds is not equivalent to the category of manifolds with vector bundles (namely, the category 
of supermanifolds “has more morphisms”). 

Remark.�The relationship between these two categories is quite similar to the relationship between 
the categories of (finite dimensional) filtered and graded vector spaces, respectively (namely, for them 
we also have functors S, S∗ with the same properties – check it!). Therefore in supergeometry, it is 
better to avoid using realizations of supermanifolds as S(M0, E), similarly to how in linear algebra it 
is better to avoid choosing a grading on a filtered space. 

9.5. Integration�on�superdomains.�We would now like to develop integration theory on superman-
ifolds. Before doing so, let us recall how it is done for usual manifolds. In this case, one proceeds as 
follows. 

1. Define integration of compactly supported (say, smooth) functions on a domain in Rn . 
2. Find the transformation formula for the integral under change of coordinates (i.e. discover the 

factor |J |, where  J is the Jacobian). 
3. Define a density on a manifold to be a quantity which is locally the same as a function, but 

multiplies by |J | under coordinate change (unlike true functions, which don’t multiply by anything). 
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Then define integral of compactly supported functions on the manifold using partitions of unity. The 
independence of the integral on the choices is guaranteed by the change of variable formula and the 
definition of a density. 

We will now realize this program for supermanifolds. We start with defining integration over super-
domains. 

∗Let V = V0 ⊕ V1 be a supervector space. The Berezinian�of V is the line ΛtopV0 ⊗ ΛtopV1 . Suppose 
that V is equipped with a nonzero element dv of the Berezinian (called a supervolume element). 

∗Let U0 be an open set in V0, and  f ∈ C∞(U) ⊗ ΛV be a compactly supported smooth function 1 
∗on the superdomain U := U0 × V1 (i.e. f = fi ⊗ ωi, fi ∈ C∞(U), ωi ∈ ΛV1 , and  fi are compactly 

supported). Let dv0, dv1 be volume forms on V0, V1 such that dv = dv0/dv1. 

Definition�9.3.�The integral U f(v)dv is (f(v), (dv1 )−1)dv0.U0

It is clear that this quantity depends only on dv and not on dv0 and dv1 separately. 
Thus, f(v)dv is defined as the integral of the suitably normalized top coefficient of f (expanded 

∗with respect to some homogeneous basis of ΛV1 ). To write it in coordinates, let ξ1, . . . , ξm be a linear 
dx1···dxnsystem of coordinates on V such that dv = dξ1···dξm�

(such coordinate systems will be called unimodular 
with respect to dv). Then f(v)dv equals ftop(x1, . . . , xn)dx1 · · · dxn, where  ftop is the coefficient of 
ξ1 · · · ξn in the expansion of f . 

9.6. The�Berezinian�of a�matrix.�Now we generalize to the supercase the definition of determinant 
(since we need to generalize Jacobian, which is a determinant). 

Let R be a supercommutative ring. Fix two nonnegative integers m, n. Let  A be a n + m by n + m 
matrix over R. Split A in the blocks A11, A12, A21, A22 so that A11 is n by n, and  A22 is m by m. 
Assume that the matrices A11, A22 have even elements, while A21 and A12 have odd elements. Assume 
also that A22 is invertible. 

Definition�9.4.�The Berezinian of A is the element 

Ber(A) :=  
det(A11 − A12A

−1A21)22 ∈ R
det(A22) 

(where the determinant of the empty matrix is agreed to be 1; so for m = 0 one has BerA = det  A, and  
for n = 0 one has BerA = (det  A)−1). 

Remark.�Recall for comparison that if A is purely even then 

det(A) := det(A11 − A12A
−1A21) det(A22).22 

The Berezinian has the following simpler description. Any matrix A as above admits a unique 
factorization A = A+A0A−, where  A+, A0, A− are as above, and in addition A+, A− are block upper 
(respectively, lower) triangular with 1 on the diagonal, while A0 is block diagonal. Then Ber(A) =  
det((A0)11)/ det((A0)22). 

Proposition�9.5.�If�A, B be�matrices�as�above,�then�Ber(AB) =  Ber(A)Ber(B).�

Proof.�From the definition using triangular factorization, it is clear that it suffices to consider the case 
A = A−, B = B+. Let  X = (A−)21, Y = (B+)12 (matrices with odd elements). Then the required 
identity is 

det(1 − Y (1 + XY  )−1X) = det(1 + XY  ). 
To prove this relation, let us take the logarithm of both sides and expand using Taylor’s formula. Then 
the left hand side gives 

− Tr(Y (1 + XY  )k (XY  )k−1X)/k 
k≥1 

Using the cyclic property of the trace, we transform this to 

Tr((1 + XY  )k (XY  )k )/k 
k≥1 
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(the minus disappears since X, Y have odd elements). Summing the series, we find that the last 
expression equals 

−Tr ln(1 − (1 + XY )−1XY ) =  Tr  ln(1  +  XY ), 

as desired. ! 

The additive analog of Berezinian is supertrace. Namely, for A as above, sTrA = TrA11 − TrA22. It  
is the correct superanalogue of the usual trace, as it satisfies the equation sTr(AB) = sTr(BA) (while 
the usual trace does not). The connection between the supertrace and the Berezinian is given by the 
formula 

A) =  esTr(A)Ber(e . 

Exercise.�Prove this formula. 

∗9.7. Berezin’s�change�of�variable�formula.�Let V be a vector space, f ∈ ΛV , v ∈ V . Denote  by  
∂f the result of contraction of f with v.∂v 

Let U, U ′ be superdomains, and F : U → U ′ be a morphism. As explained above, given linear 
coordinates x1, . . . , xn, ξ1, . . . , ξm on U and y1, . . . , yp, η1, . . . , ηq on U ′, we  can  describe  f by expressing 
yi and ηi as functions of xj and ξj . Define the Berezin matrix of F , A := DF (x, ξ) by the formulas: 

∂ηi ), A22 = (  ∂ηiA11 = (  ∂yi ), A12 = (  ∂yi ), A21 = (  ). 
∂xj ∂ξj ∂xj ∂ξj 

Clearly, this is a superanalog of the Jacobi matrix. 
The main theorem of supercalculus is the following theorem. 

Theorem�9.6.� (Berezin)�Let�g be�a�smooth�function�with�compact�support�on�U ′, and �F : U → U ′ be�
an�isomorphism.�Let�dv, dv′ be�supervolume�elements�on�U, U ′. Then �

g(v ′)dv′ = g(F (v))|BerDF (v)|dv, 
U ′ U 

where�the�Berezinian�is�computed�with�respect�to�unimodular�coordinate�systems.�

Remark.� If f(ξ) =  a+terms containing ξj then by definition |f(ξ)| := f(ξ) is  a >  0 and  −f(ξ) if  
a <  0. 

Proof.�The chain rule of the usual calculus extends verbatim to supercalculus. Also, we have shown 
that Ber(AB) = Ber(A)BerB. Therefore, if we know the statement of the theorem for two isomorphisms 
F1 : U2 → U1 and F2 : U3 → U2, then we know it for the composition F1 ◦ F2. 

′ ′ 
1, . . . , ξ

′Let F (x1, . . . , xn, ξ1, . . . , ξm) = (x1, . . . , x , ξ′ m). From what we just explained it follows that n

it suffices to consider the following cases. 
1. xi depend only on xj , j = 1, . . . , n, and  ξ′ = ξi.i 
2. xi = xi + zi, where  zi lie in the ideal generated by ξj , and  ξ′ = ξi.i 
3. xi = xi. 
Indeed, it is clear that any isomorphism F is a composition of isomorphisms of the type 1, 2, 3. 
In case 1, the statement of the theorem follows from the usual change of variable formula. Thus it 

suffices to consider cases 2 and 3. 
In case 2, it is sufficient to consider the case when only one coordinate is changed by F , i.e. x = x1 +z,1 

and xi = xi for i ≥ 2. In this case we have to show that the integral of 

∂z 
g(x1 + z, x2, . . . , xn, ξ)(1 + ) − g(x, ξ)

∂x1 

is zero. But this follows easily upon expansion in powers of z, since all the terms are manifestly total 
derivatives with respect to x1. 

In case 3, we can also assume ξ′ = ξi, i ≥ 2, and a similar (actually, even simpler) argument proves i 
the result. ! 



∫ 

∫ ∫ ∑ 

( ) 

∑ ∏ 

∑ 

∫ 

∑ 

58 MATHEMATICAL IDEAS AND NOTIONS OF QUANTUM FIELD THEORY 

9.8. Integration�on�supermanifolds.�Now we will define densities on supermanifolds. Let M be a 
supermanifold, and {Uα

|
} be an open cover of M together with isomorphisms fα : Uα → U ′ 

α , where  U ′ 
α 

is a superdomain in Rn m. Let  gαβ : fβ (Uα ∩ Uβ ) → fα(Uα ∩ Uβ ) be the transition map fαf−1. Then  β 
a density  s on M is a choice of an element sα ∈ C∞ 

M (Uα) for  each  α, such that on Uα ∩ Uβ one has 
sβ (z) =  sα(z)|Ber(gαβ )(fβ (z))|. 

Remark.�It is clear that a density on M is a global section of a certain sheaf on M , called the sheaf 
of densities. 

Now, for any (compactly supported) density ω on M , the integral M ω is well defined. Namely, it 
is defined as is usual calculus: one uses partition of unity φα such that Suppφα ⊂ (Uα)0 are compact 
subsets, and sets M ω := φαω (where the summands can be defined using fα). Berezin’sα M 
theorem guarantees then that the final answer will be independent on the choices made. 

9.9. Gaussian� integrals� in�an� odd� space.�Now let us generalize to the odd case the theory of 
Gaussian integrals, which was, in the even case, the basis for the path integral approach to quantum 
mechanics and field theory. 

Recall first the notion of Pfaffian. Let A be a skew-symmetric matrix of even size. Then the 
determinant of A is the square of a polynomial in the entries of A. This polynomial is determined by 
this condition up to sign. The sign is usually fixed by requiring that the polynomial should be 1 for the 

0 1direct sum of matrices . With this convention, this polynomial is called the Pfaffian of A and −1 0  
denoted PfA. The Pfaffian obviously has the property Pf(XT AX) =  Pf(A) det(X) for any matrix X . 

Let now V be an 2m-dimensional vector space with a volume element dv, and  B a skew-symmetric 
bilinear form on V .  We define  the Pfaffian  PfB of B to be the Pfaffian of the matrix of B in any 
unimodular basis by the above transfoamtion formula, it does not depend on the choice of the basis). 
It is easy to see (by reducing B to canonical form) that 

mB 
= Pf(B)dv. ∧

m! 
In terms of matrices, this translates into the following (well known) formula for the Pfaffian of a skew 
symmetric matrix of size 2m: 

Pf(A) =  εσ aiσ(i) , 
σ∈Πm� i∈{1,...,2m},i<σ(i) 

where Πm is the set of pairings of {1, . . . , 2m}, and  εσ is the sign of the permutation sending 1, . . . , 2m 
to i1, σ(i1), . . . , im, σ(im) (where  ir < σ(ir ) for all r). For example, for m = 2 (i.e. a 4 by 4 matrix), 

Pf(A) =  a12a34 + a14a23 − a13a24. 
Now consider an odd vector space V of dimension 2m with a volume element dξ. Let  B be a 

symmetric bilinear form on V (i.e. a skewsymmetric form on ΠV ). Let ξ1, . . . , ξ2m be unimodular linear 
coordinates on V (i.e. dξ = dξ1 ∧ · · ·∧ dξm). Then if ξ = (ξ1, . . . , ξn) then  B(ξ, ξ) =  i,j bij ξiξj , where  
bij is a skewsymmetric matrix. 

Proposition�9.7.�
1
2 B(ξ,ξ)(dξ)−1 = Pf(B).e 

V 

BProof.�The integral equals ∧
m

m!dξ , which  is  Pf(B). ! 
∗Example.� Let V is a finite dimensional odd vector space, and Y = V ⊕ V . The  space  Y has 

∗ ∗a canonical volume element dvdv , defined as follows: if e1, . . . , em be a basis of V and e1, . . . , e  ∗ isn 
∗ ∗ ∗ ∗)−1the dual basis of V ∗ then dvdv = e1 ∧ e1 · · ·  ∧  en ∧ e . Let  dy = (dvdv be the corresponding n

supervolume element. 
Let A : V → V be a linear operator. Then we can define an even smooth function S on the odd 

∗ ∗space Y as follows: S(v, v ) =  (Av, v ). More explicitly, if ξi be coordinates on V corresponding to the 
∗basis ei, and  ηi the dual system of coordinates on V , then  

S(ξ1, . . . , ξm, η1, . . . , ηm) =  aij ξj ηi, 
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where (aij ) is  the  matrix  of  A in the basis ei. 

Proposition�9.8.�
S e dy = det  A 

Y 

Proof.�We have S(v, v∗) =  1 B((v, v∗), (v, v∗)), where B is the skew form on ΠY , which is given by the 2 
∗ ∗ ∗ ∗formula B((v, v ), (w, w )) = (Av, w ) − (Aw, v ). It is easy to see that Pf(B) =  det(A), so Proposition 

9.8 follows from Proposition 9.7. 
Another proof can be obtained by direct evaluation of the top coefficient. ! 

9.10. The�Wick�formula�in�the�odd�case.�Let V be a 2m-dimensional odd space with a volume 
form dξ, and  B ∈ S2V a nondegenerate form (symmetric in the supersense and antisymmetric in the 
usual sense). Let λ1, . . . , λn be linear functions on V (regarded as the usual space). Then λ1, . . . , λn 
can be regarded as odd smooth functions on the superspace V . 

Theorem�9.9.� ∫ 
λ1(ξ) · · ·λn(ξ)e − 1�2 B(ξ,ξ)(dξ)−1 = Pf(−B)Pf(B−1(λi, λj )). 

V 
(By�definition,�this�is�zero�if�n is�odd).�In�other�words,�we�have:�

λ1(ξ) · · ·λn(ξ)e − 1�2 B(ξ,ξ)(dξ)−1 = Pf(−B) εσ (B−1(λi, λσ(i) )). 
V σ∈Πm� i∈{1,...,2m},i<σ(i) 

Proof.�We prove the second formula. Choose a basis ei of V with respect to which the form B is 
standard: B(ej , el) = 1  if  j = 2i − 1, l  = 2i, and  B(ej , el) = 0 for other pairs j <  l. Since  both  sides  

∗ ∗of the formula are polylinear with respect to λ1, . . . , λn, it suffices to check it if λ1 = ei1 , . . . , λn = ein�
. 

This is easily done by direct computation (in the sum on the right hand side, only one term may be 
nonzero). ! 
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10. Quantum�mechanics�for�fermions�

10.1. Feynman�calculus�in�the�supercase.�Wick’s theorem allows us to extend Feynman calculus 
to the supercase. Namely, let V = V0 ⊕ V1 be a finite dimensional real superspace with a supervolume 
element dv, equipped with a symmetric nondegenerate form B = B0 ⊕ B1 (B0 > 0). Let S(v) =  
1 B(v, v) +  Br�(v,v,...,v) be an even function on V (the action).  Note that  Br , r ≥ 3 can contain 2 r≥3 r! 
mixed terms involving both odd and even variables, e.g. xξ1ξ2 (the so called “Yukawa term”). We will 
consider the integral 

I(!) =  ℓ1(v0) · · · ℓn(v0)λ1(v1) · · ·λp(v1)e −S(v)/!dv. 
V 

(where v0, v1 are the even and odd components of v). Then this integral has an expansion in ! written 
in terms of Feynman diagrams. Since v has both odd and even part, these diagrams will contain “odd” 
and “even” edges (which could be depicted by straight and wiggly lines respectively). More precisely, 
let us write 

r ( ) 
Br (v, v, . . . , v) =  r

Bs,r−s(v1, . . . , v1, v0, . . . , v0), s 
s=0 

where Bs,r−s has homogeneity degree s with respect to v1 and r − s with respect to v0 (i.e. it will be 
nonzero only for even s). Then to each term Bs,r−s we assign an (s, r − s)-valent flower, i.e. a flower 
with s odd and r − s even outgoing edges, and for the set of odd outgoing edges, it has been specified 
which orderings are even. Then, given an arrangement of flowers, for every pairing σ of outgoing edges, 
we can define an amplitude Fσ by contracting the tensors −Bs,r−s (and being careful with the signs). 
It is easy to check that all pairings giving the same graph will contribute to I(!) with the same sign, 
and this we have almost the same formula as in the bosonic case: 

∑ !b(Γ) 
I(!) =  (2π)dim V0/2! 

dim�V0−dim�V1�Pf(−B1)
2� √ FΓ,

det B0 |Aut(Γ)|
Γ 

where the summation is taken over graphs with n even and p odd outgoing edges. 
Remark.�More precisely, we can define the sign εσ of a pairing σ as follows: label outgoing edges 

by 1, . . ., starting from the first flower, then second, etc., so that the labeling is even on each flower. 
Then write the labels in a sequence, enumerating (in any order) the pairs defined by σ (the element 
with the smaller of the two labels goes first). The sign εσ is by definition the sign of this ordering (as 
a permutation of 1, . . .). Then FΓ is Fσ for any pairing σ yielding Γ which is positive, i.e. such that 
εσ = 1. For negative pairing, FΓ = −Fσ . 

In most (but not all) situations considered in physics, the action is quadratic in the fermionic vari-
ables, i.e. S(v) =  Sb(v0) − Sf (v0)(v1, v1), where Sf (v0) is a skew-symmetric bilinear form on ΠV1. In  
this case, using fermionic Wick’s theorem, we can perform exact integration with respect to v1, and  
reduce I(!) to a purely bosonic integral. For example, if we have only ℓi and no λi , we  have  

I(!) =  ℓ1(v0) · · · ℓn(v0)e −Sb(v0)/!Pf(Sf (v0))dv0. 
V0�

In this situation, all vertices which have odd outgoing edges, will have only two of them, and therefore 
in any Feynman diagram with even outgoing edges, odd lines form nonintersecting simple curves, called 
fermionic loops (in fact, the last formula is nothing but the result of regarding these loops as a new kind 
of vertices – convince yourself of this). In this case, there is the following simple way of assigning signs 
to Feynman diagrams. For each vertex with two odd outgoing edges, we orient the first edge inward 
and the second one outward. We allow only connections (pairings) that preserve orientations (so the 
fermionic loops become oriented). Then the sign is (−1)r, where  r is the number of fermionic loops 
(i.e. each fermionic loop contributes a minus sign). 

10.2. Fermionic�quantum�mechanics.�Let us now pass from finite dimensional fermionic integrals 
to quantum mechanics, i.e. integrals over fermionic functions of one (even) real variable t. 

Let us first discuss fermionic classical mechanics, in the Lagrangian setting. Its difference with the 
bosonic case is that the “trajectory” of the particle is described by an odd, rather than even, function 
of one variable, i.e. ψ : R → ΠV , where  V is a vector space. Mathematically this means that the space 
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of fields (=trajectories) is an odd vector space ΠC∞(R, V  ). A Lagrangian L(ψ) is a local expression in 
such a field (i.e. a polynomial in ψ, ψ̇, . . .), and an action is the integral S = R Ldt. This means that 
the  action is  an element  of  the  space  ΛC∞(R, V  )∗ .0 

Consider for example the theory of a single scalar-valued free fermion ψ(t). By definition, the 
1 1 ψ ˙Lagrangian for such a theory is L = 2 ψψ̇, i.e. the action is S = ψdt.2 

This Lagrangian is the odd analog of the Lagrangian of a free particle, q̇2/2. 
Remark.�Note that ψψ̇ ̸ d ψψ, so this Lagrangian is “reasonable”. On = dt (ψ

2/2) = 0, since ψψ̇ = − ˙
the other hand, the same Lagrangian would be unreasonable in the bosonic case, as it would be a total 
derivative, and hence the action would be zero. Finally, note that it would be equally unreasonable to 
use in the fermionic case the usual bosonic Lagrangian 1 

2 (q̇
2 − m2q2); it would identically vanish if q 

were odd-valued. 
The Lagrangian L is invariant under the group of reparametrizations Diff+(R), and the Euler-

Lagrange equation for this Lagrangian is ψ̇ = 0 (i.e. no dynamics). Theories with such properties 
are called topological�field�theories.�

Let us now turn to quantum theory in the Lagrangian setting, i.e. the theory given by the Feynman 
integral ψ(t1) · · ·ψ(tn)eiS(ψ)Dψ. In the bosonic case, we “integrated” such expressions over the space 
C∞(R). This integration did not make immediate sense because of failure of measure theory in infinite 0 
dimensions. So we had to make sense of this integration in terms of !-expansion, using Wick’s formula 
and Feynman diagrams. In the fermionic case, the situation is analogous. Namely, now we must 
integrate functions over ΠC∞(R), which are elements of ΛD(R), where D(R) is the space of distributions 0 
on R. Although in the fermionic case we don’t need measure theory (as integration is completely 
algebraic), we still have trouble defining the integral: recall that by definition the integral should the 
top coefficient of the integrand as the element of ΛD(R), which makes no sense since in the exterior 
algebra of an infinite dimensional space there is no top component. Thus we have to use the same 
strategy as in the bosonic case, i.e. Feynman diagrams. 

Let us, for instance, define the quantum theory for a free scalar valued fermion, i.e one described by 
the Lagrangian L = 1 ψψ̇. According to the yoga we used in the bosonic case, the two point function of 2 
this theory < ψ(t1)ψ(t2) > should be the function G(t1 − t2), where G is the solution of the differential 
equation −idG = δ(t).dt 

The general solution of this equation has the form G(t) =  − 2
1 
i sign(t) +  C. Because of the fermionic 

nature of the field ψ(t), it is natural to impose the requirement that G(−t) =  −G(t), i.e that the 
correlation functions are antisymmetric; this singles out the solution G(t) =  −2

1 
i sign(t) (we also see 

from this condition that we should set G(0) = 0). As usual, the 2n-point correlation functions are 
defined by the Wick formula. That is, for distinct ti, 

< ψ(t1) · · ·ψ(t2n) >= (2n − 1)!!(i/2)nsign(σ), 

where σ is the permutation that orders ti in the decreasing order. If at least two points coincide, the 
correlation function is zero. 

Thus we see that the correlation functions are invariant under Diff +(R). In other words, using 
physical terminology, we have a topological�quantum�field�theory. 

Note that the correlation functions in the Euclidean setting for this model are the same as in the 
Minkowski setting, since they are (piecewise) constant in ti. In particular, they don’t decay at infinity, 
and hence our theory does not have the clustering property. 

We have considered the theory of a massless fermionic field. Consider now the massive case. This 
means, we want to add to the Lagrangian a quadratic term in ψ which does not contain derivatives. If 
we have only one field ψ, the only choice for such term is ψ2, which is zero. So in the massive case we 
must have at least two fields. Let us therefore consider the theory of two fermionic fields ψ1, ψ2 with 
Lagrangian 

1 ˙L = 
2
(ψ1ψ1 + ψ2ψ̇2 − mψ1ψ2), 

where m >  0 is a mass parameter. The Green’s function for this model satisfies the differential equation 

G′ − MG  = iδ, 
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0 mwhere M = (and G is a 2 by 2 matrix valued function). The general solution of this −m 0 
equation that satisfies the antisymmetry condition GT (−t) =  −G(t) (which we will impose as in the 
massless case) has the form 

1 MtG(t) =  −( sign(t)I + aM)e ,
2i

where I is the identity matrix, and a is a number. Furthermore, it is natural to require that the theory 
at hand satisfies the clustering property (after being Wick-rotated). This means, G(−it) decays at 
infinity for real t. It is easy to compute that this condition is satisfied for only one value of a, namely  
a = 1/2m. For this value of a, the solution has the form G(t) =  ∓iP±e−iMt for ∓t >  0, where P± is 
the projector to the eigenspace of M with eigenvalue ±im (and G(0) = 0). 

Remark.�It is easy to generalize this analysis to the case when ψ takes values in a positive definite 
inner product space V , and  M : V → V is a skewsymmetric operator, since such a situation is a direct 
sum of the situations considered above. 

In the case when M is nondegenerate, one can define the corresponding theory with interactions, 
i.e. with higher than quadratic terms in ψ. Namely, one defines the correlators as sums of amplitudes 
of appropriate Feynman diagrams. We leave it to the reader to work out this definition, by analogy 
with the finite dimensional case which we have discussed above. 

10.3. Super�Hilbert�spaces.�The space of states of a quantum system is a Hilbert space. As we plan 
to do Hamiltonian quantum mechanics for fermions, we must define a superanalog of this notion. 

Recall that a sesquilinear form on a complex vector space is a form (, ) which is additive in each 
variable, and satisfies the conditions (ax, y) = ā(x, y), (x, ay) =  a(x, y) for  a ∈ C. 

Now suppose H = H0 ⊕H1 is a Z/2-graded complex vector space. 

Definition�10.1.�(i) A Hermitian form on H is an even sesquilinear form (, ), such that (x, y) = (y, x) 
for even x, y, and  (x, y) =  −(y, x) for  odd  x, y. 

= 0,  and  −i(x, x) > 0 for  odd  x ̸(ii) A Hermitian form is positive definite if (x, x) > 0 for even x ̸ = 0.  
A super Hilbert space is a superspace with a positive definite Hermitian form (, ), which is complete in 
the corresponding norm. 

(iii) Let H be a super Hilbert space, and T : H0 ⊕ ΠH1 → H0 ⊕ ΠH1 be a linear operator between 
∗the underlying purely even spaces. The Hermitian adjoint operator T is defined by the equation 

∗(x, T y) = (−1)p(x)p(T )(T x, y), where p denotes the parity. 
10.4. The�Hamiltonian�setting�for� fermionic�quantum�mechanics.�Let us now discuss what 
should be the Hamiltonian picture for the theory of a free fermion. More precisely, let V be a positive 

1definite finite dimensional real inner product space, and consider the Lagrangian L = 2 ((ψ, ψ̇) − 
(ψ, Mψ)), where ψ : R → ΠV , and  M : V → V is a skew-symmetric operator. 

To understand what the Hamiltonian picture should be, let us compare with the bosonic case. 
1Namely, consider the Lagrangian Lb = 2 (q̇

2 − m2q2), where q : R → V . In this case, the classical 
∗ ∗space of states is Y := T V = V ⊕ V . The equations of motion are Newton’s equations q̈ = −m q, 

which can be reduced to Hamilton’s equations q̇ = p, ṗ = −m2q. The algebra of classical observables is 
∗C∞(Y ), with Poisson bracket defined by {a, b} = (a, b), a, b ∈ Y , where  (, ) is  the  form  on  Y ∗ inverse 

to the natural symplectic form on Y . The hamiltonian H is determined (up to adding a constant) by 
the condition that the equations of motion are ḟ = {f, H}; in this case  it is  H = (p2 + m2q2)/2. 

The situation in the fermionic case is analogous, with some important differences which we will 
explain below. Namely, it is easy to compute that the equation of motion (i.e. the Euler-Lagrange 
equation) is ψ̇ = Mψ. The main difference with the bosonic case is that this equation is of first and 
not of second order, so the space of classical states is just ΠV (no momentum or velocity variables are 
introduced). Hence the algebra of classical observables is C∞(ΠV ) =  ΛV ∗ . To define a Poisson bracket 
on this algebra, recall that ΠV has a natural “symplectic structure”, defined by the symmetric�form 

∗(, ) on  V . Thus we can define a Poisson bracket on ΛV by the same formula as above: {a, b} = (a, b). 
More precisely, {, } is a unique skew symmetric (in the supersense) bilinear operation on ΛV ∗ which 

∗restricts to (a, b) for  a, b ∈ V , and is a derivation with respect to each variable: 

{a, bc} = {a, b}c + (−1)p(a)p(b)b{a, c}, 

2
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where p(a) denotes the parity of a. 
Now it is easy to see what should play the role of the Hamiltonian. More precisely, the definition with 

Legendre transform is not valid in our situation, since the Legendre transform was done with respect to 
the velocity variables, which we don’t have in the fermionic case. On the other hand, as we discussed 
in §8, in the bosonic case the equation of motion ḟ = {f, H} determines H uniquely, up to a constant. 
The situation is the same in the fermionic case. Namely, by looking at the equation of motion ψ̇ = Mψ, 

1it is easy to see that the Hamiltonian equals H = 2 (ψ, Mψ). In particular, if M = 0 (massless case), 
the Hamiltonian is zero (a characteristic property of topological field theories). 

Now let us turn to quantum theory. In the bosonic case the algebra of quantum observables is a 
noncommutative deformation of the algebra C∞(Y ) in which  the relation  {a, b} = (a, b) is replaced 
with its quantum analog ab − ba = i(a, b) (up to the Planck constant factor which we will now ignore). 

∗In particular, the subalgebra of polynomial observables is the Weyl algebra W (Y ), generated by Y 
with this defining relation. By analogy with this, we must define the algebra of quantum observables 

∗in the fermionic case to be generated by V with the relation ab + ba = i(a, b) (it deforms the relation 
∗ab + ba = 0 which defines ΛV ). So we recall the following definition. 

Definition�10.2.�Let V be a vector space over a field k with a symmetric bilinear form Q. The Clifford 
algebra Cl(V, Q) is generated by V with defining relations ab + ba = Q(a, b), a, b ∈ V . 

∗We see that the algebra of quantum observables should be Cl(VC , i(, )). Note that like in the classical 
case, this algebra is naturally Z/2 graded, so that we have even and odd quantum observables. 

Now let us see what should be the Hilbert space of quantum states. In the bosonic case it was L2(V ), 
which is, by the well known Stone-von Neumann theorem, the unique irreducible unitary representation 
of W (Y ). By analogy with this, in the fermionic case the Hilbert space of states should be an irreducible 
even unitary representation of Cl(V ) on a supervector space H. 

∗The structure of the Clifford algebra Cl(V ) is well known. Namely, consider separately the cases 
when dim V is odd and even. 

∗In the even case, dim V = 2d, Cl(V ) is simple, and has a unique irreducible representation H, 
∗ ∗of dimension 2d . It is constructed as follows: choose a decomposition VC = L ⊕ L , where  L, L are 

∗ ∗Lagrangian subspaces. Then H = ΛL, where  L ⊂ V acts by multiplication and L by differentiation C 
(multiplied by −i). The structure of the superspace on H is the standard one on the exterior algebra. 

∗In the odd case, dim V = 2d+ 1, choose a decomposition VC = L⊕L ⊕K, where  L, L∗ are maximal 
∗isotropic, and K is a nondegenerate 1-dimensional subspace orthogonal to L and L . Let  H = Λ(L⊕K), 

∗ ∗where L, K act by multiplication and L by (−i times) differentiation. This is a representation of Cl(V ) 
with a Z/2 grading. This representation is not irreducible, and decomposes in a direct sum of two non-
isomorphic irreducible representations H+ ⊕ H− (this is related to the fact that the Clifford algebra 
for odd dim V is not simple but is a sum of two simple algebras). However, this decomposition is not 
consistent with the Z/2-grading, and therefore as superrepresentation, H is irreducible. 

Now, it is easy to show that both in the odd and in the even case the space H carries a unique up to 
∗ ∗scaling Hermitian form, such that V ⊂ VC acts by selfadjoint operators. This form is positive definite. 

So the situation is similar to the bosonic case for any dim V . 
Let us now see which operator on H should play the role of the Hamiltonian of the system. The 

most natural choice is to define the quantum Hamiltonian to be the obvious quantization of the classical 
1 ∗Hamiltonian H = 2 (ψ, Mψ). Namely, if εi is a basis of V and aij is the matrix of M in this basis, then 

one sets H = 1ˆ
2 i,j aij εiεj . To compute this operator more explicitly, we will assume (without loss of 

generality) that the decomposition of VC that we chose is stable under M . Let  ξj be an eigenbasis of 
M in L (with eigenvalues imj ), and ∂j be differentiations along the vectors of this basis. Then 

Ĥ = mj (ξj ∂j − ∂j ξj ) =  mj (2ξj ∂j − 1). 
j j 

This shows that if dim V is even then the partition function on the circle of length L for our theory is 
mjL − e −mjL)Z = sTr(e −L Ĥ ) =  (e 

j 

If the dimension of V is odd then the partition function is zero. 
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Now we would like to consider the fermionic analog of the Feynman-Kac formula. For simplicity 
consider the fully massive case, when dim V is even and mj ̸= 0 (i.e. M is nondegenerate). In this case, 
we have a unique up to scaling lowest eigenvector of Ĥ , namely  Ω  =  1.  

∗Let ψ(0) ∈ V ⊗ End(H) be the element corresponding to the action map V → End(H), and 
H ψ(0)e−it ˆψ(t) =  eit ˆ H . Also, let < ψ(t1) · · ·ψ(tn) >, t1 ≥  · · ·  ≥  tn, be the correlation function for 

the free theory in the Lagrangian setting, taking values in V ⊗n, so in this expression ψ(ti) is  a  formal  
symbol and not an operator. 

Theorem�10.3.�(i)�For�the�free�theory on�the�line�we�have�

< ψ(t1) · · ·ψ(tn) >= (Ω, ψ(t1) · · ·ψ(tn)Ω). 
(ii)�For�the�free�theory�on�the�circle�of�length�L we�have�

H )
< ψ(t1) · · ·ψ(tn) >= 

−L ˆsTr(e H ) 
sTr(ψ(t1) · · ·ψ(tn)e−L ˆ

Exercise.�Prove this theorem. (The proof is analogous to Theorem 8.3 in the free case). 
It should now be straightforward for the reader to formulate and prove the Feynman-Kac formula 

for an interacting theory which includes both bosonic and Fermionic massive fields. We leave this as 
an instructive exercise. 
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11. Free�field�theories�in�higher�dimensions�

11.1. Minkowski�and�Euclidean�space.�Now we pass from quantum mechanics to quantum field 
theory in dimensions d ≥ 1. As we explained above, we have two main settings. 

1. Minkowski space. Fields are functions on a spacetime VM , which is a real inner product space of 
signature (1, d  − 1). This is where physical processes actually “take place”. The symmetry group of V , 
G = SO(1, d  − 1), is called the Lorenz�group; it is the group of transformation of spacetime in special 
relativity. Therefore, field theories in Minkowski space which are in an appropriate sense “compatible” 
with the action of G are called relativistic. 

Recall some standard facts and definitions. The�light�cone�in V is the cone described by the equation 
|v|2�= 0,  where  |v|2� := (v, v). Vectors belonging to the light cone are called lightlike. The light cone 
divides the space V into spacelike vectors |v|2� < 0 (the outside of the cone), and timelike vectors 
|v|2�> 0 (inside the cone). We will choose one of the two components of the interior of the cone and 
call it positive; it will be denoted by V+. The opposite (negative) component is denoted by V−. The  
group of g ∈ SO(V ) =  SO(1, d  − 1) which preserve V+� is denoted by SO+(1, d  − 1); it is the connected 
component of the identity of the group SO(1, d  − 1) (which has two connected components). 

Often (e.g. when doing Hamiltonian field theory) it is necessary to split V in an orthogonal direct 
sum V = Vs ⊕ R�of space and time. In this decomposition, the space Vs is required to be spacelike 
(i.e. negative definite), which implies that the time axis R�has to be timelike (positive definite). Note 
that such a splitting is not unique, and that fixing it breaks the Lorenz symmetry SO+(1, d  − 1) down 
to the usual rotation group SO(d − 1). To do explicit calculations, one further chooses Cartesian 
coordinates x1, . . .  , xd−1�on Vs and t on the time axis R. 

2. Euclidean space. Fields are functions on a spacetime VE , which is a positive definite inner product 
space. It plays an auxiliary role and has no direct physical meaning, although path integrals computed 
in this space are similar to expectation values in statistical mechanics. 

The two settings are related by the “Wick rotation”. Namely the Euclidean space VE corresponding 
to the Minkowski space VM is the real subspace in (VM )C�consisting of vectors (it, x1, . . .  , xd−1, where  
t and xj are real. In other words, to pass to the Euclidean space one needs to make a change of variable 
t → it. Note that under this change, the standard metric on the Minkowski space, dt2�− 

∑ 
dx2�

i , goes  
into a negative definite metric −dt2�− 

∑ 
dx2�

i . However, the minus sign is traditionally dropped and one 
considers instead the positive metric dt2�+ 

∑ 
dx2�on VE .i 

11.2. Free�scalar�bosons.�Consider the theory of a free scalar bosonic field φ of mass m. The pro-
cedure of quantization of this theory in the Lagrangian setting is a straightforward generalization 
from the case of quantum mechanics. Namely, the Lagrangian for this theory in Minkowski space is 

1L = 2 ((dφ)2�−m2φ2), and the Euler-Lagrange equation is !φ = −m2φ, where  ! is the D’Alambertian, 
∂2! = ∂t2� − 

∑ ∂2�
. Thus to define the corresponding quantum theory, we should invert the operator i ∂x2�

i�
2! + m . As in the quantum mechanics case, this operator is not invertible (0 is in the spectrum), so 

we should proceed using the Wick rotation. 
After the Wick rotation (i.e. transformation t → it), we arrive at the following Euclidean Lagrangian: 

1LE = 2 ((dφ)2+m2φ2), and the Euler-Lagrange equation is ∆φ = m2φ. So to define the quantum theory, 
i.e. the path integral 

φ(x1) · · ·φ(xn)e −S(φ)Dφ 

2(where S = L), we now need to invert the operator A = −∆ +  m . The operator A−1� is an integral 
operator, whose kernel is G(x − y), where G(x) is the Green’s function, i.e. the fundamental solution 
of the differential equation 

−∆G + m 2G = δ 

To solve this equation, note that the solution is rotationally invariant. Therefore, outside of the 
origin, G(x) =  g(|x|), where g is a function on (0, ∞) such that 

−g ′′ − d − 1 
g ′ + m 2�g = 0  

r 
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(where the left hand side is the radial part of the operator A). This is a version of the Bessel equation. 
2−d�
2If m >  0, the basis of solutions is r J± 2−d�(imr). (Actually, these functions are elementary for odd d).

2�
There exists a unique up to scaling solution, which decays at infinity, namely, 

2−d�
2g = Cr (J 2−d�(imr) +  idJ− 2−d�(imr)), (d ≠ 2). 

2 2�

For d = 2, this expression is zero, and one should instead take the limit of the right hand side divided 
by d − 2 as  d → 2 (which will generate a logarithmic factor ln r). The normalizing constant C can be 
found from the condition that AG = δ. 

Remark.� It is easy to check that for d = 1 this function equals the familiar Green’s function for 
−mr /2m.quantum mechanics, e

2−d for If m = 0 (massless case), the basis of solutions is: 1, r  for d = 1,  1, ln r for d = 2,  and  1, r
d >  2. Thus, if d ≤ 2, we don’t have a decaying solution and thus the corresponding quantum theory 
will be deficient: it will not satisfy the clustering property. On the other hand, for d >  2 we have  a  
unique up to scaling decaying solution g = Cr1−d . The constant C is found as in the massive case. 

The higher correlation functions are found from the 2-point function via the Wick formula, as usual. 
We should now note a fundamental difference between quantum mechanics and quantum field theory 

in d >  1 dimensions. This difference comes from the fact that while for d = 1, the Green’s function 
2−dG(x) is continuous at x = 0,  for  d >  1 it is singular at x = 0.  Namely,  G(x) behaves like C|x| as 

x → 0 for  d >  2, and as C ln |x| as d = 2.  Thus  for  d >  1, unlike the case d = 1, the path integral 

φ(x1) · · ·φ(xn )e −S(φ)Dφ 

(as defined above) makes sense only if xi ̸= xj . In other words, this path integral should be regarded 
not as a function but rather as a distribution. Luckily, there is a canonical way to do it, since the 
Green’s function G(x) is locally L1�. 

Now we can Wick rotate this theory back into the Minkowski space. It is clear that the Green’s 
function will then turn into GM (x) =  g( |x|2�+ iε), The higher correlation functions, as before, are 
determined from this by the Wick formula. 

Actually, it is more convenient to describe this theory “in momentum space”, where the Green’s 
function can be written more explicitly. Namely, the Fourier transform Ĝ(p) of the distribution G(x) 
is a solution of the equation 

2�ˆ G = 1,p G + m 2�ˆ

obtained by Fourier transforming the differential equation for G. Thus,  

ˆ 1 
G(p) =  

p2�+ m2�
, 

as in the quantum mechanics case. Therefore, like in quantum mechanics, the Wick rotation produces 
the distribution 

ˆ i 
GM (p) =  

p2�− m2�+ iε
, 

which is the Fourier transform of GM (x). 

11.3. Spinors.�To consider field theory for fermions, we must generalize to the case of d >  1 the basic 
dfermionic Lagrangian 1ψ dψ . To do this, we must replace dt by some differential operator on V . This  2 dt 

operator should be of first order, since in fermionic quantum mechanics it was important that the 
equations of motion are first order equations. Clearly, it is impossible to define such an operator so that 
the Lagrangian is SO+(V )-invariant, if ψ is a scalar valued (odd) function on V . Thus,  a  fermionic  
field in field theory of dimension d >  1 cannot be scalar valued, but rather must take values in a real 

∗representation S of SO+(V ), such that there exists a nonzero intertwining operator V → Sym2S . This  
property is satisfied by spinor representations. They are indeed basic in fermionic field theory, and we 
will now briefly discuss them (for more detail see “Spinors” by P.Delignee, in “QFT and string theory: 
a course for mathematicians”). 

First consider the complex case. Let V be a complex inner product space of dimension d >  1. Let 
Cl(V ) be the Clifford algebra of V , defined by the relation ξη + ηξ = 2(ξ, η), ξ, η ∈ V . As we discussed, 
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for even d it is simple and has a unique irreducible representation S of dimension 2d/2, while for odd d 
it has two such representations S′, S′′ of dimension 2(d−1)/2�. It is easy to show that the space CL2(V ) 
of quadratic elements of CL(V ) (i.e. the subspace spanned elements of the form ξη − ηξ, ξ, η  ∈ V ) is  
closed under bracket, and constitutes the Lie algebra o(V ). Thus o(V ) acts  on  S (respectively, S′, S′′). 
This action does not integrate to an action of SO(V ), but integrates to an action of its double cover 
Spin(V ). 

If d is even, the representation S of Spin(V ) is not irreducible. Namely, recall that S is the exterior 
algebra of a Lagrangian subspace of V .  Thus is  splits in a direct  sum  S = S+�⊕ S− (odd and even 
elements). The subspaces S+, S− are subrepresentations of S, which are irreducible. They are called 
half-spin representations. 

If d is odd, the representations S′ and S′′ of Spin(V ) are irreducible and isomorphic. Any of them 
will be denoted by S and called the spinor representation. Thus, we have the spinor representation S 
for both odd and even d, but for even d it is reducible. 

An important structure attached to the spinor representation S is the intertwining operator Γ : V → 
EndS, given by the action of V ⊂ Cl(V ) in  S. This intertwiner allows us to define the Dirac operator 

∑ ∂
D�= Γi 

∂xi 

where xi are coordinates on V associated to an orthonormal basis ei, and  Γi = Γ(ei). This operator 
acts on functions form V to S, and  D2�= ∆,  so  D�is a square root of the Laplacian. The matrices Γi 
are called Γ matrices. 

Note that for even d, one has Γ(v) :  S± → S∓, so  D�acts from functions with values in S± to 
functions with values in S∓. 

By a spinor representation of Spin(V ) we will mean any linear combination of S+, S− for even d, 
and any multiple of S for odd d. Thus, for every spinor representation we have Γ(v) :  Y → Y ′, where  
S′ := S− and S′ 

− := S+, and  S′ := S.+�

Now assume that V is a real inner product space with Minkowski metric. In this case we can define 
the group Spin+(V ) to be the preimage of SO+(V ) under the map Spin(VC) → SO(VC). It a double 
cover of SO+(V ) (if  d = 2, this double cover is disconnected and actually a direct product by Z/2). 

By a real spinor representation of SO+(V ) we will mean a real representation Y such that YC� is a 
spinor representation of Spin(VC). 

11.4. Fermionic�Lagrangians.�Now let us consider Lagrangians for a spinor field ψ with values in 
a spinor representation Y . As the Lagrangian is supposed to be real in the Minkowski setting, we 
will require in that case that Y is real. First of all, let us see what we need in order to write the 
“kinetic term” (ψ, Dψ). Clearly, to define such a term (so that it is nonzero), we need an invariant 
nondegenerate pairing (, ) between Y and Y ′ such that the for any v ∈ V , the bilinear form (x, Γ(v)y) 
on Y is symmetric. 

Let us find for which Y this is possible (for complex V ). The behavior of Spin groups depends on d 
modulo 8. Thus we will list the answers labeling them by d mod 8 (they are easily extracted from the 
tables given in Deligne’s text). 

0. n(S+�⊕ S−). 
1. nS. 
2. nS+�⊕ kS−. 
3. nS. 
4. n(S+�⊕ S−). 
5. 2nS. 
6. 2nS+�⊕ 2kS−. 
7. 2S. 
Let us now find when we can also add a mass term. Recall that the mass term has the form (ψ, Mψ), 

so it corresponds to an invariant skew-symmetric operator M : Y → Y ∗ . Let us list those Y from the 
above list, for which such nondegenerate operator exists. 

0. 2n(S+�⊕ S−). 
1. 2nS. 
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2. n(S+�⊕ S−). 
3. nS. 
4. n(S+�⊕ S−). 
5. 2nS. 
6. 2n(S+�⊕ S−). 
7. 2S. 
To pass to the real Minkowski space (in both massless and massive case), one should put the additional 

requirement that Y should be a real representation. 
We note that upon Wick rotation to Minkowski space, it may turn out that a real spinor represen-

tation Y will turn into a complex representation which has no real structure. Namely, this happens for 
massless spinors that take values in S± if d = 2 mod 8. These representations have a real structure for 
Minkowskian V (i.e. for SO+(1, d  − 1)), but no real structure for Euclidean V (i.e. for SO(d)). This is 
quite obvious, for example, when d = 2  (check!).  

One may think that this causes a problem in quantum field theory, where we would be puzzled what 
to integrate over – real or complex space. However, the problem in fact does not arise, since we have 
to integrate over fermions, and integration over fermions (say, in the finite dimensional case) is purely 
algebraic and does not make a distinction between real and complex. 

11.5. Free� fermions.� Let us now consider a free theory for a spinor ψ : V → ΠY , where  Y is a 
1spinor representation, defined by a Lagrangian L = 2 ((ψ, Dψ) − (ψ, Mψ)), where M is allowed to be 

degenerate (we assume that Y is such that this expression makes sense). The equation of motion in 
∗Minkowski space is Dψ = Mψ. where we have identified Y ′ and Y using the pairing Y × Y ′ → R�used 

to define the kinetic term. Thus, to define the corresponding quantum theory, we need to invert the 
operator D − M . As usual, this cannot be done because of a singularity, and we have to consider the 
Wick rotation. 

1The Wick rotation produces the Euclidean Lagrangian L = 2 ((ψ, DE ψ) +  (ψ, Mψ)) (note that the i 
in the kinetic term is hidden in the definition of the Euclidean Dirac operator). We invert DE + M , to  
obtain the Euclidean Green’s function. To do this, it is convenient to go to momentum space, i.e. perform 
a Fourier transform. Namely, after Fourier transform DE turns into the operator ip, where  p�= pj Γj , 
and pj are the operators of multiplication by the coordinates pj . Thus, the Green’s function (i.e. the 

12-point function) G(x) ∈ Hom(Y ′, Y  ) is the Fourier transform of the matrix-valued function ip+M . Let  
M † : Y ′ → Y be the operator such that ΓiM = M †Γi. Then, (−ip + M †)(ip + M) =  p2�+ M †M , so  
that 

Ĝ(p) =  (p 2�+ M †M)−1(−ip + M †). 
This shows that G(x) is expressed through the Green’s function in the bosonic case by differentiations 
(how?). After Wick rotation back to the Minkowski space, we get 

ĜM (p) =  (p 2�− M †M + iε)−1(p + iM †). 
Finally, the higher correlation functions, as usual, are found from the Wick formula. 
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