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We investigate the dynamical mean-field theory (DMFT) from a quantum chemical perspective. Dy-
namical mean-field theory offers a formalism to extend quantum chemical methods for finite sys-
tems to infinite periodic problems within a local correlation approximation. In addition, quantum
chemical techniques can be used to construct new ab initio Hamiltonians and impurity solvers for
DMFT. Here, we explore some ways in which these things may be achieved. First, we present an
informal overview of dynamical mean-field theory to connect to quantum chemical language. Next,
we describe an implementation of dynamical mean-field theory where we start from an ab initio
Hartree–Fock Hamiltonian that avoids double counting issues present in many applications of DMFT.
We then explore the use of the configuration interaction hierarchy in DMFT as an approximate
solver for the impurity problem. We also investigate some numerical issues of convergence within
DMFT. Our studies are carried out in the context of the cubic hydrogen model, a simple but chal-
lenging test for correlation methods. Finally, we finish with some conclusions for future directions.
© 2011 American Institute of Physics. [doi:10.1063/1.3556707]

I. INTRODUCTION

In molecular quantum chemistry, the use of systematic
hierarchies of electron correlation methods to obtain conver-
gent solutions of the many-electron Schrödinger equation has
proven very successful. For example, the hierarchy of second-
order Moller-Plesset perturbation theory (MP2), coupled clus-
ter singles doubles theory (CCSD), and coupled cluster sin-
gles doubles theory with perturbative triples [CCSD(T)] can
be used (when strong correlation effects are absent) to obtain
properties of many small molecules with chemical accuracy.1

The computational scalings of the above methods are respec-
tively n5, n6, and n7, where n is the size of the basis, which
seems to limit them to very small systems. However, local
correlation techniques can further be used to reduce the above
scalings in large systems to n, and this has extended the ap-
plicability of such quantum chemical hierarchies to systems
with as many as a thousand atoms.2–5

Less progress has been made, however, in the use of such
quantum chemical hierarchies in infinite systems such as crys-
talline solids. We recall briefly the reasons why. Consider a
molecular crystal, where the molecular unit cell is represented
by a basis of n orbitals. Assuming V cells in the Brillouin
zone of the crystal, the solid is then represented by a basis
of nV orbitals. In density functional theory (computationally
a single-electron theory) the cost of the calculation scales as
the third power of the number of orbitals. However, transla-
tional symmetry means that one-electron operators (such as
the Kohn–Sham Hamiltonian) separate into V blocks along
the diagonal, and the crystal calculation can be performed for
only V times the cost of the molecular calculation, rather than
V 3 times, if translational symmetry were absent. In correlated

a)Author to whom correspondence should be addressed. Electronic mail:
dominika.zgid@gmail.com.

calculations, translational symmetry yields a less dramatic
advantage. For example, for second-order Moller–Plesset per-
turbation theory, while the molecular calculation scales as n5,
the scaling of the crystal calculation with translational sym-
metry is n5V 3, and there is still a very steep and prohibitive
cost dependence on the size of the Brillouin zone.6

Locality of correlation suggests that a formal high
scaling with Brillouin zone size can be avoided in physical
systems. (Indeed there are many current efforts underway to
explore local correlation methods in the crystal setting).7, 8

We can then imagine starting with a different picture of a
crystal which is more local in nature. Consider a unit cell
in a crystal. It is embedded in a medium, namely, the rest of
the crystal. Translational symmetry implies that the medium
consists of the same unit cells as the embedded cell, and thus
an appropriate embedding theory for a crystal should take on
a self-consistent nature. If we were to carry out the embed-
ding exactly, we should not expect any less cost than the full
crystal calculation. However, if we make the assumption that
we will neglect (in some manner) intercell correlations due
to locality, then we can expect the high scaling with Brillouin
zone size to vanish, since the theory takes on the form of a
self-consistent theory for a single unit cell.

Recently, dynamical mean-field theory (DMFT) has been
applied with success to strongly correlated crystal problems,
which are typically not well described by density functional
theory (DFT) or low-order Green’s function techniques.9–16

Note that in this paper, we will use the term DMFT in a
general sense, to mean not only the single-site variant but
also its cluster and multiorbital extensions.17 From one
perspective, dynamical mean-field theory can be viewed as a
framework which realizes the self-consistent embedding with
local correlation view of a crystal described above. DMFT is
formulated in the language of Green’s functions and has the
form of a self-consistent theory for the Green’s function of a

0021-9606/2011/134(9)/094115/14/$30.00 © 2011 American Institute of Physics134, 094115-1
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unit cell (which may be a primitive cell, or more generally a
computational supercell). The local correlation approxi-
mation is expressed by assuming that the self-energy is
local, i.e., intercell elements of the self-energy vanish, or
in momentum space, that the self-energy is momentum
independent. It is important to note that although correla-
tion effects are neglected between unit-cells, one-electron
delocalization effects between unit cells are included. This,
together with the self-consistent nature of the embedding,
distinguishes the physics contained in DMFT from that in
simpler quantum chemical embedding formalisms, such as
theories based on embedding a quantum mechanical cluster
into a medium described by molecular mechanics (QM/MM
theories).18 DMFT has some connections in spirit also to
density functional embedding methods,19, 20 although the
use of Green’s functions avoids the need to approximate a
nonexplicit nonadditive kinetic energy functional.

There are several ways in which DMFT can benefit the
traditional quantum chemical correlation hierarchy and vice
versa. (Note that the complementary question, whether or not
DMFT can benefit quantum chemistry in finite molecules,
is an interesting one. We do not pursue it here, but it has
been studied very recently in Ref. 21). First, DMFT pro-
vides a framework through which quantum chemical meth-
ods for finite systems can be translated to the infinite crys-
tal through the local correlation approximation, avoiding the
cost of correlated Brillouin zone sampling. (This is true even
for nonsize-extensive methods such as configuration interac-
tion, as one is treating the correlation only within a unit cell
and a bath, not the whole crystal simultaneously). The nat-
ural way to combine quantum chemical wavefunction meth-
ods with DMFT is through the discrete bath formulation of
DMFT, where we need to determine the Green’s function of
a unit cell coupled to a finite noninteracting bath, a so-called
impurity problem. Second, quantum chemistry provides sys-
tematic ways to treat many-body correlations in the DMFT
framework. These quantum chemical solvers are of a different
nature to many of the currently used DMFT approximations.
Finally, quantum chemical methods and basis sets allow us to
define the ab initio Hamiltonian and matrix elements needed
to carry out DMFT calculations in real systems, while avoid-
ing the empirical parametrization and double counting correc-
tions that are currently part of the DFT-DMFT framework.

The current work can be viewed as taking first steps along
some of the lines described above. We aim to do several things
in this paper. First, we provide an informal description of
DMFT from an embedding perspective. While we do not in-
troduce new ideas in this context, we hope this description
may be helpful in forming connections to quantum chemical
approximations. Second, we explore quantum chemical wave-
function correlation methods (more specifically, the configu-
ration interaction hierarchy) in the DMFT framework within
the discrete bath formulation. These wavefunction methods
are used as approximate solvers for the DMFT impurity prob-
lem. Third, we define the DMFT Hamiltonian starting from
ab initio Hartree–Fock theory for the crystal, avoiding any
double counting or empirical approximations. (Reference 21
which as mentioned above studies DMFT in the context
of molecules, also starts from HF theory to avoid double

counting.) Fourth, we explore some of the basic numerics of
the DMFT framework, such as the fitting and convergence
of the finite bath approximation and the convergence of the
self-consistency. We explore all these questions in the context
of a simple model system, cubic hydrogen crystal. In such a
simple system, the correlation can be tuned from the weak to
strong limit as a function of the lattice spacing, and at least
in certain regimes, contains correlation features (such as the
three peak structure of the density states in the intermediate
regime) that to date can only be captured within the DMFT
framework.

The structure of the paper is as follows. We begin in
Sec. II with an overview of the DMFT formalism, starting
with a recap of relevant theory of Green’s functions, then pro-
ceeding to a general discussion of DMFT self-consistency and
embedding, the formulation of the impurity problem and the
many-body solver, and the definition of the DMFT Hamilto-
nian starting from Hartree–Fock theory to avoid double count-
ing. Sec. III summarizes our implementation of the DMFT
algorithm. Section IV describes our exploration of several
aspects of the combination of DMFT and quantum chem-
istry methods and DMFT numerics in the cubic hydrogen
system, including the use of the configuration interaction
hierarchy as a solver, the convergence of the DMFT self-
consistency, and the convergence of the DMFT calculations
as a function of the bath size. We present our conclusions in
Sec. V.

II. AN INFORMAL OVERVIEW OF DMFT

A. Summary of Green’s function formalism

To keep our discussion self-contained and to establish no-
tation, we begin by recalling some of the basic results from
the theory of Green’s functions. More detailed exposition of
Green’s functions can be found, for example, in Ref. 22.
Given a Hamiltonian H and chemical potential μ, at zero-
temperature the Green’s function G(ω) is defined as

Gi j (ω) = 〈�0|ai
1

ω + μ − (H − E0) + i0
a†

j |�0〉

+〈�0|a†
j

1

ω + μ + (H − E0) − i0
ai |�0〉, (1)

where i, j label the orthogonal one-particle basis, and �0 and
E0 are the ground-state eigenfunction and eigenvalue of H ,
respectively. G(ω) explicitly determines many of the interest-
ing properties of the system. For example the single-particle
density matrix P, electronic energy E , and spectral function
(density of states) A(ω) are given, respectively, by

P = −i
∫ ∞

−∞
eiω0+G(ω)dω, (2)

E = −1

2
i
∫ ∞

−∞
eiω0+Tr[(h + ω)G(ω)]dω, (3)

A(ω) = − 1

π
�G(ω + i0+). (4)

In general, ω is a complex variable. Real ω corresponds to
physical frequencies, and for example, the density of states
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(4) is defined on the real axis. However, it is often more
convenient to work away from the real axis. For example,
expectation values such as Eqs. (2) and (3) should be evalu-
ated on contours away from the real axis to avoid singularities
in the numerical integration.

In a crystal, we assume a localized orthogonal one-
particle basis of dimension n in each unit cell. Using transla-
tional invariance, it is sufficient to write the Green’s function
as G(R, ω), where R is the translation vector between unit
cells and for each R, ω, G(R, ω) is an n × n matrix. We shall
often refer to the Green’s function of a unit cell in this work
as the local Green’s function. The local Green’s function is
then the block of G(R, ω) at the origin R = 0, and we de-
note this by G(R0, ω). The local Green’s function determines
the local observables, such as the density matrix of the unit
cell, or the local density of states, via formulas analogous to
Eqs. (2) and (4). With periodicity, we can also work in the
reciprocal k-space. The k-space Green’s function G(k, ω) is
defined from the Fourier transform,

G(k, ω) =
∑

R

G(R, ω) exp(ik · R), (5)

and the local Green’s function is obtained from the inverse
transform as

G(R0, ω) = 1

V

∑
k

G(k, ω), (6)

where V is the volume of the Brillouin zone.
When the finite system Hamiltonian is of single parti-

cle form, h = ∑
i j hi j a

†
i a j , the corresponding noninteracting

Green’s function is obtained from the one-electron matrix h
as

g(ω) = [(ω + μ + i0±)1 − h]−1, (7)

where we use the convention of lower case g(ω) and h(ω) to
denote quantities associated with a noninteracting problem,
and the infinitesimal broadening 0± is positive or negative de-
pending on the sign of ω. In a periodic crystal, we obtain the
noninteracting Green’s function in k-space from the k-space
Hamiltonian h(k) for each k point,

g(k, ω) = [(ω + μ + i0±)1 − h(k)]−1. (8)

Green’s functions G(ω), G′(ω) corresponding to different
Hamiltonians H, H′ are related through frequency dependent
one-particle potentials termed self-energies. The self-energy
�(ω) is defined via the Dyson equation as

�(ω) = G′−1(ω) − G−1(ω). (9)

It contains all the physical effects associated with the per-
turbation H′ − H. For example, we can exactly relate the
noninteracting Green’s function g(ω) from Eq. (7) associ-
ated with noninteracting Hamiltonian h, and the interacting
Green’s function G(ω) associated with interacting Hamilto-
nian H through a Coulombic self-energy. From the explicit
form of the noninteracting Green’s function g(ω), the Dyson
equation in this case is

G−1(ω) = (ω + μ + i0±)1 − h − �(ω). (10)

In a periodic system, the above equation holds at each k where
the self-energy �(k, ω) now also acquires a k-dependence,

G−1(k, ω) = (ω + μ + i0±)1 − h(k) − �(k, ω), (11)

and the local Green’s function becomes

G(R0, ω) = 1

V

∑
k

[(ω + μ + i0±)1 − h(k) − �(k, ω)]−1.

(12)

In general, it is convenient to relax the assumption of orthog-
onality of the one-particle basis, for example, to work with an
atomic orbital basis. For this, the unit matrix 1 in the above
formulas should be replaced by a general overlap matrix S,
e.g., Eq. (12) becomes

G(R0, ω) = 1

V

∑
k

[(ω + μ + i0±)S(k) − h(k) −�(k, ω)]−1.

(13)

In addition expectation values must be suitably modified. For
example, the local spectral function A(R0, ω) is given by

A(R0, ω) = 1

V
�

∑
k

G(k, ω + i0+)S(k). (14)

As our calculations in this work use a nonorthogonal basis,
we will henceforth use expressions with explicit overlap de-
pendence.

B. DMFT equations

In DMFT, the central quantity is the local Green’s func-
tion G(R0, ω) (the Green’s function of the unit cell) which
is determined in a self-consistent way, including the embed-
ding effects of the crystal within a local self-energy (cor-
relation) assumption. Here, we describe how the DMFT
framework and the local self-energy assumption and self-
consistency are established. Of course, we recommend that
the reader also consult one of the many excellent review ar-
ticles for further discussion and illumination of the DMFT
formalism.9, 11–13, 15

From Eq. (13), we observe that G(R0, ω) can be calcu-
lated if we have the exact Coulomb self-energy �(k, ω). How-
ever, determining �(k, ω) requires solving the many-body
problem for the whole crystal. Thus, the idea in DMFT is to
approximate �(k, ω) by one of its main components, the local
self-energy �(ω), in essence, a local correlation approxima-
tion. Formally, this is the contribution to the self-energy of
skeleton diagrams in the Green’s function perturbation theory
where the Coulomb interaction has all local indices, i.e., all
indices local to a single unit cell. The DMFT approximation
neglects the k-dependence of the self-energy. In real-space,
this corresponds to neglecting off-diagonal terms of the self-
energy between unit cells. The local approximation is plau-
sible due to the local nature of correlation, and in fact as the
physical dimension or local coordination number D → ∞,
the approximation becomes exact.11 With the DMFT local ap-
proximation, the local Green’s function defined in Eq. (6) is
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simply

G(R0, ω) = 1

V

∑
k

[(ω + μ + i0±)S(k) − h(k) − �(ω)]−1.

(15)

Now, �(ω) is formally defined by contributions of only
the local Coulomb interaction to the local Green’s function.
However, this is still a many-body problem. In DMFT, we
usually reformulate the determination of �(ω) in terms of the
many-body solution of an embedded, or impurity, problem,
where we view the unit cell as an impurity embedded in a
bath of the surrounding crystal. (The impurity nomenclature
originates from impurity problems in condensed matter such
as the Kondo and Anderson models, which informed some of
the early work in DMFT). Within this impurity mapping, the
many-body determination of the Green’s function of the em-
bedded unit cell or impurity Green’s function Gimp(ω) defines
the local self-energy �(ω).

We discuss the impurity problem and impurity solvers to
obtain the self-energy, in more detail in Sec. II C. We focus for
now on how the self-consistent embedding is established in
DMFT. For the theory to be consistent, the impurity Green’s
function (i.e., the Green’s function of the embedded unit cell
in the impurity model) should be equivalent to the actual local
Green’s function of the crystal, at least within the local self-
energy approximation. This means at self-consistency

Gimp(ω) = G(R0, ω). (16)

The embedding to achieve the equality (16) can be enforced
through an embedding self-energy, the hybridization �(ω).
The Dyson equation relating the impurity Green’s function
and the self-energy and hybridization is then

Gimp(ω)−1 = (ω + μ + i0±)S − himp − �(ω) − �(ω), (17)

where himp is a one-electron Hamiltonian in the unit cell.
Once we have solved the many-body impurity problem to ob-
tain Gimp, Eq. (17) defines the local self-energy through

�(ω) = (ω + μ + i0±)S − himp − �(ω) − Gimp(ω)−1. (18)

The hybridization �(ω) can also be defined through a simi-
lar equation from the local Green’s function, obtained from
Eq. (15),

�(ω) = (ω + μ + i0±)S − himp − �(ω) − G(R0, ω)−1.

(19)

Schematically therefore, for a given hybridization �(ω),
solution of the impurity problem yields Gimp(ω) and the local
self-energy �(ω),

�(ω)
impurity solver→ Gimp(ω) → �(ω), (20)

while given the local self-energy, Eq. (15) yields the local
Green’s function and the hybridization

�(ω) → G(k, ω) → G(R0, ω) → �(ω). (21)

Equations (21) and (20) thus form a self-consistent pair of
equations for the self-energy and hybridization that should be
iterated to convergence. These are the DMFT self-consistent
equations. At the solution point, the impurity Green’s function
and local Green’s function, are identical as in Eq. (16).

We note here that the Green’s functions G(R0, ω),
Gimp(ω), and the self-energy and hybridization �(ω),�(ω)
are smooth functions away from the real axis. For this rea-
son, the impurity problem and the numerical implemen-
tation of self-consistency are always considered on the
imaginary axis rather than the real axis. Once the self-
consistency Eq. (16) has been reached on the imaginary axis,
analyticity guarantees equivalence of the Green’s functions in
the whole complex plane. One can then use the converged
�(ω) (continued to the real axis) to recalculate properties
along the real axis, such as spectral functions, as needed.
(Many quantities, such as density matrices, require only in-
formation along the imaginary axis, however).

We recap the main physical effects contained within the
DMFT treatment—local Coulomb interaction effects are in-
cluded in each unit cell and replicated throughout the crystal
in a self-consistent way, which takes into account the embed-
ding of each unit cell in an environment of the others. Long-
range Coulomb terms are not included in the theory, although
they can be systematically added. In Sec. II D, we describe
how the long-range terms can be treated at the mean-field
level.

Note that we have assumed in the above that we are work-
ing at a fixed μ. Normally, however, we are interested not
in fixed μ, but in some fixed particle number of the crys-
tal per unit cell, N0(R0). As �(ω) changes, N (R0), the cur-
rent particle number in the crystal unit cell, given by [using
Eqs. (2) and (15)]

N (R0) = − i

V

∫ ∞

−∞
eiω0+Tr

×
[∑

k

S(k)[(ω+μ+ i0±)S(k)−h(k)−�(ω)]−1

]
dω

(22)

will change. Thus together with the self-consistency, the
chemical potential μ must be adjusted such that N (R0)
= N0(R0). The full DMFT algorithm to do so is summarized
in Sec. III.

We now turn to consider the many-body impurity prob-
lem and methods for its solution.

C. The impurity problem and solver in the discrete
bath formulation

The purpose of the impurity formulation is to obtain
an impurity Green’s function Gimp(ω) and a correspond-
ing self-energy �(ω) that describes the effects of the lo-
cal Coulomb interaction in the presence of the hybridization
�(ω). In general, due to its many-body nature, the impurity
problem cannot be solved exactly. The approximate method
used to solve the impurity problem is known as the impurity
solver.

There are two formulations in which an impurity solver
can work.11 In the first one the impurity Green’s function is
expressed as a functional integral, and its determination is
a problem of high-dimensional integration. This is typically
performed using Monte Carlo methods such as Hirsch–Fye23
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or continuous time quantum Monte Carlo methods.24–27 In
this formulation, the bath is infinite and one does not deal
with it explicitly since it can be integrated out thus avoid-
ing any bath discretization error. These methods are pow-
erful but suffer in general from a sign problem, as well as
difficulties in obtaining quantities on the real frequency axis
(such as the spectral function) which requires analytic contin-
uation. We will not discuss the Monte Carlo formulations of
the solver further here, but we refer the reader to an excellent
review.28

The second formulation describes an impurity model
with an explicit finite, discrete bath. Here the idea is to view
the hybridization �(ω) as arising from a one-electron cou-
pling between the impurity orbitals (orbitals of the unit cell)
and a fictitious finite noninteracting bath. The relevance of the
formulation with discrete bath here is that the determination
of the impurity Green’s function reduces to the determination
of the Green’s function of a finite problem, and this can be
tackled using standard quantum chemistry wavefunction tech-
niques, which avoid the sign problem encountered in Monte
Carlo based solvers. We can view then such an discrete bath
formulation as providing a way to extend quantum chemical
methods for finite systems to treat the infinite crystal, within
the DMFT approximation of a local self-energy.

Denoting the local orbitals by i, j, . . ., and bath orbitals
by p, q . . ., we can write an impurity Hamiltonian for the im-
purity orbitals and the fictitious noninteracting bath as

Himp+bath =
∑

i j

ti j a
†
i a j + 1

2

∑
i jkl

wi jkla
†
i a†

j alak

+
∑

i p

Vip(a†
i ap + a†

pai ) +
∑

p

εpa†
pap. (23)

The noninteracting bath yields a hybridization �(ω) for the
impurity orbitals of the form

�i j (ω) =
∑

p

V ∗
i pVjp

ω − εp
. (24)

In general, we assume that physical �(ω) can be approxi-
mately represented in terms of the noninteracting bath by fit-
ting the couplings V and the energies ε, and this is generally
found to be true. This resembles the assumption of noninter-
acting v-representability of the density in density functional
theory. Fortunately, the convergence of (24) with respect to
the number of bath orbitals is quite rapid; one does not need
a bath the size of the entire crystal to obtain a good repre-
sentation of the hybridization. (Recall that the fit to the bath
is always carried out on the imaginary frequency axis, where
�(ω) is very smooth).

The form of the bath hybridization in Eq. (24) requires
that limω→∞ �(ω) → 0. While this is true of physical hy-
bridizations in an orthogonal basis, the case of a nonorthogo-
nal basis requires a little more care, as discussed for example,
in Ref. 15. Rearranging Eq. (17) and inserting the definition
of the local Green’s function, we see that the hybridization is
given by

�(ω) = (ω + μ + i0±)Simp − himp − �(ω) − G(R0, ω)−1.

(25)

The definition of the impurity overlap matrix Simp and im-
purity one-electron Hamiltonian himp can be viewed as ad-
justable as the equality of the impurity Greens function and
local crystal Green’s function, can be maintained through ap-
propriate definitions of the hybridization and self-energy in
Eq. (17). Consequently, we choose Simp and himp to ensure
that the hybridization can be represented by the form Eq. (24).
Expanding the denominator in powers of 1/ω, we find that to
ensure �(ω) vanishes like 1/ω, we should define the impurity
overlap and one-electron Hamiltonian as15

Simp =
[

1

V

∑
k

S−1(k)

]−1

, (26)

himp = Simp

[∑
k

S−1(k)[h(k) + �∞]S−1(k)

]
Simp − �∞,

(27)

where �∞ = �(∞).
Now that we have defined a finite Hamiltonian for the

impurity and a finite bath, the determination of the impurity
Green’s function Gimp(ω) is the determination of the Green’s
function of a finite problem. Gimp(ω) is defined through
Eq. (1) with the impurity Hamiltonian,

Gi j (ω)=〈�0|ai
1

ω+μ−(Himp+bath −Eimp+bath)+i0
a†

j |�0〉

+〈�0|a†
j

1

ω+μ+(Himp+bath −Eimp+bath)−i0
ai|�0〉,

(28)

where i, j denote the impurity orbitals, i.e., the local orbitals
of the unit cell, and Eimp+bath, �0 are the ground-state eigen-
value and eigenfunction of Himp+bath . Both �0 and the cor-
responding Gimp(ω) can be determined through wavefunction
techniques familiar in quantum chemistry.

One subtlety is that the finite problem �0 is determined
for some fixed particle number Nimp+bath (and spin, say). In
principle, at zero temperature, we should use the N min

imp+bath
(and spin) which minimizes Eimp+bath for the given chemical
potential μ. This means that we have to carry out a search
over these quantum numbers. Of course μ and �(ω) are also
changing in the DMFT iterations, and thus in the discrete bath
formulation, the impurity model is a function of Nimp+bath

(and other quantum numbers), μ, and �(ω). The structure of
the full self-consistency involving these variables is summa-
rized in the DMFT algorithm in Sec. III.

A popular approach in existing DMFT applications
is to use full configuration interaction (FCI) called exact
diagonalization (ED) in solid state physics community to
solve for �0 and Gimp(ω).11, 29 From a DMFT perspective,
the advantage of this approach compared to Monte Carlo
techniques is that it provides direct access to the calculation
of the Green’s function on the real axis, and consequently
the spectral function, without the need to perform analytic
continuation as is used in Monte Carlo solvers. In addition,
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there is no sign problem. However, FCI is naturally limited
to very small numbers of impurity and bath orbitals, and the
cost of evaluating the Green’s function (typically at several
hundred frequencies) means that such calculations are orders
of magnitude more expensive than typical ground-state FCI
calculations for molecules. One way to avoid this limitation
is to employ the various systematic quantum chemistry
wavefunction hierarchies as impurity solvers. We will inves-
tigate one such simple approximate solver, the configuration
interaction hierarchy, in Sec. IV B.

D. Eliminating double counting in DMFT through
Hartree–Fock theory

In current applications of DMFT to real materi-
als, it is common to combine DMFT with a density
functional derived Hamiltonian, the so-called DFT-DMFT
approximation.12, 13, 15 Within this formalism, one does not
work with a strict ab initio Hamiltonian, but rather with a
model Hamiltonian,

Himp = HDFT + 1

2

∑
i jkl∈act

wi jkla
†
i a†

j alak − Hd.c., (29)

where HDFT is the sum of one-electron Kohn–Sham oper-
ators and Hd.c. is a double-counting correction (see below).
The two electron interaction wi jkl is chosen to sum over a
set of active orbitals in the computational unit cell. In tran-
sition metal applications, these are usually a minimal basis
of d or f valence orbitals, the idea being that the Coulomb
interaction in these orbitals should be treated with the ex-
plicitly many-body DMFT framework, rather than within a
DFT functional. While wi jkl may be obtained from ab initio
Coulomb integrals30, 31 or derived via, e.g., constrained DFT
calculations,32, 33 they are best regarded in this approach as
semi-empirical parameters. The advantage of using DMFT in
only an active space is that delocalized, itinerant electrons
are well treated by existing exchange-correlation function-
als and not well-treated within the DMFT framework which
neglects nonlocal correlations, while the many-body DMFT
framework allows a systematic approach to high order strong
correlations in the d and f shells. The adjustment of wi jkl

further allows one to account for effective screening of the
active space Coulomb matrix elements by long-range cor-
relations. The DFT-DMFT approach has been successful in
reproducing many properties of strongly correlated materi-
als and an excellent description of the possible applications
and the way of dealing with the double counting correction
can be found in Refs. 12, 13, and 34. However, there are
obvious drawbacks. In particular, the Hamiltonian may be
considered to be uncontrolled on two levels. First, since
exchange-correlation effects in DFT are not separated be-
tween different orbitals, there is a double counting of the
Coulomb interaction in HDFT and w . This is the origin of
the double-counting correction Hd.c., which must be adjusted
empirically. The double counting problem is similar to that
encountered in molecular quantum chemistry when DFT is
combined with active space wave function methods.35 Sec-

ond, the use of a parametrized form for wi jkl must also be
regarded as unsystematic.

In the current work, we take a more quantum chemi-
cal approach to DMFT where we try to retain a strict dia-
grammatic control over the approximations made. This can
be achieved by starting with a Hartree–Fock description of
the crystal. Within each unit cell we identify an active space,
typically a set of localized atomic orbitals. (In fact, in the ap-
plication to cubic hydrogen in this work, all the orbitals in the
unit cell will be active). Then, we use DMFT to treat the ac-
tive space Coulomb interaction while the remaining Coulomb
interactions (e.g., long-range Coulomb interactions between
unit cells, as well the interactions between the active and inac-
tive orbitals) are treated through the Hartree–Fock mean-field.
The Hamiltonian in the active space treated within DMFT
therefore takes the form

Himp =
∑

i j∈act

( fi j − f̃i j )a
†
i a j + 1

2

∑
i jkl∈act

wi jkla
†
i a†

j akal , (30)

where the f̃i j terms represents the exact subtraction of the
active-space Hartree–Fock density matrix PH F , contribution
to the mean-field Coulomb treatment,

f̃i j =
∑

kl∈act

P H F
kl (wikl j − wilk j ). (31)

This subtraction exactly eliminates any double counting be-
tween the mean-field and DMFT treatments. Note that while
the inactive Coulomb interactions (such as the long-range
Coulomb interactions) are only treated at the Hartree–Fock
level (which is a severe approximation in many solids) the
mean-field treatment may be viewed as the lowest level
of a hierarchy of perturbation treatments of these interac-
tions and is thus systematically improvable. Reference 21
also explores a Hartree–Fock starting point to avoid dou-
ble counting, but in the context of DMFT applied to finite
systems.

III. DMFT ALGORITHM

We now summarize the DMFT algorithm in our current
implementation, following the basic ideas outlined in the ear-
lier sections. We have implemented our algorithm in a cus-
tom code that interfaces to the CRYSTAL Gaussian based
periodic code36 as well as the DALTON molecular code.37

We recall that within the formulation with discrete bath,
the impurity model is defined as a function of three vari-
ables: Nimp+bath (particle number of the impurity model),
μ (chemical potential), and the hybridization �(ω) which
defines a bath parametrization. All three have to be deter-
mined self-consistently together. At the solution point of the
DMFT algorithm, Nimp+bath minimizes the ground-state en-
ergy of the impurity model Eimp+bath (Sec. II C), μ yields
the correct particle number per unit cell of the crystal N (R0)
[Eq. (22)], and �(ω) satisfies the DMFT self-consistency
conditions (20), (21). The high-level loop structure of the
algorithm is summarized in ALGORITHM I. The individual
steps are
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ALGORITHM I. General DMFT loop structure. Note that the DMFT self-
consistency is carried out on the imaginary frequency axis.

1: for all Nimp+bath do
2: while N (R0) 
= N0(R0) do
3: Choose new μ (e.g., by bisection)
4: Perform DMFT self-consistency for �(ω), �(ω).
5: Calculate Eimp+bath

6: Calculate N (R0)
7: end while
8: end for
9: Choose N min

imp+bath that minimizes Eimp+bath

10: For N min
imp+bath and the corresponding μ, �(ω) and impurity model,

calculate G(R0, ω) including quantities on the real axis, e.g.,
spectral functions

ALGORITHM II. DMFT self-consistency for �(ω),�(ω). Note that all
calculations are done on the imaginary frequency axis.

1: Obtain Hartree–Fock Fock matrix f(k), overlap matrix S(k),
density matrix P(R0), and initial guess for �(ω).

2: while ||�(ω) − �old (ω)|| > τ do
3: Construct Hamiltonian for impurity orbitals with overlap correction

(using �(∞))
4: Construct bath representation from �(ω)
5: Calculate impurity Greens function and new self-energy �(ω)
6: Update self-energy �(ω), �old (ω)
7: Update �(ω)
8: end while

1. Loop over possible particle numbers Nimp+bath

of the impurity model [to determine Nimp+bath

which minimizes the impurity model energy
Eimp+bath(Nimp+bath)]. (In principle we should
search over spin, but we do not do this is in general
in our applications here).

2. For each Nimp+bath , search over chemical potential
μ (e.g., by bisection) to satisfy the crystal unit cell
particle number constraint N (R0) = N0(R0).

3–6. For given μ, Nimp+bath , carry out the DMFT self-
consistent loop to determine �(ω),�(ω) and the
impurity ground state energy Eimp+bath . Note that
all calculations are here done on the imaginary fre-
quency axis.

9–10. Determine Nimp+bath which led to the lowest
Eimp+bath . Using the corresponding μ and hy-
bridization parametrization, which satisfy the crys-
tal particle number constraint and the DMFT
self-energy self-consistency equations, recalculate
the local Greens function G(R0, ω) and other desired
observables, e.g., the local spectral function A(ω)
along the real axis.

The DMFT self-consistent loop for �(ω), �(ω) con-
stitutes the core part of the algorithm. It is summarized in
ALGORITHM II. The individual steps are

1. Initialization. Perform a HF calculation on the crys-
tal in a local basis. Extract the converged Fock ma-
trix f(k) and overlap matrix S(k) in k-space, and the
Hartree–Fock unit-cell density matrix P(R0). The k-

space Fock and overlap matrices are then used to con-
struct their real-space analogs in the unit-cell.

2. Begin DMFT self-consistent loop until convergence in
the self-energy (to within a threshold τ ) is reached.

3. Impurity Hamiltonian construction. Construct the im-
purity orbital part of the Hamiltonian. The two-body
integrals wi jkl are computed in the same local ba-
sis as used in the crystal calculation. The one-body
Hamiltonian for the impurity orbitals himp is defined
as in Eq. (31) using the exact subtraction of the mean-
field Coulomb treatment, i.e., himp = f(R0) − f̃(R0),
while the overlap of the impurity orbitals is taken
as the overlap in the unit-cell, Simp = S(R0). Finally,
himp and Simp are corrected as in Eqs. (26) and (27).

4. Bath construction. From the hybridization �(ω), ob-
tain the bath Hamiltonian parametrization by fitting.
In the first iteration, the hybridization is fitted to the
Hartree–Fock hybridization, defined as

�H F (ω) = (ω + μ + i0±)Simp − himp +

−
[

1

V

∑
k

(ω + μ + i0±)S(k) − f(k)

]−1

.

(32)

This provides a good guess for the DMFT algorithm.
Further details of the bath fitting algorithm are given
in Sec. IV D and in the Appendix.

5. Calculate the ground-state wavefunction of the impu-
rity problem (for given Nimp+bath). Then calculate the
impurity Green’s function on the imaginary axis using
a truncated configuration interaction solver, described
in Sec. IV B.

6–7. Update the self-energy �(ω) and hybridization �(ω)
defined through Eqs. (9) and (19). For better conver-
gence, the self-energy is updated in a damped fashion,
�(ω) ← (1 − α)�(ω) + α�old (ω), where 0 < α < 1.

IV. BENCHMARK DMFT STUDIES

We now proceed to our benchmark DMFT studies. In par-
ticular, we investigate the following:

1. The preliminary combination of quantum chemical and
DMFT ideas, using the configuration interaction (CI) hi-
erarchy as a solver for the DMFT impurity problem (or
conversely, using DMFT to extend truncated CI variants
to treat the infinite crystal), starting from an ab initio
Hartree–Fock DMFT Hamiltonian.

2. The numerical behavior of the DMFT algorithm, includ-
ing convergence of the self-consistency cycle, fitting the
hybridization by a finite bath, and convergence of cor-
related properties (such as spectral functions) as a func-
tion of bath size. We should stress that similar studies
were caried out before using FCI called ED in solid state
physics community. Here, however, we will focus on us-
ing the truncated version of configuration interaction as
a solver that was developed by us and examine with it
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FIG. 1. Spectral functions (density of states) from FCI, CISD, and RHF calculations for cubic hydrogen, at various lattice constants.
(A) a0 = 1.40 Å, 9 bath orbitals, 300 frequency points. (B) a0 = 2.25 Å, 9 bath orbitals, 300 frequency points.
(C) a0 = 2.50 Å, 9 bath orbitals, 300 frequency points. (D) a0 = 6.00 Å, 9 bath orbitals, 300 frequency points.

the questions of interest concerning the numerics of the
DMFT algorithm.

Our studies are carried out on an idealized test system,
namely (three-dimensional) cubic hydrogen. Hydrogen clus-
ters in 1, 2, and 3-dimensions have been popular models in
the study of correlation effects in quantum chemistry, as the
correlation can be tuned from the weak to the strong regime as
the lattice spacing is increased.38, 39 Here, we study only cu-
bic hydrogen (i.e., three dimensions). We use a minimal basis
(STO-3G) and a unit cell with a single hydrogen atom, and the
initial Hartree–Fock crystal calculations are carried out using
the Gaussian based periodic code CRYSTAL .36 The use of a
Gaussian basis means that we employ the general nonorthog-
onal formulation for the Green’s function quantities in
Sec. II A, as well as the overlap corrections to the impurity
model Hamiltonian and overlap in Sec. II C. Note that the
impurity problem in this case has only a single 1s impurity
orbital, and the local Green’s function also only has a single
orbital index.

We begin with a brief overview of the properties of the
DMFT solution of the cubic hydrogen model before proceed-
ing to discuss the areas above.

A. The cubic hydrogen solid model

We have carried out DMFT calculations on the cubic hy-
drogen model for a variety of lattice constants. We find that
cubic hydrogen exhibits three electronic regimes as a func-
tion of lattice spacing which are well-known from analogous
DMFT studies of Hubbard models.10, 11, 14, 40, 41 We first sum-
marize the main features of the spectral functions and the im-
purity wavefunctions. [The spectral functions plotted here are
defined as the trace of the local spectral function in Eq. (14)].
The regimes are

� Metallic regime. This occurs with lattice constants
near equilibrium, and is illustrated by calculations
at lattice constant 1.4 Å. The spectral function dis-
plays a single broad peak, indicative of metallic be-
havior and the delocalized character of the electrons
(Fig. 1). The metallic nature is also reflected in the
ground-state wavefunction of the impurity model,
which is primarily a single determinant, as seen from
the natural orbital occupancies (Table II) and from the
impurity wavefunction determinant analysis (Table I).
Compared to the restricted HF spectral function, the
correlated DMFT spectral function in Fig. 1 displays
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TABLE I. Total weight of CI coefficients c2
i of different classes of deter-

minants [Hartree–Fock (HF), singly-excited (S), doubly-excited (D)] in the
ground-state wavefunction of the impurity model as a function of lattice con-
stant a0.

excitation level a0 = 1.4 a0 = 2.25 a0 = 2.5 a0 = 6.0
HF 0.880 0.755 0.676 0.034
S 0.040 0.014 0.087 0.941
D 0.000 0.000 0.098 0.000

number of dets with c2
i > 0.01 5 8 6 5∑

c2
i >0.01 c2

i 0.920 0.769 0.861 0.975

additional features at large frequencies and is broader,
but the spectra are similar as expected in the weakly
correlated regime.

� Intermediate regime. At intermediate lattice constants
(e.g., 2.25 and 2.5 Å) the spectral function develops a
three peak structure with features of both the metal-
lic and insulating regime (Fig. 1). In early DMFT,
work on the Hubbard model the central peak was a
correlated feature of the spectrum not predicted in
mean-field theories.10, 14, 40 The two outer peaks are
shifted from the ionization potential and electron affin-
ity of the atom. Analysing the impurity wavefunc-
tion, we find that at both 2.25 and 2.5 Å lattice con-
stants, the wavefunction has multideterminantal char-
acter with significant mixing of open-shell singlets and
doubly excited determinants into the ground-state (see
Tables I and II).

� Mott insulator regime. This occurs at large lattice
constants when the hydrogen atoms assume distinct
atomic character. This is illustrated by calculations at
lattice constant 6.0 Å. (In this limit, the DMFT ap-
proximation of a local self-energy becomes exact). The
spectral function (Fig. 1) displays an insulating gap
and peaks centered at the electron affinity and ion-
ization potential of the hydrogen atom. The impurity
wavefunction is a mixture of open-shell singlets (see
Table I). We find that the singly occupied impurity
natural orbitals (Table II) are respectively localized on
the impurity and the bath, thus we characterize the im-
purity ground-state as an impurity-bath singlet. (Note
that the RHF spectral function stays metallic. An unre-
stricted mean-field calculation would yield two peaks

TABLE II. Impurity model natural orbital occupancies for cubic hydrogen
(nine bath orbitals) as a function of lattice constant a0.

level 1–3 4 5 6 7 8–10
a0 = 1.4 FCI 2.000 1.999 1.905 0.095 0.001 0.000

CISD 2.000 1.999 1.905 0.095 0.001 0.000
a0 = 2.25 FCI 2.000 1.998 1.718 0.282 0.002 0.000

CISD 2.000 1.999 1.720 0.280 0.001 0.000
a0 = 2.5 FCI 2.000 1.999 1.528 0.472 0.001 0.000

CISD 2.000 1.999 1.531 0.469 0.001 0.000
a0 = 6.0 FCI 2.000 2.000 1.000 1.000 0.000 0.000

CISD 2.000 2.000 1.000 1.000 0.000 0.000

similar to the DMFT spectral function, but at the ex-
pense of breaking spin symmetry).

B. A configuration interaction impurity solver

As described in Sec. II C, once the impurity model
Hamiltonian has been defined, we can determine the impurity
Green’s function within a wavefunction formalism. Here we
investigate the use of the CI hierarchy to construct impurity
solvers. We can also see this as using the DMFT framework
to extend configuration interaction to the infinite system. To
the best of our knowledge, truncated configuration interaction
has not previously been explored in the DMFT literature, al-
though full configuration interaction (exact diagonalization)
has been widely used.11, 42 By considering CI at an arbitrary
excitation level, we obtain a hierarchy of impurity solvers that
can, with increasing effort, be systematically converged to
the exact full CI limit, within the given bath parametrization.
We have based our implementation on the arbitrary excitation
level CI program in DALTON.37 Our code allows the additional
possibility of defining restricted active spaces.43 However, for
the simple cubic hydrogen model, we find that the restricted
active space methodology is not necessary. Detailed studies of
the active space flexibility of the solver will thus be presented
elsewhere.

To carry out CI, we define a starting determinant in a
“molecular orbital” basis. Note that this is quite different from
how exact diagonalization is used in DMFT, where the one-
particle basis is chosen to simply be the site basis (atomic or-
bital basis) of the impurity and the bath. Of course, the result
of exact diagonalization is independent of the choice of one-
particle basis, and in model problems (such as the Hubbard
model), the Hamiltonian has a particularly simple local form
in the site basis of the impurity and bath. However, for trun-
cated configuration interaction the choice of starting orbital
basis is of course much more important. Here, we take the
molecular orbitals to be the eigenfunctions of the Fock opera-
tor of the impurity and bath Hamiltonian Himp+bath , Eq. (23)
[this is obtained by replacing the impurity part of the Hamil-
tonian by the impurity Fock operator f appearing in Eq. (30)].
From the lowest energy orbitals we then populate a ground-
state determinant and define the set of singles, doubles, and
higher excited determinant spaces as in a conventional CI ap-
proximation. We calculate the ground-state impurity wave-
function within the given CI space, generating a CI vector
ψ and a ground-state energy Eimp+bath . We then evaluate the
Green’s function (28) by solving the two intermediate linear
equations for X̄i , and X j

[(ω + μ + Eimp+bath)1 − Himp+bath)]X̄i (ω) = B̄i ,

B̄i = C̄iψ, (33)

[(ω + μ − Eimp+bath)1 + Himp+bath)]X j (ω) = B j ,

B j = C jψ (34)

where Ci , C̄i , Himp+bath are representations of the impurity
orbital creation, annihilation operators and impurity and bath
Hamiltonian operator in the truncated CI space. (Note, for the
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N + 1 and N − 1 particle spaces accessed by the creation and
annihilation operators, we consider the space of all determi-
nants that are connected to the N particle truncated CI space
for the ground-state calculation). ω can be either purely imag-
inary (as used in the DMFT self-consistency cycle) or it can be
real, with a small imaginary broadening iη, when calculating
the spectral function. The Green’s function matrix element is
then obtained via

Gi j = Bi X̄ j + B̄ j Xi (35)

The solution of the linear equations (35) can be achieved via
a variety of iterative algorithms. Our implementation follows
the algorithm for CI response properties described in Ref. 44
adapted to truncated CI spaces.

Our calculations have demonstrated that in the molecular
orbital basis the modest variant of truncated configuration
interaction, namely CISD, where the Hilbert space is trun-
cated to contain only singly and doubly excited determinants,
was completely sufficient to illustrate all the regimes of the
hydrogen solid. In Fig. 1 and Table II, we show the CISD
and FCI local spectral function and impurity natural orbital

occupations in the three electronic regimes of cubic hydrogen.
In the metallic regime, the CISD spectral function is com-
pletely indistinguishable from the FCI spectral function, and
the same is true for the impurity orbital natural occupation
numbers. In the intermediate regime, for the lattice spacings
2.25 and 2.5 Å we expect correlation effects to be stronger.
However, the impurity natural orbital occupations show that
there are only two natural orbitals with significant partial
occupancy, and thus CISD is a very good approximation to
FCI. This is reflected in both the spectral functions in Fig. 1
where CISD and FCI agree very well, as well as in the natural
orbital occupation numbers, although CISD is not as close
an approximation in this case to FCI as it is in the metallic
regime. Finally, in the Mott insulator regime, the analysis
of the occupation numbers shows again that there are only
two orbitals with significant partial occupancies and the FCI
and CISD spectral functions and impurity natural occupation
numbers are again indistinguishable.

The near-exactness of the CISD level of impurity solver
is a feature of the simplicity of the cubic hydrogen model
system but also reflects the compactness of the CI expansion
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FIG. 2. Spectral function (density of states) obtained with CISD as a solver during the iterations of the self-consistency cycle for cubic hydrogen, at various
lattice constants.
(A) a0 = 1.40 Å, 9 bath orbitals, 300 frequency points. (B) a0 = 2.25 Å, 9 bath orbitals, 300 frequency points.
(C) a0 = 2.50 Å, 9 bath orbitals, 300 frequency points. (D) a0 = 6.00 Å, 9 bath orbitals, 300 frequency points.
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when one is using an appropriate one-particle starting basis, in
this case the molecular orbital basis rather than the site basis.
We expect that more complex solids will pose greater chal-
lenges and require higher levels of excitation in the config-
uration interaction solver, and these issues will be examined
elsewhere. Nonetheless, the good performance of the single
and doubles level truncation suggests that it will be promis-
ing to explore systematic wavefunction hierarchies in more
complex problems, which may be infeasible in the exact di-
agonalization approach.

C. DMFT numerics: self-consistency

As discussed in our overview of DMFT and our specifi-
cation of our implementation in Sec. III, the impurity model
particle number Nimp+bath , chemical potential μ, and hy-
bridization �(ω) and self-energy �(ω) must all be determined
self-consistently. The determination of the optimal impurity
model particle number and chemical potential are discrete
and continuous searches over single variables which are
essentially robust. In contrast, the self-consistency condition
for �(ω) and �(ω) are multidimensional equations. Here
we examine the convergence of the self-consistency cycle
for the self-energy �(ω) in the loop given by steps 3–6 in
algorithm 2.

In Fig. 2, we examine the spectral functions obtained at
the CISD level in the three electronic regimes of cubic hy-
drogen as a function of the number of iterations of the self-
consistency cycle. Generally, we find that convergence is very
rapid. In the case of the metallic regime, the spectral function
appears to converge after five iterations. In the intermediate
regime, for lattice constant a0 = 2.25 Å the spectral function
also converges after 2 iterations. At the slightly larger lat-
tice constant a0 = 2.5 Å, convergence is a little slower and
the spectral function requires four iterations to converge. Fi-
nally, as we enter the Mott insulating regime, convergence is
once again rapid and the spectral function converges after two
iterations.

The same convergence behavior is observed in the
electronic structure of the impurity problem. In Table III, we
show the natural orbital occupation numbers of the impurity
problem corresponding to a0 = 2.5 Å. These numbers
were obtained using the CISD solver. (Additional tables
corresponding to the other lattice constants are given in the
supplementary material45). We see that convergence in the
2nd decimal place is reached after five iterations.

Overall, we find that at least for the spectral functions
of the cubic hydrogen model, only a few iterations of self-
consistency are already sufficient. For quantitative properties,
such as an evaluation of the total energy with chemical accu-
racy, we expect, however, to need a tighter convergence.

D. DMFT numerics: convergence with bath size

As discussed in Sec. II C, when dealing with an explicit
bath the hybridization �(ω) is parametrized by a finite bath,
and all quantities must then be converged with respect to the
number of bath orbitals. There are two aspects of bath con-

TABLE III. Natural orbital occupancies obtained with CISD solver during
the iterations of self-consistent cycle for cubic hydrogen, a0 = 2.5 Å, 9 bath
orbitals, for exact parameters used to converge self-consistency see supple-
mentary material.

iter/orb no. 1–3 4 5 6 7 8–10
1 2.000 1.999 1.720 0.280 0.001 0.000
2 2.000 1.998 1.583 0.417 0.002 0.000
3 2.000 1.999 1.556 0.444 0.001 0.000
4 2.000 1.999 1.543 0.457 0.001 0.000
5 2.000 1.999 1.537 0.463 0.001 0.000
6 2.000 1.999 1.533 0.467 0.001 0.000
7 2.000 1.999 1.531 0.469 0.001 0.000

vergence to explore. How difficult is the numerical problem
of fitting the hybridization to the bath couplings εp and Vpi ?
How rapidly do the relevant correlated quantities (such as the
DMFT spectral functions) converge with bath size? In the lat-
ter case, the ability of the truncated configuration interaction
solver (here CISD) introduced in Sec. IV B to access larger
bath sizes than available to exact diagonalization, provides a
new capability to examine bath convergence.

We first discuss the numerical fitting and quality of repre-
sentation of the hybridization �(ω) as a function of the num-
ber of bath orbitals with couplings εp and Vpi . We determine
the bath parameters εp and Vpi by fitting �(ω) to the form
(24). In principle, one could carry out the fit using any set
of frequencies, but following standard practice, we fit along
the imaginary frequency axis, where the hybridization is a
smooth function, and use an equally spaced set of frequen-
cies ωn (Matsubara frequencies)

ωn = (2n + 1)π

β
, n = 0, 1, 2 . . . (36)

where β, the inverse temperature, determines the spacing. The
choice of β is somewhat arbitrary, but to reproduce spectral
functions over a given range of frequencies, we find that it
is reasonable to take β to correspond to a similar range of
frequencies on the imaginary axis.

Fitting to Eq. (24) is a highly nonlinear fit. We find that
the final fit quality depends strongly on the initial choice of the
parameters. We have established an initialization procedure to
obtain a reasonable set of starting εp and Vpi , described in the
appendix. From this initial set, we use a Levenberg–Marquadt
algorithm to minimize the metric

∑
ni j |�i j (ωn) − �

f i t
i j (ωn)|

to refine the bath parameters. As described in Sec. II C, the
nonorthogonal orbital corrections for the impurity overlap and
Hamiltonian (26), (27) are essential for obtaining a reasonable
fit when the underlying crystal basis is nonorthogonal. How-
ever, we find also that if we artificially set the overlap matrix
S(k) to the unit matrix, and proceed to fit the hybridization
functions obtained in this way, considerably better fits are eas-
ily obtained. This suggests that it will be more efficient in the
future to work within a local orthogonal basis for the crystal,
rather than the Gaussian basis currently used.

We show the results of the fitting procedure for
the real and imaginary parts of the Hartree–Fock hy-
bridization (defined in Sec. III) in the metallic regime in
Fig. 3 and Fig. 4. Similar studies of illustrating difference
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FIG. 3. Fitting accuracy for the real part of the hybridization Re(�(iω)) for
various numbers of bath orbitals. The number of frequencies employed was
128 and β = 128.

between Green’s functions obtained for different number of
bath orbitals can be found in Appendix C of Ref. 11 or for
cluster DMFT in Ref. 46. It is evident that the fit becomes bet-
ter as we increase the number of bath orbitals, and indeed with
five bath orbitals the fits appear exact to the eye. However, the
quality of the fit along the imaginary axis does not necessarily
guarantee the same quality of reproduction of properties along
the real axis. In Fig. 5, we show the convergence of the accu-
racy of the impurity spectral function, − 1

π
�TrGimp(ω) to the

corresponding Hartree–Fock quantity − 1
π
�Trg(R0, ω). [Note

that this is not the physical local spectral function, which must
be defined in a nonorthogonal basis with an additional over-
lap factor, as in Eq. (14)]. For two bath orbitals, the fit on
the imaginary axis is poor and the spectral function on the
real axis is poorly represented as well. Once the number of
bath orbitals is increased to five orbitals, the error of the fit
on the imaginary axis becomes quite small and the spectral
function becomes appropriately improved. However, the rate
of the improvement of the spectral function with respect to the
number of bath orbitals is slower than the improvement of the
fit on the imaginary axis, as it is much less smooth. Note that
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FIG. 4. Fitting accuracy for the imaginary part of the hybridization
I m(�(iω)) for various numbers of bath orbitals. The number of frequencies
employed was 128 and β = 128.
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FIG. 5. Fitting accuracy with different number of bath orbitals for the
Hartree–Fock impurity spectral function of cubic hydrogen. The number of
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for each of the spectral functions in Fig. 5, we have chosen a
different broadening parameter η to reflect the changing bath
orbital spacing.

We now turn to the convergence of the correlated DMFT
quantities as a function of bath size. The need to examine this
convergence is an essential feature of working within the dis-
crete bath formulation. In Fig. 6, we present the cubic hydro-
gen local spectral functions obtained using the CISD method
as a solver at lattice constant 2.25 Å using 5, 9, and 19 bath
orbitals in the impurity model, the latter bath size being com-
fortably beyond what can be studied using exact diagonaliza-
tion. In addition, in Table IV we also present the impurity
natural occupation numbers calculated with CISD solver with
the different bath sizes as a more quantitative test of the bath
size convergence. Similar studies of the convergence of the
occupation numbers with respect of to the bath size while us-
ing exact diagonalization as a solver can be found in Ref. 46
and 47.

We see that the spectral functions are in fact quite similar
between the different bath sizes. Indeed already the very small
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FIG. 6. Spectral function (density of states) obtained with CISD solver for
different number of bath orbitals for cubic hydrogen, a0 = 2.25 Å.
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TABLE IV. Impurity natural orbital occupancies obtained with CISD solver
for cubic hydrogen at lattice constants 2.25 Å, using 5, 9, and 19 bath
orbitals.

5 bath 1 2 3 4 5 6
a0 = 2.25 2.000 1.999 1.710 0.290 0.001 0.000

9 bath 1–3 4 5 6 7 8–10
a0 = 2.25 2.000 1.999 1.720 0.280 0.001 0.000

19 bath 1–8 9 10 11 12 13–20
a0 = 2.25 2.000 1.999 1.739 0.261 0.001 0.000

5 bath orbital result is remarkably similar to the 19 bath orbital
result. This must be considered a feature of the simplicity of
the cubic hydrogen model which has only a single orbital in
the unit cell. Examining the impurity model natural occupa-
tion numbers we also see that all bath orbital sizes yield very
similar natural occupancies with only very small differences.
This is promising for future applications as it seems only a
relatively small number of bath orbitals is necessary to obtain
a converged result.

V. CONCLUSIONS

In this work, we have carried out an initial study of dy-
namical mean-field theory (DMFT) from a quantum chemical
perspective. DMFT provides a powerful framework to extend
quantum chemical correlation hierarchies to infinite problems
through a self-consistent embedding view of the crystal. The
basic approximation is one of a local self-energy, which is a
kind of local correlation approximation.

We have explored several ways in which quantum chem-
ical ideas can be combined with the DMFT framework.
First, we start with a Hartree–Fock based DMFT Hamiltonian
which avoids the double counting problems of the commonly
employed DFT-DMFT scheme. Second, we have investigated
the truncated configuration interaction (CISD) as an impurity
solver. The CI hierarchy avoids the sign problem inherent to
Monte Carlo solvers in DMFT, and allows a systematically
improvable approach to the exact solution. Conversely, the
DMFT framework enables even truncated CI to be extended
to the infinite crystal. In the simple but challenging cubic hy-
drogen model we find that CI at the singles and doubles level
already reproduces the structure of the density of states in the
various electronic regimes with near perfect accuracy. Finally,
we have carried out an investigation of some numerical as-
pects of the DMFT procedure, including convergence of the
self-consistent cycle and convergence of properties with re-
spect to the bath discretization. We find that modest bath sizes,
easily accessible to the CI solver, already produce converged
results.

These investigations should be viewed as first steps
and there are many avenues to develop these ideas. For
example, the Hartree–Fock starting point in DMFT treats
long-range Coulomb interactions at only the mean-field
level, neglecting long-range screening. Quantum chemical
perturbation techniques may be useful in treating these
additional interactions and may prove complementary
to current Green’s function treatments of screening.8, 31

Also, there is a wealth of quantum chemical wavefunction
approximations that could be combined with the DMFT
framework, the most obvious example being coupled cluster
theory, which should prove advantageous over configuration
interaction as the number of impurity orbitals increases.

Additionally, the main ideas in this work, in particular,
the use of quantum chemical Hamiltonians and solvers, are
not limited to the single orbital DMFT that we have used
to study cubic hydrogen. Their combination with multior-
bital and cluster versions of DMFT17, 48–50 should be inves-
tigated. Finally, the possibility of using DMFT in finite and
inhomogeneous systems,51 either within the standard DMFT
formalism52, 53 or through a true finite DMFT formalism,21

or the use of DMFT ideas with quantum variables other than
the Green’s function are further intriguing possibilities for the
future.
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APPENDIX: GUESS FOR BATH FITTING

To generate some initial guess bath parameters εp and
Vpi for the bath fitting, we follow the procedure below. Let
us specialize to the case of a single impurity orbital where
we can drop the i index. Then the bath parametrization (24)
becomes

�(ωn) =
∑

p

V 2
p

ωn − εp
, (A1)

where we have assumed Vp is real. Viewing 1/(ωn − εp) as
the elements of a matrix Mnp = 1/(ωn − εp), the above be-
comes the matrix equation

�n =
∑

p

MnpWp, (A2)

where �n = �(ωn) and Wp = V 2
p . We can invert this equa-

tion to obtain the couplings

Wp =
∑

n

M−1
pn �n, (A3)

where we understand M−1 to mean the generalized inverse in
the singular value decomposition sense. There are now only
two remaining issues. First, we have to choose a set of εp

to define the matrix M. Second, given arbitrary �n , Wp is
not necessarily positive definite (and thus does not necessar-
ily yield real couplings Vp). We find the latter to be a problem
particularly when the overlap matrix (due to nonorthogonal-
ity) is significantly different from unity, which further sug-
gests (as discussed in Sec. IV D) that it will be advantageous
to work in an orthogonal basis in the future.

In the first case, we take roots of the Legendre polyno-
mial of order P/2 where P is the number of bath levels we
wish to fit and map them respectively from the [−1, 1] interval
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(associated with the Legendre roots) to [0,∞] and [−∞, 0]
using the transformation 1 − x/(λ(1 + x)), where λ is a scal-
ing factor that is optimized to produce the best fit. In the sec-
ond case, we simply take Vp = �(W −1/2

p ).
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