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CONSPECTUS: In complex systems, it is often the case that the
region of interest forms only one part of a much larger system. The
idea of joining two different quantum simulationsa high level
calculation on the active region of interest, and a low level
calculation on its environmentformally defines a quantum
embedding. While any combination of techniques constitutes an
embedding, several rigorous formalisms have emerged that provide
for exact feedback between the embedded system and its
environment. These three formulations: density functional embed-
ding, Green’s function embedding, and density matrix embedding,
respectively, use the single-particle density, single-particle Green’s
function, and single-particle density matrix as the quantum variables of interest.
Many excellent reviews exist covering these methods individually. However, a unified presentation of the different formalisms is
so far lacking. Indeed, the various languages commonly used, functional equations for density functional embedding,
diagrammatics for Green’s function embedding, and entanglement arguments for density matrix embedding, make the three
formulations appear vastly different. In this Account, we introduce the basic equations of all three formulations in such a way as
to highlight their many common intellectual strands. While we focus primarily on a straightforward theoretical perspective, we
also give a brief overview of recent applications and possible future developments.
The first section starts with density functional embedding, where we introduce the key embedding potential via the Euler
equation. We then discuss recent work concerning the treatment of the nonadditive kinetic potential, before describing mean-
field density functional embedding and wave function in density functional embedding. We finish the section with extensions to
time-dependence and excited states.
The second section is devoted to Green’s function embedding. Here, we use the Dyson equation to obtain equations that parallel
as closely as possible the density functional embedding equations, with the hybridization playing the role of the embedding
potential. Embedding a high-level self-energy within a low-level self-energy is treated analogously to wave function in density
functional embedding. The numerical computation of the high-level self-energy allows us to briefly introduce the bath
representation in the quantum impurity problem. We then consider translationally invariant systems to bring in the important
dynamical mean-field theory. Recent developments to incorporate screening and long-range interactions are discussed.
The third section concerns density matrix embedding. Here, we first highlight some mathematical complications associated with
a simple Euler equation derivation, arising from the open nature of fragments. This motivates the density matrix embedding
theory, where we use the Schmidt decomposition to represent the entanglement through bath orbitals. The resulting impurity
plus bath formulation resembles that of dynamical mean-field theory. We discuss the numerical self-consistency associated with
using a high-level correlated wave function with a mean-field low-level treatment, and connect the resulting numerical inversion
to that used in density functional embedding.
We finish with perspectives on the future of all three methods.

■ INTRODUCTION

Embedding theories provide a natural way to focus computation
on a small region within a larger environment, such as atoms near
the active site in an enzyme. In any embedding theory, the full
problem is partitioned into the fragment of interest (A) and its
environment (B). (The terms “subsystem” or “impurity” are
commonly used in place of “fragment”.) There may be multiple
fragments of interest, and the environment may also be
partitioned. In any case, the purpose of the embedding is to
provide a computational recipe for the properties of A, taking
into account its environment, without the computational cost of
treating the full problem. The idea is thus very general, and
encompasses a wide variety of methods. For example, whenever

A and B are treated at two different levels, for example, when
freezing orbitals in a calculation, we are formally performing
embedding! What concretely distinguishes one embedding
theory from another, is the particular way in which the effects
of the environment are communicated to the fragment A, and
vice versa.
Here, we will describe a family of three related, rigorous,

quantum embedding theories: density functional (DFT)
embedding,1−5 Green’s function embedding,6−11 and density
matrix embedding.12−15 Compared to simpler embedding
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techniques, these stand out as they provide for nontrivial
communication between the fragment and environment. In the
three theories, information is communicated via the density, the
single-particle Green’s function, and the single-particle density
matrix, respectively. Note that we identify the kind of embedding
by its functional dependence on a quantum variable, rather than
intermediary computational objects. Thus, even if a density
matrix is used in the calculation, if it ultimately encodes a density
functional (e.g., in a Kohn−Sham theory), then the embedding is
a density functional embedding. There are excellent reviews for
each of the three techniques individually, for example, refs 3−5,
7, 9, and 14. Here, we will give an introduction to all three
together, that emphasizes their common intellectual strands, and
provide a summary of their strengths and weaknesses.

■ DFT EMBEDDING
We will begin with the simplest quantum embedding, DFT
embedding. We provide a particular perspective to make
connections to the subsequent Green’s function and density
matrix embedding formalisms; other perspectives can be found
in the literature.3−5 The formal groundwork was developed by
Cortona1 and Wesołowski and Warshel.2 In the ground-state
version, the density of A, ρA, is adjusted through an external field,
vA, and we view this field as coming from the environment.
Further, the energy of A is modified by its interactions with the
environment, through the Coulomb term, and indirectly through
the exclusion principle. These energetic contributions are
contained in a term ΔE.
The DFT embedding formalism provides rigorous founda-

tions for vA and ΔE as density functionals. We begin with the
exact energy density functional for the full system, E[ρ], which
determines the ground-state density through the Euler equation

δ ρ
δρ

μ− =E[ ]
0

(1)

where μ is the chemical potential. Partitioning the energy into its
Kohn−Sham kinetic, Coulomb, external, and exchange-
correlation pieces,16

ρ ρ ρ ρ ρ= + + +E T J V E[ ] [ ] [ ] [ ] [ ]s ext xc (2)

we rewrite the Euler equation

δ ρ
δρ

ρ ρ μ+ + + − =
T

v v v
[ ]

[ ] [ ] 0s
J ext xc

(3)

Exc[ρ] and vxc[ρ] account for the nontrivial correlation effects
and must be approximated. When necessary, we indicate the
dependence of these quantities on the approximation scheme S
by writing them as Exc

S [ρ], vxc
S [ρ] .

We now derive the expressions for vA and ΔE. Splitting E[ρ]
into the fragment energy and its remainder, E[ρ] = E[ρA] +
ΔE[ρ,ρA] (EA = E[ρA]), stationarity with respect to ρA implies

δ
δρ

ρ ρ ρ μ+ Δ − =E E[ [ ] [ , ]] 0
A

A A
(4)

This is the same as the Euler equation for A placed in an external
field vA, if we choose

δ ρ ρ
δρ

=
Δ

v
E[ , ]

A
A

A (5)

Equation 5 thus defines the exact embedding potential, which
yields the exact subsystem density ρA. Note we use ρ, ρA as the

working variables. The use of a global and a fragment quantum
variable is a choice common to all three embedding formalisms in
this article. However, in DFT embedding, one often works
instead with the subsystem and environment densities separately,
ρA, ρB, with ρ = ρA + ρB. This has advantages in practice, for
example, if ρA and ρB are ensemble N-representable, then so is
ρ.17

We express vA in terms of its components as

δ
δρ

ρ ρ ρ ρ δ
δρ

ρ ρ= − + − + −

= + +Δ Δ Δ

v T T v E E

v v v

[ [ ] [ ]] [ ] [ [ ] [ ]]A
A

A A
A

As s J xc xc

s J xc

(6)

where vs
Δ is the nonadditive kinetic potential, vJ

Δ is the environment
Coulomb potential, and vxc

Δ is the nonadditive exchange-
correlation potential. vs

Δ is the largest contribution and expresses
the exclusion principle which forces electrons in the fragment to
occupy states orthogonal to those in the environment.1,2

Commonly in DFT calculations, Exc[ρ] is approximated as an
explicit functional of ρ and its derivatives (e.g., as is in the LDA or
GGA’s). Consequently, vxc

Δ[ρ] can be obtained by analytical
functional differentiation of Exc[ρ] − Exc[ρA]. Ts[ρ], however, is
only known as an implicit density functional through the Kohn−
Sham orbitals. One way to evaluate vs

Δ is to approximate Ts by an
explicit density functional approximation, such as the Thomas−
Fermi (or a related) functional, from which the kinetic potential
can be directly derived. This approximation was widely used in
the early days of DFT embedding,1,2 but is limited by the
accuracy of the approximate kinetic energy.18,19 It has found
most success in applications where the fragment is weakly bound
to the environment, for example, in van der Waals complexes,20

in highly ionic crystals,21 and in solvation.22,23

A more recent strategy has been to compute δTs/δρA and the
nonadditive kinetic potential numerically.24−27 Since the forward
computation of vs→ ρ (to determine the noninteracting ground-
state density in an external potential vs) is cheap (O(N

3) whereN
is the number of electrons), the inversion is tractable.28,29 In
practice, there are numerical difficulties,30 because large changes
in vs can yield only small changes in ρ. This leads to unphysical
oscillations in the numerically determined vs.

30,31

The above is a basic formulation of ground-state DFT
embedding, and extensions exist, for example, to ensemble
representations for fragments with noninteger particle num-
ber,32−34 and Kohn−Sham projector formalisms to avoid the
nonadditive kinetic potential altogether.35,36 However, we now
consider the two common contexts in which DFT embedding is
applied. The first is DFT in DFT embedding,2 where both the
subsystem A and environment B are treated with DFT. This may
not seem to result in any simplification, but there are several ways
to obtain savings. For example, different levels of DFT can be
used for A and B (e.g., functionals with or without exact
exchange)37 or the self-consistency may be approximated (e.g.,
by replacing the self-consistent ρB by a frozen superposition of
densities). The latter is particularly appropriate for solvent
systems,22,23 and allows for very large environments, such as
protein frameworks, to be considered.
The second common context is where the fragment is

described using a high-level wave function, and the environment
by DFT, and embedding connects the two.17,38−41 Wave
function in DFT embedding was pioneered by Carter and co-
workers27,38 and has attracted much recent attention, because of
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the difficulties of DFT in treating aspects of electronic structure
such as excited states and bond-breaking.
In wave function in DFT embedding, two approximations

enter for the correlations, SWF and SDFT. The energy functional is
defined as

ρ ρ ρ ρ= + −E E E E[ ] [ ] [ ] [ ]S
A

S S
A

WF DFT DFT (7)

where the wave function energy for fragment A is formally
expressed through

ρ = ⟨Ψ | ̂ |Ψ ⟩
ρΨ →

E H[ ] minS
A

S
A

S
S

A

WF

WF

WF WF

(8)

Since the effect of the environment is completely contained
within vA, the minimizingΨ in eq 8 is the ground-state of ĤA + vA.
Any wave function ansatz may be used to approximate this
eigenstate,27,38−41 and existing quantum chemistry programs
only need be modified to include the potential vA, which adds to
the attractiveness of the method.
In the simplest scheme, ρA and vA are defined both from the

DFT density, and the DFT expression,ΔESDFT[ρ, ρA] in eq 5. In a
more sophisticated scheme, the wave function treatment of
correlation is used to improve the density self-consistently. This
is achieved by defining the exchange-correlation potential of the
full system

ρ ρ ρ ρ= + −v v v v[ ] [ ] [ ] [ ]S
A

S S
Axc xc xc xc

WF DFT DFT (9)

Self-consistent iteration between vxc and vA then allows for the
DFT density ρA

DFT and the WF density ρA
WF to become identical.

There is an increasing number of applications using wave
function in DFT embedding, such as to molecules adsorbed on
surfaces42,43 and molecular fragments embedded in larger
systems.44 A growing community is exploring these techniques
also for excited state properties (see, e.g., ref 45). The simplest
way to compute excited states is to assume that the ground-state
and excited-state embedding potential and energy functional are
identical.46 This is, however, an approximation, and in principle,
the ground-state formalism must be extended. There are two
ways to do so. The first is a state-specific DFT embedding, where
E[ρ] and vA acquire an excited state dependence. State-specific
DFT embedding has been explored by several workers,47,48 who
find that state-dependence gives significant corrections,
especially when the charge character of the excited state differs
from the ground-state. A second way is through time-dependent
DFT, where excitation energies are poles of the response. Here,
the embedding potential becomes time-dependent, with a
nonlocal dependence on the density at earlier times, vA[ρ-
(t′)].49,50 Applications using this second formalism are now
beginning to appear.51

Despite its conceptual simplicity, wave function in DFT
embedding inherits limitations intrinsic to all combinations of
wave functions with density functional approximations. For
example, in the total energy expression, eq 7, the nonadditive part
of the energy is described at the DFT level, while an accurate total
energy requires error cancellation between the wave function and
DFT descriptions of the system (ESWF[ρA] − ESDFT[ρA]).
Incomplete cancellation is sometimes referred to as “double
counting”. The two sources of error are important if the interface
between the fragment and environment cuts across a bond of
interest, as they affect the correlation energy of the bond.
Similarly, if van der Waals interactions between the fragment and
environment are important, such contributions, omitted in many
density functionals, will be missed. Both these situations can be

remedied formally by increasing the system size treated with the
wave function method, albeit at increased cost.
Another disadvantage of DFT embedding is that it is difficult,

through examining ρA alone, to distinguish between a fragment
which is bonded with the environment, and one which is not.
This is because the density, by definition, does not contain direct
information on off-diagonal density matrix correlations (i.e.,
coherence and entanglement). While, in principle, all effects can
be captured by the exact density functional, the lack of the off-
diagonal information can pose difficulties for density functional
approximations used in practice. One way to surmount this is to
consider embedding theories of richer quantum variables with
off-diagonal correlations, such as the single-particle Green’s
function or the single-particle density matrix. We now turn to
these embedding formalisms.

■ GREEN’S FUNCTION EMBEDDING
Green’s function embedding has a long history, and is widely
used in condensed matter problems.6−9,11,52 We cannot cover
the extensive literature on models, and will restrict ourselves to
the aspects of Green’s function embedding relevant to ab initio
quantum chemistry.10,11,53−55

The zero-temperature, time-ordered, single-particle Green’s
function generalizes the familiar single-particle density matrix, to
carry additional information on time-dependent correlations. In
a basis labeled by i,j, it is defined as

= ⟨Ψ | |Ψ ⟩†iG t a a t( ) (0) ( )ij i j0 0 (10)

where denotes time-ordering, Ψ0 the ground-state wave
function, and a(†) are electron annihilation (creation) operators
in the Heisenberg representation. It is common also to useG(ω),
the Fourier transform ofG(t) . The imaginary part of the Green’s
function ω−

π
Gtr Im ( )1 is the single-particle density of states,

while the equal-time Green’s function −iG(t = 0+) (where 0+ is a
positive infinitesimal) is the single-particle density matrix. As an
example, the real-space noninteracting Green’s function is given
by g(r, r′,ω) =Σiϕi*(r)ϕi(r′)(ω− ϵi + i0+)

−1, whereϕi, ϵi are the
single-particle orbitals and energies.
Unlike in DFT, the energy is computable explicitly from the

exact Green’s function as

∫ ω ω ω= +
μ

−∞
E h 1 G

1
2

d tr[( )Im ( )]
(11)

(μ is the chemical potential, h is the single-particle Hamiltonian).
For approximate Green’s functions, the expression must be
modified with additional terms to obtain a variational bound.56

One example is the Luttinger-Ward functional, from which an
embedding formalism can be constructed.57 However, it is
complicated to specify and we do not need all its properties here.
Instead, it is sufficient to consider the corresponding Euler
equation, namely the Dyson equation.
The Dyson equation relates the Green’s function of different

Hamiltonians. For example, the Green’s function of a non-
interacting system g(ω) and that of the interacting system G(ω)
are related by

ω ω ω ω ωΣ= +G g G g( ) ( ) ( ) ( ) ( ) (12)

where Σ(ω), the self-energy, accounts for interactions. Equation
12 is the analog of the DFT Euler equation (eq 3) where g(ω)
plays a similar role to δTs/δρ + vext, and the self-energy plays the
part of the Coulomb plus exchange-correlation potential. In
practice, the self-energy must be approximated, and it is
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convenient to discuss such approximations in diagrammatic
terms. The exact (proper) Σ(ω) is a sum over all perturbation
theory diagrams, where each diagram is a connected graph of
Green’s function and interaction lines, and no diagram can be cut
in two by cutting a single Green’s function line. An approximate
self-energy will sum over a subset of these diagrams, which can be
specified in terms of the diagram skeletons (S), and the Green’s
functionsGΣ(ω) and interactionsVwithin them.We thus denote
a self-energy approximation by ΣS[GΣ, V]. A self-consistent
approximate self-energy is one where the Green’s function used
in the self-energy diagrams satisfies the Dyson equation, that is,G
= GΣ.
In Green’s function embedding, the fragment Green’s function

GA (ω), is adjusted through another self-energy ΔA(ω), dual to
GA(ω) . To prevent confusion with the self-energy arising due to
interactions in eq 12, we termΔA(ω) the hybridization. Together
with the self-energy approximation ΣA(ω), this gives the
fragment Dyson equation

ω ω ω ω ω ωΔ Σ= + +G g G g( ) ( ) ( )( ( ) ( )) ( )A A A A A A (13)

where gA(ω) is the noninteracting Green’s function of the system
computed in isolation, that is, with no couplings to the
environment or any interactions. Inverting eq 13 gives the
hybridization as

ω ω ω ωΔ Σ= − −− −g G( ) ( ) ( ) ( )A A A A
1 1

(14)

ΔA(ω) is the analog of the DFT embedding potential vA, and eq
14 is analogous to eq 6. Similarly to vA, ΔA(ω) contains effects
from electron delocalization into the environment as well as
environment Coulomb interactions. However, unlike in DFT
embedding, the inversion fromG(ω)→Δ(ω) is explicit through
eq 14, and no iterative technique is necessary.
We now discuss two different contexts in which Green’s

function embedding is applied. These correspond to different
self-energy approximations for A and the environment B, and
parallel the contexts appearing in DFT embedding. The simplest
is to describe both A and the full system at the mean-field level.
Then, ΣA(ω) and Σ(ω) correspond to the respective mean-field
Coulomb and exchange terms (and thus have no frequency
dependence). Similarly to DFT in DFT embedding, savings
result when we use different levels of mean-field for A and the
full-system, for example by forgoing self-consistency in the
environment. A common application of the latter is to impurities
in crystals, where G(ω) is first computed using translational
invariance in the periodic crystal, and relaxation of the
environment is ignored when the impurity is introduced.52 In
molecular junctions, ΔA(ω) is similarly obtained for a semi-
infinite electrode, and assumed to be unchanged on the
introduction of the bridging molecule.58

A second context is to perform Green’s function embedding
with more sophisticated approximations for ΣA(ω) and Σ(ω).
This is similar to wave function in DFT embedding, as there are
now two different correlation treatments which must be bridged.
We denote the “high-level” approximation SH and the “low-level”
approximation SL. The low-level approximation is used to
construct a self-energy including all interactions in the full
problem,ΣSL[G, V](ω), and the high-level approximation is used
to construct a self-energy considering interactions only in the
subsystem A,ΣA

SH[GA, VA](ω). The composite self-energy for the
full problem is

ω ω ωΣ Σ Σ Σ= + −V V VG G G( ) [ , ] [ , ]( ) [ , ]( )S
A
S

A A A
S

A A
L H L

(15)

where ΣA
SL[GA, VA] indicates the part of ΣSL[G, V] involving only

Green’s functions and interactions within fragment A. eq 15 is
analogous to the expression for the exchange-correlation
potential eq 9 in wave function in DFT embedding. In fact,
one common way to computeΣA

SH[GA, VA] (ω) is by carrying out
a wave function calculation on the subsystem A in the presence of
additional fictitious “bath” orbitals that reproduce the effects of
the hybridization ΔA.

10 The subsystem plus bath orbitals is
known as a quantum impurity problem. We return to impurity
problems in the context of density matrix embedding theory.
Self-consistency of the Green’s functions is obtained by solving
eq 14 and eq 15 for the hybridization and self-energy.
Dynamical mean-field theory8−10 (DMFT) (which here refers

to both single-site and cluster extensions) provides a widely used
example of a higher-level self-energy embedding within a lower-
level treatment. In DMFT, we divide the full problem of interest
(commonly a crystal) into multiple fragments A containing
strongly correlated orbitals (typically transition metal d and f
orbitals) for which a high-level self-energy approximation in each
fragment, ΣA(ω), is computed. The composite self-energy in eq
15 becomes

∑ωΣ Σ Σ Σ= + −V V VG G G( ) ( , ) [ ( , ) ( , )]S

A
A
S

A A A
S

A A
L H L

(16)

where the sum over A reflects a summation over the fragments.
For a crystal, the self-energy in each cell is identical. Self-
consistency of eq 16 withΔA(ω) for each cell A yields the cellular
DMFT equations.59

The low-level approximation in DMFT is often chosen to be a
DFT treatment. This combination is called DFT+DMFT,9 and
has been widely applied to correlated materials, especially to
compute the density-of-states observed in photoemission
experiments.9 It has also been used, less commonly, in molecular
applications, for example, to obtain correlation corrections to the
conductance of a molecular junction,60 and qualitative features of
the electronic structure in transition metal clusters and
complexes.54

Unfortunately, the combination of DFT with DMFT suffers
from similar problems to wave function in DFT embedding, such
as partial double counting of interactions, and this has been a
barrier to chemical accuracy. Combining DMFT with a low-level
Hartree−Fock self-energy avoids this issue, as the diagrams can
be correctly subtracted in eq 16, and has recently been explored
in small molecules,53 and in a minimal basis cubic hydrogen
solid.10 Unfortunately, this treatment provides no description of
correlations outside of the fragments, and is thus also not
quantitative. Incorporating “non-local” correlations into a
DMFT description is a topic of current research, and strategies
include using a random-phase approximation (RPA) for the
nonlocal correlations, which modifies both the low-level self-
energy, as well as screens the Coulomb interaction VA →
VA
RPA(ω) appearing in the high-level self-energy approximation;

and using a pure self-energy approximation, such as the self-
consistent second-order self-energy.61 The latter has been
explored by Zgid and co-workers.55,62

The strengths of Green’s function embedding are the analytic
expressions for the energy and hybridization, and the
diagrammatic interpretation of the self-energy approximations.
However, fully ab initio applications lag behind those of DFT
embedding, because ab initio quantum chemistry methods are
primarily developed for single states (such as the ground-state)
rather than the Green’s function, and computing time-dependent
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Green’s functions is more expensive than computing time-
independent observables.

■ DENSITY MATRIX EMBEDDING
The practical complexity of working with Green’s functions
motivates a third formulation of embedding: density matrix
embedding, where the quantity of interest is the single-particle
density matrix, γ, where γij = ⟨Ψ|ai

†aj|Ψ⟩. It appears
straightforward to formulate embedding with the density matrix,
as it interpolates in complexity between the density and the
Green’s function. Indeed, one can formally define a density
matrix embedding to parallel DFT (and Green’s function)
embedding, starting from the energy functional of the density
matrix, and using stationarity to define an embedding operator
vA,

γ
δ
δ

= ΔE
vA

A (17)

which, when substituted into the fragment Euler equation, yields
the exact fragment density matrix γA.
Unfortunately, there is a complication that is unique to the

density matrix formulation. In DFT embedding, ΔE and the
embedding potential are defined with respect to a closed
noninteracting system, and the latter acts to adjust the reference
density to match the fragment density. (A similar statement may
be made with respect to the Green’s function for Green’s
function embedding). However, the density matrix of a closed
noninteracting system must be idempotent, while the density
matrix of a general (open) fragment need not be, and the two in
general cannot be matched via an embedding operator. Instead,
one is forced to consider more complex interacting reference
systems (to represent nonidempotent fragment density
matrices) or more complicated interacting density matrix
functionals that minimize to nonidempotent solutions. Some
of the more complex reference systems considered include ones
where the ground-state is modeled by a geminal wave
function,15,63 as well an impurity-like formulation, where the
reference is the size of the full system, but with interactions
restricted only to the fragment of interest.64

The above complication reflects the essential physical
difference between an open system, which is entangled with its
environment and should be described by a mixed state, and a
closed system, described by a pure state. Rather than using a
more complicated pure-state to mimic a nonidempotent density
matrix, one can instead model the open fragment as part of a
closed system, by introducing additional bath degrees of
freedom. This is the same physical idea used in the impurity
representation of the hybridization in Green’s function
embedding. Of course, if the bath has the same complexity as
the rest of the system, nothing is gained, but in practice, the size
of the bath can be significantly less than the size of the
environment.14,65 A simple example is the link orbitals in QM/
MM calculations, a small set of extra atomic orbitals chosen to
saturate the dangling bonds of the QM fragment. Other
embedding approaches, such as divide and conquer, similarly
introduce buffer orbitals,66 using orbitals spatially close to the
fragment region.
The choice of additional bath degrees of freedom appears to

have some arbitrariness, but a construction that is provably
optimal at the mean-field level has recently been provided by the
DMET (density matrix embedding theory) of Knizia and
Chan.12,13 A key property of the DMET bath is that it is (at

most) the same size as the fragment, and thus rigorously removes
most of the degrees of freedom in the environment. DMET thus
avoids the much larger baths associated with Green’s function
embeddings.12 To see that the environment can be compressed
to this size, consider the case where one has the exact wave
function |Ψ⟩ for the full problem. This wave function may be
rewritten (via the Schmidt decomposition) in terms of states that
live solely in the fragment, and environment Hilbert spaces,
{|αi⟩}, {|βi⟩}, respectively

∑ λ α β|Ψ⟩ = | ⟩| ⟩
i

D

i i i
(18)

The summation is over D terms, the dimension of the fragment
Hilbert space, and the decomposition defines D exact bath states
|βi⟩. The exact wave function can then be expressed within the
reduced Hilbert space {|αi⟩} ⊗ {|βj⟩}. When |Ψ⟩ is a Slater
determinant (e.g., the ground-state of a mean-field Hamiltonian
f)̂ then the Schmidt decomposition takes a particularly simple
form. In particular, if the fragment has d orbitals, then the bath
states are spanned exactly by the Hilbert space of d (partially
occupied) bath orbitals, with all other orbitals either completely
filled (core orbitals) or empty. The partially filled bath orbitals
are the eigenvectors (with partial occupancy) of the environment
block of the mean-field density matrix. This fragment plus bath
representation of a mean-field wave function becomes the
reference system in DMET, a noninteracting problem of twice
the size of the fragment. Projected into this representation, the
mean-field ground-state of f ̂ can reproduce any fragment density
matrix by augmenting with a suitable fragment operator, f ̂→ f ̂+
vÂ. Since the bath orbitals capture the effects of embedding at the
mean-field level, vÂ serves to encode additional correlation effects
beyond the mean-field treatment, and is thus analogous to the
exchange-correlation potential in DFT, or self-energy in Green’s
function embedding.
Mean-field in mean-field embedding in DMET can be

formulated using different levels of mean-field theory to define
bath orbitals from the full problem, and to model the smaller
fragment plus bath representation. However, DMET has so far
mainly been applied using a correlated wave function description
of the fragment plus bath, on top of a mean-field reference.
Denoting the mean-field description by SL, the DMET bath
orbitals are obtained from the mean-field reference ΨSL (the
ground-state of f ̂ + vÂ) which defines a fragment density matrix
γA. The correlated energy of the full problem is then

γ = ⟨Ψ | ̂ |Ψ ⟩
Ψ

E H[ ] minS
A A

S
A
S

A
S

H

H

H H

(19)

where the correlated wave functions are defined in the DMET
“active” space of fragment A plus its bath and core orbitals. The
functional dependence on γA enters in eq 19 through the
definition of the bath, but γA is in general different from the high
level density matrix γA

SH, obtained from ΨA
SH. Self-consistency

adjusts vÂ such that γA = γA
SH. The numerical procedure to do so

involves a noninteracting inversion γA → vA, and is analogous to
the inversion ρA → vA in DFT embedding, with related issues of
representability.14,63

Although ESH[γA] is an energy for the full problem, correlations
are only included close to fragment A, as the bath orbitals are
typically localized close to A. This is acceptable for intensive
quantities (such as local reactions or excitations). However, for
an extensive correlated treatment (as desired in a condensed
phase problem) one must embed with multiple fragments. Then,
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each fragment A yields a separate high-level wave function for the
full problem, ΨA

SH, and expectation values must be assembled
from the different fragment wave functions. It can be expected
that expectation values for a givenΨA

SH are most accurate close to
fragment A, and this is reflected in the partitioning of the
contributions. For example, to compute the density matrix
element γij = ⟨ai

†aj⟩, we define

γ =

⟨Ψ | |Ψ ⟩ ∈

⟨Ψ | |Ψ ⟩ + ⟨Ψ |

|Ψ ⟩

∈ ∈ ′

†

†
′

†
′

⎧

⎨
⎪⎪

⎩
⎪⎪

a a i j A

a a

a a

i A j A

,

1
2

(

)

,ij

A
S

i j A
S

A
S

i j A
S

A
S

i j A
S

H H

H H H

H
(20)

Analogous partitionings can be defined for more complicated
expectation values.
Because its initial development was motivated by DMFT, the

majority of DMET applications have been to correlated lattice
models,63,67,68 where the computational simplicity of the method
has enabled very accurate results to be achieved using large
fragments, for example, for the 2D Hubbard model.68

Importantly, self-consistency in DMET, much like in DMFT,
allows for nontrivial phases, such as superconductivity in
repulsive systems.68 Related to the physics of such lattice models
are problems of strong correlation in chemical settings. The
DMET bath allows the formalism to accurately treat fragments
when they are bonded to their environment, even when such a
bond is stretched or dissociated, as has been demonstrated
through accurate calculations of the dissociation curves of
molecular chains and rings.13,14 An exciting area of application is
to reduce the cost of high-level correlated wave function
calculations in solids, particularly for small-band gap systems
such as metals. Here, DMET is used to treat a unit-cell (or a small
set of them) while the extra bath orbitals ameliorate the finite size
effects associated with the small cell. Demonstrations on crystals
in 1, 2, and 3 dimensions by Scuseria and co-workers have shown
promise.69 Recent work has focused on extensions of DMET, for
example, to spectra,70 where the additional bath orbitals are
modified to carry a time-dependence that reproduces the linear
response of a mean-field wave function. This provides a rigorous
way to embed excited states, which are often much more
delocalized than the ground-state, and thus more sensitive to the
open nature of a chemical fragment.

■ CONCLUSIONS

Quantum embedding is a natural computational framework in
which to think about complex systems. We have focused on three
embedding approaches based on the single-particle density,
Green’s function, and density matrix, respectively. While we have
only been able to give a short description of these approaches, we
have tried to bring out their common intellectual structure.
There remain many frontier methodological areas: for

example, excited states and dynamics in density functional
embedding and more efficient ab initio technology in Green’s
function and density matrix embedding. New application areas
are emerging, for example, in biomolecular and condensed phase
simulations. In some cases, it is necessary to include classical
embeddings, such as throughQM/MM, as well. While we cannot
predict the future development of the field, the growing activity
strongly suggests that quantum embedding methods will remain
a key part of simulating complex systems for many years to come.
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