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ABSTRACT: Density functional theory (DFT) provides a formally exact framework for quantum embedding. The appearance
of nonadditive kinetic energy contributions in this context poses significant challenges, but using optimized effective potential
(OEP) methods, various groups have devised DFT-in-DFT methods that are equivalent to Kohn−Sham (KS) theory on the
whole system. This being the case, we note that a very considerable simplification arises from doing KS theory instead. We then
describe embedding schemes that enforce Pauli exclusion via a projection technique, completely avoiding numerically demanding
OEP calculations. Illustrative applications are presented using DFT-in-DFT, wave-function-in-DFT, and wave-function-in-
Hartree−Fock embedding, and using an embedded many-body expansion.

1. INTRODUCTION
Kohn−Sham (KS) density functional theory (DFT) provides a
powerful theoretical framework for performing calculations on
a subsystem exactly embedded in its full, quantum-mechanical
environment.1−3 The quantity that mediates the interaction
between subsystems is the electronic density, which is
partitioned into two terms

ρ ρ ρ= +A B

The KS energy consists of terms relating to subsystems A
and B and an interaction term containing all nonadditive parts
of the energy:

ρ ρ ρ δ ρ ρ= + +E E E E[ ] [ ] [ ] [ , ]A B A B

This last term includes an explicitly known Coulomb
contribution
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and, depending on the details of the subsystem partitioning,
simple electrostatic interaction of electrons in A with nuclei in
B and vice versa. Exchange-correlation effects between
subsystems are included through

δ ρ ρ ρ ρ ρ= − −E E E E[ , ] [ ] [ ] [ ]xc A B xc xc A xc B

which of course must be approximated in practical calculations.
If the subsystem densities ρA and ρB are constructed from

mutually orthogonal orbitals, the kinetic energy of the whole
system is simply given by the sum

ρ ρ ρ= +T T T[ ] [ ] [ ]s s A s B

In general, however, there will also be a nonadditive term

ρ ρ ρ ρ ρΔ = − −T T T T[ , ] [ ] [ ] [ ]s A B s s A s B

which must be approximated3,4 or, in more recent versions of
the theory, computed exactly using optimized effective potential
(OEP) methods.5−9

The current authors have demonstrated that OEP methods
can be used in an iterative scheme to obtain the Kohn−Sham
ground state density for molecular systems, including those that
exhibit strongly overlapping subsystem densities.5,6 Reiher and
co-workers used OEP methods to analyze and compare
accurate embedding potentials in approximate embedding
schemes,7 and OEP methods were used to solve for a unique
partitioning of a system by allowing the subsystems to share a
common embedding potential.8,9 Finally, several groups have
utilized these DFT embedding methods to describe the
interface between high-level and low-level subsystems in
wave-function-in-DFT (WF-in-DFT) approaches.9,10,11

In what follows, we avoid the complications of OEP through
three simple, robust innovations: (1) We replace the iterated
DFT-in-DFT with a single conventional KS calculation. (2) We
completely avoid the issue of kinetic energy nonadditivity
through the use of a level shifting projection operator to keep
the orbitals of one subsystem orthogonal to those of another.
And, (3) we develop a simple but effective perturbation theory
to eliminate practically all dependence on the level shift
parameter.
Embedding methods that maintain orthogonality between

subsystem orbitals have been in use for decades. What has not
been recognized is that these can be used to formulate a
formally exact DFT embedding scheme, equivalent to but much
simpler than the recently developed OEP-based methods. The
Philips−Kleinman pseudopotential approach starts by level
shifting the core orbitals12 to produce valence orbitals implicitly
orthogonalized to the core. Even frozen core approximations,
which have been in use in quantum chemistry at least since the
1950s,13 amount to a sort of Hartree−Fock (HF)-based
embedding scheme in which the core and valence subsystems
are described by mutually orthogonal orbitals. Similar ideas
operate in the incremental scheme introduced by Stoll and co-
workers,14 in the region method of Mata and et al.,15 and in
Henderson’s embedding scheme.16 Further details of the large
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amount of literature in this area can be found in a recent and
comprehensive review.17

The Pauli principle is enforced through a level-shift projector
in the ab initio model potential (AIMP) method,18−20 which in
turn derives from earlier work by Huzinaga and Cantu.21 A
similar strategy was employed by Rajchel et al. for the
description of intermolecular interactions, but there they
iterated equations for each subsystem.22 Projection is some-
times employed in the embedding used in the fragment
molecular orbital method (see for example the recent article ref
23 and references therein). The novelty of the current work
resides in the important simplification that arises by performing
a conventional Kohn−Sham calculation plus localization to
determine fragment orbitals, the recognition that this amounts
to a formally exact DFT-in-DFT embedding scheme, and the
elimination of practically all dependence on the level-shift
parameter through perturbation theory (see below).

2. SIMPLIFIED EXACT EMBEDDING
Self-consistently iterated embedded DFT calculations are
exactly equivalent to full KS theory on the whole system. If
the only aim is to perform DFT-in-DFT embedding, it is
currently more practical to perform KS theory on the whole
system. We now demonstrate that this remains true even if the
initial mean-field calculation is merely a prelude for WF-in-DFT
embedding.
The sum of the atomic-orbital (AO) density matrices from

the embedded one-electron equations is equal to the total KS
density matrix:2 γA + γB = γ. The occupied KS orbitals {ϕi} can
be rotated among each other, and one rotation produces the
subsystem orbitals {ϕi

A} ∪ {ϕi
B}. Let us assume that the whole

system and both subsystems A and B are closed-shell and that
the total number of electrons is partitioned as nA + nB = n; the
extension of the following arguments to open-shell subsystems
is straightforward.
To produce the correct total electron density, a KS

calculation on subsystem A requires an embedding potential
that correctly describes the electrostatic and exchange-
correlation interactions with the electrons in subsystem B,
while also properly enforcing Pauli exclusion between the
subsystem densities. This is in fact the role of the nonadditive
kinetic potential vnad,

3 but an alternative scheme can be reached
by simply level shifting the orbitals of B to very high energy for
the calculation on A. Then, a correctly embedded calculation
on the nA electrons in subsystem A has the energy expression

γ γ γ γ γ γ γ γ= + + + + +E J Eh[ ; ] tr( ) [ ] [ ]A B A B A B
xc

A B

(1)

where h is the core Hamiltonian (kinetic plus external
potential) in the AO basis.
We propose a Fock operator for electrons in subsystem A

that includes the appropriate derivative of the energy, plus a
level-shift term to preserve the orthogonality relation ⟨ϕi

A|ϕj
B⟩ =

0:

γ
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The term μPB elevates the energy of the ith orbital in
subsystem B to εi

B + μ, and provided that μ is sufficiently large
and positive, the eigenstates of f A are then mutually orthogonal
to the orbitals in subsystem B.
Evaluation of the gradient in eq 2 produces the Fock

operator for subsystem A that we employ in the calculations
below:

γ γ γ γ μ= + + + + +vf h J P[ ] [ ]A A B
xc

A B B

In HF theory or in KS theory with hybrid functionals, the
additional (possibly scaled) exchange term −K[γA + γB]
appears in the usual way.
As in other DFT-in-DFT embedding schemes, this approach

provides the flexibility to perform a completely different type of
electronic structure calculation for subsystem A, using a core
Hamiltonian that contains the additional embedding terms
from above:

γ γ γ γ γ

γ μ

= + + − + +

− +

h h J J v

v P

[ ] [ ] [ ]

[ ]

A in B A B A
xc

A B

xc
A B

(3)

The total energy for a normalized wave function in the A
subsystem is then calculated as

γ

γ γ γ γ

γ γ γ γ

Ψ = ⟨Ψ ̂ Ψ ⟩

− + −

+ + − +

E H

E E E

v v

[ ; ]

tr ( [ ] [ ])

[ ] [ ] [0; ]

A B A A in B A

A
xc

A B
xc

A

xc
A B

xc
A B

where ĤA in B is the Hamiltonian built with the embedding
potential added to the core Hamiltonian, the central terms
correct the exchange-correlation energy contribution, and the
final term is the energy of the electrons in the B subsystem.
The code is implemented in the development version of the

Molpro software package.24,25 The current version of the code,
and all calculations presented here, employ the supermolecular
basis set. Future versions will employ subsystem calculations in
a spatially local set of atomic orbitals; we see no technical
barriers to this extension.

3. EXAMPLE CALCULATIONS
3.1. Accuracy and Dependence on μ. We begin by

demonstrating the efficacy of the projection technique
described above, using the example of embedding the 10
electrons of the −OH moiety of ethanol in the environment
produced by the ethyl subsystem. KS orbitals from a PBE26

calculation in the 6-31G* basis27,28 are localized using the
Pipek−Mezey localization scheme,29 and the five orbitals clearly
associated with the −OH group are identified. Note that this
step is performed automatically by finding those orbitals with a
Mulliken population on any “active” atom greater than 0.4. The
embedded core Hamiltonian matrix hA in B is then constructed
according to eq 3, with μ = 103 Eh, and a 10-electron Kohn−
Sham calculation is performed.
If the projection technique has functioned perfectly, the

resulting orbitals will be orthogonal to those associated with
subsystem B, the energy expression in eq 1 will yield precisely
the KS energy of the whole system, and μ tr γAPB will exactly
vanish.
We find this not quite to be the case (see Table 1). The value

of μ tr γAPB is approximately 20 μEh, and the energy is
somewhat too low. In the limit of infinite μ, the agreement with
Kohn−Sham theory will be exact by construction, so the error
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arises from the finite value of this parameter. Upon increasing
the value of μ, we do indeed find that the error in the energy
decreases (Figure 1, uncorrected), although very large values
result in numerical noise associated with the double-precision
numerics of the program.

A more stable approach is to compute the μ→ ∞ limit using
perturbation theory. We can introduce a perturbed operator fζ̂
that satisfies the requirements f0̂ = f ̂ + μP̂ and

ν̂ = ̂ + ̂
ν→∞

f f Plim1

by adopting the form
μ

ζ
̂ = ̂ +

−
̂

ζf f P
1

(Here, for clarity, we have dropped the A and B superscripts.)
Expanding the operator fζ̂ as a power series in ζ and making the
usual perturbative expansion of energy and wave function, we
obtain

μ μζ ζ

ζ ζ

̂ + ̂ + ̂ + ⟩ + ⟩ +

= + + ⟩ + ⟩ +

f P P

E E

( ...)( 0 1 ...)

( ...)( 0 1 ...)0 1

which yields at first-order the contribution E1 = ⟨0|μP̂|0⟩. In the
AO basis E1 = μ tr γAPB, and as shown in Table 1, this
correction brings the embedded energy into near-perfect
agreement with the KS energy. Higher orders in this
perturbation expansion could be used to correct the embedded
orbitals, or to further correct the energy, although nothing in
our calculations so far suggests that this will be necessary.
In fact, it turns out that the energy expression E[γA;γB] + μ tr

γAPB agrees with the full KS energy to 7 pEh, which is
essentially exact in double precision. This excellent agreement
is very insensitive to the choice of μ, as shown in Figure 1. For
values μ < 102 Eh, the electronic structure is qualitatively
incorrect, and for μ > 107 Eh numerical noise begins to become
an issue. But for all values of μ in between, spanning 5 orders of

magnitude, the discrepancy from full KS theory is below 20
nEh.
Similar results are found for other molecules, and the

projection approach can also be employed for HF embedding.
For example, a HF-in-HF embedded calculation on pyradine
with subsystem A composed of the five Pipek−Mezey orbitals
associated with the nitrogen atom and with μ = 104 Eh
reproduces the total HF energy to within 0.1 nEh. The method
is also very stable for WF-in-DFT calculations, which we will
demonstrate through CCSD(T)-in-PBE calculations on
ethanol, using the same subsystem partitioning as before. The
calculations are performed (i) without the perturbative
correction to the total energy, (ii) with the pertubative
correction obtained using the HF subsystem density for the
active subsystem, and (iii) with the perturbative correction
obtained using the unrelaxed CCSD density for the active
subsystem; the differences between the total energies with μ =
106 and μ = 105 are then 470 nEh, 50 nEh, and 0.74 nEh,
respectively.

3.2. Chemical Reactions. A key motivation for DFT
embedding schemes is the possibility of embedding accurate
wave function calculations in a DFT environment. Here, we
demonstrate the simplicity and robustness of the current
scheme with a few, sample calculations.
First, we consider the deprotonation energy of gas-phase

ethanol, an example for which the PBE/aug-cc-pVDZ level of
theory is in fairly good agreement with CCSD(T)/aug-cc-
pVDZ. Two embedded calculations are performed, using either
−OH (10 electrons) or −CH2OH (18 electrons) as the active
subsystem. The results are shown in Table 2, where it can be

seen that embedded CCSD(T)-in-PBE with the 10-electron
active subsystem slightly overcorrects the PBE value, by
approximately 6 mEh. The calculation with the 18-electron
active subsystem produces a result in much better agreement,
differing from the total CCSD(T) energy by a little over 1 mEh.
These results are not entirely unexpected, since in the first
calculation the system is partitioned across a bond which
changes polarization during the deprotonation process.
Second, we examine the symmetric SN2 reaction of Cl− with

propyl chloride. The reactant and transition state structure were
optimized at the B3LYP/6-311G*++ level28,30 of theory using
Gaussian.31 Three coupled-cluster, KS, and embedded
activation energies are shown in Table 3. Activation energies
calculated at the CCSD(T), DFT, and CCSD(T)-in-DFT
levels of theory are shown in Table 3; each of these calculations
is performed using the cc-pVTZ32 basis set with aug-cc-pV(T
+d)Z on chlorine.33 DFT calculations with approximate
functionals often underestimate barriers, but in the present
case, the PBE and BLYP barriers are actually negative. HF
theory overestimates the barrier. The embedded results are
consistently much closer to the reference coupled-cluster

Table 1. PBE/6-31G* Energies for Ethanol, with and
without Embedding, Where Subsystem A Is Comprised of
the Five Pipek−Mezey Local Orbitals Associated with the
−OH Moiety

energy/Eh

EKS −154.82798488
E[γA;γB] −154.82800669
μ tr γAPB 0.00002181
E[γA;γB]+μ tr γAPB −154.82798488

Figure 1. Error in the uncorrected (E[γA;γB]) and corrected (E[γA;γB]
+ μ tr γAPB) energy expressions relative to full KS on ethanol using
PBE/6-31G*, demonstrating that the perturbation theory correction
yields essentially exact embedding energies over a wide range of μ.

Table 2. Deprotonation Energies for Ethanol Using PBE/
aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ and
Combinations of These Using Embedding

subsystem A E/mEh

PBE 611.2
CCSD(T)-in-PBE −OH 627.5
CCSD(T)-in-PBE −CH2OH 622.8
CCSD(T) 621.3
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results, with the accuracy improving as more atoms are included
in subsystem A.
3.3. Accurate Embedded Many-Body Expansion.

Recent research in the group of one of us has focused on the
use of embedded many-body expansions to compute accurate
structure and energetics of molecular crystals.34 The idea builds
on earlier attempts to capture many-body effects through
embedding,35,36 and it offers an important step toward
systematically improving accuracy by improving the embedding
scheme, rather than the number of terms in the many-body
expansion. We illustrate this approach for the case of a
symmetric model water trimer.
For simplicity, the trimer is optimized in a planar geometry,

in which each of the three monomers have equivalent
geometries and environment (see structure in Figure 2). The
geometry is optimized with these contraints using MP2/6-
31G*. Denoting the monomer, dimer, and trimer CCSD(T)
energies as E1

CC, E2
CC, and E3

CC, we can immediately express the
coupled-cluster binding energy (relative to water molecules in

their cluster geometry) in the form Ebind
CC = E3

CC − 3E1
CC.

Calculations are performed using the aug-cc-pVDZ basis
throughout.
Several important approximations can be defined without

embedding, and two of these are shown in Figure 2. Truncating
the many-body expansion at the two-body level gives the
approximation

δ δ= + − =E E E E E(3 3 ) 3 3bind
MBE2

1
CC

2
CC

1
CC

2
CC

(4)

where δE2
CC = E2

CC − 2E1
CC. The HF approximation to the

binding energy is defined by Ebind
HF = E3

HF − 3E1
HF. Both of these

approximations result in errors of around 5 mEh in the total
binding energy of around 20 mEh.
Many-body effects can be incorporated through embedding.

Since our HF-in-HF embedding calculations require HF on the
full trimer, we focus our attention on the correlation
contribution to binding, and we use the notation Ecorr ≡ ECC

− EHF for correlation energies. The one-body correlation
correction without embedding vanishes (by analogy to eq 4),
but with embedding, the contribution added to the trimer
energy is different from that subtracted as part of the monomer
energy. Thus, one obtains the approximation

= + ̃ −E E E E3 3bind
EMBE1

bind
HF

1
corr

1
corr

where Ẽ1
corr is the correlation energy from a CC-in-HF

calculation on a single monomer. A further correction can be
made by considering the two-body embedded correlation
contribution, giving

δ= + ̃E E E3bind
EMBE2

bind
EMBE1

2
corr

where δẼ2
corr = Ẽ2

corr − 2Ẽ1
corr.

This EMBE2 approximation can be seen in Figure 2 to be in
essentially perfect agreement with CCSD(T) across all
geometries. Also shown in the figure is the error in this
scheme (compared to Ebind

CC ), which can be seen to be on the
order of 10 μEh in the binding region. The results are strikingly
better than those obtained using the simple unembedded HF-
Δ12 approach defined as37 Ebind

HF‑Δ12 = Ebind
HF + 3δE2

corr, especially at
short range.

4. DISCUSSION
The ideas presented here derive from a long history of ensuring
that the Pauli principle is obeyed through level shifting a subset
of the orbitals. But the interesting and novel point is that the
DFT embedding techniques recently developed by us5,6 and by
others7−22 can be cast exactly into the very simple and robust
framework described here.
It should be noted that this projector embedding method is

not without drawbacks. It is limited to applications for which
the electronic structure can be reasonably described using KS
theory, because the projector can only be formed if KS orbitals
are available. This limitation will become problematic in cases
for which the DFT description is fundamentally broken, or if it
is impractical to perform a full KS calculation on the entire
system. Furthermore, the new method describes embedding in
the environment by a projection operator, rather than a simple,
local potential.
In its favor, however, the current approach relies on existing,

stable, well-developed technologies. It requires nothing more
than a KS code, an orbital localization scheme, some
elementary matrix operations in the atomic orbital basis, and
any wave function method that can accept an arbitrary core

Table 3. Activation Barrier of the Reaction of Propyl
Chloride with Chloride Anion Using HF, KS, CCSD(T), and
Combinations Using Embeddinga

Ea/mEh

subsystem A PBE BLYP HF

DFT/HF −1.2 −1.9 14.6
CCSD(T) embedded −CH2Cl2

− 9.8 12.7 13.2
CCSD(T) embedded −(CH2)2Cl2

− 8.8 9.4 8.6
CCSD(T) 7.8 7.8 7.8

aThe basis set is cc-pVTZ with aug-cc-pV(T+d)Z on chlorine.

Figure 2. Binding curve relative to monomers for a planar water trimer
as a function of the distance from the center of mass to the oxygen
atoms. Shown are the binding curves from HF theory, CCSD(T)
many-body expansion truncated at the two-body level (MBE2),
embedded two-body expansion (EMBE2), and from full trimer
CCSD(T). Note that EMBE2 is indistinguishable from CCSD(T) on
the scale shown. In the lower panel, the error for EMBE2 is compared
to that of the simple additive scheme HF-Δ12, in which the HF binding
curve is corrected using the two-body CCSD(T) correlation energies.
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Hamiltonian. Since these ingredients are available in practically
all molecular electronic structure codes, we anticipate no
barriers to widespread adoption of the approach.
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