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ABSTRACT: Ab initio quantum chemistry calculations for systems with large active
spaces are notoriously difficult and cannot be successfully tackled by standard methods.
We generalize a Green’s function QM/QM embedding method called self-energy
embedding theory (SEET) that has the potential to be successfully employed to treat
large active spaces. In generalized SEET, active orbitals are grouped into intersecting
groups of a few orbitals, allowing us to perform multiple parallel calculations yielding
results comparable to the full active-space treatment. We examine generalized SEET on a
series of examples and discuss a hierarchy of systematically improvable approximations.

At present, in quantum chemistry there is no established ab
initio method that could treat both strongly correlated

molecules and solids while remaining computationally afford-
able and quantitatively accurate. Methods such as complete
active space self-consistent field (CASSCF)1 or complete active
space second-order perturbation theory (CASPT2)2,3 can treat
easily strongly correlated molecules with up to 16 electrons in
16 strongly correlated orbitals, but when generalized to solids
the strongly correlated orbitals from every cell add up to a huge
overall number, making such calculations impossible. However,
because of the experimental progress in solid-state chemistry,
more than ever the development of a general method capable
of treating both strongly correlated molecules and solids while
remaining computationally affordable and quantitatively accu-
rate is desired.
The QM/QM embedding methods such as dynamical mean

field theory (DMFT),4−8 density matrix embedding theory
(DMET),9,10 and self-energy embedding theory (SEET)11−14

offer a viable route of generalizing its molecular versions to
solids. However, to yield accurate results, molecular versions of
these methods must be extensively tested and all of the possible
sources of inaccuracies must be removed or estimated to deliver
systematically improvable and highly accurate answers.
We focus on generalizing the functional form of SEET to

successfully overcome the drawbacks of its original formulation.
SEET is written in the Green’s function language providing
access not only to total energies but also to photoelectron and
angular momentum resolved (ARPES) spectra as well as
thermodynamic quantities. SEET is designed to provide a
Green’s function functional ΦSEET that approximates the exact
Luttinger−Ward functional ΦLW
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by evaluating Φweak
tot with a low-cost method for all of the

orbitals present in the system and then selectively improving it
by evaluating Φstrong

Ai with a nonperturbative method capable of
illustrating strong correlation for p nonintersecting subsets Ai of
l strongly correlated orbitals where p × l = N, where N is the
total number of strongly correlated orbitals and M is the total
number of orbitals in the system and M ≥ N. The Φweak

Ai part is
introduced to remove the double counting of electron
correlation in the orbital subsets Ai.
In Figure 1, we illustrate the SEET scheme with different

orbitals groups, and additionally we list the self-energy

associated with a SEET functional defined as Σ = ∂Φ
∂Gij

SEET

ij
,

where G is the system’s Green’s function. Note that Φstrong
Ai and

consequently [Σstrong]
Ai are calculated from appropriate

Anderson impurity models (AIMs), which are auxiliary systems
used to model the strongly correlated electrons embedded in
the field coming from all the other electrons; for details see refs
13 and 14. Thus in the original formulation of SEET only the
self-energy elements within each strongly correlated group are
treated with an accurate method. The elements of the self-
energy between two orbitals belonging to different strongly
correlated groups or a strongly and weakly correlated orbital are
evaluated at an approximate level. The self-energy of weakly
correlated orbitals is also treated by an approximate and cheap
method. For details see Figure 2. Moreover, from Figure 1 and
the form of the original SEET self-energy, it is evident that for
cases in which the number of strongly correlated orbitals is
increasing and the size of the orbital group Ai remains constant
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an increasing number of self-energy matrix elements are
recovered only by the low-cost, approximate method suitable
for illustrating weak correlations. Ultimately such a description
may lead to an accuracy loss because only a small part of the
self-energy matrix is recovered at an accurate, costly, and
nonperturbative level.

In the generalized formulation of SEET, we overcome this
difficulty by producing the self-energy matrix where all of the
elements between all strongly correlated orbitals (the ones
within the groups and between the groups) are described at the
expensive and accurate level, thus creating a better approx-
imation to the exact self-energy; for schematics see Figures 1
and 2. This is achieved by grouping strongly correlated orbitals
(or any orbitals) into the intersecting groups. Because such a
SEET formulation leads to the double counting of electron
correlation coming from the intersecting orbital groups, a
procedure to subtract out these double counting contributions
must be carried out. Let us illustrate this procedure with an
example. Let us assume that we have a system with four orbitals
in total and we are able to evaluate an accurate self-energy with
an expensive method for two orbitals only. Then we can create

( )4
2 groups containing two orbitals [(1,2), (1,3), (1,4), (2,3),

(2,4), (3,4)]. Consequently, the self-energy for orbitals 1, 2, 3,
and 4 is evaluated multiple times (here three times). We need
to evaluate the self-energy for these single orbitals and subtract
it from the self-energy matrix as follows

Σ = Σ + Σ + Σ + Σ + Σ + Σ

− × Σ + Σ + Σ + Σ2 [ ]

strong
MIX (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)

(1) (2) (3) (4) (2)

A detailed discussion of the above example is in Figure S1 of
the Supporting Information (SI). The above considerations can
be generalized to arbitrary number of strongly correlated
orbitals N from which we choose groups of K orbitals. The
general form of a SEET functional can be written as
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Figure 1. Left upper panel: A system with M orbitals and p
nonintersecting groups Ai of l strongly correlated orbitals. Right upper
panel: The self-energy matrix resulting from SEET treatment of
nonintersecting groups of strongly correlated orbitals. Left lower
panel: A system withM orbitals and intersecting groups Ai of l strongly
correlated orbitals. Right lower panel: The self-energy matrix resulting
from SEET treatment of intersecting groups of strongly correlated
orbitals. In both cases strongly correlated orbitals are treated by a
nonperturbative, expensive, and accurate method, while all of the
remaining orbitals of the problem are treated by a cheap approximate
method.

Figure 2. Treatment of self-energy elements within and between
different orbitals groups in SEET with nonintersecting (SEET-split)
and intersecting groups (SEET-mix) of orbitals. Ai and Aj are groups of
strongly correlated orbitals.

Figure 3. SEET-mix algorithmic scheme.
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where the contributions with ± signs are used to account
correctly for the possible double counting of self-energy matrix
elements. The self-energy matrix is a functional derivative of the
above functional with respect to Green’s function. Note that all
intersecting groups of strongly correlated orbitals Ai, ..., Bi

k ∀i, k
can be treated simultaneously using parallel computing. While
in the theoretical formulation, all of the contributions to the

functional from ( )N
K , −( )N

K 1 , ..., N impurity problems are

included in the self-energy evaluation, in practice, certain
groups can be easily excluded. To preserve the symmetry of the
problem, only orbitals leading to a chosen symmetry
representation should be used to build the orbital groups. For
molecules (or any system with a sizable gap), it is not necessary
to create groups of exclusively occupied or exclusively virtual
orbitals because the self-energy obtained from these groups is
close to zero. Our observations indicate that one can further
restrict the number of possible orbital groups severely and get
very good results if one includes equal number of bonding and
antibonding orbitals in each of the orbital groups due to
significant electron redistribution between these orbitals.
Another possibility of restricting the number of intersecting
groups is to use localized orbitals because only the overlapping
orbitals should be within one group. Note that the selection of
orbital groups can be done either in the natural or molecular
orbital basis or based on spatial distribution of the orbitals in a
local orbital basis. Additionally, let us note that even if only a
few orbital groups are chosen completely at random from all
possible combinations, such a choice may not necessarily lead
to a large lowering of the energy but does not lead to an
increase in the energy either.
We list major algorithmic steps necessary to perform the

generalized SEET algorithm in Figure 3. The whole
approximate system Green’s function can be evaluated at the
Hartree−Fock (HF), Green’s function second order
(GF2),16−22 or GW23,24 level. The selection of the strongly
correlated orbitals used to construct the active space can be
done based on the partial occupations of the one-body density
matrix produced in GF213 or GW. In HF, the active-space
selection can be done based on the shape of molecular orbitals
and the chemical intuition. Subsequently, based on the
computational cost of the accurate solver capable of treating
AIMs in the embedding construction, we choose the number of
strongly correlated orbitals K that are assigned to each group.
In our work, the full configuration interaction (FCI) or its

truncated variants25,26 are used as solvers for AIMs. Because the
strongly correlated orbital groups are intersecting (multiple
groups may contain the same orbital), we need to ensure that
the resulting elements of self-energy are not included multiple
times and double-counted. Consequently, AIMs with impurity
orbitals belonging to the intersects are constructed, and
resulting self-energies are subtracted out from the total sum
of self-energies coming from multiple impurities. (The
procedure of eliminating the double counting coming from
the common orbitals by subtracting self-energies evaluated by
building AIMs made out of orbitals belonging to the intersect
rather than simply neglecting repeating elements is absolutely
crucial to preserve the conservation laws of the resulting
Green’s functions.) For a general case, this is illustrated at the
functional level in eq 3. Finally, all of the elements of self-
energy coming both from the weakly and strongly correlated
orbitals are collected and assembled in the total self-energy
matrix used to build the Green’s function that can be used in
subsequent iterations.
We denote the SEET method where the strongly correlated

orbitals are separated into nonintersecting groups as SEET-
(methodstrong/methodweak)-split(p × lo)/basis. Here methodweak
and methodstrong stand for the theory level we employ to treat
weakly and strongly correlated orbitals; p is the number of
groups and lo is the number of orbitals in the group; basis
stands for the employed basis such as canonical molecular
orbitals (CMOs), natural orbitals (NOs), or orthogonal atomic
orbitals (SAOs). The generalized version of SEET is denoted as
SEET(methodstrong/methodweak)-mix(lo)/basis, where lo stands
for the number of orbitals in each orbital group treated with
accurate method; these orbital groups are intersecting.
Because a different number of orbitals can be used to form

groups of intersecting orbitals, we can create a series of
approximations to the accurate SEET(methodstrong/meth-
odweak)-mix(No) that would include all N strongly correlated
orbitals in the subset treated by a high-level, accurate method.
SEET-mix(2o), SEET-mix(3o), SEET-mix(4o), and so on,
where we calculate the self-energy between any two, three, and
four orbitals accurately using methodstrong can be evaluated as
approximations to the accurate SEET-mix(No). In contrast
with recovering only a subset of self-energy elements in SEET-
split version, SEET-mix(lo) always leads to recovering all of the
self-energy elements between N strongly correlated orbitals
with the accurate treatment of self-energy between lo orbitals.

Figure 4. Left panel: Potential energy curves for the H6 chain in cc-pVDZ
27 basis. Right panel: Potential energy curves for the 2×4 H lattice in STO-

6G basis.28
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Such a treatment provides a smooth convergence of the
energies to the SEET-mix(No) answer.
To demonstrate the potential of the generalized SEET, first

we consider a simple H6 chain and 2×4 H lattice. The potential
energy curves of these systems are shown in Figure 4. For the
H6 chain, all SEET calculations are performed in NOs, and the
SEET(FCI/GF2)-full[6o] energy is used as a reference. We
first split the full active space of six σ-type orbitals into three
groups of bonding−antibonding pairs. This scheme, denoted as
split[3 × 2o], yields energies lower than GF2 but remains very
far from the reference energy. To improve the split[3 × 2o]
energy while keeping only two strongly correlated orbitals in
each group, we allow each bonding orbital to couple to each of
the antibonding orbitals, resulting in mix[2o] scheme. The
mix[2o] pairs are visualized in Figure S2 of the SI. We observe
that mix[2o] gives lower energies than the split[3 × 2o]
scheme. In particular, at the short distances, the mix[2o]
energies are comparable to those of the split[4o+2o] (for zoom
of the equilibrium geometry, see Figure S3 of the SI). The
mix[2o] scheme, however, is still insufficient to recover the
full[6o] energy in the stretched regime. We therefore enlarge
the active space by introducing the mix[4o] scheme. While
there are some possibilities to construct the active spaces of
four orbitals from six orbitals using the mixing scheme, here we
employ the most straightforward way where we simply mix the
bonding−antibonding pairs, which were used in the split[3 ×
2o] scheme (for details, see Figure S2 of the SI). The energies
from mix[4o] approach remain close the full[6o] reference with
errors of a few mHa (miliHartrees).
Let us now consider the 2×4 H lattice presented in the right

panel of Figure 4, which is a more challenging example than the
H6 chain. Here we use FCI energy as a reference. The
split[2×4o] calculation in NOs improves over GF2 but it is far
from FCI due to the lack of correlations between strongly
correlated orbital groups. The split[2×4o] scheme in SAOs can
only converge at long distances, and its curve goes below the
FCI one because of the overcorrelation of GF2 present at long
distances. This indicates that the mixing scheme has to be
introduced to recover the correlations between strongly
correlated orbital groups in both bases. The significant
improvement upon the split[2×4o] results is achieved for
both bases in the mix[4o] scheme, where the same orbital
groups are used along the whole potential energy curve. At
short distances (R < 2.4 au), where the orbitals are delocalized,
mix[4o] in NOs, which is a delocalized basis, gives energies
comparable to FCI. At long distances (R > 3.4 au) the curve of
mix[4o] in SAOs, which are more mostly local, is almost
identical to the FCI one.
Additionally, we evaluate occupation numbers presented in

Figure S4. We observe that the transition from single-reference
to multireference regime is smoother for the mixing than for
splitting scheme, indicating that mix[4o] in NOs can correctly
capture the static correlation. This is reflected at long distances
by the parallelity of the mix[4o]/NO curve to the FCI one.
After assessments of the hydrogen clusters, we move on to

more difficult cases. Stretching the triple bond of N2 is a
difficult test case for many quantum chemistry methods and
consequently an interesting case for assessing the mixing
scheme. To fully explore the performance of mixing scheme,
the SEET(FCI/HF) calculation in HF CMOs was used. Figure
5 displays potential energy curves of N2 in the 6-31G basis. We
provide two CASCI calculations, CASCI(10e,8o) and CASCI-
(10e,16o), as points of comparison with the SEET results. The

active space consists of 8 valence orbitals in CASCI(10e,8o),
while CASCI(10e,16o) involves all 16 orbitals without
considering 1s orbitals. As expected, the SEET(FCI/HF)-
[8o] curve, where all of the active orbitals are placed in one
group, coincides with the CASCI(10o,8o) one. It is interesting
if the CASCI(10e,16o) curve can be reproduced using mixing
scheme with fewer than 16 orbitals in the group. To construct
the orbital groups needed for the mixing scheme, we first divide
the 16 orbitals into four groups of four orbitals according to
types of orbitals: s, px, py, and pz. The groups of eight strongly
correlated orbitals were then constructed from these groups of
four orbitals using mixing scheme. As seen from Figure 5, the
SEET(FCI/HF)-mix[8o] calculation excellently reproduces the
CASCI(10e,16o) result.
The next system used to investigate the performance of

SEET-mix is a linear NiO2 molecule in cc-pVDZ basis, which is
a challenging system because of many low-lying states are
present close to the ground state.30,31 We first divide the full
active space including six 3d4s orbitals of Ni atom and six 2p
orbitals of two O atoms into four groups A, B, C, and D
displayed in the upperlow panel of Figure 6. The strongly

Figure 5. Potential energy curves for N2 in 6-31G basis.29

Figure 6. Upper panel: Four groups of valence orbitals in NiO2. Lower
panel: The percentage of recovered correlation energy in various
SEET calculations in comparison with SEET(FCI/HF)-full[12o] in
cc-pVDZ basis.
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correlated orbital groups are constructed as follows in different
SEET schemes: split[4 × 3o] = {A, B, C, D}, split[2 × 6o] = {A
+ B, C + D}, and mix[6o] = {A + B, B + C, B + D, C + D}. We
employed the SEET(FCI/HF) calculation, as opposed to the
SEET(FCI/GF2) one, because we only aim to focus on the
strong correlations within the active space. To check if SEET-
mix and SEET-split can correctly describe the ground state of
the linear NiO2 molecule, we are comparing the occupation
numbers from SEET calculations with the CASCI(18e,12o)
calculation. Those for π−type orbitals are summarized in Table
1. SEET-split[4 × 3o] provides incorrect occupation numbers.

For the enlarged orbital space of six orbitals, that is, SEET-
split[2 × 6o] and SEET-mix[6o], the occupation numbers are
correctly recovered and comparable to those from CASCI-
(18e,12o). This means that both split[2 × 6o] and mix[6o] are
correctly describing the ground state of NiO2. The correlation
energies from SEET(FCI/HF) calculation are presented in the
lower panel of Figure 6. Here, for internal consistency, the
SEET(FCI/HF)-full[12o] correlation energy is used as a
reference. Although SEET-split[2 × 6o] gives similar
occupation numbers to SEET-mix[6o], it cannot fully recover
the correlation energy due to missing of correlations between
two orbital groups contributing to the self-energy. SEET-
mix[6o] recovers the correlation energy within the full active
space up to 99.7%.
Finally, we examine the generalized SEET scheme on the H50

chain in the STO-6G basis. This is a well-known benchmark for
strongly correlated methods because the active space is large
and contains 50 electrons in 50 orbitals. Note that for this
system traditional single reference methods such as CCSD(T)
are unable to converge past the distance of 2.0 au The reference
solution is available from DMRG calculations.32 Although
SEET-split results are closer to the DMRG reference than other
methods capable of targeting for strong correlations such as
orbital-optimized antisymmetric product of one-reference-
orbital germinal (OO-AP1roG),33 the errors of SEET-split
are still present, especially at long distances. For long distances,
SEET-mix[6o] performed in SAO basis where we treat six
nearest neighbors as an orbital group yields a significant
improvement over SEET-split scheme, as demonstrated in
errors with respect to the DMRG reference shown in Figure 7.
A small deviation from DMRG in the stretched limit is still
present in the SEET(FCI/GF2)-mix[6o] variant. The over-
correlation at the stretched limit is present due to GF2 and can
be removed if SEET(FCI/HF)-mix[6o] variant is used. The
potential energy curves are shown in Figure S5 of the SI.
We conclude that the generalized SEET, denoted as SEET-

mix, yields quantitatively accurate results for cases where active
space containing N strongly correlated orbitals is separated into
a series of intersecting smaller groups/active spaces of K
strongly correlated orbitals, where K < N. SEET-mix can be
employed to create a hierarchy of systematic approximations, as
a function of K, to the exact Luttinger−Ward functional and the
resulting self-energy. In such a hierarchy, the self-energy

elements between K strongly correlated orbitals are recovered
by an accurate method, or, in other words, any possible
occupation of the group of K orbitals is explored in the
presence of many-body field coming from all of the other
orbitals.34 Thus such a scheme has some similarities with the
coupled clusters (CC)35,36 or method of increments37,38

hierarchy. However, while some similarities exist, in stark
contrast with the standard CC and method of increments,
SEET-mix does not result in divergences and qualitatively
incorrect answers when less than a full number of active orbitals
(or excitations) is used when strong correlations are present.
Let us also note that SEET-mix shares some similarities with

the DMET bootstrap embedding procedure39,40 in which the
elements of the density matrix are produced by considering a
series of spatially overlapping fragments. Similarly to DMET
bootstrap, SEET-mix can be performed using spatial orbitals;
however, it also can be performed in the energy basis (NOs or
MOs) with more abstract criteria for forming intersecting
orbital groups. The energy basis is commonly employed for
molecular problems by us because it is advantageous to initially
separate weakly and strongly correlated orbitals.
Moreover, in contrast with now standard quantum chemistry

methods for treating large active spaces such as density matrix
renormalization group (DMRG),41−44 SEET-mix does not
suffer from limitations such as orbital ordering present during
the DMRG sweep procedure.45

Finally, SEET-mix provides a good framework for general-
ization to large active spaces that are notoriously difficult for
standard quantum chemistry methods because all of the
intersecting groups of orbitals can be treated simultaneously
in an embarrassingly parallel fashion.
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Figure S1. A simple schematics for evaluating the self-
energy matrix in the SEET-mix approach. Figure S2.
Three σ and three σ* orbitals are visualized to explain
split[3×2o], mix[2o], and mix[4o] schemes for the H6
chain. Figure S3. Potential energy curves of H6 chain in
cc-pVDZ basis around the equilibrium geometry. Figure
S4: Occupation numbers for the 2×4 H lattice from FCI,
SEET(FCI/GF2)-split[2×4o]/NO, and SEET(FCI/

Table 1. Occupancies of π-Type Orbitals in NiO2

orbitals split[3×4o] split[2×6o] mix[6o] CASCI(18e,12o)

πx 1.95 1.77 1.77 1.78
πy 1.95 1.77 1.77 1.78
πx* 0.24 0.45 0.47 0.47
πy* 0.24 0.45 0.47 0.47

Figure 7. Energy error per atom (in mHa) with respect to the DMRG
reference from various methods for the H50 chain in STO-6G basis.
The DMRG and OO-AP1roG data are taken from refs 32and 33.
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GF2)-mix[4o]/NO calculations. Figure S5: Potential
energy curves of H50 chain in STO-6G basis. (PDF)
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